

P2 Tools for Success

December 11, 2024 11:00AM – 12:00PM ET

Moderated by Alizabeth Olhasso, EPA

Speakers:

- Charlotte (Charlie) Snyder, EPA, Data Analysis and Right to Know Branch
- Jason Marshall, Toxics Use Reduction Institute
- Dr. Cris Brazil, Kansas State University

epa.gov/p2

POLLUTION PREVENTION AND THE TOXICS RELEASE INVENTORY

USING TRI TOOLS TO FIND P2 DATA

Charlie Snyder, US EPA December 11, 2024

PRESENTATION OVERVIEW

- Quick intro to TRI
- What facilities report
- Pollution prevention data
- Tools demonstration:
 - TRI Toxics Tracker
 - Solvent Substitutions
- Questions and discussion

WHAT IS THE TRI?

TRI-listed chemicals may pose a threat to human health and the environment

TRI tracks the management of these chemicals in waste

ENVIRONMENTAL RELEASES

WASTE MANAGEMENT

WASTE TRANSFERS

POLLUTION PREVENTION

WHAT IS THE TRI?

800+ individual chemicals and chemical categories

21,000+ industrial and federal facilities

SINCE 1987

annual reporting directly from facilities

WHICH FACILITIES REPORT TO TRI?

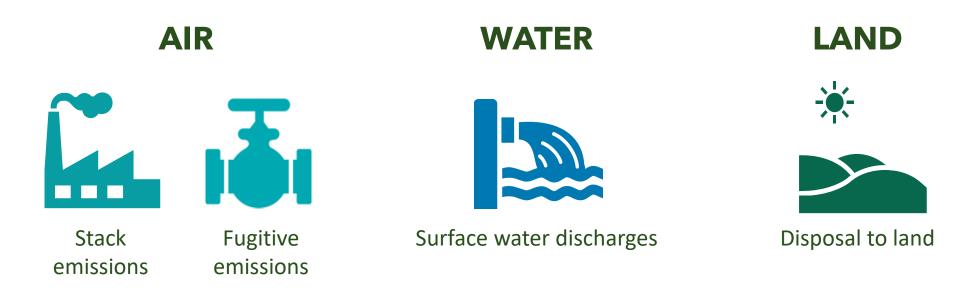
1. Facility must be in a **TRI-covered industry sector or category**, including:

MANUFACTURING

COAL/OIL ELECTRICITY GENERATION

CERTAIN MINING FACILITIES

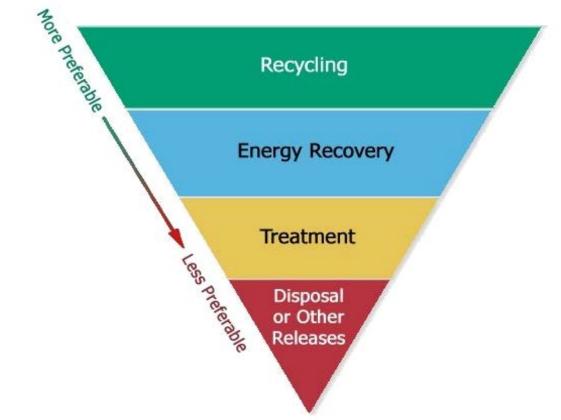
HAZARDOUS WASTE MANAGEMENT



FEDERAL FACILITIES

- 2. Facility must have the equivalent of at least **10 full-time employees**
- 3. Facility must manufacture, process, or otherwise use more than a **certain threshold amount of a TRIlisted chemical within a calendar year**

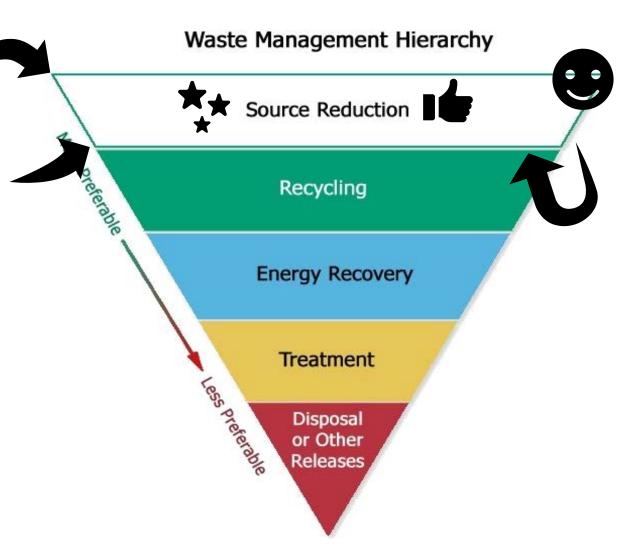
WHAT IS A RELEASE?


