

Draft Chemistry and Fate Assessment for Vinyl Chloride

Technical Support Document for the Draft Scope for Vinyl Chloride (Ethene, chloro-)

CASRN 75-01-4

January 2025

30 **ACKNOWLEDGMENTS**

31 This draft chemistry and fate technical support document was developed by the United States
32 Environmental Protection Agency (U.S. EPA or the Agency), Office of Chemical Safety and Pollution
33 Prevention (OCSPP), Office of Pollution Prevention and Toxics (OPPT). The Assessment Team
34 gratefully acknowledges the participation, input, and review comments on this draft technical support
35 document from OPPT and OCSPP senior managers and science advisors. The Agency also gratefully
36 acknowledges assistance from EPA contractors for the preparation of this draft technical support
37 document: SRC, Inc. (Contract No. 68HERH19D0022).

38 **Docket**

39 Supporting information can be found in the public docket, Docket ID: [EPA-HQ-OPPT-2018-0448](#).

40 **Disclaimer**

41 Reference herein to any specific commercial products, process or service by trade name, trademark,
42 manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring
43 by the United States Government.

44 **Authors:** Marcy Card (Scope Lead), Kesha Forrest (Management Lead and Branch Supervisor), Olivia
45 Wrightwood

46 **Contributors:** Patricia Fontenot, Grant Goedjen, Roger Kim, Andrew Middleton, Shawn Shifflett,
47 Jason Wight

48 **Technical Support:** Mark Gibson and Hillary Hollinger

49 **This draft technical support document was reviewed and cleared for release by OPPT and OCSPP
50 leadership.**

57 TABLE OF CONTENTS

58	ACKNOWLEDGMENTS	2
59	SUMMARY.....	7
60	1 INTRODUCTION.....	8
61	2 PHYSICAL AND CHEMICAL PROPERTY ASSESSMENT	9
62	2.1 Evidence Integration for Physical and Chemical Properties for Vinyl Chloride	9
63	2.1.1 Preliminarily Selected Physical and Chemical Property Values for Vinyl Chloride	10
64	2.1.2 Preliminary Endpoint Assessments	11
65	2.1.2.1 Molecular Formula, Molecular Weight, and Physical Form	12
66	2.1.2.2 Melting Point.....	12
67	2.1.2.3 Boiling Point	12
68	2.1.2.4 Density	12
69	2.1.2.5 Vapor Pressure	12
70	2.1.2.6 Vapor Density	13
71	2.1.2.7 Water Solubility	13
72	2.1.2.8 Octanol:Water Partition Coefficient (log Kow)	13
73	2.1.2.9 Octanol:Air Partition Coefficient (log KOA)	13
74	2.1.2.10 Henry's Law Constant	14
75	2.1.2.11 Flash Point and Autoflammability	14
76	2.1.2.12 Viscosity	14
77	2.1.2.13 UV-Vis Absorption	14
78	3 ENVIRONMENTAL FATE AND TRANSPORT ASSESSMENT	15
79	3.1 Approach and Methodology	15
80	3.1.1 EPI Suite™ Model Inputs and Settings.....	15
81	3.1.2 Evidence Integration for Fate and Transport Properties.....	18
82	3.2 Partitioning, and Major and Minor Pathways.....	22
83	3.2.1 Tier I Analysis.....	22
84	3.2.2 Tier II Analysis	23
85	3.3 Transformation Processes.....	26
86	3.3.1 Hydrolysis.....	26
87	3.3.2 Photolysis.....	26
88	3.3.2.1 Atmosphere	26
89	3.3.2.2 Surface Water.....	26
90	3.3.3 Abiotic Dehalogenation	27
91	3.3.4 Biodegradation	27
92	3.3.4.1 Surface Water.....	27
93	3.3.4.2 Sediment	28
94	3.3.4.3 Soil.....	28
95	3.3.4.4 Groundwater.....	29
96	3.3.4.5 Vinyl Chloride as a Transformation Product.....	29
97	3.4 Media Assessments	30
98	3.4.1 Air and Atmosphere	30
99	3.4.1.1 Outdoor Air.....	30
100	3.4.1.2 Indoor Air and Dust.....	31
101	3.4.2 Aquatic Environments	31

102	3.4.2.1 Surface Water.....	32
103	3.4.2.2 Sediments.....	32
104	3.4.3 Terrestrial Environments	33
105	3.4.3.1 Biosolids	33
106	3.4.3.2 Soil.....	33
107	3.4.3.3 Landfills	34
108	3.4.3.4 Groundwater.....	35
109	3.5 Persistence Potential of Vinyl Chloride	35
110	3.5.1 Destruction and Removal Efficiency	36
111	3.5.2 Presence and Removal in Drinking Water Treatment	36
112	3.5.3 Removal in Wastewater Treatment	37
113	3.6 Bioaccumulation Potential of Vinyl Chloride	37
114	3.7 Overall Fate and Transport of Vinyl Chloride.....	38
115	REFERENCES	41
116	APPENDICES.....	44
117	Appendix A COMPARTMENT HALF-LIVES USED IN FUGACITY MODEL	
118	SENSITIVITY ANALYSIS	44
119	Appendix B EPI SUITE™ MODEL OUTPUTS	52

121 **LIST OF TABLES**

122	Table 2-1. Physical and Chemical Properties of Vinyl Chloride	11
123	Table 3-1. Summary of Vinyl Chloride Parameters Inputted for EPI Suite™ Level III Fugacity	
124	Sensitivity Analysis	17
125	Table 3-2. Environmental Fate Properties of Vinyl Chloride	18
126	Table 3-3. Partitioning Values for Vinyl Chloride	22
127	Table 3-4. EPI Suite™ Level III Fugacity Modeling Results for Vinyl Chloride.....	23

129 **LIST OF FIGURES**

130	Figure 2-1. Box and Whisker Plots of Reported Physical and Chemical Property Data Values and	
131	Preliminarily Selected Values for Vinyl Chloride.....	10
132	Figure 3-1. Screen Capture of EPI Suite™ Parameters Used to Calculate Physical and Chemical	
133	Properties and Environmental Fate for Vinyl Chloride	15
134	Figure 3-2. EPI Suite™ Level III Fugacity Modeling Graphical Result for Vinyl Chloride.....	25
135	Figure 3-3. Reductive Dechlorination Pathway via Biodegradation in Anaerobic Environments.....	30

137 **LIST OF APPENDIX TABLES**

138	Table_Apx A-1. Calculated Half-Lives from Biodegradation Studies in Water Following First-Order	
139	Kinetics	44
140	Table_Apx A-2. Calculated Half-Lives from Biodegradation Studies in Soil Following First-Order	
141	Kinetics	46
142	Table_Apx A-3. Calculated Half-Lives from Biodegradation Studies with Sediment Following First-	
143	Order Kinetics	46

147 ABBREVIATIONS AND ACRONYMS

148	BAF	Bioaccumulation factor
149	BCF	Bioconcentration factor
150	BOD	Biological oxygen demand
151	CASRN	Chemical Abstracts Service Registry Number
152	CFR	Code of Federal Regulations
153	COU	Condition of use
154	CTD	Characteristic travel distance
155	DCE	Dichloroethylene
156	DMR	Discharge Monitoring Report
157	DOC	Dissolved organic carbon
158	dw	Dry weight
159	EPA	Environmental Protection Agency
160	EPI Suite™	Estimation Program Interface Suite™
161	EPICS	Equilibrium Partitioning in Closed System
162	ETH	ethene
163	FR	Federal Register
164	HCl	Hydrochloric acid
165	HLC	Henry's Law constant
166	HSDB	Hazardous Substances Data Bank
167	Log K _{AW}	Logarithmic air:water partition coefficient
168	Log K _{DOC}	Logarithmic dissolved organic carbon:water partition coefficient
169	Log K _{OA}	Logarithmic octanol:air partition coefficient
170	Log K _{OC}	Logarithmic organic carbon:water partition coefficient
171	Log K _{ow}	Logarithmic octanol:water partition coefficient
172	Log K _{sw}	Logarithmic soil:water partition coefficient
173	LOQ	Limit of quantification
174	LRTP	Long-range transport potential
175	MCL	Maximum contaminant level
176	MDL	Method detection limit
177	MOCLA	Model for Organic Chemicals in Landfills
178	ND	Non-detect/not detected
179	OC	Organic carbon
180	OECD	Organisation for Economic Co-operation and Development
181	·OH	Hydroxyl radical
182	PCE	Perchloroethylene
183	Pov	Overall persistence
184	ppm	parts per million
185	PVC	Polyvinyl chloride
186	RCRA	Resource Conservation and Recovery Act
187	SDWA	Safe Drinking Water Act
188	STP	Sewage treatment plant
189	t _{1/2}	Half-life
190	TCE	Trichloroethylene
191	TG	Test guideline
192	TRI	Toxics Release Inventory
193	TSCA	Toxic Substances Control Act
194	U.S.	United States
195	UV	Ultraviolet

196 VOC Volatile organic chemical
197 WQP Water Quality Portal
198 ww Wet weight
199 WWTP Wastewater treatment plant

SUMMARY

Key Points: Physical, Chemical, and Fate Properties

EPA reviewed databases and previously conducted assessments to identify information for physical and chemical properties to characterize vinyl chloride's expected behavior in the environment, including its tendency to persist in the environment or bioaccumulate. Fate and transport information was collected and considered when identifying the major and minor pathways to inform problem formulation, and during preliminary media assessments for the purposes of the draft scope of the risk evaluation for vinyl chloride (U.S. EPA, 2025). The key points are summarized below:

- Vinyl chloride, also known as chloroethylene, is a chlorinated ethene that does not occur naturally in the environment. Its primary use is as a reactant (monomer) in the production of polyvinyl chloride (PVC). Due to its physical state as a gas at room temperature and pressure, vinyl chloride is primarily expected to be found in the air compartment.
- Upward of 98 percent of annual Toxics Release Inventory (TRI) reported vinyl chloride releases are to the air compartment. Vinyl chloride is expected to undergo indirect photolysis in the atmosphere with photochemically produced hydroxyl radicals ($\cdot\text{OH}$; $t_{1/2}$ of 1.27–2.71 days), though it is not expected to undergo direct photolysis as it does not absorb wavelengths above 218 nm.
- Vinyl chloride is not expected to undergo hydrolysis in aqueous environments.
- With a water solubility of 9,150 mg/L at 20.5 °C, vinyl chloride may exist in surface waters from incidental direct releases (e.g., spills from regular handling or transport of vinyl chloride). However, such instances are expected to be localized and irregular.
- Vinyl chloride is not expected to be readily biodegradable under aerobic aqueous conditions, though it is expected to volatilize from surface water as indicated by its Henry's Law constant (0.0278 atm·m³/mol at 24.8 °C).
- Because of its range of empirical log K_{oc} values (log K_{oc} 1.75–2.95), vinyl chloride is expected to have some affinity to organic material in solids. In aqueous environments, fugacity modeling indicates that vinyl chloride will not accumulate appreciably in sediments.
- Minimal releases of vinyl chloride are to land/soil media. Due to vinyl chloride's vapor pressure (2,550 mm Hg at 20 °C), it is expected to volatilize from dry soil. However, in areas of incidental, direct releases to land (e.g., spills, leaks), vinyl chloride may also be subject to migration to groundwater, with possible biodegradation and sorption to organic solid fractions.
- Vinyl chloride may be produced in anaerobic environments (e.g., groundwater, landfills) by the reductive dehalogenation of other chlorinated solvents, namely perchloroethylene (PCE) and trichloroethylene (TCE). However, it is unlikely for vinyl chloride to appear in groundwater and landfills from the conditions of use identified in this draft scope.
- The removal of vinyl chloride in wastewater treatment is expected to be primarily by stripping to air (volatilization). Biodegradation is not expected to be a significant removal process. Because of its tendency to volatilize rather than sorb to organic matter, transfer to soil through biosolid amendments or to landfills by sludge disposal is not expected to be a major pathway.
- Vinyl chloride is not expected to bioconcentrate or bioaccumulate significantly in aquatic organisms (BCF = 40 in green algae (*Chlorella fusca*) and BCF < 10 in golden ide (*Leuciscus idus melanotus*)). No bioconcentration or bioaccumulation data were identified for terrestrial organisms.

202

1 INTRODUCTION

203 Vinyl chloride, also referred to as chloroethylene, belongs to the chlorinated ethene group that also
204 includes other chlorinated solvents such as perchloroethylene (PCE) and trichloroethylene (TCE). Vinyl
205 chloride does not occur naturally in the environment. It is produced by either oxychlorination or direct
206 chlorination of ethylene to produce 1,2-dichloroethane, followed by thermal cracking of 1,2-
207 dichloroethane to yield vinyl chloride and hydrogen chloride (HCl) ([ATSDR, 2024](#); [Cowfer and](#)
208 [Gorensek, 2006](#)). The vast majority of vinyl chloride is used in the production of polyvinyl chloride
209 (PVC) and its copolymers ([ATSDR, 2024](#)).

210

211 Vinyl chloride is a colorless gas at room temperature and pressure ([NLM, 2023b](#); [RSC, 2023](#); [U.S. EPA,](#)
212 [2000](#)) and has a boiling point of -13.9°C ([NLM, 2023b](#); [Reaxys, 2023](#); [U.S. EPA, 2023](#)). Vinyl chloride
213 has a water solubility of 9,150 mg/L at 20.5°C ([ECHA, 2023a](#); [Reaxys, 2023](#)), a vapor pressure of 2,550
214 mmHg ([ECHA, 2023a](#)) at 20°C , and a Henry's Law constant (HLC) of 0.0278 atm $\cdot\text{m}^3/\text{mol}$ at 24.8°C ([PhysProp, 2023](#)). Because of its boiling point and volatility, vinyl chloride is primarily expected to
215 be found in the air compartment in gas phase.

217

2 PHYSICAL AND CHEMICAL PROPERTY ASSESSMENT

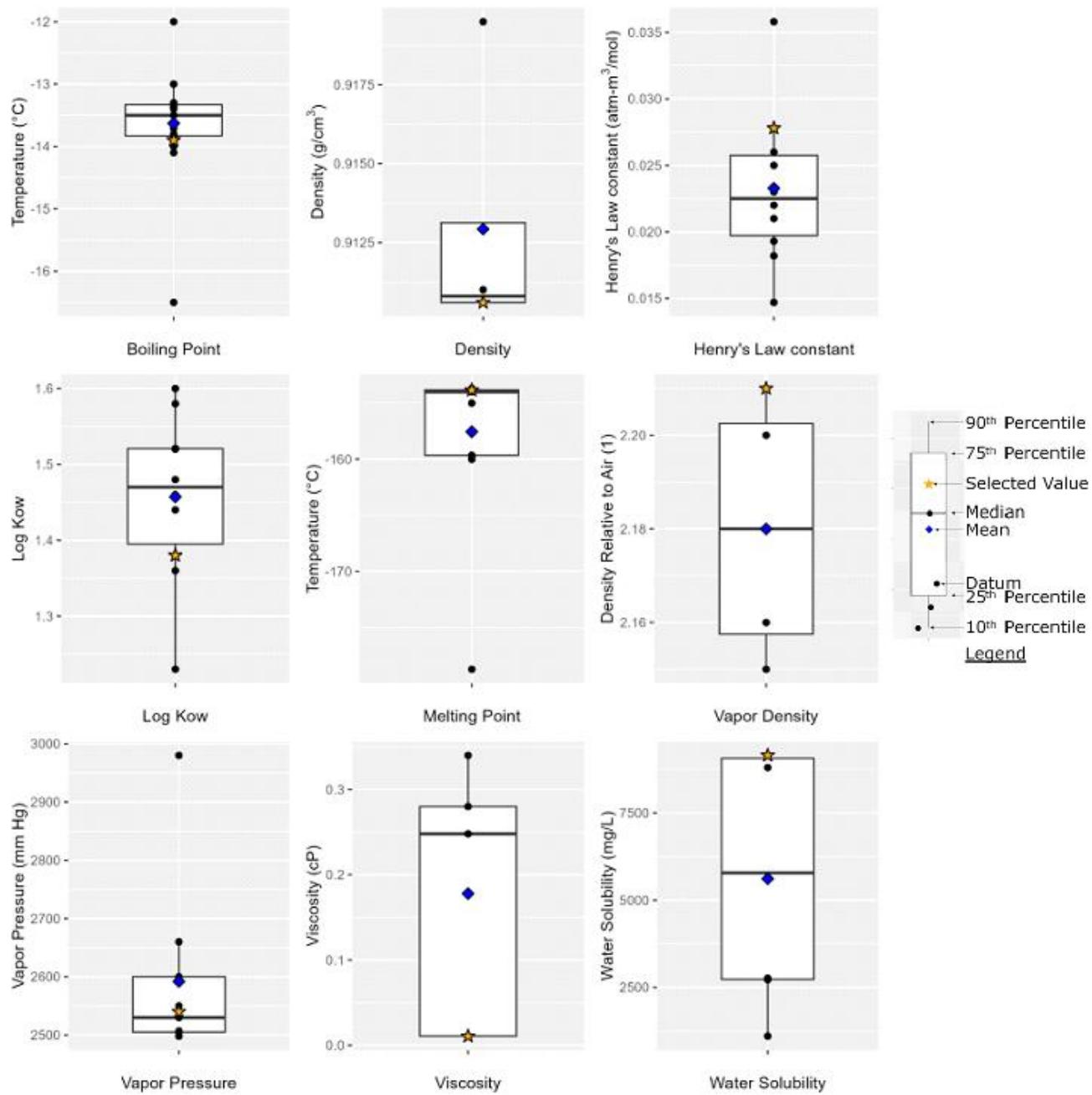
218

2.1 Evidence Integration for Physical and Chemical Properties for Vinyl Chloride

219

220 EPA reviewed databases and previously conducted assessments to identify information for physical and
221 chemical properties to characterize vinyl chloride's expected behavior in the environment, including its
222 tendency to persist in the environment or bioaccumulate.

223


224 Table 2-1 summarizes the information identified for physical and chemical properties of vinyl chloride.
225 Through implementation of systematic review approaches as described in Sections 4 and 5 of the
226 *Updated Search Strategies Used to Identify Potentially Relevant Discipline-Specific Information* ([U.S.](#)
227 [EPA, 2024b](#)), EPA identified 225 data sources that contain potentially relevant physical and chemical
228 property information of vinyl chloride. During the draft scoping of vinyl chloride, EPA considered both
229 measured and estimated physical and chemical property data/information. Data obtained from expert
230 and peer-reviewed sources were considered first, namely from the Merck Index, the CRC Handbook of
231 Chemistry and Physics, and PubChem HSDB. Additionally, data collected using established test
232 guidelines (e.g., as established by OECD) were prioritized over those not collected following guidelines.
233 EPA selected empirical and measured data over modeled data as much as possible to improve the
234 confidence in the endpoints.

235

236 A composite plot consisting of box and whisker plots of reported physical and chemical property data
237 values is shown in Figure 2-1. For some temperature-dependent physical and chemical properties (e.g.,
238 vapor pressure, density), the data presented in Figure 2-1 includes measurements collected at
239 temperatures beyond standard environmental conditions (i.e., 20 to 25 °C and 760 mmHg), contributing
240 to the illustrated variance. The box and whisker plots for each endpoint illustrate the mean (average,
241 indicated by the blue diamond) and the 10th, 25th, 50th (median), 75th, and 90th percentiles. All
242 individual data points are indicated by black circles, and the value preliminarily selected for use in the
243 draft scope is overlaid (indicated by the orange star) to provide context for where it lies within the
244 distribution of the data set. Additionally, note that the y-axis scales in each of the panels of Figure 2-1
245 are different, therefore selected values that appear to be far from the central tendency of the data set may
246 in fact be numerically in close agreement (e.g., log Kow, vapor density, and density). The data included
247 for each of the displayed endpoints in Figure 2-1 are described in respective preliminary endpoint
248 assessment sections, beginning in Section 2.1.2.

249

250

251
252
253

Figure 2-1. Box and Whisker Plots of Reported Physical and Chemical Property Data Values and Preliminarily Selected Values for Vinyl Chloride

254
255
256
257
258
259
260

2.1.1 Preliminarily Selected Physical and Chemical Property Values for Vinyl Chloride

For some physical and chemical properties, there are multiple high-confidence values available for selection that were identified. The majority of the preliminarily selected data were collected under standard environmental conditions (*i.e.*, 20–25 °C and 760 mmHg). For values of endpoints for which no empirical data were identified, estimations from EPI Suite™ are reported ([U.S. EPA, 2017](#)).

261

Table 2-1. Physical and Chemical Properties of Vinyl Chloride

Property	Selected Value ^a	Reference(s)
Molecular formula	C ₂ H ₃ Cl	NLM (2023b)
Molecular weight	62.498 g/mole	Rumble (2023)
Physical form	Colorless gas at room temperature and pressure; mild, sweet odor	RSC (2023) , U.S. EPA (2000) , NLM (2023b)
Melting point	-153.84 °C	PhysProp (2023) , Rumble (2023)
Boiling point	-13.9 °C	NLM (2023b) , U.S. EPA (2023) , Reaxys (2023)
Density	0.9106 g/cm ³ at 20 °C	Rumble (2023) , RSC (2023) , ATSDR (2024) , OECD (2001)
Vapor pressure	2,550 mm Hg at 20 °C	ECHA (2023a)
Vapor density	2.21 (relative to air = 1)	NLM (2023b)
Water solubility	9,150 mg/L at 20.5 °C	Reaxys (2023) , ECHA (2023a)
Octanol:water partition coefficient (log K _{ow})	1.38	Rumble (2023) , ATSDR (2024) , ECHA (2023c)
Octanol:air partition coefficient (log K _{OA})	1.324 ^b	EPI Suite TM (KOAWIN)
Henry's Law constant	0.0278 atm·m ³ /mol at 24.8 °C	PhysProp (2023)
Flash point	-78 °C (closed cup)	NLM (2023b) , RSC (2023)
Autoflammability	472 °C	NLM (2023b)
Viscosity	0.01072 cP at 20 °C	NLM (2023b)
UV-Vis absorption	Chemical is a gas that does not absorb wavelengths >218 nm	OECD (2001) , ATSDR (2024)

^a Measured unless otherwise noted^b Information was estimated using EPI SuiteTM [U.S. EPA \(2017\)](#).

262

263

2.1.2 Preliminary Endpoint Assessments

264 The physical and chemical property values selected preliminarily and for use in this draft scope of vinyl
 265 chloride are given in Table 2-1. Data from expert and peer-reviewed databases and reference texts were
 266 favored during the selection of preliminarily proposed physical and chemical properties, as discussed in
 267 Section 2.1. Because a systematic workflow was used to obtain these data, the data analyses consider
 268 only a subset of all physical and chemical data, not an exhaustive acquisition of all potential data. Due to
 269 cross-referencing between many of the databases identified and assessed through the systematic review
 270 process, there is potential for data from one primary source to be collected multiple times resulting in
 271 duplication within the data set. This duplication should be considered as a potential source of uncertainty
 272 in the data analyses (e.g., calculation of quartiles presented in Figure 2-1), although data-collection
 273 procedures and expert judgement were used to minimize this possibility whenever possible. Additional
 274 information may be considered in subsequent analyses after the completion of the systematic review
 275 process during the development of the final scope and risk evaluation of vinyl chloride. However, the
 276 preliminary selections of physical and chemical properties for vinyl chloride are not expected to change
 277 significantly with the completion of the formal systematic review, as many of the same sources are
 278 likely to be captured.