Releases are the different ways that chemicals from industrial facilities enter the

Waste Management Hierarchy

WHAT IS PRODUCTION RELATED WASTE?

Production related waste is the chemical waste that comes from normal operations at a facility.



Facilities are required by the Pollution

Prevention Act to report newly

implemented P2 activities.

WHAT DO FACILITIES REPORT TO TRI?

• On-site releases

- Air emissions
- Surface water discharges
- Disposal to land

• Other on-site waste management

- Recycling
- Energy recovery
- Treatment
- Transfers to off-site locations
- Pollution prevention activities
 - Pollution prevention activities
 - Barriers to pollution prevention
 - Optional comments

WHAT P2 INFORMATION DO FACILITIES REPORT?

- P2 activities
- Barriers to P2 [optional]
- Free-text comments [optional]

P2 ACTIVITIES

Select from 24 codes organized into five categories to describe the source reduction activity.

HOW DO FACILITIES REPORT P2 INFORMATION?

HOW DO FACILITIES REPORT P2 INFORMATION?

BARRIERS TO P2

- **B1** Insufficient capital
- **B2** Require technical information on pollution prevention
- **B3** Concern that product quality may decline
- **B4** Source reduction unsuccessful
- **B5** Specific regulatory/permit burdens
- **B6** Maxed out
- **B7** No known substitutes or alternatives
- B8 Reduction does not appear to be technically feasible

B99 Other barriers

HOW DO FACILITIES REPORT P2 INFORMATION?

FREE-TEXT COMMENTS

As facilities add source reduction activities and barriers, they have the option to report additional information in open-ended text fields.

- Source Reduction
- Waste Management
- Other Information

Facilities can include information not captured by P2 codes alone, e.g:

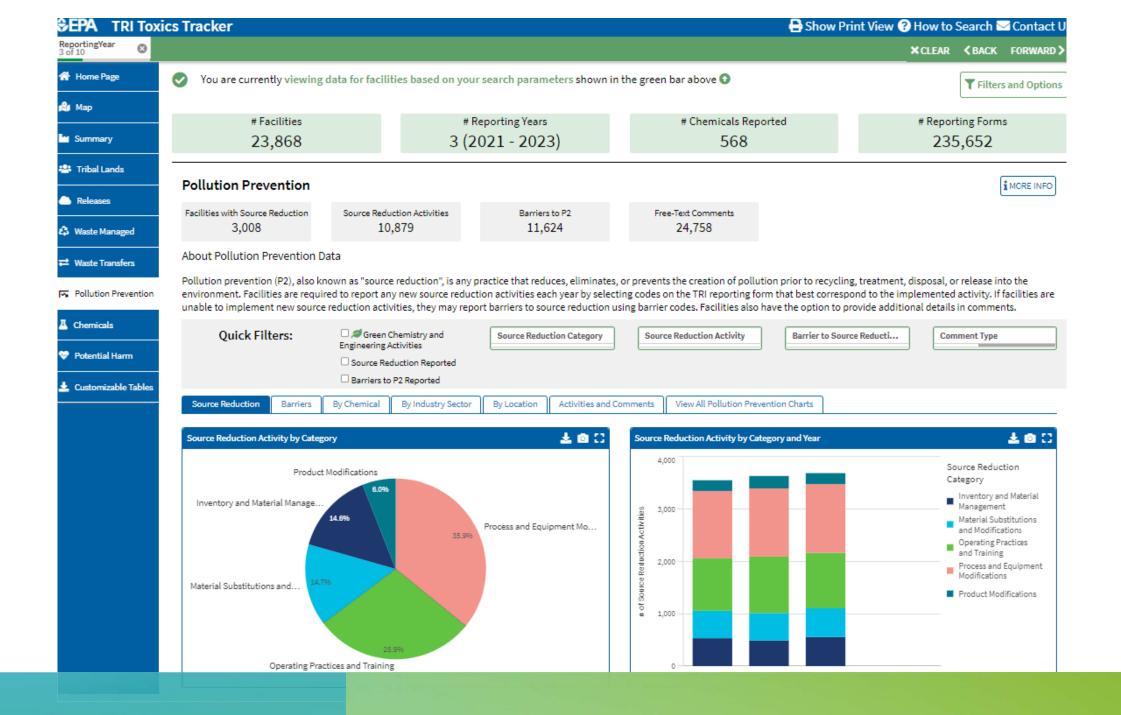
- Processes affected by source reduction
- Other benefits such as lower water use
- Use of specific materials

SEPA

ACCESSING TRI DATA

NEW! TRI TOOLBOX

- Find tools based on topic or area of interest
- See full suite of TRI tools and data formats
- Find resources on how to use TRI data


The Toxics Release Inventory (TRI) Program tracks the industrial management of toxic chemicals. TRI data are reported annually by industrial and federal facilities that meet reporting requirements. EPA makes these data available through multiple online tools, many of which add context to help make the reported data more understandable.

https://www.epa.gov/toxics-release-inventory-tri-program/tri-toolbox

DEMO TRI TOXICS TRACKER

COMMENT ANALYSIS FOR SOLVENT SUBSTITUTIONS

TRI facilities submitted **46,035 source reduction comments** from 2005 to 2020

Created methodology to automate analysis of optional comments to find information about solvent substitutions: Identified 1,926 comments related to solvent substitutions during this 15-year timespan.

SELECT COMMENTS FOR TRI-LISTED SOLVENTS

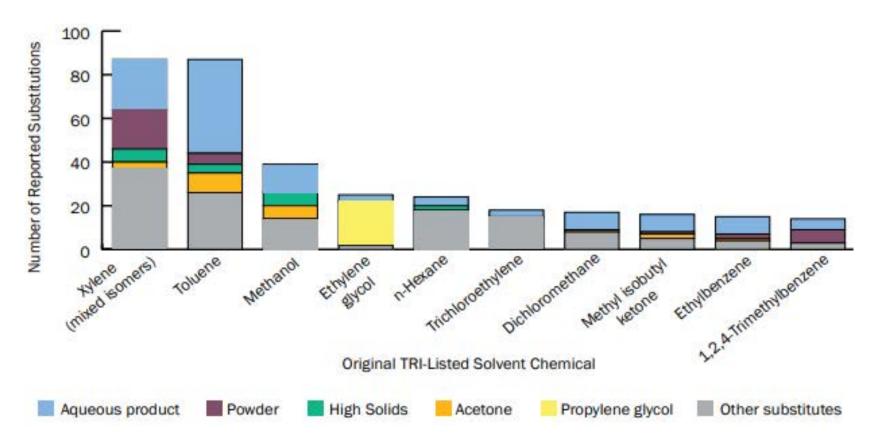
Pull free-text comments from forms for TRI-listed chemicals commonly used as solvents

KEYWORD FILTERING

Narrowed group of comments by selecting those containing keywords

Substitution phrases

- Substitute, alternative **Processes**
- Powder coating, mechanical cleaning
 Known alternatives
- Aqueous, water-based


MANUAL REVIEW

Review comments to identify original solvent and replacement chemical or process

DATABASE OF SPECIFIC SOLVENT SUBSTITUTIONS

WORKFLOW FOR COMMENT ANALYSIS

391 comments describe specific substitutions, reported by facilities in 16 industry sectors