279 2.1.2.1 Molecular Formula, Molecular Weight, and Physical Form

280 The molecular formula for vinyl chloride is C₂H₃Cl, as presented in NLM ([2023b](#)). Four sources for
281 vinyl chloride's molecular weight were identified, and are all in close agreement: ATSDR ([2024](#)) and
282 Merck ([2023](#)) both provide a molecular weight of 62.50 g/mol. Rumble ([2023](#)) reported a molecular
283 weight of 62.948 g/mol, while a molecular weight of 62.9488 g/mol was reported by Reaxys ([2023](#)). The
284 value of 62.948 g/mol was selected for this draft scope, as values from the CRC Handbook of Chemistry
285 and Physics are reviewed by subject matter experts and are routinely updated ([Rumble, 2023](#)).
286

287 Twenty-five values for physical form were identified. The physical form description presented in Table
288 2-1 represents the most common descriptors identified among the retrieved data, again prioritizing
289 information gathered from expert and/or peer-reviewed trusted databases.

290 2.1.2.2 Melting Point

291 Melting point informs the chemical's physical state, environmental fate and transport, as well as the
292 chemical's potential bioavailability. After data set deduplication, thirteen melting point data values were
293 considered for vinyl chloride, ranging from -178.72 ([NIST, 2023](#)) to -153.7 °C ([ECHA, 2023b](#)), with a
294 median of -154 °C. A melting point value of -153.84 °C was preliminarily selected for the purposes of
295 this draft scope, as it is in close agreement with the median of the identified melting point data set and
296 was reported by a preferred database reference (the CRC Handbook of Chemistry and Physics; ([Rumble,](#)
297 [2023; PhysProp, 2023](#))). Note that all thirteen data values are presented in Figure 2-1.

298 2.1.2.3 Boiling Point

299 Boiling point informs the chemical's physical state, environmental fate and transport, as well as the
300 chemical's potential bioavailability. After deduplication of the boiling point data set, twenty-four boiling
301 point values were considered for vinyl chloride, ranging from -33.51 ([NIST, 2023](#)) to 82.7 °C ([ECHA,](#)
302 [2023b](#)). Three of the identified values listed in ([Reaxys, 2023](#)) are positive (>0 °C) and were thus
303 excluded as outliers. Two additional values were excluded from consideration because they were
304 collected under reduced pressures, and thus are not informative for scenarios under environmental
305 conditions ([Reaxys, 2023](#)). The remaining nineteen values are presented in Figure 2-1 and fall between
306 -18 and -12 °C ([Reaxys, 2023](#)). A boiling point of -13.9 °C was preliminarily selected for this draft
307 scope as it falls close to the central tendency of identified values (mean of -13.63 °C) and was reported
308 by several high-quality trusted databases ([NLM, 2023b](#); [Reaxys, 2023](#); [U.S. EPA, 2023](#)).

309 2.1.2.4 Density

310 After deduplication of the data set, twenty density values were considered for vinyl chloride ranging
311 from 0.822 to 2.598 g/cm³, collected at temperatures ranging from -30 to 64.1 °C. The maximum of the
312 data (2.598 g/cm³) was excluded as it is a clear outlier ([OECD, 2001](#)). Of the remaining nineteen values,
313 four density values were collected at 20 °C, of which the median density is 0.9108 g/cm³ ([ECHA,](#)
314 [2023c](#); [NLM, 2023b](#); [Reaxys, 2023](#); [OECD, 2001](#)). Figure 2-1 presents only the density values collected
315 at 20 °C for the density of vinyl chloride to display values collected at an environmentally relevant
316 temperature, as the other fifteen values were collected under temperatures not reflective of typical
317 environmental conditions. A value of 0.9106 g/cm³ at 20 °C was preliminarily selected for use in this
318 draft scope as it falls close to the median of density values collected at 20 °C and was also reported by
319 several high-quality trusted reference texts and existing assessments ([ATSDR, 2024](#); [RSC, 2023](#);
320 [Rumble, 2023](#); [OECD, 2001](#)).

321 2.1.2.5 Vapor Pressure

322 Vapor pressure indicates a chemical's potential to volatilize, affecting the chemical's proneness for
323 fugitive and other emissions to air and for undergoing long range transport. After deduplication, thirty

324 values were considered for the vapor pressure of vinyl chloride, reported at a range of temperatures:
325 from 1 mmHg at -109.4°C , to 7,603 mmHg at -28.8 to 60.2°C ([Reaxys, 2023](#)). Because vapor pressure
326 measurements are particularly sensitive to temperature, experimental temperature was used to narrow
327 down the selection. The remaining 21 values were excluded: two identified values did not have
328 associated temperatures ([NLM, 2023b](#)), one value was presented for a wide range of temperatures
329 ([Reaxys, 2023](#)), and the remaining values were collected at temperatures outside of the standard range
330 (*i.e.*, 20-25 $^{\circ}\text{C}$). Six of the thirty values were collected at 20 $^{\circ}\text{C}$ with a mean of 2,515 mmHg ([ATSDR,](#)
331 [2024](#); [ECHA, 2023a, c](#); [NLM, 2023b](#); [PhysProp, 2023](#); [RSC, 2023](#); [OECD, 2001](#)), while three were
332 collected at 25 $^{\circ}\text{C}$ with a mean of 2,747 mmHg ([ATSDR, 2024](#); [PhysProp, 2023](#); [Rumble, 2023](#); [U.S.](#)
333 [EPA, 2000](#)). Figure 2-1 presents only the data collected at 20 $^{\circ}\text{C}$ or 25 $^{\circ}\text{C}$ for the vapor pressure of vinyl
334 chloride. A vapor pressure of 2,550 at 20 $^{\circ}\text{C}$ was preliminarily selected for use in this draft scope as it is
335 representative of vinyl chloride's vapor pressure under environmentally relevant conditions ([ECHA,](#)
336 [2023a](#)).

2.1.2.6 Vapor Density

337 Four values were identified for the vapor density of vinyl chloride ranging from 2.15 to 2.21 (relative to
338 air = 1), all in close agreement ([ATSDR, 2024](#); [NLM, 2023a, b](#)). A vapor density of 2.21 was
339 preliminarily selected for use in this draft scope as it was reported by a preferred database ([NLM, 2023a,](#)
340 [b](#)).

2.1.2.7 Water Solubility

341 Water solubility informs many endpoints not only within the realm of fate and transport of vinyl
342 chloride in the environment, but also when modelling for industrial process, engineering, human and
343 ecological hazard, and exposure assessments. Nineteen data were identified for the water solubility of
344 vinyl chloride ranging from 1,000 to 9,950 mg/L collected at 15 to 80 $^{\circ}\text{C}$ ([ECHA, 2023a](#); [Reaxys,](#)
345 [2023](#)). Six water solubility values were collected at temperatures between 20 and 25 $^{\circ}\text{C}$ and are
346 presented in Figure 2-1. The other thirteen values were excluded from consideration as they were not
347 collected under standard environmental temperature. A water solubility of 9,150 mg/L at 20.5 $^{\circ}\text{C}$ was
348 preliminarily selected for use in this draft scope as it was reported by multiple high-quality references
349 and was collected at a temperature representative of relevant environmental conditions ([ECHA, 2023a](#);
350 [Reaxys, 2023](#)).

2.1.2.8 Octanol:Water Partition Coefficient (log K_{ow})

351 The octanol:water partition coefficient (log K_{ow}) quantifies how a chemical will partition between
352 octanol (a common surrogate for biological lipids and other hydrophobic media) and water. In the
353 absence of adequate empirical data, log K_{ow} is often used to predict a chemical's tendency to partition
354 to biota (*i.e.*, bioconcentration), as well as for the estimation of other properties including water
355 solubility, soil adsorption, and bioavailability. After deduplication, ten log K_{ow} values were considered
356 for vinyl chloride. All identified values are in good agreement, falling between 1.23 and 1.6 ([ATSDR,](#)
357 [2024](#); [NLM, 2023b](#)). The small variance in the log K_{ow} data set for vinyl chloride increases confidence
358 that the selected value is representative of vinyl chloride octanol:water partitioning. The value 1.38
359 collected at 20 $^{\circ}\text{C}$ and pH 5 to 9 was preliminarily selected for use in this draft scope, as this value was
360 collected following OECD Guideline 107 and was reported by several high-quality databases and
361 existing evaluations ([ATSDR, 2024](#); [ECHA, 2023c](#); [Rumble, 2023](#)). All ten values are presented in
362 Figure 2-1.

2.1.2.9 Octanol:Air Partition Coefficient (log K_{oa})

363 No empirical log K_{oa} data were identified from the screening of databases and previously released

368 assessments. The EPI Suite™ KOAWIN model was leveraged to estimate a log KOA of 1.324 ([U.S.](#)
369 [EPA, 2017](#)).

370 **2.1.2.10 Henry's Law Constant**

371 The Henry's Law constant (HLC) provides an indication of a chemical's volatility from water and gives
372 an indication of environmental partitioning between air and water, potential removal during wastewater
373 treatment via aeration stripping, and possible routes of environmental exposure. After deduplication,
374 thirteen HLC values were considered for vinyl chloride ranging from 0.0147 to 1.05 atm·m³/mol. Values
375 increased with temperature, with reported values collected at conditions of 9.85 to 34.6 °C. Three values
376 (0.055, 0.12, and 1.05 atm·m³/mol) were excluded from consideration as statistical outliers ([NIST](#),
377 [2023](#)); the remaining ten values fall between 0.0147 to 0.0358 atm·m³/mol. The value 0.0278
378 atm·m³/mol at 24.8 °C was preliminarily selected for use in this draft scope as it was collected using the
379 equilibrium partitioning in closed system (EPICS) method often employed for VOCs, it was collected
380 close to standard temperature, and was reported by multiple databases and existing assessments ([ECHA](#),
381 [2023a](#); [PhysProp](#), [2023](#)). Because the selected value is the only HLC value for which the collection
382 temperature could be confirmed as environmentally relevant, all eleven HLC values remaining after
383 removing outliers are presented in Figure 2-1 to illustrate the data set variance. This explains why the
384 selected HLC value lies above the central tendency, as values collected below standard temperature are
385 smaller than those collected at standard temperature.

386 **2.1.2.11 Flash Point and Autoflammability**

387 Limited data were identified for the flash point and autoflammability of vinyl chloride. The flash point
388 value of -78 °C (determined by the closed cup method) was reported by both ([NLM](#), [2023b](#)) and ([RSC](#),
389 [2023](#)), and was preliminarily selected for use in this draft scope. Similarly, an autoflammability of 472
390 °C was selected for use in this draft scope ([NLM](#), [2023b](#)).

391 **2.1.2.12 Viscosity**

392 Four references were identified reporting the viscosity of vinyl chloride, ranging from 0.01072 to 0.34
393 cP within a temperature range of -40 °C to 30 °C ([NLM](#), [2023a](#), [b](#); [Reaxys](#), [2023](#)). Under relevant
394 environmental conditions, vinyl chloride will exist as a gas with a viscosity of 0.01072 cP (collected at
395 20 °C) ([NLM](#), [2023a](#), [b](#)). As a liquid at -20 °C, vinyl chloride has a viscosity of 0.280 cP ([NLM](#), [2023a](#),
396 [b](#)); these values were preliminarily selected to represent gas and liquid phase viscosities of vinyl
397 chloride. Note that Figure 2-1 presents all viscosity data identified.

398 **2.1.2.13 UV-Vis Absorption**

399 The UV-Vis absorption range and maxima of a chemical indicate whether or not the chemical may be
400 susceptible to direct photolysis in the atmosphere. Both ([OECD](#), [2001](#)) and ([ATSDR](#), [2024](#)) reported the
401 absorption range of vinyl chloride to fall below 218 nm, suggesting vinyl chloride is not susceptible to
402 direct photolysis.

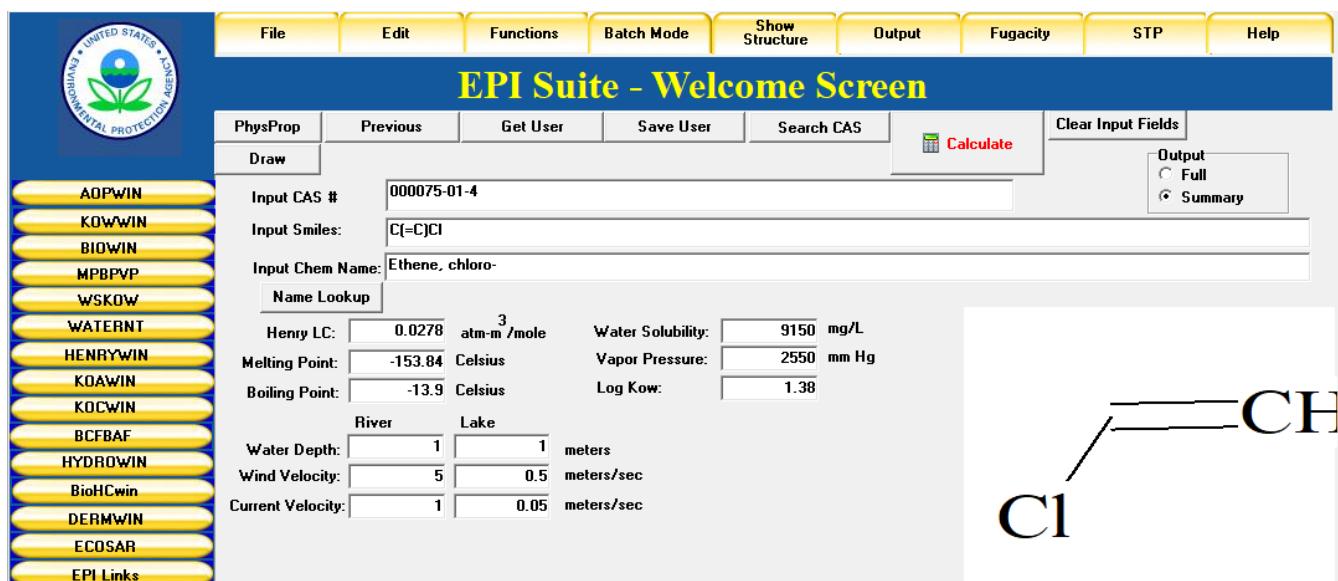
404

3 ENVIRONMENTAL FATE AND TRANSPORT ASSESSMENT

405

3.1 Approach and Methodology

406 EPA reviewed databases and previously conducted assessments to identify information on fate endpoints
 407 for vinyl chloride that inform fit-for-purpose risk evaluation analysis plans (see Section 3.2 of the
 408 *Updated Search Strategies Used to Identify Potentially Relevant Discipline-Specific Information (U.S.*
 409 *EPA, 2024b)*). Specifically, this information was analyzed to characterize transport and partitioning
 410 pathways, identify environmental persistence potential, and assess bioaccumulation potential of vinyl
 411 chloride. EPA conducted a Tier I assessment to identify the environmental compartments (*i.e.*, water,
 412 sediment, biosolids, soil, groundwater, air) of major and minor relevance to the fate and transport of
 413 vinyl chloride as indicated by its partitioning behavior. Next, a Tier II fugacity analysis was conducted
 414 to preliminarily inform the fate pathways and media most likely to result in exposure from
 415 environmental releases to inform which media should be the focus of quantitative vs. qualitative
 416 assessments. The Tier II analysis was performed using EPI SuiteTM (LEV3EPITM) as described in
 417 Section 3.1.1 ([U.S. EPA, 2017](#)). The results of the Tier I and II assessments are discussed in Section 3.2.
 418


419 Complementing preliminary Tier I and Tier II analyses, understanding the transformation behavior of
 420 vinyl chloride informs which pathways are expected to be dominant or contributing to persistence in
 421 different compartments. Vinyl chloride undergoes various transformation processes as discussed in
 422 Section 3.3. Last, EPA preliminarily assessed the environmental fate and transport of vinyl chloride by
 423 considering and integrating physical and chemical data, fate and transport data, monitoring data, and
 424 release data identified to date. With this, EPA performed preliminary media-specific fate analyses as
 425 described in Section 3.3.4.

426

3.1.1 EPI SuiteTM Model Inputs and Settings

427
 428
 429

To set up EPI SuiteTM for estimating fate and fugacity properties of vinyl chloride, the physical and chemical properties were input based on the values in Table 2-1. EPI SuiteTM was run using default settings (*i.e.*, no other parameters were changed or input) unless otherwise stated below (Figure 3-1).

430
 431
 432
 433

Figure 3-1. Screen Capture of EPI SuiteTM Parameters Used to Calculate Physical and Chemical Properties and Environmental Fate for Vinyl Chloride

434 **Fugacity Modeling Sensitivity Analysis**

435 Using a fugacity modeling approach helps to inform how vinyl chloride is expected to be distributed in
436 the environment. The approach described by Mackay (1996) using the Level III Fugacity model in EPI
437 SuiteTM (LEV3EPITM) was used for Tier II analysis. LEV3EPITM is described as a steady-state, non-
438 equilibrium model that uses a chemical's physical and chemical properties and degradation rates to
439 predict partitioning of the chemical between environmental compartments and its persistence in a model
440 environment (U.S. EPA, 2017).

441

442 Because systematic review and data quality evaluation steps are not yet complete, a sensitivity analysis
443 was conducted to gauge a range of scenarios by varying compartment half-lives ($t_{1/2}$), and tendency to
444 adsorb to organic carbon (varying log K_{oc}): here, the minimum, mean, and maximum empirical half-
445 lives of vinyl chloride transformation in soil, water, and sediment were assessed, as well as the
446 minimum and maximum log K_{oc} (see Section 3.2.1). Since the reported half-lives of vinyl chloride
447 transformation in air are in relative agreement (mediated by indirect ·OH photolysis; Table 3-2), the
448 mean atmospheric half-life was used in all runs. In instances where transformation half-lives were not
449 available from the identified sources, a first-order approximation was calculated from the fraction of
450 vinyl chloride remaining and the study duration, using the first-order rate equation:

451

452

Equation 3-1

$$t_{1/2} = \frac{\ln (2)}{-\ln (f_{VC_remain})/t}$$

453

454

455 Where:

456 $t_{1/2}$ = half-life (hours)

457 f_{VC_remain} = fraction of vinyl chloride remaining at time t

458 t = study duration (hours)

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

The studies used and their calculated half-lives are presented in Appendix A in further detail. In addition to the half-life and log K_{oc} sensitivity bounding, two sets of different release scenarios were screened to assess how direct releases to specific compartments affect the overall mass distribution in the fugacity model. The two sets of release values used as inputs to the fugacity model are described below.

The first set was run using the mean reported releases (kg/hr) submitted to TRI over the past ten years. The TRI information on releases to the environment are presented in the *Proposed Designation of Vinyl Chloride as a High-Priority Substance for Risk Evaluation* (U.S. EPA, 2024a). In summary, of the more than 5 million lb of vinyl chloride disposed of or otherwise released to the environment during the TRI reporting years 2013 through 2022, more than 98 percent was released onsite to air. The majority of offsite releases reported to TRI were to wastewater treatment facilities other than publicly owned treatment works (e.g., industrial wastewater treatment). TRI releases that were categorized as RCRA landfill releases were not included in the land releases, as environmental releases from RCRA landfills (e.g., through leachate runoff) were assumed to be negligible.

The second set probed generic release scenarios to single compartments to inform the fugacity tendencies of vinyl chloride in each media. A summary of the inputs for each LEV3EPITM run is listed in Table 3-1. Bolded values in the rows of Table 3-1 indicate which value was adjusted to test the sensitivity of the associated parameter (i.e., half-life or K_{oc}).

481
482**Table 3-1. Summary of Vinyl Chloride Parameters Inputted for EPI Suite™ Level III Fugacity Sensitivity Analysis**

Release Source	Run No.	Releases (kg/hr)			Koc ^a	Half-Lives (t _{1/2} ; hours) ^a				Run Notes
		Air	Water	Soil		Air	Water	Soil	Sediment	
TRI RELEASES	1	2.6E+01	2.8E-03	1.4E-04	56.2	44.3	1630	763.6	1778	min Koc; mean water, soil, and sediment t _{1/2}
	2	2.6E+01	2.8E-03	1.4E-04	891.3	44.3	1630	763.6	1778	max Koc; mean water, soil, and sediment t _{1/2}
	3	2.6E+01	2.8E-03	1.4E-04	56.2	44.3	2672	763.6	1778	min K _{OC} , max water t _{1/2}
	4	2.6E+01	2.8E-03	1.4E-04	56.2	44.3	344	763.6	1778	min K _{OC} , min water t _{1/2}
	5	2.6E+01	2.8E-03	1.4E-04	56.2	44.3	1630	1711.4	1778	min K _{OC} , max soil t _{1/2}
	6	2.6E+01	2.8E-03	1.4E-04	56.2	44.3	1630	195.1	1778	min K _{OC} , min soil t _{1/2}
	7	2.6E+01	2.8E-03	1.4E-04	56.2	44.3	1630	763.6	12000	min K _{OC} , max sediment t _{1/2}
	8	2.6E+01	2.8E-03	1.4E-04	56.2	44.3	1630	763.6	21.7	min K _{OC} , min sediment t _{1/2}
"GENERIC" RELEASES ^b	9	1000	1000	1000	56.2	44.3	1630	763.6	1778	min K _{OC} , equal releases
	10	1000	1000	1000	891.3	44.3	1630	763.6	1778	max K _{OC} , equal releases
	11	0	1000	0	56.2	44.3	1630	763.6	1778	min K _{OC} , water releases only
	12	0	1000	0	891.3	44.3	1630	763.6	1778	max K _{OC} , water releases only
	13	0	0	1000	56.2	44.3	1630	763.6	1778	min K _{OC} , soil releases only
	14	0	0	1000	891.3	44.3	1630	763.6	1778	max K _{OC} , soil releases only

^a Bolded values indicate which value was adjusted to test the sensitivity of the associated parameter (*i.e.*, half-life or K_{OC}).^b Mean water, soil, and sediment half-lives used, as in Run No. 1.

483

484

485

486

487

488

Note that these half-lives and release values were selected simply for this sensitivity analysis and are not proposed values for subsequent exposure and risk analyses. Otherwise, vinyl chloride properties were entered into EPI Suite™ as shown in Figure 3-1, and all other input variables to the LEV3EPI™ fugacity model were left at their default settings (*e.g.*, advection time). The results of the Tier II analysis are discussed in Section 3.2.2.

489 **3.1.2 Evidence Integration for Fate and Transport Properties**

490 As previously mentioned, EPA reviewed databases and previously conducted assessments to identify
 491 fate and transport properties to characterize the potential for vinyl chloride to persist in the environment
 492 or bioaccumulate, and to inform risk evaluation problem formulation. Through implementation of
 493 systematic review approaches as described in Sections 4 and 5 of the *Updated Search Strategies Used to*
 494 *Identify Potentially Relevant Discipline-Specific Information* ([U.S. EPA, 2024b](#)), EPA identified 1,682
 495 data sources for the environmental fate characterization of vinyl chloride. Table 3-2 summarizes the
 496 information preliminarily identified for environmental fate and transport properties of vinyl chloride.
 497 These data were considered while identifying the major and minor compartments and pathways to
 498 inform problem formulation, and during preliminary media assessments for the purposes of this draft
 499 scope. Additionally, EPA integrated primary, peer-reviewed literature to help inform media assessments
 500 for which there was limited information available from databases and prior assessments. These primary
 501 sources were identified from early systematic review steps, though they have not yet been extracted and
 502 evaluated for quality following *Draft Systematic Review Protocol Supporting TSCA Risk Evaluations for*
 503 *Chemical Substances* ([U.S. EPA, 2021](#)) (also referred to as the “2021 Draft Systematic Review
 504 Protocol”). EPA will consider additional information and refine subsequent fate and transport analyses
 505 after the completion of the systematic review process during the development of the final scope and risk
 506 evaluation of vinyl chloride.

507
 508 **Table 3-2. Environmental Fate Properties of Vinyl Chloride**

Property or Endpoint	Value ^a	Reference(s)
Direct photodegradation (air) <i>Section 3.3.2.1</i>	Does not absorb light at wavelengths >218 nm	ATSDR (2024)
	0.09 s ⁻¹ determined in static system, xenon lamp irradiation at 2.7 kW; 0.047 s ⁻¹ determined from flow experiments with 16-second residence time, xenon lamps at 3.7 kW	Reaxys (2023)
Direct photodegradation (water) <i>Section 3.3.2.2</i>	0% over 90 hours in water at 10 mg/L test substance concentration irradiated with >300 nm; absorption in water was <218 nm	OECD (2001)
	·OH-mediated: t _{1/2} range of 1.27–2.71 days (n = 9; based on ·OH rate constants of 3.95E–12 to 8.40E–12 cm ³ /mole-sec and a 12-hour day with 1.5E06 ·OH/cm ³)	OECD (2001) , ECHA (2023a) , NLM (2023a) , NIST (2023) , ATSDR (2024)
Indirect photodegradation (air) <i>Section 3.3.2.1</i>	NO ₃ -mediated: t _{1/2} range of 155 – 478 days (n = 6; based on NO ₃ rate constants of 1.40E–16 to 4.30E–16 cm ³ /mole-sec and a 12-hour day with 2.40E08 NO ₃ /cm ³)	ECHA (2023a) , NIST (2023)
	O ₃ -mediated: t _{1/2} range of 91.3 – 93.6 days (n = 2; based on O ₃ rate constant of 2.45E–19 to 2.51E–19 cm ³ /mole-sec and a 12-hour day with 7.0E11 O ₃ /cm ³)	ECHA (2023a) , NLM (2023a)
Indirect photodegradation (water) <i>Section 3.3.2.2</i>	No decomposition over 20 hours at 10 mg/L test substance concentration in unfiltered Oconee River and Okefenokee Swamp water with 20 mg/l commercial humic acid	OECD (2001)
	80% over 3 hours at 10 mg/L test substance	OECD (2001)

Property or Endpoint	Value ^a	Reference(s)
	concentration, and H ₂ O ₂ as a photosensitizer	
	Not readily degraded at 10 mg/L test substance concentration, with 1.0E-04 M methylene blue (singlet) and irradiation at 578 nm	OECD (2001)
	Rapid decomposition at 10 mg/L test substance concentration, with 10% vol. acetone and UV irradiation at 313 nm	OECD (2001)
Hydrolysis half-life (water) <i>Section 3.3.1</i>	t _{1/2} > 9.91 years at 25 °C and pH 7 t _{1/2} > 107 years at 10 °C and pH 7	NLM (2023a)
	t _{1/2} > 1 year at both pH 4 and 6.1	OECD (2001)
	No degradation observed in water after 12 hours at 85 °C, at 20 mg/L test substance concentration; saturated with molecular oxygen	ATSDR (2024)
	<10 years at 25.5 °C and pH 4.3–9.4 (estimated)	OECD (2001) , ATSDR (2024)
Abiotic reductive dehalogenation (water, soil) <i>Section 3.3.3</i>	<0.002 d ⁻¹ with zero-valent FeH ₂ , and 0.59 to 0.76 d ⁻¹ with zero-valent FeBH	Reaxys (2023)
	0.055, 0.323, 0.537, and 0.555 d ⁻¹ with Silawa loamy sand, montmorillonite, vermiculite and biotite, respectively, in the presence of Fe (II) at 22 °C and pH 7–7.2	Reaxys (2023)
	0.247, 0.355, and 0.358 d ⁻¹ with montmorillonite, vermiculite, and biotite, respectively, at 22°C and pH 7	Reaxys (2023)
	0.15 d ⁻¹ with Silawa loamy sand and dithionite at pH 7.2	Reaxys (2023)
	0.94 d ⁻¹ with green rust sulfate in Tris buffer at 22 °C and pH 8.1	Reaxys (2023)
Aerobic biodegradation (water) <i>Section 3.3.4.1</i>	21.5% over 5 days (CO ₂ Evolution) at 0.05 mg/L test substance concentration, with municipal activated sludge inoculum, adaptation not specified	OECD (2001) , ECHA (2023a)
	16% over 28 days (OECD 301D) at 2.04 mg/L test substance concentration, respectively; with sludge inoculum, adaptation not specified	NITE (2023) , ECHA (2023a) , NLM (2023a)
Aerobic biodegradation (sediment) <i>Section 3.3.4.2</i>	Complete dehalogenation within 28 days in a freshwater river sediment microcosm, following a 7-day lag period; non-adapted	Atashgahi et al. (2013)
Aerobic biodegradation (groundwater microcosms) <i>Section 3.3.4.4</i>	22–39% over 84 hours (mineralization) at approx. 1.13 mg/L test substance concentration in natural aquifer microcosm; some adaptation from chlorinated solvent and vinyl chloride contamination	Reaxys (2023) , ATSDR (2024)

Property or Endpoint	Value ^a	Reference(s)
	>99% over 57 days, and >99% over 204 days at 330 µg/L test substance concentration, in groundwater/sediment batch microcosms; adaptation likely due to media exposure to vinyl chloride	NLM (2023a)
Aerobic biodegradation (soil) <i>Section 3.3.4.3</i>	>99% over 108 days (transformation) and 65% over 108 days (mineralization) at 1 mg/L test substance concentration in a natural shallow aquifer soil/groundwater microcosm, adaptation not specified	OECD (2001) , ATSDR (2024) ECHA (2023a)
	1.456 µg/g soil/hour biodegradation in gas phase, incubated with soil from a landfill under methane oxidizing conditions, adaptation not specified	NLM (2023a)
Anaerobic biodegradation (water) <i>Section 3.3.4.1</i>	10% over 106 days following a 50-day lag at 2.6E-04 mg/L test substance concentration in groundwater containing H ₂ and acetate, under methanogenic conditions; adaptation likely due to media exposure to vinyl chloride	Reaxys (2023)
	t _{1/2} = 70 days at 0.4 mg/L test substance concentration, with groundwater bacteria inoculum, adaptation not specified	ECHA (2023a) , NLM (2023a)
	t _{1/2} = 110 days; study details not specified	NLM (2023a)
Anaerobic biodegradation (sediment) <i>Section 3.3.4.2</i>	5% to 44% over 37 days, and 8% to 100% over 37 days (mineralization) at 0.013 to 3.79 mg/L test substance concentration, in natural creek bed microcosm under methanogenic and Fe (III)-reducing conditions, respectively; some adaptation from former drum disposal area	Reaxys (2023) , ATSDR (2024)
	50% over 25 days and 100% over 19 days with 0.02 and 0.1 mg/L dissolved oxygen, respectively, at 0.65 mg test substance; vinyl chloride-oxidizing culture inoculum in microcosm with media from contaminated site; adapted	ATSDR (2024)
	98% and 21% over 70 days in Naval Air Station, and Naval Weapons Industrial Reserve Plant sediment microcosms, respectively; under methanogenic conditions; some adaptation with preexposure of media to chlorinated solvents	ECHA (2023a)
	40% over 20 hours at 31.2 mg/L test substance concentration, in brackish sediment microcosm supplemented with methanol; adaptation not specified	Reaxys (2023)
	40% over 20 hours at 28.7 mg/L test substance concentration, in brackish	Reaxys (2023)

Property or Endpoint	Value ^a	Reference(s)
	sediment microcosm supplemented with H ₂ ; adaptation not specified	
	Complete dehalogenation within 28 days in a freshwater river sediment microcosm, following a 7-day lag period; non-adapted	Atashgahi et al. (2013)
	100% over 15 days in aquifer microcosm supplemented with methanol and C ₂ Cl ₄ ; adaptation not specified	Reaxys (2023)
	100% over 14 weeks, and <20% over 14 weeks with and without supplemented electron donors, ^c respectively, in aquifer microcosm; some adaptation with media from vinyl chloride-contaminated site	Reaxys (2023)
Anaerobic biodegradation (groundwater microcosms) <i>Section 3.3.4.4</i>	100% over >100 days at 39 mg/L test substance concentration in groundwater with sediment microcosm under Fe- and SO ₄ ²⁻ -reducing conditions; some adaptation with media from contaminated site	Reaxys (2023)
	15–34% over 84 hours, and 2.8–4.6% over 84 hours (mineralization) at approx. 1.13 mg/L test substance concentration, in natural aquifer microcosm, amended with Fe(III) and unamended, respectively; some adaptation from media exposure to chlorinated solvents and vinyl chloride	Reaxys (2023) , ATSDR (2024)
Anaerobic biodegradation (soil) <i>Section 3.3.4.3</i>	t _{1/2} of 4 weeks at 0.4 mg/L test substance concentration, in sand/water microcosm; adaptation not specified	ECHA (2023a) , NLM (2023a)
	BCF <10 in Golden Ide (<i>Leuciscus idus melanotus</i>)	OECD (2001) , ATSDR (2024) , NLM (2023a) , ECHA (2023a)
	BCF = 40 in green algae (<i>Chlorella fusca</i>)	OECD (2001) , ATSDR (2024) , NLM (2023a) , ECHA (2023a)
Bioconcentration factor (BCF) (L/kg wet weight [ww]) <i>Section 3.6</i>	Upper Trophic Level: 3.168 Middle Trophic Level: 2.482 Lower Trophic Level: 2.310	EPI Suite TM (BCFBAF, Arnot-Gobas method) ^b
Bioaccumulation factor (BAF) (L/kg ww, unless noted) <i>Section 3.6</i>	Upper Trophic Level: 3.168 Middle Trophic Level: 2.482 Lower Trophic Level: 2.310	EPI Suite TM (BCFBAF, Arnot-Gobas method) ^b
Organic carbon:water partition coefficient (log K _{oc}) (soil) <i>Section 3.2.1</i>	2.38–2.95 in seven natural clayey till soil samples	ATSDR (2024)
	1.75	OECD (2001) , NLM (2023a)

Property or Endpoint	Value ^a	Reference(s)
Removal in wastewater treatment	Total removal: 91.54% Losses to stripping: ~89%	EPI Suite™ (STPWIN, with default biodegradation $t_{1/2s} = 10,000\text{ h}$) ^b
<i>Section 3.5.3</i>		
^a Measured unless otherwise noted		
^b Information was estimated using EPI Suite™ (U.S. EPA, 2017).		
^c H ₂ , formate, acetate, pyruvate, lactate, fumarate, glycerol, glucose, molasses, or whey.		

509

510 3.2 Partitioning, and Major and Minor Pathways

511 3.2.1 Tier I Analysis

512 Environmental transport and partitioning consist of processes such as volatilization, advection,
 513 dispersion, diffusion, association with dissolved organic matter, and sorption to solids. These processes,
 514 in turn, are controlled by physical and chemical interactions between vinyl chloride and the surrounding
 515 media (e.g., air, water, soil, sediments, etc.). Vinyl chloride released to the environment is subject to
 516 these processes, though some processes are more likely or prevalent than others based on its physical
 517 and chemical characteristics.

518

519 To be able to understand and predict the behaviors and effects of vinyl chloride in the environment, the
 520 first step is identifying partitioning values (Table 3-3), which can provide insight into how vinyl chloride
 521 may favor one media over another.

522

523 **Table 3-3. Partitioning Values for Vinyl Chloride**

Partition Coefficient	Value ^a	Log Value	Source(s)	Predominant Phase ^d
Octanol:Water (K _{ow})	24.0	1.38	Rumble (2023) , ATSDR (2024) , ECHA (2023c)	Octanol/Organic Phase
Organic Carbon:Water (K _{oc})	382	2.58 (range 1.75–2.95)	Average of values (n = 8) reported in OECD (2001) , NLM (2023a) , ATSDR (2024)	Organic Carbon
Octanol:Air (K _{oa})	21.1	1.324	EPI Suite™ (KOAWIN) ^b	Organic Carbon
Air:Water (K _{aw})	1.14	0.056	Calculated ^c using Henry's Law constant (HLC) reported in PhysProp (2023)	Air

^a Measured unless otherwise noted

^b Information was estimated using EPI Suite™ ([U.S. EPA, 2017](#))

^c Calculated using the relationship: $HLC = R * T * K_{aw}$, where R is the universal gas constant $8.206 \times 10^{-5} \text{ atm} \cdot \text{m}^3/\text{mol} \cdot \text{K}$

^d Predominant phases displayed assume an evaluative environment where the relevant media exist in a 1:1 ratio

524

525 The magnitude of the above-listed partitioning coefficients suggest that vinyl chloride will exist
 526 primarily in air and water in the environment. Vinyl chloride has a vapor pressure of 2,550 mmHg at 20
 527 °C ([ECHA, 2023a](#)) indicating that vinyl chloride will exist predominantly as a free gas in the
 528 atmosphere, and dry deposition is unlikely to be an important process. This is consistent with the
 529 estimated octanol:air partition coefficient of 25.4 ([U.S. EPA, 2017](#)).

530
531
532
533
534
535
536
537

With a HLC of 0.0278 atm·m³/mol at 24.8 °C ([PhysProp, 2023](#)), vinyl chloride is also expected to be volatile from surface water. The calculated air:water partition coefficient is very close to unity (1.14; Table 3-3), suggesting that at equilibrium, vinyl chloride will partition approximately equally between air and water media, with a slight preference for air. However, because the partial pressure of vinyl chloride above natural bodies of water is likely to exist below its vapor pressure, volatilization from surface water is expected to be a rapid and dominant pathway.

538
539
540
541
542
543
544
545

While volatile, vinyl chloride also has considerable water solubility (9,150 mg/L at 20.5 °C ([ECHA, 2023a](#); [Reaxys, 2023](#))) consistent with its polarity and small molecular size. Dissolved salts in water can also impact the degree to which vinyl chloride remains in aqueous phase: salts of iron, silver, copper, platinum, iridium, and mercury have been shown to form complexes with vinyl chloride, slowing competing volatilization processes ([ATSDR, 2024](#); [IPCS, 1999](#)). Intermediate sorption to organics present in sediments and suspended and dissolved solids present in water is expected given the range of log K_{OC} values identified during screening (Table 3-2), discussed further below.

546
547
548
549
550
551
552
553
554
555

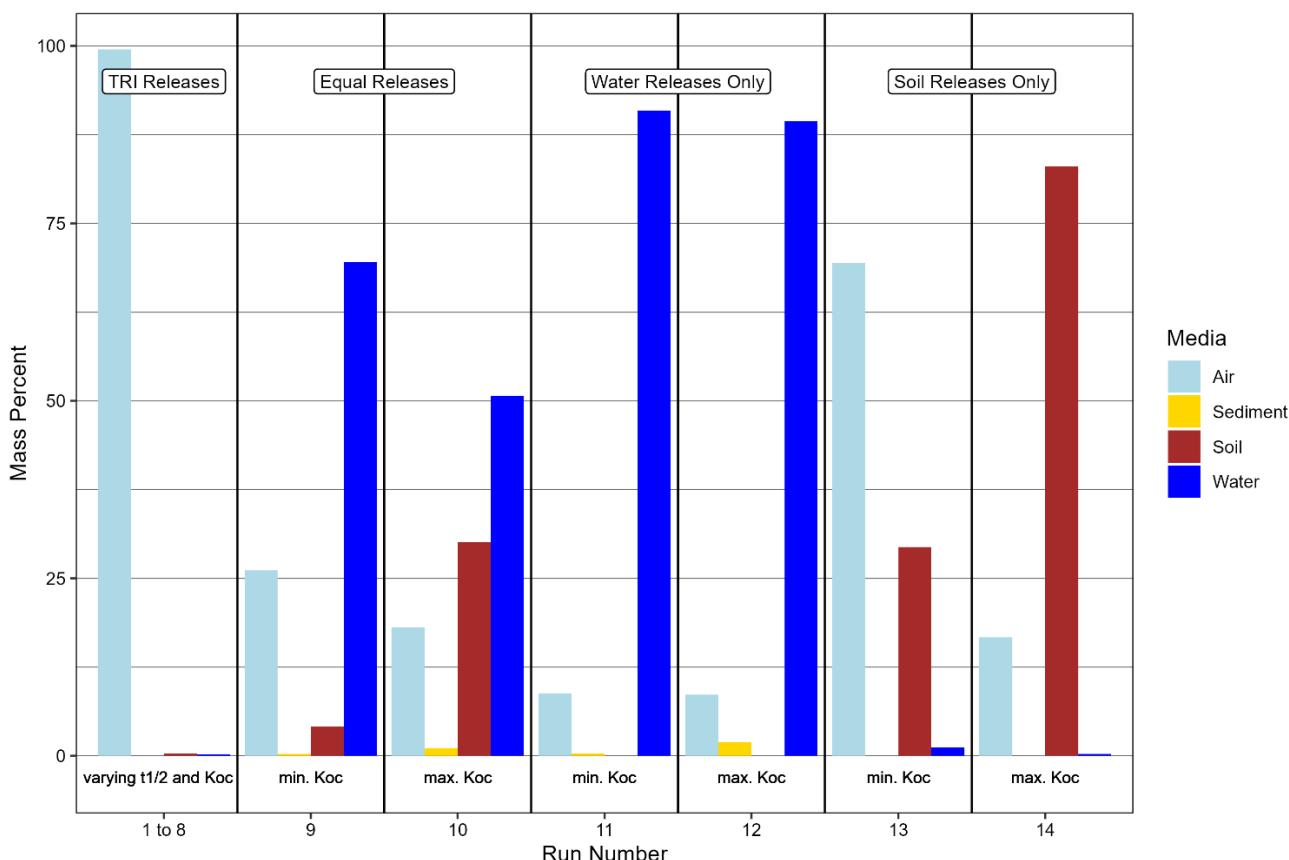
Two sources were identified reporting log K_{OC} values for vinyl chloride. The first reported a log K_{OC} value of 1.75, but without additional detail on materials or methods ([NLM, 2023a](#); [OECD, 2001](#)). The second is an empirical study following OECD 106 guidelines that investigated seven low-OC, natural clayey till soils from Denmark, reporting log K_{OC} values ranging from 2.38 to 2.95 (mean 2.70) ([ATSDR, 2024](#)). The authors highlighted that in addition to the organic carbon content of the soil, the clay content and specific surface area of the soil particles influenced the adsorption coefficient values obtained for vinyl chloride, especially on low-OC soils ([Lu et al., 2011](#)). Vinyl chloride's solubility along with its moderate tendency to sorb to organics present in solids suggest that vinyl chloride that occurs in soil will exhibit some mobility and may be transported through the vadose zone to groundwater.

556
557
558

3.2.2 Tier II Analysis

Table 3-4. EPI Suite™ Level III Fugacity Modeling Results for Vinyl Chloride

Release Source	Run No.	Percent (%) Mass Distribution by Media				Run Notes
		Air	Water	Soil	Sediment	
TRI RELEASES	1	99.8	<1	<1	<1	min K _{OC} ; mean water, soil, and sediment t _{1/2}
	2	99.5	<1	<1	<1	max K _{OC} ; mean water, soil, and sediment t _{1/2}
	3	99.8	<1	<1	<1	min K _{OC} , max water t _{1/2}
	4	99.8	<1	<1	<1	min K _{OC} , min water t _{1/2}
	5	99.8	<1	<1	<1	min K _{OC} , max soil t _{1/2}
	6	99.8	<1	<1	<1	min K _{OC} , min soil t _{1/2}
	7	99.8	<1	<1	<1	min K _{OC} , max sediment t _{1/2}
	8	99.8	<1	<1	<1	min K _{OC} , min sediment t _{1/2}
"GENERIC" RELEASES ^a	9	27.2	68.3	4.33	<1	min K _{OC} , equal releases
	10	18.5	49	31.4	1.06	max K _{OC} , equal releases
	11	8.78	90.9	<1	<1	min K _{OC} , water releases only
	12	8.63	89.4	<1	1.93	max K _{OC} , water releases only


Release Source	Run No.	Percent (%) Mass Distribution by Media				Run Notes
		Air	Water	Soil	Sediment	
	13	69.4	1.08	29.5	<1	min K _{OC} , soil releases only
	14	16.8	<1	83	<1	max K _{OC} , soil releases only

^a Mean water, soil, and sediment half-lives used, as in Run No. 1.

559

560 Table 3-4 presents the mass percentage distribution of vinyl chloride by media for each of the 14
 561 LEV3EPITM model runs. The first set using TRI release data (see Section 3.1.1 for additional
 562 information on TRI data) as the emission rates (runs one through eight) indicate that when the vast
 563 majority of vinyl chloride is released to air, the vast majority (>99.5%) will also remain in the air
 564 compartment. This result was not impacted by varying vinyl chloride's K_{OC} value or half-lives in water,
 565 soil, or sediment. From the generic release scenarios (runs nine through 14), it is apparent that the
 566 affinity of vinyl chloride to soil (governed by its log K_{OC}) will greatly influence the fraction that remains
 567 in soil vs. the fraction that volatilizes from soil: when emissions were exclusively to the soil
 568 compartment and the minimum K_{OC} value was used, about 69 percent of vinyl chloride was transported
 569 to air while about 30 percent remained in soil. Conversely, when run with the maximum K_{OC}, only about
 570 17 percent volatilized to air, with 83 percent remaining in the soil. A similar trend is apparent in the soil
 571 fractions from runs nine and ten under equal releases. Note that the vinyl chloride fractions estimated to
 572 remain in soil as modeled with LEV3EPITM (steady state, with constant releases) may be greater than
 573 those at equilibrium after a single, pulse release to soil. This highlights the competition between soil-to-
 574 air volatilization and sorption to soil that may vary depending on site-specific soil properties and thus
 575 sorption affinity.

576 When vinyl chloride was released exclusively to the water compartment, approximately 91 percent of
 577 the chemical remained in water, with about nine percent volatilizing to air. These ratios were largely
 578 unaffected by the K_{OC} value used. The graphical results of the LEV3EPITM model runs are presented in
 579 Figure 3-2.

580
 581 **Figure 3-2. EPI Suite™ Level III Fugacity Modeling Graphical Result for Vinyl Chloride**
 582

583 From the results of these partitioning and fugacity exercises, it is evident that the air compartment and
 584 associated transformation pathways will be major pathways in the assessment of vinyl chloride. As TRI
 585 data provide the best available information on the distribution of vinyl chloride releases among the
 586 environmental media, the fugacity model runs using TRI releases increase confidence that vinyl chloride
 587 will primarily be present in the atmosphere. To contrast, the fugacity model runs using generic releases
 588 are not representative of expected media releases but provide information on vinyl chloride's intermedia
 589 transport and partitioning dynamics, as discussed further below.

590 Though there are proportionally very low reported releases to water, by virtue of its partitioning
 591 behavior and water solubility, vinyl chloride that is released to water (*e.g.*, from spills and leaks) will
 592 tend to remain in water, especially in instances with limited air/water interface. Because of this, water
 593 should be considered as a major compartment in such localized and/or continuous release instances.
 594 Similarly, results of the fugacity modeling indicate that in instances of vinyl chloride release to soil, a
 595 large proportion will remain in soil with the remainder volatilizing to the air compartment. It should be
 596 noted that vinyl chloride is expected to migrate rapidly to groundwater from soil, a pathway that is not
 597 explicitly described in the LEV3EPI™ model. Nonetheless, in areas of continuous release to soil—
 598 especially where the soil properties favor adsorption—a fraction of vinyl chloride may remain in the
 599 soil. The sediment compartment may be considered as a minor compartment, as it consistently yielded
 600 negligible proportions of vinyl chloride across all model runs.

602

3.3 Transformation Processes

603

3.3.1 Hydrolysis

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

Hydrolysis is a form of a chemical reaction where water, often in combination with light energy or heat, breaks down one or more chemical bonds in a chemical substance. Hydrolysis half-life indicates the rate at which a chemical will react with water. Predicting hydrolysis rates can help to estimate how long the chemical and/or its hydrolysis byproducts will remain after being released to the environment.