116 distinct combinations

Most replaced

- Xylene (mixed isomers)
- Toluene
- Methanol

Most common substitutes

- Aqueous products
- Powder coatings
- High solids formulations

ACCESSING SOLVENT SUBSTITUTION INFORMATION REPORTED TO TRI

Handout Interactive table Webpage Downloadable spreadsheet Solvent Substitution Comments Reported to TRI, 2005-2020 00 [q . 8] 1.00 No selections applied 10 Selections Industry Sectors with Specific Substitution **Distinct Substitution** Sub to TRI G Lownload current data Substitutions Comments Combinations TSCA Flag 📥 Download all data SCIL Flag 391 116 16 ? Definitions To narrow results, use the flags or the table headers to filter. TRI Original Substitute Substitute TRI Industry Q Q Q Q Q Q Q Q Chemical ID Chemical Chemical Chemical 2 Comment Year TRI Facility Sector NAICS 0000079005 1,1,2-Trichloroethane Installed and brought on line an aqueous 2019 K&G MANUFACTURING CO 332 Fabricated 332710 Machine Shops Aqueous product washing system to replace the degreaser. - 55021KGMNF226PA Metals 0000095636 1,2,4-Aquaous parts cleaner replaced solvent based 2010 RIKER PRODUCTS INC 336399 All Other Motor Aqueous product 336 Transportation Trimethylbenzene cleaner in early 2011 should see significant 4361WRKRPR491ST Equipment Vehicle Parts reductions for 2011 RY. Manufacturing 0000095636 1,2,4-Aqueous product Converted to waterbase finish 2013 FLEXSTEEL INDUSTRIES 337 Furniture 337121 Upholstered Trimethylbenzene INC - 39759FLXST500IN Household Furniture Manufacturing 0000095636 1.2.4-Aqueous product Internal practices to reduce solvent content of 2012 HONDA DEVELOPMENT & 336 Transportation 336112 Light Truck Trimethylbenzene vehicle coatings. Switched from solvent to MANUFACTURING OF and Utility Vehicle Equipment water based coatings for a significant portion AMERICA LLC - ALABAMA Manufacturing of vehicle manufacturing process. 35096HNDMF1800H 0000095636 1.2.4-Aqueous product Reduction in total amount of chemicals used 2011 SHAFER COMMERCIAL 337211 Wood Office 337 Furniture Trimethylbenzene and going to a water based product for final SEATING Furniture

DEMO TRISOLVENT SUBSTITUTIONS

Q. 8 (2) Ø No selections applied Selections Specific Substitution Distinct Substitution Industry Sectors with Sub to TRI 🛓 Download current data binations Substitutions TSCA Flag 6 X 🗸 ... 🛓 Download all data 30 Type name of chemical Q trich Definitions Click to search Trichloroethylene flags or t 3 filtering options Select the chemical(s) of TRI Industry TRI Original q Q Q Q Q interest Chemical ID NAICS Chemical Sector propane has been replaced with an PROTECTIVE COATINGS INC 332 Fabricated 332813 Electroplating. 0000106945 1-Bromopropa 2021 ve vapor degreasing solvent mixture - 98032PRTCT1215N Metals Plating, Polishing, lext 5408". The new proprietary Anodizing, and 0000079005 1,1,2-Trichloroethane and brought on line an aqueous 2019 K & G MANUFACTURING CO 332 Fabricated 332710 Machine Shops system to replace the degreaser. - 55021KGMNF228PA Metals 0000107062 1.2-Dichloroethane will substitute the processes that used 2021 BELL LABORATORIES INC. -325 Chemicals 325320 Pesticide and 53704BLLLB3699K Other Agricultural Chemical 0000095636 1,2,4-Aqueous product Aquaous parts cleaner replaced solvent based 2010 RIKER PRODUCTS INC -336 Transportation 338399 All Other Motor Trimethylbenzene cleaner in early 2011 should see significant 4361WRKRPR491ST Equipment Vehicle Parts reductions for 2011 RY. Manufacturing Converted to waterbase finish 2013 FLEXSTEEL INDUSTRIES 337 Furniture 0000095636 1,2,4-Aqueous product 337121 Upholstered INC - 39759FLXST500IN Household Furniture Trimethylbenzene Manufacturing Internal practices to reduce solvent content of 2012 HONDA DEVELOPMENT & 338 Transportation 336112 Light Truck 0000095636 1.2.4-Aqueous product Trimethylbenzene vehicle costings. Switched from solvent to MANUFACTURING OF Equipment and Utility Vahicla

To narrow results, use the flags or the table headers to filter.