The identified hydrolysis data indicate that vinyl chloride undergoes negligible hydrolysis in aqueous environments. One study reported hydrolysis half-lives of greater than one year at pH 4 and 6.1, greater than 9.91 years at 25 °C and pH 7, and greater than 107 years at 10 °C and pH 7 ([NLM, 2023a](#); [OECD, 2001](#)). Another study observed no hydrolysis of vinyl chloride over 12 hours at 85 °C under saturated molecular oxygen conditions ([ATSDR, 2024](#)). Because other intermedia transport (*i.e.*, volatilization) and aquatic transformation pathways occur over much shorter timescales, hydrolysis is not expected to be an important transformation pathway for vinyl chloride.

3.3.2 Photolysis

Photolysis is a chemical reaction in which chemical molecules are broken down via the energy in light. There are two forms of photolysis: direct and indirect. Direct photolysis occurs when a chemical substance is able to absorb direct sunlight at wavelengths within the atmospheric window (*i.e.*, wavelengths greater than 290 nm that are able to pass through earth's atmosphere). Indirect photolysis occurs in the presence of photosensitizers (*e.g.*, ozone (O₃), nitrate (NO₃), and hydroxyl radicals (·OH), etc.) under visible light.

3.3.2.1 Atmosphere

Vinyl chloride is not expected to undergo direct photolysis in the environment, as it does not absorb wavelengths above 218 nm ([ATSDR, 2024](#)). It was demonstrated that vinyl chloride can degrade rapidly under controlled irradiation conditions in laboratory settings: vinyl chloride was degraded in stainless steel reactors at a rate of 0.09 s⁻¹ under static conditions irradiated with xenon lamps at 2.7 kW ([Reaxys, 2023](#)). The same study measured a direct photolysis rate of 0.047 s⁻¹ under flow conditions with a 16-second reactor residence time and 3.7 kW xenon lamps ([Reaxys, 2023](#)). The authors noted that the output efficiency of the xenon lamps was 18.6 percent of input wavelength distribution less than or equal to 300 nm ([Reaxys, 2023](#)). While these data demonstrate that vinyl chloride may undergo direct photolysis under controlled laboratory conditions, these rates may not be representative of typical conditions in the atmosphere.

Several studies reported indirect photolysis rates for vinyl chloride by ozone (O₃), nitrate (NO₃), and hydroxyl radicals (·OH). Nine studies reported ·OH-mediated degradation rates of 3.95×10⁻¹² to 8.40×10⁻¹² cm³/mole-sec ([ATSDR, 2024](#); [ECHA, 2023a](#); [NIST, 2023](#); [NLM, 2023a](#); [OECD, 2001](#)). Assuming a 12-hour day and an atmospheric ·OH concentration of 1.5×10⁶ ·OH/cm³, the identified degradation rates translate to a half-life range of 1.27 to 2.71 days, with a mean of 1.84 days. Because the ·OH-mediated half-lives are the shortest of all those identified (see Table 3-2), the ozone- and nitrate-mediated experiments will not be discussed further. Based on the ·OH-mediated photolysis half-lives, vinyl chloride may have high persistence potential in the atmosphere, defined as an atmospheric half-life greater than 2 days (64 FR 692; January 5, 1999).

3.3.2.2 Surface Water

Direct photolysis of vinyl chloride is expected to be negligible. One study reported no decomposition of 10 mg/L of vinyl chloride after 90 hours of irradiation at wavelengths greater than 300 nm. The same

647 study reported a wavelength absorption range of below 218 nm ([OECD, 2001](#)).

648
649 Identified data for indirect photolysis of vinyl chloride in aqueous systems suggest that rapid
650 degradation can occur in the presence of certain photosensitizers and wavelengths, though vinyl chloride
651 may also remain stable. An indirect, aqueous photolysis degradation rate of 80 percent over 3 hours was
652 observed with 10 mg/L of vinyl chloride in the presence of H₂O₂ ([OECD, 2001](#)). A second study noted
653 rapid decomposition (no rate information provided) of vinyl chloride in solution with 10 percent acetone
654 by volume and 313-nm UV irradiation ([OECD, 2001](#)). To contrast, no decomposition was observed in
655 Oconee River and Okefenokee Swamp (Georgia, United States) water containing 20 mg/L of
656 commercial humic acid, nor was it observed in the presence of methylene blue in aqueous solution
657 irradiated at 578 nm ([OECD, 2001](#)). Though there exists some evidence for rapid degradation via
658 indirect photolysis under certain aqueous conditions, vinyl chloride's volatility from water (HLC 0.0278
659 atm·m³/mol ([PhysProp, 2023](#))) will likely outcompete this transformation route, thus indirect photolysis
660 is unlikely to be an important removal pathway for vinyl chloride from water.

661 **3.3.3 Abiotic Dehalogenation**

662 In addition to hydrolysis, vinyl chloride may be degraded via reductive abiotic processes, namely
663 reductive dechlorination. Reductive dechlorination (also hydrogenolysis) is a process that reduces a
664 chlorinated compound via the substitution of a chlorine atom with a hydrogen atom, a common
665 degradation pathway for chlorinated ethenes under anaerobic conditions ([Tobiszewski and Namieśnik,](#)
666 [2012](#)).

667 The degree of susceptibility of vinyl chloride to abiotic dehalogenation relies on the mineralogy of the
668 anaerobic system: of those determined only with minerals characteristic of soil and aquifer systems,
669 rates of 0.055 to 0.15 d⁻¹, 0.247 to 0.323 d⁻¹, 0.355 to 0.537 d⁻¹, and 0.358 to 0.555 d⁻¹ were determined
670 with Silawa loamy sand, montmorillonite, vermiculite, and biotite, respectively ([Reaxys, 2023](#)).
671 Assuming first order kinetics, these equate to half-lives ranging from 1.25 to 12.6 days, suggesting that
672 abiotic dehalogenation may serve as an important degradation process in deep, anaerobic soil conditions
673 that may exist in natural aquifers. However, it has been noted that the extent of dehalogenation relies on
674 the concentration of reductants (*e.g.*, Fe(II), dithionite) present in the system ([Lee and Batchelor, 2004](#)).

676 **3.3.4 Biodegradation**

677 Biodegradation occurs when an organic material is broken down by microorganisms. Many of the
678 biodegradation data identified to date—namely microcosm studies—were collected using media (*i.e.*,
679 sediment, soil, water) and/or microbial inoculums originating from sites with histories of exposure to
680 vinyl chloride and often other chlorinated solvents ([ATSDR, 2024](#); [NLM, 2023a](#); [Reaxys, 2023](#)). For the
681 purposes of this draft scope, data collected with pre-exposed media or microbes are assumed to have
682 adapted to growth in the presence of vinyl chloride and/or similar solvents. While results from
683 biodegradation studies employing adapted media and microbes may not be readily applied to the
684 general, uncontaminated environment, they may serve to inform scenarios in which localized or
685 predictable vinyl chloride release(s) may occur (*e.g.*, spills or leaks near manufacturing sites).

686 **3.3.4.1 Surface Water**

687 Two aqueous aerobic biodegradation studies were identified for vinyl chloride. The first study followed
688 OECD 301D test guidelines and reported a degradation rate of 16 percent over 28 days at an initial vinyl
689 chloride concentration of 2.04 mg/L ([ECHA, 2023a](#); [NITE, 2023](#); [NLM, 2023a](#)). The additional study a
690 reported mineralization rate of 21.5 percent over five days ([ECHA, 2023a](#); [OECD, 2001](#)). Additional
691 inoculum details may be found in Table 3-2.

692

693 Though not explicitly representative of anaerobic surface water, three studies were also identified
694 reporting biodegradation rates of vinyl chloride under various anaerobic aqueous conditions. One
695 resource reported a half-life of 110 days though without any additional study details ([NLM, 2023a](#)). The
696 second source, cited by both ECHA ([2023a](#)) and NLM ([2023a](#)), reported a half-life of 70 days in water
697 containing 0.4 mg/L of vinyl chloride and inoculated with groundwater bacteria. The third study
698 reported 10 percent degradation over 106 days following a 50-day lag period in groundwater containing
699 H_2 , acetate, and 2.6×10^{-4} mg/L of vinyl chloride ([Reaxys, 2023](#)). Taken together, these studies indicate
700 that vinyl chloride is considered not readily biodegradable and will likely undergo slow biodegradation
701 in surface water under both aerobic and anaerobic conditions.

702 **3.3.4.2 Sediment**

703 In sediments, vinyl chloride may be transformed via different routes of microbial biodegradation,
704 depending on oxygen availability. In the suboxic layer below surface sediments, vinyl chloride and other
705 chlorinated ethenes (e.g., PCE, TCE) may serve as terminal electron acceptors for both facultative and
706 obligate organohalide-respiring heterotrophic bacteria. The extent and rate of anaerobic chlorinated
707 ethene reduction rely on the presence, characteristics, and concentrations of electron donors (e.g.,
708 dissolved organic matter, molecular hydrogen) and other competing and complementary electron
709 acceptors (e.g., nitrate, sulfate, iron), as the microbial degradation of chlorinated ethenes in sediments
710 intersects common biogeochemical processes ([Weatherill et al., 2018](#)). In surface sediments, aerobic
711 respiration may occur if overlying water is able to bring dissolved oxygen and organic matter into the
712 sediment by advection and diffusion to the interstitial pore water. This creates a sediment layer in which
713 oxidation of vinyl chloride may occur, sometimes via co-metabolic or mineralization routes ([Weatherill](#)
714 [et al., 2018](#); [Atashgahi et al., 2013](#)).

715 From the data identified to date, the anaerobic biodegradation rate for vinyl chloride in sediments can
716 vary widely with redox conditions. One study observed the biodegradation of 0.013 to 3.79 mg/L of
717 vinyl chloride in a creek sediment bed microcosm to range from 5 to 44 percent over 37 days under
718 methanogenic conditions, and 8 to 100 percent over 37 days under Fe(III)-reducing conditions ([ATSDR,](#)
719 [2024](#); [Reaxys, 2023](#)). Assuming first-order kinetics, these rates equate to $t_{1/2}$'s of 500, 44, 308, and 2.2
720 days, respectively (mean 213.5 days). ECHA ([2023a](#)) cited a study that reported 98 and 21 percent
721 degradation under methanogenic conditions over 70 days in microcosms containing sediments collected
722 from the Naval Air Station (Cecil Field) and Naval Weapons Industrial Reserve Plant (Dallas, TX),
723 respectively. Preexposure of the sediments to chlorinated solvents (dichloroethylene [DCE], TCE and
724 vinyl chloride) from contaminated groundwater was noted by the authors, suggesting possible adaptation
725 ([ECHA, 2023a](#)). Another pair of anaerobic biodegradation studies demonstrated rapid vinyl chloride
726 degradation rates (both 40 percent over 20 hours) in brackish sediment microcosms when supplemented
727 with methanol and H_2 and starting test concentrations of 31.2 and 28.7 mg/L, respectively ([Reaxys,](#)
728 [2023](#)). In an autochthonous, unamended freshwater river sediment microcosm, vinyl chloride was
729 rapidly degraded under both anaerobic and aerobic conditions across three sequential additions of vinyl
730 chloride: after a seven-day lag period, complete dehalogenation was observed in the anaerobic
731 microcosms within 28 days after the first vinyl chloride spike. This rate increased to complete
732 dehalogenation within 14 days after the third spike, indicating the ability for the system to adapt to vinyl
733 chloride as a substrate. The same study noted similar degradation kinetics under aerobic conditions
734 ([Atashgahi et al., 2013](#)). Given this preliminarily identified information, biodegradation rates of vinyl
735 chloride in sediments are expected to vary widely depending on the redox conditions, electron donor
736 availability, and previous exposure of the microbial community to vinyl chloride.

738 **3.3.4.3 Soil**

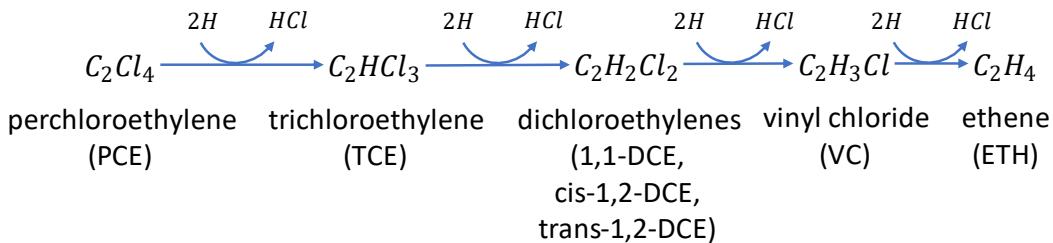
739 Similar to sediments, soils can contain gradients of environmental variables (*i.e.*, oxygen, mineralogy,

740 organic co-substrates, water saturation) that dictate rates, routes, and extent of biodegradation. Because
741 of this, the rate of vinyl chloride biodegradation in soil can vary dramatically based on the test system
742 characteristics. In an aerobic microcosm containing natural soil and groundwater from a shallow aquifer,
743 vinyl chloride was degraded greater than 99 percent (transformation) and 65 percent (mineralization)
744 within 108 days ([ATSDR, 2024](#); [ECHA, 2023a](#); [OECD, 2001](#)). A degradation rate of 1.456 µg/g-soil-
745 hour was observed for vinyl chloride gas incubated under methane oxidizing conditions with soil cover
746 from a landfill in Denmark ([NLM, 2023a](#)).

747
748 In an anaerobic sand/water microcosm study, vinyl chloride was reported to have a half-life of 4 weeks
749 when tested at a 0.4 mg/L test concentration ([ECHA, 2023a](#); [NLM, 2023a](#)). Based on soil
750 biodegradation rates identified to date, vinyl chloride is expected to biodegrade slowly in soils,
751 therefore, biodegradation is not expected to be an important mechanism for vinyl chloride removal from
752 soil.

753 **3.3.4.4 Groundwater**

754 Subterranean environments where groundwater exists contain gradients of environmental variables (*i.e.*,
755 oxygen, minerality, organic co-substrates) that dictate rates, routes, and extent of biodegradation. While
756 it is possible for aerobic conditions to exist in groundwaters, for instance, where exchanges with
757 oxygenated surface waters occur, groundwater environments are often anaerobic in nature. Because of
758 the many influencing factors, the rate of vinyl chloride biodegradation in groundwater can vary
759 dramatically based on the test system characteristics. Two data sources were identified reporting the
760 aerobic biodegradation of vinyl chloride in aquifer microcosms containing groundwater and sediments.
761 The first study reported 22 to 39 percent mineralization of vinyl chloride over 84 hours (3.5 days)
762 starting from an initial concentration of 1.13 mg/L ([ATSDR, 2024](#); [Reaxys, 2023](#)). The second study
763 reported greater than 99 percent vinyl chloride degradation over both 57 and 204 days in
764 groundwater/sediment batch microcosms using media collected from areas with a history of vinyl
765 chloride contamination ([NLM, 2023a](#)).


766
767 Four sources were identified reporting the anaerobic biodegradation of vinyl chloride in aquifer
768 microcosms. Three of these reported using media from vinyl chloride-contaminated sites: the first
769 reported mineralization rates of 2.8 to 4.6 percent over 84 hours in a microcosm containing natural
770 aquifer materials, and 15 to 34 percent over 84 hours in aquifer microcosms amended with Fe(III)
771 ([ATSDR, 2024](#); [Reaxys, 2023](#)). The second study observed complete vinyl chloride biodegradation after
772 greater than 100 days in a sediment/groundwater microcosm under iron and sulfate-reducing conditions
773 ([Reaxys, 2023](#)). The third study noted less than 20 percent vinyl chloride degradation over 14 weeks in
774 an aquifer microcosm, though this proportion increased to 100 percent in microcosms supplemented
775 with additional electron donors ([Reaxys, 2023](#)). The final anaerobic groundwater degradation rate
776 identified was 100 percent vinyl chloride degradation over 15 days in an aquifer microcosm
777 supplemented with methanol and PCE ([Reaxys, 2023](#)).

778
779 From the evidence gathered to date on the biodegradation of vinyl chloride in groundwater media, it is
780 expected that vinyl chloride may degrade slowly to rapidly in groundwater depending on the chemistry
781 of the groundwater media. Such influencing factors include the presence or absence of additional
782 organic electron donors, the minerality of the system, the concentration and adaptability of the microbial
783 population, and the redox conditions.

784 **3.3.4.5 Vinyl Chloride as a Transformation Product**

785 Vinyl chloride has been reported as a transformation product of other chlorinated organic compounds,
786 and therefore some instances of vinyl chloride in the environment may be due to the uses of those parent

787 chemicals rather than direct uses of vinyl chloride. PCE and TCE are two of the most commonly
 788 reported precursors of vinyl chloride: in anaerobic environments, more highly-chlorinated ethylene
 789 solvents may undergo sequential reductive dehalogenation following the pathway:
 790

791
 792 **Figure 3-3. Reductive Dechlorination Pathway via Biodegradation in Anaerobic**
 793 **Environments**

794 Adapted from ([Eklund et al., 2022](#); [Freedman and Gossett, 1989](#); [Molton et al., 1987](#)).

795 The relative rates of dechlorination proceed such that the half-lives of PCE and TCE are much shorter
 796 than those of 1,1- and 1,2-DCEs and vinyl chloride. Wood ([1985](#)) reported half-lives of 34, 43, and 53
 797 days for PCE, TCE, and 1,1-DCE, respectively, while there was no detectable reduction of 1,2-DCEs
 798 and vinyl chloride. Historically, this has led to accumulation and presence of DCEs and vinyl chloride in
 800 groundwater where only PCE and/or TCE were known to have been released ([Lee et al., 2015](#); [Hunkeler](#)
 801 [et al., 2011](#); [Milde et al., 1988](#)). This is consistent with observations that the vinyl chloride-to-ethene
 802 reduction is the rate limiting step during complete dechlorination in controlled systems ([Freedman and](#)
 803 [Gossett, 1989](#)). The composition of microbial communities and redox conditions also dictate the kinetics
 804 and extent to which the degradation pathway illustrated in Figure 3-3 may proceed ([Lee et al., 2015](#);
 805 [Hunkeler et al., 2011](#)). Dechlorination of more highly-chlorinated ethylenes yielding vinyl chloride has
 806 also been reported as an important source of vinyl chloride in landfills ([Molton et al., 1987](#)).

807 **3.4 Media Assessments**

808 As discussed in Section 3.1, EPA reviewed databases and previously conducted assessments to gather
 809 data informing the preliminary fate and transport presented in this draft scope. While EPA does not
 810 expect high-level conclusions on the fate and transport of vinyl chloride to change significantly, the fate
 811 assessment will be further developed as the workflow outlined in the 2021 Draft Systematic Review
 812 Protocol is completed through the final scoping and risk evaluation processes. Therefore, the following
 813 media assessments are not final, but rather presented to inform problem formulation and analysis plans
 814 for subsequent risk evaluation development.

815 **3.4.1 Air and Atmosphere**

816 **3.4.1.1 Outdoor Air**

817 As presented in Section 2.3.1 of the *Draft Scope of the Risk Evaluation for Vinyl Chloride (U.S.*
 818 [EPA, 2025](#)), greater than 98 percent of the reported vinyl chloride releases are to air. Additionally,
 819 it is expected that vinyl chloride released to surface water and wastewater treatment plants
 820 (WWTPs) will rapidly volatilize to the air compartment. Similarly, vinyl chloride present in the
 821 top layers of soils and landfills is expected to volatilize rapidly. Vinyl chloride has a vapor density
 822 of 2.21 (relative to air = 1; see

823 Table 2-1), therefore vinyl chloride vapor may settle in stagnant air (i.e., without mixing or wind).

824

826 Vinyl chloride reacts with hydroxyl radicals ($\cdot\text{OH}$) with transformation rates reported between 3.95×10^{-12}
827 and 8.40×10^{-12} cm³/mole-sec ([ATSDR, 2024](#); [ECHA, 2023a](#); [NIST, 2023](#); [NLM, 2023a](#); [OECD, 2001](#)). Assuming a $\cdot\text{OH}$ concentration of 1.5×10^6 $\cdot\text{OH}/\text{cm}^3$ and 12 hours of sunlight, the half-life of
829 vinyl chloride may range from 1.27 to 2.71 days, with a mean of 1.84 days.
830

831 Vinyl chloride is expected to have a low tendency to associate with particulates in the atmosphere and
832 will predominately be in the gaseous phase (see Section 3.2.1). Because of this, the majority of vinyl
833 chloride present in the atmosphere is expected to be subject to indirect photolysis with low-to-moderate
834 potential for long-range transport (LRTP).¹ However, as air is a major compartment for vinyl chloride,
835 these conclusions will be confirmed and revised as appropriate during final scoping and risk evaluation
836 phases with the completion of systematic review and the final fate assessment.

3.4.1.2 Indoor Air and Dust

837 Vinyl chloride may be present in indoor air due to volatilization from contaminated municipal water or
838 well water (see Section 3.5.2), volatilization from consumer products containing vinyl chloride, and via
839 vapor intrusion in areas with contaminated groundwater and soils ([Eklund et al., 2022](#)). Vapor intrusion
840 occurs when groundwater or soil is contaminated by a volatile chemical that then diffuses through
841 subsurface soil, eventually migrating into buildings above. Buildings with appropriately maintained
842 vapor barriers separating bare soil and the lowest level are expected to have less susceptibility to vapor
843 intrusion, though the characteristics of the barrier and the chemical of concern will dictate potential for
844 barrier permeation. Ecklund et al. ([2022](#)) performed a series of four field groundwater/soil monitoring
845 case studies representing various aquifer depths and soil types; they demonstrated that vinyl chloride in
846 contaminated groundwater will evaporate yielding deep soil vapor concentrations ranging from not
847 detected (ND; site LODs ranging from 0.013 to 3.9 $\mu\text{g}/\text{m}^3$) up to 47,000 $\mu\text{g}/\text{m}^3$, and will diffuse upward
848 through the pore space in soil. However, surface soil vapor concentrations of vinyl chloride were
849 significantly lower than the deep soil levels at all four sites, and all indoor air concentrations were below
850 detection limits. The authors expect that the removal of vinyl chloride in the vadose zones was largely
851 due to aerobic biodegradation that was faster than the rate of upward diffusion ([Eklund et al., 2022](#)).
852 Vinyl chloride occurrence in groundwater and soil resulting from the conditions of use (COUs)
853 considered in this draft scope is also expected to be negligible (see Figure 2 in *Draft Scope of the Risk*
854 *Evaluation for Vinyl Chloride*). Therefore, vapor intrusion is not expected to be an important exposure
855 pathway for vinyl chloride under TSCA.
856

857 In indoor air, vinyl chloride in the gas phase is expected to be more persistent as compared to outdoor
858 environments. Indoor environments have fewer physical transport drivers (e.g., advection by wind and
859 atmospheric flows) as well as less sunlight and subsequently lower concentrations of hydroxyl radicals.
860 Therefore, vinyl chloride transformation rates are expected to be slow in indoor air. Since vinyl chloride
861 is not likely to sorb to particulates in air (see Section 3.2.1), partitioning to dust is not expected to be an
862 important pathway.
863

3.4.2 Aquatic Environments

864 Vinyl chloride may enter aquatic environments from direct releases from industrial processes (including
865 leaks and spills) or transport from groundwater through sediment layers in aquifer-fed bodies of water
866 ([Weatherill et al., 2018](#); [Atashgahi et al., 2013](#)). As discussed in Sections 3.1.1 and 3.2.2, TRI reports
867 small fractions of releases to surface waters. Ambient monitoring data retrieved from the Water Quality
868 Portal (WQP) from samples collected between 2017 and 2021 showed zero of the 1,358 surface water
869

¹ Beyer et al., ([2000](#)) classifies a characteristic travel distance (CTD) of less than 600 km as low, a CTD between 600 and 1,100 km as moderate, and a CTD above 1,100 km as high chemical LRTP.

870 samples collected contained quantifiable vinyl chloride concentrations. In surface water samples
871 collected in 2022 and 2023, one of the 69 samples contained detectable vinyl chloride at a concentration
872 of 0.5 ppb. Similarly, one sample of the 306 sediment samples collected between 2011 and 2021
873 contained quantifiable vinyl chloride (1,300 ppb) ([ATSDR, 2024](#)).

874 **3.4.2.1 Surface Water**

875 Vinyl chloride may enter surface waters through anticipated releases, migration of landfill leachate, and
876 releases from spills and leaks. As described above, vinyl chloride is not expected to undergo wet or dry
877 deposition (see Section 3.4.1.1). Vinyl chloride may also form in anaerobic media from the reductive
878 dehalogenation of more highly-chlorinated ethylene contaminants (e.g., PCE, TCE; see Section 3.3.4.5).
879

880 Although vinyl chloride present in surface water is expected to volatilize appreciably, some fractions
881 may remain dissolved in the aqueous phase and to a lesser extent adsorbed to organics found in
882 suspended solids, as indicated by the log K_{oc} values presented in Table 3-2. Of the small amount of
883 vinyl chloride that may remain in aqueous phase in surface water is expected to persist; because
884 hydrolysis of vinyl chloride is unlikely (see Section 3.3.1), transformation of vinyl chloride in water is
885 expected to be primarily mediated by biodegradation processes.
886

887 Aerobic ready biodegradation studies identified to date indicate that vinyl chloride is not readily
888 biodegradable (see Section 3.3.4.1). Anaerobic biodegradation rates range from 10 percent over 106
889 days in water under methanogenic conditions following a 50-day lag, to 50 percent over 28 days in a
890 sand/water microcosm ([ECHA, 2023a](#); [NLM, 2023a](#); [Reaxys, 2023](#)). An aerobic degradation rate of
891 greater than 99 percent over 108 days (transformation) was reported for an aerobic soil/groundwater
892 microcosm ([ATSDR, 2024](#); [ECHA, 2023a](#); [OECD, 2001](#)). The degree of vinyl chloride biodegradation
893 is therefore expected to vary with microbial community, the level of adaptation of the present microbial
894 community, and environmental conditions. Given the range of empirical aerobic biodegradation half-
895 lives, vinyl chloride is expected to have moderate to high persistence (defined as $t_{1/2}$ 60–179 days, and
896 greater than or equal to 180 days, respectively) in the surface water compartment under environmentally
897 relevant conditions. Despite not being readily biodegradable, vinyl chloride is not widely or frequently
898 detected in aquatic environments, likely due to minimal releases to water and its tendency to volatilize
899 rapidly.

900 **3.4.2.2 Sediments**

901 While the majority of vinyl chloride that enters surface water bodies is likely to volatilize, some may
902 remain in the water column and become transported to sediments via diffusion and advection or, to a
903 lesser extent, associated with particulate organic matter. Vinyl chloride may also enter sediments and
904 subsequently surface water bodies via diffusion from contaminated groundwater at aquifer/surface water
905 interfaces ([Weatherill et al., 2018](#)).
906

907 No empirical data on vinyl chloride adsorption to sediment were identified. Based on empirical soil log
908 K_{oc} values, however, vinyl chloride in the water column is not expected to partition significantly to
909 organics in sediment. Vinyl chloride may be transported by diffusion and advection processes to
910 sediment pore water. Given the range of anaerobic biodegradation rates identified in aqueous
911 microcosms containing surface water sediment media (see Section 3.3.4.2), vinyl chloride is expected to
912 persist with a mean half-life of 213.5 days in natural, non-adapted creek bed sediment ([ATSDR, 2024](#);
913 [Reaxys, 2023](#)). Other anaerobic sediment and aquifer sediment/groundwater microcosm studies have
914 reported much faster degradation rates, though many of these used media from vinyl chloride-
915 contaminated areas which may have increased degradation rates via adaptation (see Table 3-2).
916 However, as indicated by fugacity modeling (see Section 3.2.2) and identified monitoring data (see

917 Section 3.4.2), vinyl chloride is not likely to be present in sediments.

918 **3.4.3 Terrestrial Environments**

919 Vinyl chloride may enter terrestrial environments via the disposal of industrial processing wastes, the
920 degradation of more highly-chlorinated ethylenes (see Section 3.3.4.5), and incidental spills and leaks.
921 Because the majority of reported releases are to air (see Section 3.2.2), and releases to soil media are
922 expected to volatilize rapidly, terrestrial environments and processes are not expected to be significant to
923 the evaluation of vinyl chloride. However, terrestrial fate of vinyl chloride is important to outline to
924 inform instances of incidental releases, for example by spills and leaks.

925 **3.4.3.1 Biosolids**

926 Sludge is defined as the solid, semi-solid, or liquid residue generated by wastewater treatment processes.
927 The term, “biosolids” refers to treated sludge that meet the EPA pollutant and pathogen requirements for
928 land application and surface disposal (40 CFR 503) ([U.S. EPA, 1993](#)).

929 Vinyl chloride transport to terrestrial environments from the application of municipal biosolids is not
930 expected to be a significant pathway, as removal of vinyl chloride in WWTP processes is expected to be
931 dominated by stripping to air (see Section 3.5.3). In industrial settings, manufacturing byproduct
932 solutions of vinyl chloride are stripped of volatile organics (including vinyl chloride) prior to being
933 treated with activated sludge ([ATSDR, 2024](#)). Destruction of vinyl chloride by incineration is also
934 recommended ([ATSDR, 2024](#); [NLM, 2023a](#)) and is discussed in Section 3.5.1. By virtue of its solubility
935 and log K_{OC}, vinyl chloride sorbed to solids in biosolids is expected to desorb readily and become
936 mobile in areas receiving biosolids.

937 Vinyl chloride exposure may occur from landfill disposal of sludge from PVC manufacturing: EPA
938 ([1976](#)) measured vinyl chloride monomer concentrations in PVC polymerization and processing sludges
939 from three PVC plants and associated landfills representing common processing and disposal practices
940 of the mid-1970s. Sludge concentrations ranged from 7 to 520 ppm ww (20 to 1,260 ppm dry weight
941 [dw]). While these studies demonstrate possible routes for vinyl chloride release via biosolids to land
942 pathways, they were conducted prior to the efforts made by the PVC industry to reduce vinyl chloride
943 monomer levels in both finished PVC products and processing wastes headed to landfills. Therefore,
944 they are not likely representative of current vinyl chloride concentrations in industrial sludge. Vinyl
945 chloride was not included as an analyte in the most recent Targeted National Sewage Sludge Survey
946 ([U.S. EPA, 2009](#)).

947 **3.4.3.2 Soil**

948 Vinyl chloride may enter soil through anticipated releases, migration of landfill leachate, and releases
949 from spills and leaks. As mentioned above, application of biosolids (see Section 3.4.3.1) and deposition
950 from air (see Section 3.4.1.1) are not expected to be important sources of vinyl chloride in soil. Vinyl
951 chloride may also form in anaerobic soils from the reductive dehalogenation of more highly-chlorinated
952 ethylenes (e.g., PCE, TCE; see Section 3.3.4.5).

953 The extent to which vinyl chloride released to soil will remain in soil depends on its adsorption affinity
954 to the soil type (see Section 3.2.2). Based on vinyl chloride’s vapor pressure, much of the vinyl chloride
955 released to soil is expected to volatilize rapidly to the atmosphere. Vinyl chloride that remains in soil
956 may be subject to several competing processes dictating its fate in soil, including (1) volatilization from
957 both wet and dry soil, (2) migration to groundwater, (3) limited sorption to organic solid fractions, and
958 (4) aerobic and anaerobic biodegradation. Because of vinyl chloride’s tendency to volatilize from soil
959 and to have moderate to rapid migration to groundwater, only a small portion of vinyl chloride is likely
960 to remain in soil. Vinyl chloride is also subject to aerobic and anaerobic biodegradation in soil, which
961 may further reduce its presence in soil. The overall fate of vinyl chloride in soil is complex and
962 requires further investigation.

963 to be subject to biodegradation in soil. As discussed in Section 3.3.4.3, biodegradation rates can vary
964 greatly depending on the conditions and microbial species present. Given the anticipated transport and
965 biodegradation in soil systems alongside low historical releases to land, vinyl chloride is not expected to
966 persist in soil environments.

967 3.4.3.3 Landfills

968 Vinyl chloride is considered a hazardous waste under Subtitle C of the Resource Conservation and
969 Recovery Act (RCRA) (40 CFR 261.33). However, the polymer PVC is not currently listed as a
970 hazardous waste under RCRA, therefore materials containing PVC may be disposed of in conventional
971 landfills. Information gathered to-date suggests that typical conditions in landfill environments will tend
972 not to drive vinyl chloride monomer release from polymerized form in PVC products: Mersiowsky et
973 al., ([2001](#)) performed lysimeter experiments over four years to track the release of organics from PVC
974 wiring and flooring under simulated landfill conditions and found no detectable degradation of the PVC
975 polymer (based on molecular weight distribution), and no vinyl chloride monomer in lysimeter biogas.
976 The authors noted that the operating conditions of the simulated landfill environment were not
977 amendable to depolymerization processes for PVC, with negligible UV exposure and temperatures well
978 below processing temperature for PVC (160 °C). Subsequent publications have reported similar
979 conclusions ([Mersiowsky, 2002a](#); [Mersiowsky, 2002b](#)). Vinyl chloride may also enter landfills from
980 leaching of residual vinyl chloride monomer from PVC materials. However, given improvements in
981 PVC manufacturing practices, this is not expected to contribute significantly to vinyl chloride
982 concentrations in landfills (see Section 3.5.2 for additional discussion on vinyl chloride monomer
983 release from PVC pipe). Because PVC materials are a primary use of vinyl chloride, EPA plans to
984 bolster the analysis of their fate within landfills with the conclusion of systematic review.

985 Additionally, vinyl chloride may occur in landfills from contaminated biosolids and the biological
986 reductive dehalogenation of more highly-chlorinated ethylenes (e.g., PCE, TCE), especially in deeper,
987 anaerobic landfill layers. Kromann et al., ([1998](#)) studied the degradation under methanogenic conditions
988 of five chlorinated aliphatic compounds (including PCE and TCE) in leachate collected from eight
989 landfills in Denmark: three of the leachates were able to degrade PCE and TCE, showing complete
990 primary degradation of PCE within 5 to 10 days following a 5 to 10-day lag period. A follow-up study
991 demonstrated the sequential dechlorination of PCE in three of the leachates, following the sequence
992 presented in Figure 3-3. The rate of reductive dechlorination to vinyl chloride was found to correlate
993 with the level of biodegradable organics present in the leachate: vinyl chloride was produced and
994 subsequently degraded within 40 and 69 days in the leachates with biological oxygen demands (BODs)
995 of 780 and 500 mg-O₂/L, respectively, whereas no formation of vinyl chloride was detected by about
996 day 83 in the leachate with a BOD of 140 mg-O₂/L ([Kromann et al., 1998](#)).

997 Vinyl chloride in gas form can diffuse upwards in landfill soils and may degrade in the presence of
998 methane and oxygen, conditions characteristic of topsoil layers in landfills with methanogenic activity.
1000 Scheutz and Kjeldsen ([2005](#)) studied the potential for gas-phase vinyl chloride and other chlorinated
1001 VOCs to migrate in soil under methane oxidizing conditions characteristic of landfill soil cover systems.
1002 The authors found that when fed to a column alongside TCE containing landfill soil supplied with an
1003 oxygen/methane counter gradient, vinyl chloride exhibited 74±6 percent degradation from a starting test
1004 concentration of 310 µg/L and a gas flux rate of 0.76 m³ landfill gas-m²/day ([Scheutz and Kjeldsen,](#)
1005 [2005](#)). The same publication reported that no degradation of vinyl chloride was observed in anaerobic
1006 batch experiments conducted with the same landfill soil with CO₂ and methane-filled headspace at a
1007 50:50 ratio by volume, highlighting the importance of redox conditions on the degree to which vinyl
1008 chloride may be degraded in upper landfill layers. Kjeldsen and Christensen ([2001](#)) modeled the
1009 distribution of vinyl chloride in landfill gas, leachate, and sorbed to solids using a Model for Organic
1010

1011 Chemicals in Landfills (MOCLA) run under both “traditional” mixed landfill and reduced organics
1012 landfill conditions. The authors reported that the distribution of vinyl chloride remaining in the
1013 landfill—especially between the aqueous/leachate and solid/sorbed phases—is dependent on the organic
1014 carbon content of the solid media. Additionally, removal of vinyl chloride is expected to occur primarily
1015 through volatilization/gas flow and biodegradation (contingent upon the presence of appropriate
1016 microbial consortia and conditions), with minimal (less than 1 percent) remaining in the landfill after 5
1017 years ([Kjeldsen and Christensen, 2001](#)). Fractions of vinyl chloride that are not degraded in the landfill
1018 will volatilize and may cause areas of elevated atmospheric concentrations above landfill surfaces
1019 ([ATSDR, 2024](#); [Molton et al., 1987](#)).

1020
1021 Overall, the presence of vinyl chloride in landfills from the COUs relevant to this risk evaluation is not
1022 expected to be significant. Molton et al., ([1987](#)) studied the presence of vinyl chloride in municipal
1023 landfills in California where there was no prior knowledge of vinyl chloride being disposed of. The
1024 authors concluded that the most likely source of vinyl chloride in the studied landfills was from the
1025 anaerobic biodegradation of more highly-chlorinated solvents (*e.g.*, TCE), as vinyl chloride was
1026 observed only where chlorinated solvents were present in the landfill. Because very limited amounts of
1027 vinyl chloride are directly disposed of to landfills, and most land disposals are to RCRA landfills,
1028 exposure routes stemming from landfills are not expected to be significant.

1029 **3.4.3.4 Groundwater**

1030 Vinyl chloride may occur in groundwater from the degradation of more highly-chlorinated ethylenes
1031 (see Section 3.3.4.5). Additionally, due to its water solubility and low-to-moderate tendency to sorb to
1032 organics in soil, vinyl chloride fractions that do not volatilize (*i.e.*, during releases to soil in large and/or
1033 continuous amounts) are expected to be mobile in soil and may be transported to groundwater. However,
1034 as soil releases are not expected to be common (see Section 2.3.1 of *Draft Scope of the Risk Evaluation*
1035 for Vinyl Chloride), this is expected to be a minor pathway in the overall fate and persistence of vinyl
1036 chloride.

1037
1038 Vinyl chloride fractions that migrate to groundwater systems may be subject to both anaerobic
1039 biodegradation (rates discussed in Section 3.3.4.4) and abiotic reductive dehalogenation. The degree of
1040 susceptibility of vinyl chloride to abiotic dehalogenation relies on the mineralogy of the anaerobic
1041 system: of those determined only with minerals characteristic of soil and aquifer systems, rates of 0.055
1042 to 0.15 d⁻¹, 0.247 to 0.323 d⁻¹, 0.355 to 0.537 d⁻¹, and 0.358 to 0.555 d⁻¹ were determined with Silawa
1043 loamy sand, montmorillonite, vermiculite, and biotite, respectively ([Reaxys, 2023](#)). Assuming first order
1044 kinetics, these equate to half-lives ranging from 1.25 to 12.6 days. Despite the short half-lives achieved
1045 in laboratory reductive dehalogenation studies, vinyl chloride has been observed in groundwater in
1046 several U.S. locations ([ATSDR, 2024](#)), and may be fed by the degradation of more highly-chlorinated
1047 ethylene plumes (see Section 3.3.4.5).

1048 **3.5 Persistence Potential of Vinyl Chloride**

1049 In the atmosphere, vinyl chloride is not expected to undergo significant direct photolysis and will instead
1050 react with photochemically produced hydroxyl radicals (·OH). Based on reported hydroxyl radical-
1051 mediated indirect photolysis half-lives, vinyl chloride straddles the criterion for persistence in the air
1052 compartment ($t_{1/2} > 2$ days; see Section 3.3.2.1). In surface water and sediments under environmentally
1053 relevant conditions, vinyl chloride is not susceptible to appreciable hydrolysis (see Section 3.3.1). The
1054 persistence of vinyl chloride fractions remaining in the surface water compartment is expected to be
1055 mediated by biodegradation: given the range of empirical aerobic biodegradation half-lives, vinyl
1056 chloride is expected to have moderate to high persistence ($t_{1/2}$ 60 to ≥ 180 days) in the surface water
1057 compartment under environmentally relevant conditions (see Section 3.3.4.1). As a highly volatile

1058 chemical with a log K_{OC} range of 1.75 to 2.95, vinyl chloride is not expected to occur in sediments
1059 resulting from COUs of interest (see Section 3.2.2). In soil under environmentally relevant conditions,
1060 vinyl chloride may be subject to volatilization, migration to groundwater, and possible biodegradation
1061 and sorption to organic solid fractions (see Section 3.4.3.2).

1062 **3.5.1 Destruction and Removal Efficiency**

1063 Destruction and removal efficiency is a percentage that represents the mass of a pollutant removed or
1064 destroyed in a thermal incinerator relative to the mass that entered the system. EPA requires that
1065 hazardous waste incineration systems destroy and remove at least 99.99 percent of each harmful
1066 chemical in the waste, including treated hazardous waste ([46 FR 7684](#), January 23, 1981).

1067
1068 O'Mara et al., ([1971](#)) reported that under diffusion conditions (*i.e.*, vinyl chloride monomer fed directly
1069 to a burner rather than combusted pre-mixed with air) the greatest combustion temperature reached was
1070 950 °C when atmospheric oxygen was not limiting. The authors approximated that under diffusion
1071 conditions that mimic an actual vinyl chloride monomer fire, the air directly above the vinyl chloride
1072 flame would contain about 27,000 ppm HCl, 58,100 ppm CO₂, 9,500 ppm of CO, 40 ppm of COCl₂, and
1073 trace vinyl chloride monomer ([O'Mara, 1971](#)).

1074
1075 The recommended destruction method for vinyl chloride disposal is by incineration at temperatures
1076 between 450 and 1,600 °C ([ATSDR, 2024](#); [NLM, 2023a](#)). Because of this, vinyl chloride is expected to
1077 have high destruction efficiency when incinerated within the temperature range recommended for
1078 destruction.

1079 **3.5.2 Presence and Removal in Drinking Water Treatment**

1080 Drinking water in the United States typically comes from surface water (*i.e.*, lakes, rivers, reservoirs)
1081 and groundwater. The source water then flows to a treatment plant where it undergoes a series of water
1082 treatment steps before being dispersed to homes and communities. In the U.S., public water systems
1083 often use conventional treatment processes that include coagulation, flocculation, sedimentation,
1084 filtration, and disinfection, as required by law.

1085
1086 Vinyl chloride may enter drinking water sources by degradation of higher chloroethylenes in
1087 groundwater (see Section 3.3.4.5), and also from primarily fugitive (*e.g.*, from spills and leaks) releases
1088 to surface water and to soil leading to migration to groundwater. Additionally, vinyl chloride monomer
1089 may leach from PVC drinking water distribution pipes. Dressman and Mcfarren ([1978](#)) sampled water
1090 from five distribution systems in Arizona, Texas, California, and Oregon that employed PVC piping that
1091 was manufactured between 1964 and 1975. The authors found detectable vinyl chloride in three of the
1092 five systems, with concentrations ranging from less than 0.03 µg/L (LOD) to 1.4 µg/L.

1093
1094 In 1977 a regulatory threshold of 10 mg/kg residual vinyl chloride monomer in new PVC was imposed,
1095 with a subsequent threshold of 3.2 mg/kg. This lower threshold was set based on diffusion modeling
1096 results to limit concentrations of residual vinyl chloride monomer leached from PVC pipes to 10% of the
1097 Maximum Contaminant Level (MCL) of 0.002 mg/L regulated under the Safe Drinking Water Act (40
1098 C.F.R. 141.61) ([Borrelli et al., 2005](#)). The EPA Office of Water released a Permeation and Leaching
1099 report in 2002 indicating that 55 percent of 53 water samples collected from PVC distribution pipes
1100 manufactured prior to 1977 had vinyl chloride concentrations greater than the vinyl chloride monomer
1101 MCL of 0.002 mg/L ([U.S. EPA, 2002](#)). Factors such as contact time, temperature, and pipe diameter
1102 (surface area-to-volume ratio) were found to impact vinyl chloride concentrations. However, the same
1103 document reported zero instances of vinyl chloride concentrations above the MCL from water samples
1104 taken from PVC distribution pipes manufactured post-1977. Walter et al., ([2011](#)) performed a time

1105 course leaching study with new Schedule 40 PVC and found no detectable vinyl chloride monomer in
1106 the water samples from days 0 to 13, though saw an increase over time to about 130 ng/L at one year,
1107 and about 300 ng/L by day 581 (limit of quantification [LOQ] 95 ng/L). The authors also found that
1108 there were no statistically significant differences between vinyl chloride concentrations leached from
1109 unmodified PVC and chlorinated PVC during a shorter leaching study. Additionally, the authors found
1110 that vinyl chloride was more readily detectable in water measurements when chlorinated, municipal
1111 water was the supply water, rather than unchlorinated well water. However, the authors hypothesized
1112 that the latter observation was more likely due to formation of vinyl chloride as a disinfection byproduct
1113 rather than leaching from the pipes, though there were no confirming studies provided ([Walter et al., 2011](#)).
1114

1115 Limited information was identified on the removal efficiency of vinyl chloride during drinking water
1116 treatment. Based on vinyl chloride's volatility indicated by its HLC and vapor pressure, it is expected
1117 that high removal may be obtained through aeration and stripping-based treatment processes. Studies
1118 employing advanced treatment technologies have reported some capacity for vinyl chloride removal. For
1119 example, Ainscough et al., ([2021](#)) found an initial rejection rate of 70.3 percent across a low-energy
1120 reverse osmosis filtration, though efficiency drastically decreased with fouling after 21 days. Because
1121 surface water is expected to contain negligible vinyl chloride due to small releases, volatilization
1122 processes, and supporting monitoring studies (see Section 3.4.2), drinking water originating from
1123 surface water is unlikely to contain elevated vinyl chloride concentrations. However, drinking water
1124 sourced from groundwater near areas of chlorinated ethylene contamination may experience elevated
1125 concentrations, especially when subsequent drinking water treatment is absent.
1126

3.5.3 Removal in Wastewater Treatment

1127 Wastewater treatment is performed to remove contaminants from wastewater using physical, biological,
1128 and chemical processes. Generally, municipal wastewater treatment facilities apply primary and
1129 secondary treatments. During the primary treatment, screens, grit chambers, and settling tanks are used
1130 to remove solids from wastewater. Secondary treatment processes remove organic matter in wastewater
1131 using biological treatment processes such as trickling filters or activated sludge. Sometimes an
1132 additional stage of treatment such as tertiary treatment is utilized to further clean water for additional
1133 protection using advanced treatment techniques (e.g., ozonation, chlorination, disinfection).
1134

1135 Very little vinyl chloride is expected to be released to municipal WWTPs. Due to its high volatility,
1136 vinyl chloride is expected to be removed from wastewater via stripping. EPA leveraged the STPWIN
1137 model in EPI Suite™ to estimate removal efficiency of vinyl chloride from wastewater at a conventional
1138 treatment plant. Assuming negligible biodegradation by inputting a biodegradation half-life of 10,000
1139 hours, STPWIN yielded a total removal 91.54 percent, with approximately 89 percent of the removal
1140 attributable to losses to stripping during aeration ([U.S. EPA, 2017](#)). Removal may be greater with the
1141 addition of contributions from biodegradation (see Section 3.3.4).
1142

3.6 Bioaccumulation Potential of Vinyl Chloride

1143 Information on bioconcentration and bioaccumulation in aquatic and terrestrial organisms is important to
1144 understanding the behavior of vinyl chloride in the environment and are a key component in assessing
1145 its risk to all living organisms, including humans.
1146

1147 Vinyl chloride is not expected to bioconcentrate or bioaccumulate significantly in aquatic organisms.
1148 Two empirical bioconcentration factors (BCF) were identified: a BCF of 40 was found in green algae
1149 (*Chlorella fusca*) ([ATSDR, 2024](#); [ECHA, 2023a](#); [NLM, 2023a](#); [OECD, 2001](#)), and BCF less than 10 in
1150 golden ide (*Leuciscus idus melanotus*) ([ATSDR, 2024](#); [ECHA, 2023a](#); [NLM, 2023a](#); [OECD, 2001](#)). No
1151

1152 empirical bioaccumulation factor (BAF) values were identified. Because few BCF studies and no BAF
1153 studies were identified (see Table 3-2), the BCFBAF model of EPI Suite™ v 4.11 was leveraged to fill
1154 aquatic bioaccumulation data gaps for screening purposes. Supporting evidence from empirical BCFs,
1155 BAFs of 2.31, 2.48, 3.17 L/kg were obtained for lower, middle, and upper trophic levels using the
1156 Arnot-Gobas method of the BCFBAF model ([U.S. EPA, 2017](#)). EPA identified no bioaccumulation or
1157 bioconcentration data for terrestrial organisms from databases or previously conducted assessments.
1158 Taken together with the expected release patterns and rapid partitioning to air, trophic transfer and
1159 exposures to humans from the consumption of animals are not expected to be significant pathways.