TRI Q Chemical ID Q	Original Chemical	q	Substitute Chemical	۹	Substitute Chemical 2	0	Comment	q	Year	Q	TRI Facility Q	TRI Industry Sector	q	NAICS Q	
0000079016	Inchloroethylene		1-Bromoprop	pane			Inchloroethylene, vapor degreasing solver was replaced with n-propyl bromide effect January 1st, 2014. This was a pollution	-		2013	PROTECTIVE COATINGSINC - 98032PRTCT1215N	332 Fabricated Metals		332813 Electroplating, Plating, Polishing, Anodizing, and	
0000079016	Trichloroethylene		1-Bromoprop	pane			We discontinued usage of Tricholoethylen switch to N-Propyl Bromide solvent	e and		2013	UTICA CUTLERY CO - 13502TCCTL820NO	332 Fabricated Metals		332215 Metal Kitchen Cookware, Utensil, Cutlery, and Flatware	
0000079016	Trichloroethylene		1-Bromoprop	pane			We eliminated the use of Trichlorethylene Aug 1st 2010. We substituted with N-Propy Bromide and added a still to the degreasin	ł		2010	VISA LIGHTING AN OLDENBURG GROUP CO - 53209VSLGH1717W	335 Electrical Equipment		335122 Commercial, Industrial, and Institutional Electric	
0000079016	Trichloroethylene		Alcohol				One TCE degreasing unit was decommission and replaced with modified alcohol degreas equipment in December 2019.			2019	GREATBATCH LTD (D/B/A GREATBATCH MEDICAL) - 55414GLBTL73024	332 Fabricated Metals		332119 Metal Crown, Closure, and Other Metal Stamping	
0000079016	Trichloroethylene		Aqueous pro	duct			Aqueous washing			2023	MJ CELCO INC 60176CLCND3900W	332 Fabricated Metals		332119 Metal Crown, Closure, and Other Metal Stamping	
0000079016	Trichloroethylene		Aqueous pro	duct			Converting to aqueous degreasing and soa	ak 👘		2013	NICO PRODUCTS INC -	332 Fabricated		332813 Electroplating,	

- 81 - 13	TRI Indust 325 Chemical	ry Se 😒								0		Selection
dustry Sectors Substitution		pecific Substitu Comments	tion	Dis	stinct Substitution Combinations		□ Sub to T			🛓 Down	load c	urrent d
1		97			47		TSCA Flat				L Download all data	
narrow results	s, use the flags or	the table heade	rs to filter.							5	_	
TRI Q hemical ID Q	Original Chemical	Substitute Chemical Q	Substitute Chemical 2	۹	Comment Q	_{Year} Q	TRI Facility Q	TRI Industry Sector	٩	NAICS	2	
0000107062	1,2-Dichloroethane	Toluene			Foluene will substitute the processes that used 1,2-DCE.	202	BELL LABORATORIES INC. 53704BLLLB3699K	325 Chemicals		325320 Pesticide and Other Agricultural Chemical	1	
0000075058	Acetonitrile	Acetone		п	Facility has substituted acetone for this material in a nmber of product lines. Increased demand for products where acetonitrile is	200	 THERMO FISHER SCIENTIFIC MILWAUKEE LLC - 53202PHRMC2202N 	325 Chemicals	1	325413 In-Vitro Diagnostic Substanc Manufacturing	e	
0000075058	Acetonitrile	Ethyl acetate	Pyridine		V42: Ethyl acetate and pyridine were substituted for acetonitrile	201	2 INTEGRATED DNA TECHNOLOGIES - 9212WNTGRT6828N	325 Chemicals	1	325199 All Other Bas Organic Chemical Manufacturing	ic	
0000075058	Acetonitrile	Pyridine		F	Pyridine was substituted for acetonitrile	201	BACHEM INC - 92121BCHMN6868N	325 Chemicals	1	325199 All Other Bas Organic Chemical Manufacturing	ic	
0001330207	Alkyd	Latex			Continuing process of replacing Alkyd products with less hazardous Latex alternatives	202	BENJAMIN MOORE & CO- MILFORD - 01757BNJMN49SUM	325 Chemicals	1	325510 Paint and Coating Manufacturi	ng	
0000110827	Ouclohevane	Aqueous product		0	company business obilosophy is to convert	201		325 Chemicals	,	325520 Adhasiwa		