1160 **3.7 Overall Fate and Transport of Vinyl Chloride**

1161 EPA reviewed trusted databases and previously conducted assessments to identify information on fate
1162 endpoints for vinyl chloride that inform risk evaluation problem formulation. Specifically, this
1163 information was analyzed to characterize transport and partitioning pathways, identify environmental
1164 persistence potential, and assess bioaccumulation potential of vinyl chloride.
1165

1166 ***Intermedia Transport and Partitioning Behavior of Vinyl Chloride***

1167 The magnitude of the partitioning coefficients identified for vinyl chloride (Table 3-3) suggest that vinyl
1168 chloride will exist primarily in air and water in the environment. Vinyl chloride has a vapor pressure of
1169 2,550 mmHg at 20 °C ([ECHA, 2023a](#)) indicating that vinyl chloride will exist predominantly as a free
1170 gas in the atmosphere, and dry deposition is unlikely to be an important process. This is consistent with
1171 the estimated octanol:air partition coefficient of 25.4 ([U.S. EPA, 2017](#)).
1172

1173 With a HLC of 0.0278 atm·m³/mol at 24.8 °C ([PhysProp, 2023](#)), vinyl chloride is also expected to be
1174 volatile from surface water. While volatile, vinyl chloride also has considerable water solubility (9,150
1175 mg/L at 20.5 °C ([ECHA, 2023a](#); [Reaxys, 2023](#))) consistent with its polarity and small molecular size.
1176 Sorption to organics present in sediment and suspended and dissolved solids present in water is unlikely
1177 to be a dominant pathway given the range of log K_{oc} values identified to date (Table 3-2). Vinyl
1178 chloride's solubility along with its log K_{oc} suggests that vinyl chloride that occurs in soil will exhibit
1179 mobility and may be transported through the vadose zone to groundwater.
1180

1181 ***Preliminary Media Assessments to Inform Problem Formulation***

1182 Preliminary media assessments were conducted to inform problem formulation for the risk evaluation of
1183 vinyl chloride, and to identify major and minor media in which vinyl chloride is expected to occur: due
1184 to vinyl chloride's physical and chemical properties driving its ready partitioning to air, as well as the
1185 vast majority (>98 %) of the TRI releases being reported to air, the air compartment is expected to be a
1186 major compartment of interest. Surface water and soil are expected to be minor compartments: vinyl
1187 chloride that remains in each of these media is expected to persist variably, moderated by biodegradation
1188 that is dependent on environmental conditions (e.g., electron donors, oxygen levels, mineralogy).
1189 However, occurrences of vinyl chloride in surface water and soil are expected to be minimal as
1190 supported by monitoring and TRI release data. Biosolids, sediments, groundwater, and biota are
1191 expected to be minor compartments in the evaluation of vinyl chloride due to negligible releases and/or
1192 negligible partitioning to these media. The following subsections summarize the preliminary media
1193 assessments for this draft scope.
1194

1195 ***Air and Atmosphere***

1196 According to reporting to the TRI database, the majority of reported vinyl chloride releases are to air.
1197 Additionally, it is expected that vinyl chloride released to surface water and WWTPs will rapidly
1198 volatilize to the air compartment. In the atmosphere, vinyl chloride is expected to persist with a half-life
1199 range from 1.27 to 2.71 days (mean of 1.84 days) assuming a ·OH concentration of $1.5 \times 10^6 \text{ ·OH/cm}^3$

1200 and 12 hours of sunlight (see Sections 3.3.2.1 and 3.4.1.1) ([OECD, 2001](#); [ECHA, 2023a](#); [NLM, 2023a](#);
1201 [NIST, 2023](#); [ATSDR, 2024](#)).

1202
1203 In indoor air, vinyl chloride in gas phase is expected to be more persistent as compared to outdoor
1204 environments. Indoor environments have fewer physical transport drivers (*e.g.*, advection by wind and
1205 atmospheric flows) as well as less sunlight and subsequently lower concentrations of hydroxyl radicals.
1206 Therefore, vinyl chloride transformation rates are expected to be slow in indoor air. Vapor intrusion,
1207 however, is not expected to be a dominant pathway introducing vinyl chloride to indoor environments
1208 (see Section 3.4.1.2).

1209
1210 ***Aquatic Environments***

1211 Monitoring data from the Water Quality Portal indicate negligible instances of vinyl chloride in surface
1212 waters (see Section 3.4.2). Vinyl chloride may enter surface waters through anticipated releases,
1213 migration of landfill leachate, and releases from spills and leaks. Vinyl chloride is not expected to
1214 undergo wet or dry deposition (see Section 3.4.1.1). Vinyl chloride may also form in anaerobic media
1215 from the reductive dehalogenation of more highly-chlorinated ethylene contaminants (*e.g.*, PCE, TCE;
1216 see Section 3.3.4.5).

1217
1218 While vinyl chloride present in surface water is expected to volatilize appreciably, some fractions may
1219 remain dissolved in the aqueous phase and adsorbed to organics found in suspended solids, as indicated
1220 by the log K_{oc} values presented in Table 3-2. In surface water, vinyl chloride is expected to have
1221 moderate to high persistence. Because hydrolysis of vinyl chloride is negligible, its fate in water is
1222 expected to be primarily mediated by biodegradation processes.

1223
1224 One ready biodegradability test (OECD 301D) indicates vinyl chloride is not readily biodegradable,
1225 reporting a degradation rate of 16 percent over 28 days ([ECHA, 2023a](#); [NITE, 2023](#); [NLM, 2023a](#)). An
1226 additional CO_2 evolution study employing a municipal activated sludge inoculum reported a
1227 mineralization rate of 21.5 percent over 5 days ([ECHA, 2023a](#); [OECD, 2001](#)). Anaerobic biodegradation
1228 rates range from a half-life of 70 days with groundwater inoculum, to 10 percent over 106 days in water
1229 under methanogenic conditions following a 50-day lag period ([ECHA, 2023a](#); [NLM, 2023a](#); [Reaxys,](#)
1230 [2023](#)). The degree of vinyl chloride biodegradation in aqueous systems is therefore expected to vary
1231 with microbial community and environmental conditions. Despite not being readily biodegradable, vinyl
1232 chloride is not widely or frequently detected in aquatic environments, likely due to minimal releases to
1233 water and its tendency to volatilize rapidly.

1234
1235 No empirical data on vinyl chloride adsorption to sediment were identified. Based on empirical soil log
1236 K_{oc} values, however, vinyl chloride in the water column is not expected to partition significantly to
1237 organics in sediment, though it may be transported by diffusion and advection processes to sediment
1238 pore water. Given the range of both aerobic and anaerobic biodegradation rates identified in sediment
1239 and groundwater/sediment microcosms, vinyl chloride may exhibit a range of persistence behaviors
1240 dependent on the microbial community, redox conditions, and exposure history of the area to chlorinated
1241 solvents (*i.e.*, adaptation). However, as indicated by fugacity modeling (see Section 3.2.2) and identified
1242 monitoring data (see Section 3.4.2), vinyl chloride is not likely to be present in sediments.

1243
1244 ***Terrestrial Environments***

1245 Vinyl chloride may enter terrestrial environments via the disposal of industrial processing wastes, the
1246 degradation of higher chlorinated ethylenes (see Section 3.3.4.5), and incidental spills and leaks.
1247 Because the majority of reported releases are to air (see Section 3.2.2), and releases to soil media are
1248 expected to volatilize rapidly, terrestrial environments and processes are not expected to be significant to

1249 the evaluation of vinyl chloride. However, terrestrial fate of vinyl chloride is important to outline to
1250 inform instances of incidental releases, for example by fugitive spills and leaks.
1251

1252 Vinyl chloride may be subject to several competing processes dictating its fate in soil, including, (1)
1253 volatilization from both wet and dry soil, (2) moderate to rapid migration to groundwater, (3) limited
1254 sorption to organic solid fractions, and (4) limited aerobic and anaerobic biodegradation. Two sources
1255 were identified reporting log K_{OC} values for vinyl chloride. The first reported a log K_{OC} value of 1.75,
1256 but without additional detail on materials or methods ([NLM, 2023a](#); [OECD, 2001](#)). The second is an
1257 empirical study following OECD 106 guidelines that investigated seven low-OC, natural clayey till soils
1258 from Denmark, reporting log K_{OC} values ranging from 2.38 to 2.95 (mean 2.70) ([ATSDR, 2024](#)).
1259 Because of vinyl chloride's large tendency to volatilize from soil and the possibility of some migration
1260 to groundwater, only a small portion of vinyl chloride is likely to be subject to biodegradation in soil. As
1261 discussed above, biodegradation rates can vary greatly depending on the conditions and microbial
1262 species present. Given the anticipated transport and biodegradation in soil systems, vinyl chloride is
1263 expected to have low to moderate persistence in soil.
1264

1265 Vinyl chloride present in groundwater systems is likely primarily due to the reductive dehalogenation of
1266 chlorinated solvents such as PCE and TCE (see Section 3.3.4.5). Vinyl chloride in groundwater may be
1267 subject to both anaerobic biodegradation and abiotic reductive dehalogenation. The degree of
1268 susceptibility of vinyl chloride to abiotic dehalogenation relies on the mineralogy of the anaerobic
1269 system, with estimated half-lives ranging from 1.25 to 12.6 days ([Reaxys, 2023](#)). Despite the short half-
1270 lives achieved in laboratory reductive dehalogenation studies, vinyl chloride has been observed in
1271 groundwater in several U.S. locations ([ATSDR, 2024](#)).
1272

1273 Volatility of vinyl chloride is expected to drive its removal in WWTPs (WWTPs). Results from the
1274 STPWIN model of EPI Suite™ v 4.11 predict that approximately 89 percent of vinyl chloride will be
1275 removed via losses to air stripping assuming negligible removal due to biodegradation ([U.S. EPA,](#)
1276 [2017](#)). Negligible amounts of vinyl chloride are expected to partition to sludge during wastewater
1277 treatment, therefore vinyl chloride transport to terrestrial environments from the application of
1278 municipal biosolids is not expected to be a significant pathway (see Section 3.4.3.1).
1279

1280 Vinyl chloride may occur in landfills from illegal dumping or from the biological reductive
1281 dehalogenation of more highly-chlorinated ethylenes (e.g., PCE, TCE), especially in deep, anaerobic
1282 landfill layers. Kromann et al., ([1998](#)) demonstrated that vinyl chloride may form and be degraded
1283 within the time frame of weeks to months, though is highly dependent on landfill characteristics. Vinyl
1284 chloride in gas form can also diffuse upwards in landfill soils and may degrade in the presence of
1285 methane and oxygen, conditions characteristic of topsoil layers in landfills with methanogenic activity
1286 ([Scheutz and Kjeldsen, 2005](#)). Fractions of vinyl chloride that are not degraded in the landfill may
1287 volatilize and may cause areas of elevated atmospheric concentrations above landfill surfaces ([ATSDR,](#)
1288 [2024](#); [Molton et al., 1987](#)). Because vinyl chloride in landfills is unlikely to occur from the COUs of
1289 interest, landfill pathways are not expected to be significant in subsequent risk analyses.
1290

1291 **Bioaccumulation Potential**

1292 Vinyl chloride is not expected to bioconcentrate or bioaccumulate significantly in aquatic organisms.
1293 Two empirical bioconcentration factors (BCF) were identified: a BCF of 40 was found in green algae
1294 (*Chlorella fusca*) ([ATSDR, 2024](#); [ECHA, 2023a](#); [NLM, 2023a](#); [OECD, 2001](#)), and BCF less than 10 in
1295 golden ide (*Leuciscus idus melanotus*) ([ATSDR, 2024](#); [ECHA, 2023a](#); [NLM, 2023a](#); [OECD, 2001](#)).
1296 Supporting evidence from empirical BCFs, BAFs of 2.31, 2.48, 3.17 L/kg were obtained for lower,
1297 middle, and upper trophic levels using the Arnot-Gobas method of the BCFBAF model ([U.S. EPA,](#)

1298 [2017](#)). EPA identified no bioaccumulation or bioconcentration data for terrestrial organisms from
1299 databases or previously conducted assessments.

1300 REFERENCES

1301 [Ainscough, TJ; Oatley-Radcliffe, DL; Barron, AR.](#) (2021). Groundwater remediation of volatile organic
1302 compounds using nanofiltration and reverse osmosis membranes—A field study. *Membranes* 11:
1303 61. <http://dx.doi.org/10.3390/membranes11010061>

1304 [Atashgahi, S; Maphosa, F; Doğan, E; Smidt, H; Springael, D; Dejonghe, W.](#) (2013). Small-scale oxygen
1305 distribution determines the vinyl chloride biodegradation pathway in surficial sediments of
1306 riverbed hyporheic zones. *FEMS Microbiol Ecol* 84: 133-142. <http://dx.doi.org/10.1111/1574-6941.12044>

1308 [ATSDR](#) (Agency for Toxic Substances and Disease Registry). (2024). Toxicological profile for vinyl
1309 chloride. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
1310 <https://www.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=282&tid=51>

1311 [Beyer, A; Mackay, D; Matthies, M; Wania, F; Webster, E.](#) (2000). Assessing long-range transport
1312 potential of persistent organic pollutants. *Environ Sci Technol* 34: 699-703.

1313 [Borrelli, FE; de la Cruz, PL; Paradis, RA.](#) (2005). Residual vinyl chloride levels in USPVC resins and
1314 products: Historical perspective and update. *Journal of Vinyl and Additive Technology* 11: 65-
1315 69. <http://dx.doi.org/10.1002/vnl.20040>

1316 [Cowfer, JA; Gorensek, MB.](#) (2006). Vinyl chloride. In Kirk-Othmer encyclopedia of chemical
1317 technology (5th ed.). Hoboken, NJ: Wiley.
1318 <http://dx.doi.org/10.1002/0471238961.2209142503152306.a01.pub2>

1319 [Dressman, RC; Mcfarren, EF.](#) (1978). Determination of vinyl-chloride migration from polyvinyl-
1320 chloride pipe into water. *J Am Water Works Assoc* 70: 29-30. <http://dx.doi.org/10.1002/j.1551-8833.1978.tb06861.x>

1322 [ECHA](#) (European Chemicals Agency). (2023a). ECHA Registration dossier: Chloroethylene. Available
1323 online at <https://echa.europa.eu/registration-dossier/-/registered-dossier/16163>

1324 [ECHA](#) (European Chemicals Agency). (2023b). ECHA Registration dossier: Chloroethylene - Endpoint
1325 summaries. Available online

1326 [ECHA](#) (European Chemicals Agency). (2023c). ECHA Registration dossier: Chloroethylene - Physical
1327 & Chemical Properties. Available online

1328 [Eklund, B; Rago, R; Plantz, G; Haddad, E; Miesfeldt, M; Volpi, R.](#) (2022). Fate & transport of vinyl
1329 chloride in soil vapor. *Remediat* 32: 273-279. <http://dx.doi.org/10.1002/rem.21732>

1330 [Freedman, DL; Gossett, JM.](#) (1989). Biological reductive dechlorination of tetrachloroethylene and
1331 trichloroethylene to ethylene under methanogenic conditions. *Appl Environ Microbiol* 55: 2144-
1332 2151. <http://dx.doi.org/10.1128/aem.55.9.2144-2151.1989>

1333 [Hunkeler, D; Abe, Y; Broholm, MM; Jeannottat, S; Westergaard, C; Jacobsen, CS; Aravena, R; Bjerg,
1334 PL.](#) (2011). Assessing chlorinated ethene degradation in a large scale contaminant plume by dual
1335 carbon-chlorine isotope analysis and quantitative PCR. *J Contam Hydrol* 119: 69-79.
1336 <http://dx.doi.org/10.1016/j.jconhyd.2010.09.009>

1337 [IPCS](#) (International Programme on Chemical Safety). (1999). Environmental health criteria (EHC) 215:
1338 Vinyl chloride. (ISSN 0250-863X). Geneva, Switzerland: World Health Organization.
1339 <https://www.inchem.org/documents/ehc/ehc/ehc215.htm>

1340 [Kjeldsen, P; Christensen, TH.](#) (2001). A simple model for the distribution and fate of organic chemicals
1341 in a landfill: MOCLA. *Waste Manag Res* 19: 201-216.
1342 <http://dx.doi.org/10.1177/0734242x0101900303>

1343 [Kromann, A; Ludvigsen, L; H-J, A; Christensen, TH; Ejlertsson, J; Svensson, BH.](#) (1998). Degradability
1344 of chlorinated aliphatic compounds in methanogenic leachates sampled at eight landfills. *Waste
1345 Manag Res* 16: 54-62. <http://dx.doi.org/10.1177/0734242X9801600107>

1346 [Lee, SS; Kaown, D; Lee, KK.](#) (2015). Evaluation of the fate and transport of chlorinated ethenes in a

1347 complex groundwater system discharging to a stream in Wonju, Korea. *J Contam Hydrol* 182: 1348 231-243. <http://dx.doi.org/10.1016/j.jconhyd.2015.09.005>

1349 Lee, W; Batchelor, B. (2004). Abiotic reductive dechlorination of chlorinated ethylenes by soil. 1350 *Chemosphere* 55: 705-713. <http://dx.doi.org/10.1016/j.chemosphere.2003.11.033>

1351 Lu, C; Bjerg, PL; Zhang, F; Broholm, MM. (2011). Sorption of chlorinated solvents and degradation 1352 products on natural clayey tills. *Chemosphere* 83: 1467-1474. 1353
<http://dx.doi.org/10.1016/j.chemosphere.2011.03.007>

1354 Mackay, D; Di Guardo, A; Paterson, S; Cowan, CE. (1996). Evaluating the environmental fate of a 1355 variety of types of chemicals using the EQC model. *Environ Toxicol Chem* 15: 1627-1637. 1356
<http://dx.doi.org/10.1002/etc.5620150929>

1357 Mersiowsky, I. (2002a). Fate of PVC polymer, plasticizers, and stabilizers in landfilled waste. *Journal of 1358 Vinyl and Additive Technology* 8: 36-44. <http://dx.doi.org/10.1002/vnl.10343>

1359 Mersiowsky, I; Weller, M; Ejlertsson, J. (2001). Fate of plasticised PVC products under landfill 1360 conditions: a laboratory-scale landfill simulation reactor study. *Water Res* 35: 3063-3070. 1361
[http://dx.doi.org/10.1016/S0043-1354\(01\)00027-6](http://dx.doi.org/10.1016/S0043-1354(01)00027-6)

1362 Mersiowsky, N. (2002b). Long-term fate of PVC products and their additives in landfills. *Progress in 1363 Polymer Science* 27: 2227-2277. [http://dx.doi.org/10.1016/S0079-6700\(02\)00037-0](http://dx.doi.org/10.1016/S0079-6700(02)00037-0)

1364 Milde, G; Nerger, M; Mergler, R. (1988). Biological degradation of volatile chlorinated hydrocarbons in 1365 groundwater. *Water Sci Technol* 20: 67-74. <http://dx.doi.org/10.2166/wst.1988.0083>

1366 Molton, P. M.; Hallen, R. T.; Payne, J. W. (1987). Study of vinyl chloride formation at landfill sites in 1367 California. Sacramento, CA: California Air Resources Board (CARB). 1368
<https://ww2.arb.ca.gov/sites/default/files/classic//research/apr/past/a4-154-32.pdf>

1369 NIST (National Institute of Standards and Technology). (2023). NIST Chemistry Workbook: Ethene, 1370 chloro. Available online at 1371
<https://webbook.nist.gov/cgi/cbook.cgi?Name=vinyl+chloride&Units=SI>

1372 NITE (National Institute of Technology and Evaluation). (2023). Japan Chemicals Collaborative 1373 Knowledge (J-CHECK) database: Ethene, chloro-, CAS RN: 75-01-4. Available online at 1374
https://www.nite.go.jp/chem/jcheck//detail.action?cno=75-01-4&mono=2-0102&request_locale=en

1376 NLM (National Library of Medicine). (2023a). Hazardous Substances DataBank (HSDB): Vinyl 1377 chloride. Available online at <https://pubchem.ncbi.nlm.nih.gov/source/hsdb/169>

1378 NLM (National Library of Medicine). (2023b). PubChem: Vinyl chloride - chemical and physical 1379 properties. Available online

1380 O'Mara, MM; Crider, LB; Daniel, RL. (1971). Combustion products from vinyl chloride monomer. *Am 1381 Ind Hyg Assoc J* 3: 153-156; 1971. <http://dx.doi.org/10.1080/0002889718506429>

1382 OECD (Organisation for Economic Co-operation and Development). (2001). SIDS initial assessment 1383 report for SIAM 13: Vinyl chloride. Geneva, Switzerland: UNEP Chemicals Publications. 1384
<https://hpvchemicals.oecd.org/ui/handler.axd?id=c39b3fef-21c9-4d3d-a685-4698e7280ebc>

1385 PhysProp. (2023). PhysProp experimental data: Vinyl chloride. North Syracuse, NY: SRC, Inc.

1386 Reaxys. (2023). Reaxys Query: Vinyl chloride: Elsevier.

1387 RSC (Royal Society of Chemistry). (2023). Merck Index: Vinyl chloride [Database]. Retrieved from 1388
<https://merckindex.rsc.org/monographs/m11461>

1389 Rumble, JR. (2023). CRC Online: Vinyl chloride. Boca Raton, FL: CRC Press.

1390 Scheutz, C; Kjeldsen, P. (2005). Biodegradation of trace gases in simulated landfill soil cover systems. *J 1391 Air Waste Manag Assoc* 55: 878-885. <http://dx.doi.org/10.1080/10473289.2005.10464693>

1392 Tobiszewski, M; Namieśnik, J. (2012). Abiotic degradation of chlorinated ethanes and ethenes in water 1393 [Review]. *Environ Sci Pollut Res Int* 19: 1994-2006. <http://dx.doi.org/10.1007/s11356-012-0764-9>

1395 U.S. EPA (U.S. Environmental Protection Agency). (1976). A preliminary examination of vinyl chloride

1396 emissions from polymerization studies, during handling and land disposal. In Residual
1397 Management by Land Disposal: Proceedings of the Hazardous Waste Research Symposium.
1398 Columbus, OH: Battelle. <http://nepis.epa.gov/exe/ZyPURL.cgi?Dockey=91007IPL.txt>

1399 [U.S. EPA](#) (U.S. Environmental Protection Agency). (1993). Standards for the use or disposal of sewage
1400 sludge: Final rules [EPA Report]. (EPA 822/Z-93-001). Washington, DC.

1401 [U.S. EPA](#) (U.S. Environmental Protection Agency). (2000). Toxicological review of vinyl chloride
1402 [EPA Report]. (EPA635R00004). Washington, DC.
<http://www.epa.gov/iris/toxreviews/1001tr.pdf>

1403 [U.S. EPA](#) (U.S. Environmental Protection Agency). (2002). Permeation and leaching. Washington, DC:
1405 Office of Water.

1406 [U.S. EPA](#) (U.S. Environmental Protection Agency). (2009). Targeted national sewage sludge survey
1407 sampling and analysis technical report [EPA Report]. (EPA-822-R-08-016). Washington, DC:
1408 U.S. Environmental Protection Agency, Office of Water.
<http://nepis.epa.gov/exe/ZyPURL.cgi?Dockey=P1003RL8.txt>

1409 [U.S. EPA](#) (U.S. Environmental Protection Agency). (2017). Estimation Programs Interface Suite™
1410 v.4.11. Washington, DC: U.S. Environmental Protection Agency, Office of Pollution Prevention
1411 Toxics. Retrieved from <https://www.epa.gov/tscascreening-tools/download-epi-suitetm-estimation-program-interface-v411>

1412 [U.S. EPA](#) (U.S. Environmental Protection Agency). (2021). Draft systematic review protocol supporting
1413 TSCA risk evaluations for chemical substances, Version 1.0: A generic TSCA systematic review
1414 protocol with chemical-specific methodologies. (EPA Document #EPA-D-20-031). Washington,
1415 DC: Office of Chemical Safety and Pollution Prevention.
<https://www.regulations.gov/document/EPA-HQ-OPPT-2021-0414-0005>

1416 [U.S. EPA](#) (U.S. Environmental Protection Agency). (2023). CompTox Chemicals Dashboard: Vinyl
1417 chloride. Washington, DC. Retrieved from
<https://comptox.epa.gov/dashboard/chemical/details/DTXSID8021434>

1418 [U.S. EPA](#) (U.S. Environmental Protection Agency). (2024a). Proposed Designation of Vinyl Chloride as
1419 a High-Priority Substance for Risk Evaluation CASRN 75-01-4. Washington, DC: Office of
1420 Pollution Prevention and Toxics.

1421 [U.S. EPA](#) (U.S. Environmental Protection Agency). (2024b). Updated search strategies used to identify
1422 potentially relevant discipline-specific information: Systematic review support document for the
1423 proposed designation of acetaldehyde, acrylonitrile, benzenamine, vinyl chloride, and 4,4'-
1424 methylene bis(2-chloroaniline) as High-Priority Substances. Washington, DC: Office of
1425 Pollution Prevention and Toxics.

1426 [U.S. EPA](#) (U.S. Environmental Protection Agency). (2025). Draft Scope of the Risk Evaluation for
1427 Vinyl Chloride (Ethene, chloro-). Washington, DC: Office of Pollution Prevention and Toxics.

1428 [Walter, RK; Lin, PH; Edwards, M; Richardson, RE](#). (2011). Investigation of factors affecting the
1429 accumulation of vinyl chloride in polyvinyl chloride piping used in drinking water distribution
1430 systems. Water Res 45: 2607-2615. <http://dx.doi.org/10.1016/j.watres.2011.02.016>

1431 [Weatherill, JJ; Atashgahi, S; Schneidewind, U; Krause, S; Ullah, S; Cassidy, N; Rivett, MO](#). (2018).
1432 Natural attenuation of chlorinated ethenes in hyporheic zones: A review of key biogeochemical
1433 processes and in-situ transformation potential [Review]. Water Res 128: 362-382.
<http://dx.doi.org/10.1016/j.watres.2017.10.059>

1434 [Wood, PR; Lang, RF; Payan, IL](#). (1985). Anaerobic transformation, transport, and removal of volatile
1435 chlorinated organics in ground water. In GW Ward Ch (Ed.), Ground water quality (pp. 493-
1436 511). New York, NY: John Wiley and Sons.
<https://search.proquest.com/docview/19041334?accountid=171501>

1437

1438

1439

1440

1441

1442

1443

1444

1445 **APPENDICES**

1446

1447 **Appendix A COMPARTMENT HALF-LIVES USED IN FUGACITY**
 1448 **MODEL SENSITIVITY ANALYSIS**

1449 As discussed in Section 3.1.1, EPA leveraged a fugacity modeling approach to inform how vinyl
 1450 chloride is expected to be distributed in the environment. Because systematic review and data quality
 1451 evaluation steps are not yet complete, a sensitivity analysis was conducted to gauge a range of scenarios
 1452 by varying compartment half-lives ($t_{1/2}$), and tendency to adsorb to organic carbon (varying log K_{OC}):
 1453 the minimum, mean, and maximum empirical half-lives of vinyl chloride transformation in soil, water,
 1454 and sediment were assessed, as well as the minimum and maximum log K_{OC} . With the information
 1455 gathered to date from trusted databases and previously conducted assessments, it is expected that the
 1456 half-lives in typical surface water, soil, and sediments will be largely mediated by biodegradation,
 1457 therefore the range and mean half-lives for each of these compartments was derived from available
 1458 biodegradation data from which a first-order half-life was calculated using Equation 3-1. For the
 1459 purposes of this exercise, both rates determined with non-adapted and pre-exposed (assumed some
 1460 adaptation) were used, as adaptation due to exposure to vinyl chloride and/or other chlorinated solvents
 1461 is not uncommon in several scenarios where vinyl chloride releases may be expected (*i.e.*, fugitive
 1462 releases near industrial areas).

1463

1464 The following tables present the biodegradation studies and their associated calculated first order half-
 1465 lives, as well as the range and mean of the half-lives in each media used in the fugacity model sensitivity
 1466 analysis. In instances where multiple biodegradation values were extracted from one source (*e.g.*, from
 1467 replicates, presented as a range), half-lives were calculated for each quantitative biodegradation value
 1468 provided. While this is not ideal for determining central tendencies, this allows for capturing half-life
 1469 extrema for the sensitivity analysis.

1470

1471 Table_Apx A-1 presents the available biodegradation studies conducted in aqueous systems. For the
 1472 purposes of the fugacity sensitivity analysis, only the values collected under aerobic conditions (*i.e.*,
 1473 Mechanism = Aerobic biodegradation) were included in the range and mean calculations. This was
 1474 because surface waters were assumed to be aerobic.

1475

1476 **Table_Apx A-1. Calculated Half-Lives from Biodegradation Studies in Water Following First-
 1477 Order Kinetics**

Mechanism	Value	$t_{1/2}$ (h) ^a	f_{VC_remain}	time, t (h)	Reference(s)
Aerobic biodegradation (water)	21.5% over 5 days (CO ₂ Evolution) at 0.05 mg/L test substance concentration, with municipal activated sludge inoculum, adaptation not specified	343.61	0.785	5	OECD (2001) , ECHA (2023a)
Aerobic biodegradation (water)	16% over 28 days (OECD 301D) at 2.04 test substance concentration; with sludge inoculum, adaptation not specified	2671.56	0.84	28	NITE (2023) , ECHA (2023a) , NLM (2023a)

Mechanism	Value	$t_{1/2}$ (h) ^a	f_{VC_remain}	time, t (h)	Reference(s)
Aerobic biodegradation (water)	22% over 28 days (CO ₂ Evolution), with municipal activated sludge inoculum; some adaptation	1874.72	0.78	28	ECHA (2023c)
Anaerobic biodegradation (water)	10% over 106 days following a 50-day lag at 2.6×10^{-4} mg/L test substance concentration in groundwater containing H ₂ and acetate, under methanogenic conditions; adaptation likely due to media exposure to vinyl chloride	16736.50	0.9	106	Reaxys (2023)
Anaerobic biodegradation (water)	$t_{1/2} = 70$ days at 0.4 mg/L test substance concentration, with groundwater bacteria inoculum, adaptation not specified	1680			ECHA (2023a), NLM (2023a)
Anaerobic biodegradation (water)	$t_{1/2} = 110$ days; study details not specified	2640			NLM (2023a)
Half-life summary^b					
	mean (h)	1629.96			
	min (h)	343.61			
	max (h)	2671.56			
^a Calculated using a first-order approximation, described by Equation 3-1 ^b Summary statistics and values used in fugacity model only from aerobic studies (first four rows), as surface waters were assumed to be aerobic.					

^a Calculated using a first-order approximation, described by Equation 3-1
^b Summary statistics and values used in fugacity model only from aerobic studies (first four rows), as surface waters were assumed to be aerobic.

1478
 1479 Table_Apx A-2 presents the biodegradation studies conducted with soil media. For the purposes of the
 1480 fugacity sensitivity analysis, both aerobic and anaerobic values were included in the range and mean
 1481 calculations. This is because it was assumed that soil environments contain a gradient of oxygen
 1482 availability, thus including both aerobic and anaerobic conditions will help to capture a range of
 1483 conditions with the sensitivity analysis. Similarly, studies using soil and water from a shallow aquifer
 1484 were included here.
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494

1495
1496**Table_Apx A-2. Calculated Half-Lives from Biodegradation Studies in Soil Following First-Order Kinetics**

Mechanism	Value	$t_{1/2}$ (h) ^a	f_{VC_remain}	time, t (h)	Reference(s)
Aerobic biodegradation (soil)	>99% over 108 days (transformation) and 65% over 108 days (mineralization) at 1 mg/L test substance concentration in a natural shallow aquifer soil/groundwater microcosm, adaptation not specified	195.07	1.00E-04	2592	OECD (2001) , ATSDR (2024) ECHA (2023a)
Aerobic biodegradation (soil)	>99% over 108 days (transformation) and 65% over 108 days (mineralization) at 1 mg/L test substance concentration in a natural shallow aquifer soil/groundwater microcosm, adaptation not specified	1711.37	0.35	2592	OECD (2001) , ATSDR (2024) ECHA (2023a)
Aerobic biodegradation (soil)	1.456 µg/g soil/hour biodegradation in gas phase, incubated with soil from a landfill under methane oxidizing conditions	476.06			NLM (2023a)
Anaerobic biodegradation (soil)	$t_{1/2} = 4$ weeks at 0.4 mg/L test substance concentration, in sand/water microcosm; adaptation not specified	672			ECHA (2023a) , NLM (2023a)
Half-life summary					
	mean (h)	763.63			
	min (h)	195.07			
	max (h)	1711.37			
a Calculated using a first-order approximation, described by Equation 3-1.					

1497

1498

1499 Table_Apx A-3 presents the biodegradation studies conducted with sediment media. For the purposes of
 1500 the fugacity sensitivity analysis, both aerobic and anaerobic values were included in the range and mean
 1501 calculations. This is because it was assumed that the conditions in sediment environments comprise both
 1502 surface sediments and deeper anaerobic sediments, and including both aerobic and anaerobic conditions
 1503 will help to capture this range with the sensitivity analysis. Additionally, studies using media from a
 1504 variety of locations (including aquifers) were included to capture a range of adaptation conditions,
 1505 mineralities, organic matter contents, and electron donors. With the completion of systematic review, the
 1506 studies selected for fugacity modeling are expected to be refined as their data undergoes quality control
 1507 review.

1508

1509

Table_Apx A-3. Calculated Half-Lives from Biodegradation Studies with Sediment Following

1510

First-Order Kinetics

Mechanism	Value	$t_{1/2}$ (h) ^a	f_{VC_remain}	time, t (h)	Reference(s)
Aerobic biodegradation (groundwater microcosms)	22% to 39% over 84 hours (mineralization) at approx. 1.13 mg/L test substance concentration in natural aquifer microcosm; some adaptation from chlorinated solvent and vinyl chloride contamination	234.34	7.80E-01	84	Reaxys (2023) , ATSDR (2024)
Aerobic biodegradation (groundwater microcosms)	22% to 39% over 84 hours (mineralization) at approx. 1.13 mg/L test substance concentration in natural aquifer microcosm; some adaptation from chlorinated solvent and vinyl chloride contamination	117.79	6.10E-01	84	Reaxys (2023) , ATSDR (2024)
Aerobic biodegradation (groundwater microcosms)	>99% over 57 days, and >99% over 204 days at 330 µg/L test substance concentration, in groundwater/sediment batch microcosms; adaptation likely due to media exposure to vinyl chloride	205.9	1.00E-02	1368	NLM (2023a)
Aerobic biodegradation (groundwater microcosms)	>99% over 57 days, and >99% over 204 days at 330 µg/L test substance concentration, in groundwater/sediment batch microcosms; adaptation likely due to media exposure to vinyl chloride	736.92	1.00E-02	4896	NLM (2023a)
Anaerobic biodegradation (groundwater microcosms)	15% to 34% over 84 hours, and 2.8% to 4.6% over 84 hours (mineralization) at approx. 1.13 mg/L test substance concentration, in natural aquifer microcosm, amended with Fe(III) and unamended, respectively; some adaptation from media exposure to chlorinated solvents and vinyl chloride	358.26	8.50E-01	84	Reaxys (2023) , ATSDR (2024)

Mechanism	Value	$t_{1/2}$ (h) ^a	f_{VC_remain}	time, t (h)	Reference(s)
Anaerobic biodegradation (groundwater microcosms)	15% to 34% over 84 hours, and 2.8% to 4.6% over 84 hours (mineralization) at approx. 1.13 mg/L test substance concentration, in natural aquifer microcosm, amended with Fe(III) and unamended, respectively; some adaptation from media exposure to chlorinated solvents and vinyl chloride	140.13	6.60E-01	84	Reaxys (2023) , ATSDR (2024)
Anaerobic biodegradation (groundwater microcosms)	15% to 34% over 84 hours, and 2.8% to 4.6% over 84 hours (mineralization) at approx. 1.13 mg/L test substance concentration, in natural aquifer microcosm, amended with Fe(III) and unamended, respectively; some adaptation from media exposure to chlorinated solvents and vinyl chloride	2050.19	9.72E-01	84	Reaxys (2023) , ATSDR (2024)
Anaerobic biodegradation (groundwater microcosms)	15% to 34% over 84 hours, and 2.8% to 4.6% over 84 hours (mineralization) at approx. 1.13 mg/L test substance concentration, in natural aquifer microcosm, amended with Fe(III) and unamended, respectively; some adaptation from media exposure to chlorinated solvents and vinyl chloride	1236.41	9.54E-01	84	Reaxys (2023) , ATSDR (2024)
Anaerobic biodegradation (sediment)	5% to 44% over 37 days, and 8% to 100% over 37 days (mineralization) at 0.013 to 3.79 mg/L test substance concentration, in natural creek bed microcosm under methanogenic and Fe (III)-reducing conditions, respectively; some adaptation from former drum disposal area	11999.91	9.50E-01	888	Reaxys (2023) , ATSDR (2024)

Mechanism	Value	$t_{1/2}$ (h) ^a	f_{VC_remain}	time, t (h)	Reference(s)
Anaerobic biodegradation (sediment)	5% to 44% over 37 days, and 8% to 100% over 37 days (mineralization) at 0.013 to 3.79 mg/L test substance concentration, in natural creek bed microcosm under methanogenic and Fe (III)-reducing conditions, respectively; some adaptation from former drum disposal area	1061.56	5.60E-01	888	Reaxys (2023) , ATSDR (2024)
Anaerobic biodegradation (sediment)	5% to 44% over 37 days, and 8% to 100% over 37 days (mineralization) at 0.013 to 3.79 mg/L test substance concentration, in natural creek bed microcosm under methanogenic and Fe (III)-reducing conditions, respectively; some adaptation from former drum disposal area	7381.9	9.20E-01	888	Reaxys (2023) , ATSDR (2024)
Anaerobic biodegradation (sediment)	5% to 44% over 37 days, and 8% to 100% over 37 days (mineralization) at 0.013 to 3.79 mg/L test substance concentration, in natural creek bed microcosm under methanogenic and Fe (III)-reducing conditions, respectively; some adaptation from former drum disposal area	53.46	1.00E-05	888	Reaxys (2023) , ATSDR (2024)
Anaerobic biodegradation (sediment)	50% over 25 days and 100% over 19 days with 0.02 and 0.1 mg/L dissolved oxygen, respectively, at 0.65 mg test substance; vinyl chloride-oxidizing culture inoculum in microcosm with media from contaminated site; adapted	600			ATSDR (2024)

Mechanism	Value	$t_{1/2}$ (h) ^a	f_{VC_remain}	time, t (h)	Reference(s)
Anaerobic biodegradation (sediment)	50% over 25 days and 100% over 19 days with 0.02 and 0.1 mg/L dissolved oxygen, respectively, at 0.65 mg test substance; vinyl chloride-oxidizing culture inoculum in microcosm with media from contaminated site; adapted	27.45	1.00E-05	456	ATSDR (2024)
Anaerobic biodegradation (sediment)	98% and 21% over 70 days in Naval Air Station, and Naval Weapons Industrial Reserve Plant sediment microcosms, respectively; under methanogenic conditions; some adaptation with preexposure of media to chlorinated solvents	297.67	2.00E-02	1680	ECHA (2023a)
Anaerobic biodegradation (sediment)	98% and 21% over 70 days in Naval Air Station, and Naval Weapons Industrial Reserve Plant sediment microcosms, respectively; under methanogenic conditions; some adaptation with preexposure of media to chlorinated solvents	4940.08	7.90E-01	1680	ECHA (2023a)
Anaerobic biodegradation (groundwater microcosms)	100% over >100 days at 39 mg/L test substance concentration in groundwater with sediment microcosm under Fe- and SO_4^{2-} reducing conditions; media from contaminated site	144.49	1.00E-05	2400	Reaxys (2023)
Anaerobic biodegradation (sediment)	40% over 20 hours at 31.2 mg/L test substance concentration, in brackish sediment microcosm supplemented with methanol; adapted inoculum	27.14	6.00E-01	20	Reaxys (2023)
Anaerobic biodegradation (sediment)	40% over 20 hours at 28.7 mg/L test substance concentration, in brackish sediment microcosm supplemented with H_2 ; adapted inoculum	27.14	6.00E-01	20	Reaxys (2023)

Mechanism	Value	$t_{1/2}$ (h) ^a	f_{VC_remain}	time, t (h)	Reference(s)
Anaerobic biodegradation (groundwater microcosms)	100% over 15 days in aquifer microcosm supplemented with methanol and C ₂ Cl ₄ ; some adaptation with preexposure of media to chlorinated solvents	21.67	1.00E-05	360	Reaxys (2023)
Anaerobic biodegradation (groundwater microcosms)	100% over 14 weeks, and <20% over 14 weeks with and without supplemented e- donors, respectively, in aquifer microcosm; some adaptation with media from vinyl chloride-contaminated site	141.6	1.00E-05	2352	Reaxys (2023)
Anaerobic biodegradation (groundwater microcosms)	100% over 14 weeks, and <20% over 14 weeks with and without supplemented e- donors, respectively, in aquifer microcosm; some adaptation with media from vinyl chloride-contaminated site	7305.98	8.00E-01	2352	Reaxys (2023)
Half-life summary					
	mean (h)	1777.73			
	min (h)	21.67			
	max (h)	11999.91			

^a Calculated using a first-order approximation, described by Equation 3-1.

1511
1512
1513
1514
1515
1516

1517 **Appendix B EPI SUITE™ MODEL OUTPUTS**

1518 This section presents the raw output from EPISuite™ (U.S. EPA, 2017). Please note that the sensitivity
1519 analysis described in Sections 3.1.1 are not captured in this section and are instead presented in Section
1520 3.2.2.

1521

EPI Suite Results For CAS 000075-01-4

1522
1523
1524 ENDKed
1525 SMILES : C(=C)CL
1526 CHEM : Ethene, chloro-
1527 MOL FOR: C2 H3 CL1
1528 MOL WT : 62.50
1529 ----- EPI SUMMARY (v4.11) -----
1530 Physical Property Inputs:
1531 Log Kow (octanol-water): 1.38
1532 Boiling Point (deg C) : -13.90
1533 Melting Point (deg C) : -153.84
1534 Vapor Pressure (mm Hg) : 2550
1535 Water Solubility (mg/L): 9150
1536 Henry LC (atm-m³/mole) : 0.0278
1537
1538 KOWWIN Program (v1.68) Results:
1539 =====
1540
1541 Log Kow(version 1.69 estimate): 1.62
1542
1543 Experimental Database Structure Match:
1544 Name : VINYLCHLORIDE
1545 CAS Num : 000075-01-4
1546 Exp Log P: 1.46
1547 Exp Ref : SAKURATANI, Y ET AL. (2007)
1548
1549 SMILES : C(=C)CL
1550 CHEM : Ethene, chloro-
1551 MOL FOR: C2 H3 CL1
1552 MOL WT : 62.50
1553 -----+-----+-----+-----
1554 TYPE | NUM | LOGKOW FRAGMENT DESCRIPTION | COEFF | VALUE
1555 -----+-----+-----+-----
1556 Frag | 1 | =CH2 [olefinic carbon] | 0.5184 | 0.5184
1557 Frag | 1 | =CH- or =C< [olefinic carbon] | 0.3836 | 0.3836
1558 Frag | 1 | -CL [chlorine, olefinic attach] | 0.4923 | 0.4923
1559 Const | | Equation Constant | | 0.2290
1560 -----+-----+-----+-----
1561 Log Kow = 1.6233
1562
1563
1564
1565 MPBPVP (v1.43) Program Results:
1566 =====
1567 Experimental Database Structure Match:
1568 Name : VINYLCHLORIDE
1569 CAS Num : 000075-01-4
1570 Exp MP (deg C): -153.84
1571 Exp BP (deg C): -13.8
1572 Exp VP (mm Hg): 2.98E+03 (extrapolated)

1573 (Pa) : 3.97E+005
1574 Exp VP (deg C) : 25
1575 Exp VP ref : DAUBERT,TE & DANNER,RP (1985)
1576
1577 SMILES : C(=C)CL
1578 CHEM : Ethene, chloro-
1579 MOL FOR: C2 H3 CL1
1580 MOL WT : 62.50
1581 ----- SUMMARY MPBPWIN v1.44 -----
1582
1583
1584 Boiling Point: 3.97 deg C (Adapted Stein and Brown Method)
1585
1586 Melting Point: -132.70 deg C (Adapted Joback Method)
1587 Melting Point: -111.35 deg C (Gold and Ogle Method)
1588 Mean Melt Pt : -122.02 deg C (Joback; Gold,Ogle Methods)
1589 Selected MP: -122.02 deg C (Mean Value)
1590
1591 Vapor Pressure Estimations (25 deg C):
1592 (Using BP: -13.90 deg C (user entered))
1593 (MP not used for liquids)
1594 VP: 2.87E+003 mm Hg (Antoine Method)
1595 : 3.83E+005 Pa (Antoine Method)
1596 VP: 2.67E+003 mm Hg (Modified Grain Method)
1597 : 3.56E+005 Pa (Modified Grain Method)
1598 VP: 2.59E+003 mm Hg (Mackay Method)
1599 : 3.45E+005 Pa (Mackay Method)
1600 Selected VP: 2.77E+003 mm Hg (Mean of Antoine & Grain methods)
1601 : 3.7E+005 Pa (Mean of Antoine & Grain methods)
1602
1603
1604
1605 -----+-----+-----+-----+-----
1606 TYPE | NUM | BOIL DESCRIPTION | COEFF | VALUE
1607 -----+-----+-----+-----+-----
1608 Group | 1 | =CH2 | 16.44 | 16.44
1609 Group | 1 | =CH- | 27.95 | 27.95
1610 Group | 1 | -Cl | 34.08 | 34.08
1611 * | | Equation Constant | | 198.18
1612 =====+=====+=====+=====+=====+=====+
1613 RESULT-uncorr | BOILING POINT in deg Kelvin | 276.65
1614 RESULT- corr | BOILING POINT in deg Kelvin | 277.13
1615 | BOILING POINT in deg C | 3.97
1616 -----
1617
1618 -----+-----+-----+-----+-----
1619 TYPE | NUM | MELT DESCRIPTION | COEFF | VALUE
1620 -----+-----+-----+-----+-----
1621 Group | 1 | =CH2 | -4.32 | -4.32
1622 Group | 1 | =CH- | 8.73 | 8.73
1623 Group | 1 | -Cl | 13.55 | 13.55
1624 * | | Equation Constant | | 122.50
1625 =====+=====+=====+=====+=====+
1626 RESULT | MELTING POINT in deg Kelvin | 140.46
1627 | MELTING POINT in deg C | -132.70
1628 -----
1629
1630
1631
1632 Water Sol from Kow (WSKOW v1.42) Results:

1633 =====
1634
1635 Water Sol: 9286 mg/L
1636
1637 Experimental Water Solubility Database Match:
1638 Name : VINYLCHLORIDE
1639 CAS Num : 000075-01-4
1640 Exp WSol : 8800 mg/L (25 deg C)
1641 Exp Ref : DELASSUS, PT & SCHMIDT, DD (1981)
1642
1643 SMILES : C(=C)CL
1644 CHEM : Ethene, chloro-
1645 MOL FOR: C2 H3 CL1
1646 MOL WT : 62.50
1647 ----- WSKOW v1.43 Results -----
1648 Log Kow (estimated) : 1.62
1649 Log Kow (experimental): 1.46
1650 Cas No: 000075-01-4
1651 Name : VINYLCHLORIDE
1652 Refer : SAKURATANI, Y ET AL. (2007)
1653 Log Kow used by Water solubility estimates: 1.38 (user entered)
1654
1655 Equation Used to Make Water Sol estimate:
1656 Log S (mol/L) = 0.693-0.96 log Kow-0.0092(Tm-25)-0.00314 MW + Correction
1657
1658 Melting Pt (Tm) = -153.84 deg C (Use Tm = 25 for all liquids)
1659
1660 Correction(s): Value
1661 -----
1662 No Applicable Correction Factors
1663
1664 Log Water Solubility (in moles/L) : -0.828
1665 Water Solubility at 25 deg C (mg/L): 9286
1666
1667
1668
1669 WATERNT Program (v1.01) Results:
1670 =====
1671
1672 Water Sol (v1.01 est): 4120.2 mg/L
1673
1674 Experimental Water Solubility Database Match:
1675 Name : VINYLCHLORIDE
1676 CAS Num : 000075-01-4
1677 Exp WSol : 8800 mg/L (25 deg C)
1678 Exp Ref : DELASSUS, PT & SCHMIDT, DD (1981)
1679
1680 SMILES : C(=C)CL
1681 CHEM : Ethene, chloro-
1682 MOL FOR: C2 H3 CL1
1683 MOL WT : 62.50
1684 -----+-----+-----+-----
1685 TYPE | NUM | WATER SOLUBILITY FRAGMENT DESCRIPTION | COEFF | VALUE
1686 -----+-----+-----+-----
1687 Frag | 1 | =CH2 [olefinic carbon] | -0.4789 | -0.4789
1688 Frag | 1 | =CH- or =C< [olefinic carbon] | -0.3646 | -0.3646
1689 Frag | 1 | -CL [chlorine, olefinic attach] | -0.5867 | -0.5867
1690 Const | | Equation Constant | | 0.2492
1691 -----+-----+-----+-----
1692 Log Water Sol (moles/L) at 25 deg C = -1.1810

PUBLIC RELEASE DRAFT

January 2025

1813 = 1.81E+000 unitless
1814 = 4.50E+003 Pa-m3/mole
1815
1816 -----+-----+-----+-----
1817 | GROUP CONTRIBUTION DESCRIPTION | COMMENT | VALUE
1818 -----+-----+-----+-----
1819 | 1 Cd-H2 | | -0.41
1820 | 1 CdH (CL) | | 0.05
1821 -----+-----+-----+-----
1822 RESULT | GROUP ESTIMATION METHOD for LOG GAMMA VALUE | TOTAL | -0.36
1823 -----+-----+-----+-----
1824 HENRYs LAW CONSTANT at 25 deg C = 5.60E-002 atm-m3/mole
1825 = 2.29E+000 unitless
1826 = 5.68E+003 Pa-m3/mole
1827
1828
1829 For Henry LC Comparison Purposes:
1830 Exper Database: 2.78E-02 atm-m3/mole (2.82E+003 Pa-m3/mole)
1831 User-Entered Henry LC: 2.780E-002 atm-m3/mole (2.817E+003 Pa-m3/mole)
1832 Henrys LC [via VP/WSol estimate using User-Entered or Estimated values]:
1833 HLC: 6.831E-003 atm-m3/mole (6.921E+002 Pa-m3/mole)
1834 VP: 2.55E+003 mm Hg (source: User-Entered)
1835 WS: 9.15E+003 mg/L (source: User-Entered)
1836
1837
1838
1839 Log Octanol-Air (KOAWIN v1.10) Results:
1840 =====
1841
1842 Log Koa: 1.324
1843
1844 SMILES : C(=C)CL
1845 CHEM : Ethene, chloro-
1846 MOL FOR: C2 H3 CL1
1847 MOL WT : 62.50
1848 ----- KOAWIN v1.10 Results -----
1849
1850 Log Koa (octanol/air) estimate: 1.324
1851 Koa (octanol/air) estimate: 21.11
1852 Using:
1853 Log Kow: 1.38 (user entered)
1854 HenryLC: 0.0278 atm-m3/mole (user entered)
1855 Log Kaw: 0.056 (air/water part.coef.)
1856
1857 LogKow : 1.46 (exp database)
1858 LogKow : 1.62 (KowWin estimate)
1859 Henry LC: 0.0278 atm-m3/mole (exp database)
1860 Henry LC: 0.0444 atm-m3/mole (HenryWin bond estimate)
1861
1862 Log Koa (octanol/air) estimate: 1.361 (from KowWin/HenryWin)
1863
1864
1865
1866 BIOWIN (v4.10) Program Results:
1867 =====
1868 SMILES : C(=C)CL
1869 CHEM : Ethene, chloro-
1870 MOL FOR: C2 H3 CL1
1871 MOL WT : 62.50
1872 ----- BIOWIN v4.10 Results -----

1873
1874 Biowin1 (Linear Model Prediction) : Biodegrades Fast
1875 Biowin2 (Non-Linear Model Prediction): Biodegrades Fast
1876 Biowin3 (Ultimate Biodegradation Timeframe): Weeks
1877 Biowin4 (Primary Biodegradation Timeframe): Days-Weeks
1878 Biowin5 (MITI Linear Model Prediction) : Does Not Biodegrade Fast
1879 Biowin6 (MITI Non-Linear Model Prediction): Does Not Biodegrade Fast
1880 Biowin7 (Anaerobic Model Prediction): Biodegrades Fast
1881 Ready Biodegradability Prediction: NO
1882
1883 -----+-----+-----+-----+
1884 TYPE | NUM | Biowin1 FRAGMENT DESCRIPTION | COEFF | VALUE
1885 -----+-----+-----+-----+
1886 Frag | 1 | Aliphatic chloride [-CL] | -0.1114 | -0.1114
1887 MolWt| * | Molecular Weight Parameter | | -0.0298
1888 Const| * | Equation Constant | | 0.7475
1889 -----+-----+-----+-----+
1890 RESULT | Biowin1 (Linear Biodeg Probability) | | 0.6064
1891 -----+-----+-----+-----+
1892
1893 -----+-----+-----+-----+
1894 TYPE | NUM | Biowin2 FRAGMENT DESCRIPTION | COEFF | VALUE
1895 -----+-----+-----+-----+
1896 Frag | 1 | Aliphatic chloride [-CL] | -1.8528 | -1.8528
1897 MolWt| * | Molecular Weight Parameter | | -0.8875
1898 -----+-----+-----+-----+
1899 RESULT | Biowin2 (Non-Linear Biodeg Probability) | | 0.5667
1900 -----+-----+-----+-----+
1901
1902 A Probability Greater Than or Equal to 0.5 indicates --> Biodegrades Fast
1903 A Probability Less Than 0.5 indicates --> Does NOT Biodegrade Fast
1904
1905 -----+-----+-----+-----+
1906 TYPE | NUM | Biowin3 FRAGMENT DESCRIPTION | COEFF | VALUE
1907 -----+-----+-----+-----+
1908 Frag | 1 | Aliphatic chloride [-CL] | -0.1732 | -0.1732
1909 MolWt| * | Molecular Weight Parameter | | -0.1381
1910 Const| * | Equation Constant | | 3.1992
1911 -----+-----+-----+-----+
1912 RESULT | Biowin3 (Survey Model - Ultimate Biodeg) | | 2.8879
1913 -----+-----+-----+-----+
1914
1915 -----+-----+-----+-----+
1916 TYPE | NUM | Biowin4 FRAGMENT DESCRIPTION | COEFF | VALUE
1917 -----+-----+-----+-----+
1918 Frag | 1 | Aliphatic chloride [-CL] | -0.1006 | -0.1006
1919 MolWt| * | Molecular Weight Parameter | | -0.0902
1920 Const| * | Equation Constant | | 3.8477
1921 -----+-----+-----+-----+
1922 RESULT | Biowin4 (Survey Model - Primary Biodeg) | | 3.6570
1923 -----+-----+-----+-----+
1924
1925 Result Classification: 5.00 -> hours 4.00 -> days 3.00 -> weeks
1926 (Primary & Ultimate) 2.00 -> months 1.00 -> longer
1927
1928 -----+-----+-----+-----+
1929 TYPE | NUM | Biowin5 FRAGMENT DESCRIPTION | COEFF | VALUE
1930 -----+-----+-----+-----+
1931 Frag | 1 | Aliphatic chloride [-CL] | 0.0174 | 0.0174
1932 Frag | 3 | -C=CH [alkenyl hydrogen] | -0.0058 | -0.0175

```

1933 MolWt| * | Molecular Weight Parameter | | -0.0986
1934 Const| * | Equation Constant | | 0.5544
1935 =====
1936 RESULT | Biowin5 (MITI Linear Biodeg Probability) | | 0.4557
1937 =====
1938 =====
1939 -----
1940 TYPE | NUM | Biowin6 FRAGMENT DESCRIPTION | COEFF | VALUE
1941 -----
1942 Frag | 1 | Aliphatic chloride [-CL] | -0.6392 | -0.6392
1943 Frag | 3 | -C=CH [alkenyl hydrogen] | -0.0921 | -0.2764
1944 MolWt| * | Molecular Weight Parameter | | -1.0812
1945 =====
1946 RESULT | Biowin6 (MITI Non-Linear Biodeg Probability) | | 0.4171
1947 =====
1948 =====
1949 A Probability Greater Than or Equal to 0.5 indicates --> Readily Degradable
1950 A Probability Less Than 0.5 indicates --> NOT Readily Degradable
1951
1952
1953 -----
1954 TYPE | NUM | Biowin7 FRAGMENT DESCRIPTION | COEFF | VALUE
1955 -----
1956 Frag | 1 | Aliphatic chloride [-CL] | -0.0147 | -0.0147
1957 Frag | 3 | -C=CH [alkenyl hydrogen] | -0.0735 | -0.2206
1958 Const| * | Equation Constant | | 0.8361
1959 =====
1960 RESULT | Biowin7 (Anaerobic Linear Biodeg Prob) | | 0.6009
1961 =====
1962 =====
1963 A Probability Greater Than or Equal to 0.5 indicates --> Biodegrades Fast
1964 A Probability Less Than 0.5 indicates --> Does NOT Biodegrade Fast
1965
1966 Ready Biodegradability Prediction: (YES or NO)
1967 -----
1968 Criteria for the YES or NO prediction: If the Biowin3 (ultimate survey
1969 model) result is "weeks" or faster (i.e. "days", "days to weeks", or
1970 "weeks" AND the Biowin5 (MITI linear model) probability is >= 0.5, then
1971 the prediction is YES (readily biodegradable). If this condition is not
1972 satisfied, the prediction is NO (not readily biodegradable). This method
1973 is based on application of Bayesian analysis to ready biodegradation data
1974 (see Help). Biowin5 and 6 also predict ready biodegradability, but for
1975 degradation in the OECD301C test only; using data from the Chemicals
1976 Evaluation and Research Institute Japan (CERIJ) database.
1977
1978
1979
1980
1981 BioHCwin (v1.01) Program Results:
1982 =====
1983 SMILES : C(=C)CL
1984 CHEM : Ethene, chloro-
1985 MOL FOR: C2 H3 CL1
1986 MOL WT : 62.50
1987 ----- BioHCwin v1.01 Results -----
1988
1989 NO Estimate Possible ... Structure NOT a Hydrocarbon
1990 (Contains atoms other than C, H or S (-S-))
1991
1992

```

1993
1994 AEROWIN Program (v1.00) Results:
1995 =====
1996 Sorption to aerosols (25 Dec C) [AEROWIN v1.00]:
1997 Vapor pressure (liquid/subcooled): 3.4E+005 Pa (2.55E+003 mm Hg)
1998 Log Koa (Koawin est): 1.324
1999 Kp (particle/gas partition coef. (m³/ug)):
2000 Mackay model : 8.82E-012
2001 Octanol/air (Koa) model: 5.18E-012
2002 Fraction sorbed to airborne particulates (phi):
2003 Junge-Pankow model : 3.19E-010
2004 Mackay model : 7.06E-010
2005 Octanol/air (Koa) model: 4.14E-010
2006
2007
2008 AOP Program (v1.92) Results:
2009 =====
2010 SMILES : C(=C)CL
2011 CHEM : Ethene, chloro-
2012 MOL FOR: C2 H3 CL1
2013 MOL WT : 62.50
2014 ----- SUMMARY (AOP v1.92): HYDROXYL RADICALS (25 deg C) -----
2015 Hydrogen Abstraction = 0.0000 E-12 cm³/molecule-sec
2016 Reaction with N, S and -OH = 0.0000 E-12 cm³/molecule-sec
2017 Addition to Triple Bonds = 0.0000 E-12 cm³/molecule-sec
2018 Addition to Olefinic Bonds = 5.5230 E-12 cm³/molecule-sec
2019 Addition to Aromatic Rings = 0.0000 E-12 cm³/molecule-sec
2020 Addition to Fused Rings = 0.0000 E-12 cm³/molecule-sec
2021
2022 OVERALL OH Rate Constant = 5.5230 E-12 cm³/molecule-sec
2023 HALF-LIFE = 1.937 Days (12-hr day; 1.5E6 OH/cm³)
2024 HALF-LIFE = 23.240 Hrs
2025 ----- SUMMARY (AOP v1.91): OZONE REACTION (25 deg C) -----
2026 OVERALL OZONE Rate Constant = 0.025025 E-17 cm³/molecule-sec
2027 HALF-LIFE = 45.794 Days (at 7E11 mol/cm³)
2028
2029 Experimental Database Structure Match:
2030 Chem Name : VINYLCHLORIDE
2031 CAS Number: 000075-01-4
2032 Exper OH rate constant : 6.96 E-12 cm³/molecule-sec
2033 Exper OH Reference: KWOK, ESC & ATKINSON, R (1994)
2034 Exper Ozone rate constant: 2.46 E-19 cm³/molecule-sec
2035 Exper NO₃ rate constant : 4.85 E-16 cm³/molecule-sec
2036 Fraction sorbed to airborne particulates (phi):
2037 5.12E-010 (Junge-Pankow, Mackay avg)
2038 4.14E-010 (Koa method)
2039 Note: the sorbed fraction may be resistant to atmospheric oxidation
2040
2041
2042
2043
2044 KOCWIN Program (v2.00) Results:
2045 =====
2046 SMILES : C(=C)CL
2047 CHEM : Ethene, chloro-
2048 MOL FOR: C2 H3 CL1
2049 MOL WT : 62.50
2050 ----- KOCWIN v2.01 Results -----
2051
2052 Koc Estimate from MCI:

2053 -----
2054 First Order Molecular Connectivity Index : 1.414
2055 Non-Corrected Log Koc (0.5213 MCI + 0.60) : 1.3370
2056 Fragment Correction(s) --> NONE : ---
2057 Corrected Log Koc : 1.3370
2058
2059 Estimated Koc: 21.73 L/kg <=====
2060
2061 Koc Estimate from Log Kow:
2062 -----
2063 Log Kow (User entered) : 1.38
2064 Non-Corrected Log Koc (0.8679 logKow - 0.0004) : 1.1973
2065 Fragment Correction(s) --> NONE : ---
2066 Corrected Log Koc : 1.1973
2067
2068 Estimated Koc: 15.75 L/kg <=====
2069
2070
2071
2072
2073 HYDROWIN Program (v2.00) Results:
2074 =====
2075 SMILES : C(=C)CL
2076 CHEM : Ethene, chloro-
2077 MOL FOR: C2 H3 CL1
2078 MOL WT : 62.50
2079 ----- HYDROWIN v2.00 Results -----
2080
2081
2082 Currently, this program can NOT estimate a hydrolysis rate constant for
2083 the type of chemical structure entered!!
2084
2085 ONLY Esters, Carbamates, Epoxides, Halomethanes (containing 1-3 halogens),
2086 Specific Alkyl Halides & Phosphorus Esters can be estimated!!
2087
2088 When present, various hydrolyzable compound-types will be identified.
2089 For more information, (Click OVERVIEW in Help or see the User's Guide)
2090
2091 ***** CALCULATION NOT PERFORMED *****
2092
2093
2094
2095 BCFBAF Program (v3.01) Results:
2096 =====
2097 SMILES : C(=C)CL
2098 CHEM : Ethene, chloro-
2099 MOL FOR: C2 H3 CL1
2100 MOL WT : 62.50
2101 ----- BCFBAF v3.01 -----
2102 Summary Results:
2103 Log BCF (regression-based estimate): 0.58 (BCF = 3.78 L/kg wet-wt)
2104 Biotransformation Half-Life (days) : 0.242 (normalized to 10 g fish)
2105 Log BAF (Arnot-Gobas upper trophic): 0.50 (BAF = 3.17 L/kg wet-wt)
2106
2107 Log Kow (experimental): 1.46
2108 Log Kow used by BCF estimates: 1.38 (user entered)
2109
2110 Equation Used to Make BCF estimate:
2111 Log BCF = 0.6598 log Kow - 0.333 + Correction
2112

```

2113 Correction(s): Value
2114 No Applicable Correction Factors
2115
2116 Estimated Log BCF = 0.578 (BCF = 3.78 L/kg wet-wt)
2117
2118 =====
2119 Whole Body Primary Biotransformation Rate Estimate for Fish:
2120 =====
2121 -----+-----+-----+
2122 TYPE | NUM | LOG BIOTRANSFORMATION FRAGMENT DESCRIPTION | COEFF | VALUE
2123 -----+-----+-----+
2124 Frag | 1 | Aliphatic chloride [-CL] | 0.3608 | 0.3608
2125 Frag | 3 | -C=CH [alkenyl hydrogen] | 0.0988 | 0.2965
2126 Frag | 3 | -C=CH [alkenyl hydrogen] | 0.0000 | 0.0000
2127 L Kow| * | Log Kow = 1.38 (user-entered ) | 0.3073 | 0.4241
2128 MolWt| * | Molecular Weight Parameter | | -0.1603
2129 Const| * | Equation Constant | | -1.5371
2130 =====+=====+=====+=====+
2131 RESULT | LOG Bio Half-Life (days) | | -0.6159
2132 RESULT | Bio Half-Life (days) | | 0.2422
2133 NOTE | Bio Half-Life Normalized to 10 g fish at 15 deg C |
2134 =====+=====+=====+=====+
2135
2136 Biotransformation Rate Constant:
2137 kM (Rate Constant): 2.862 /day (10 gram fish)
2138 kM (Rate Constant): 1.61 /day (100 gram fish)
2139 kM (Rate Constant): 0.9052 /day (1 kg fish)
2140 kM (Rate Constant): 0.509 /day (10 kg fish)
2141
2142 Arnot-Gobas BCF & BAF Methods (including biotransformation rate estimates):
2143 Estimated Log BCF (upper trophic) = 0.501 (BCF = 3.168 L/kg wet-wt)
2144 Estimated Log BAF (upper trophic) = 0.501 (BAF = 3.168 L/kg wet-wt)
2145 Estimated Log BCF (mid trophic) = 0.395 (BCF = 2.482 L/kg wet-wt)
2146 Estimated Log BAF (mid trophic) = 0.395 (BAF = 2.482 L/kg wet-wt)
2147 Estimated Log BCF (lower trophic) = 0.364 (BCF = 2.31 L/kg wet-wt)
2148 Estimated Log BAF (lower trophic) = 0.364 (BAF = 2.31 L/kg wet-wt)
2149
2150 Arnot-Gobas BCF & BAF Methods (assuming a biotransformation rate of zero):
2151 Estimated Log BCF (upper trophic) = 0.539 (BCF = 3.459 L/kg wet-wt)
2152 Estimated Log BAF (upper trophic) = 0.544 (BAF = 3.499 L/kg wet-wt)
2153
2154
2155
2156
2157
2158 Volatilization From Water
2159 =====
2160
2161 Chemical Name: Ethene, chloro-
2162
2163 Molecular Weight : 62.50 g/mole
2164 Water Solubility : 9150 ppm
2165 Vapor Pressure : 2550 mm Hg
2166 Henry's Law Constant: 0.0278 atm-m3/mole (entered by user)
2167
2168 RIVER LAKE
2169 ----- -----
2170 Water Depth (meters): 1 1
2171 Wind Velocity (m/sec): 5 0.5
2172 Current Velocity (m/sec): 1 0.05

```

2173
2174 HALF-LIFE (min) : 49.4 4516
2175 HALF-LIFE (hours) : 0.8234 75.27
2176 HALF-LIFE (days) : 0.03431 3.136
2177
2178
2179 STP Fugacity Model: Predicted Fate in a Wastewater Treatment Facility
2180 =====
2181 (using 10000 hr Bio P,A,S)
2182 PROPERTIES OF: Ethene, chloro-
2183 -----
2184 Molecular weight (g/mol) 62.5
2185 Aqueous solubility (mg/l) 9150
2186 Vapour pressure (Pa) 339972
2187 (atm) 3.35526
2188 (mm Hg) 2550
2189 Henry 's law constant (Atm-m3/mol) 0.0278
2190 Air-water partition coefficient 1.13694
2191 Octanol-water partition coefficient (Kow) 23.9883
2192 Log Kow 1.38
2193 Biomass to water partition coefficient 5.59767
2194 Temperature [deg C] 25
2195 Biodeg rate constants (h^-1), half life in biomass (h) and in 2000 mg/L MLSS (h):
2196 -Primary tank 0.01 110.71 10000.00
2197 -Aeration tank 0.01 110.71 10000.00
2198 -Settling tank 0.01 110.71 10000.00
2199
2200 STP Overall Chemical Mass Balance:
2201 -----
2202 g/h mol/h percent
2203
2204 Influent 1.00E+001 1.6E-001 100.00
2205
2206 Primary sludge 3.03E-002 4.8E-004 0.30
2207 Waste sludge 1.33E-002 2.1E-004 0.13
2208 Primary volatilization 1.30E-001 2.1E-003 1.30
2209 Settling volatilization 3.10E-002 5.0E-004 0.31
2210 Aeration off gas 8.95E+000 1.4E-001 89.46
2211
2212 Primary biodegradation 1.75E-003 2.8E-005 0.02
2213 Settling biodegradation 4.58E-005 7.3E-007 0.00
2214 Aeration biodegradation 6.15E-004 9.8E-006 0.01
2215
2216 Final water effluent 8.46E-001 1.4E-002 8.46
2217
2218 Total removal 9.15E+000 1.5E-001 91.54
2219 Total biodegradation 2.41E-003 3.9E-005 0.02
2220
2221
2222