Solvent Substitution Comments Reported to TRI, 2005-2023

Q 8 8 Ø 00 No selections applied Selections Sub to TRI Industry Sectors with Specific Substitution Distinct Substitution 보 Download current data Substitutions Comments Search comments for processes, ... [@ X 🗸 🛓 Download all data 16 450 equipment, etc. by typing keyword. Hit enter to see all Q degrea Definitions comments with selected keyword **** Masters Machine Company ... To narrow results, use the flags or the table headers **** Masters Machine Company ... Substitute Substitute TRI Original 1-Bromopropane has been repl... lustry Q Q Q Q Q Q Chemical Chemical 2 NAICS Chemical ID Chemical Comment A source reduction program has... 0000106945 1-Bromopropane Next 5408 1-Bromopropane has been replaced with an bricated 332813 Electroplating. ANAD is implementing ultrasoni... alternative vapor degreasing solvent mixture Plating, Polishing, called "Next 5408". The new proprietary Anodizing, and Converting to aqueous degreasi 0000079005 1.1.2-Trichloroethane Aqueous product Installed and brought on line an aqueous bricated 332710 Machine Shops Degreasing solvents are very ex... washing system to replace the degreaser. Discontinued TCE vapor degrea... 0000107062 1.2-Dichloroethane Toluene Toluene will substitute the processes that used emicals 325320 Pesticide and 1.2-DCE. Other Agricultural Flimination or mechanical remo Chemical Aqueous product 336399 All Other Motor Aquaous parts cleaner replaced solvent based 2010 RIKER PRODUCTS INC -338 Transportation 0000095636 1,2,4cleaner in early 2011 should see significant 4361WRKRPR491ST Vehicle Parts Trimethylbenzene Equipment reductions for 2011 RY. Manufacturing 0000095636 1.2.4-Aqueous product Converted to waterbase finish 2013 FLEXSTEEL INDUSTRIES 337 Furniture 337121 Upholstered Trimethylbenzene INC - 39759FLXST500IN Household Furniture Manufacturing 0000095636 1.2.4-Aqueous product Internal practices to reduce solvent content of 2012 HONDA DEVELOPMENT & 336 Transportation 336112 Light Truck Trimethylbenzene vahicle costings. Switched from solvent to MANUFACTURING OF Equipment and Utility Vahicla

Image: Comment 48 of 1692 Comment 48 of 1692 Industry Sectors with Substitutions Specific Substitution Comments 6 19 To narrow results, use the flags or the table headers to filter.				Distinct S Comt Flags to automatic for a) instances w facility substituted chemical for anothe substitutions wh original chemical i workplan cher	vhere a one TRI er; and b) ere the s a TSCA	TRI ag Download current data Download all data			
TRI Q Chemical ID Q	Original Chemical 1-Bromopropane	Substitute Chemical Q Next 5408	Substitute Chemical 2	Comment 1-Bromopropane has been replaced with an alternative vapor degreasing solvent mixture	Year Q 2021	TRI Facility PROTECTIVE COATINGS - 98052PRTCT1215N	Options to download spreadsheets a) your current filters applied; and l underlying data, including substitu comments without named alternat		
0000079005	1,1,2-Trichloroethane	Aqueous product		called "Next 5408". The new proprietary Installed and brought on line an aqueous washing system to replace the degreaser.	2019	K & G MANUFACTURING CO - 55021KGMNF228PA	332 Fabricated Metals	332710 Machine Shops	
0000075092	Dichloromethane	1-Bromopropane		Methylene chloride was replaced by n propyl bromide in the vapor degreasers. The increase in off-Site disposal is due to the waste being	2007	MICO INC - 56002MCNCX1911L	336 Transportation Equipment	338340 Motor Vehicle Brake System Manufacturing	
0000075092	Dichloromethane	Aqueous product		Purchased new ultra-sonic cleaning line that uses aqueous degreasers. This will off load some of the volume currently running through	2011	ROCHESTER PRECISION OPTICS LLC - 1458WRCHST85JHN	333 Machinery	333314 Optical Instrument and Lens Manufacturing	
0000075092	Dichloromethane	Ultrasonic		Purchased and installed an additional ultrasonic cleaning line with a coaleser to rinse and collect light machining oils from parts that		ROCHESTER PRECISION OPTICS LLC - 1458WRCHST85JHN	333 Machinery	333314 Optical Instrument and Lens Manufacturing	
0000110543	n-Hexane	Heptane		Heptane was integrated as a replacement solvent to be used at the site instead of	2016	HONEYWELL ELECTRONIC MATERIALS INC.	332 Fabricated	332999 All Other Miscellaneous	

QUESTIONS? Visit our booth!

TRI staff are on site to help with TRI tools and specific queries

TRI Program Home

https://www.epa.gov/tri

Additional questions and follow-up

"Contact Us" link TRI.Help@epa.gov snyder.charlotte@epa.gov

P2 Technical Assistance Tools

Jason Marshall Laboratory Director Toxics Use Reduction Institute University of Massachusetts Lowell

TURI Lab and Research Team

- Jason Marshall lab director
- Alicia McCarthy sanitizing performance testing and training
- Amelia Wagner cleaning performance testing, on-site visit assistance
- Alex Symko cleaning performance testing, on-site visit assistance
- Gabriel Salierno green chemistry
- Greg Morose research program manager

Toxics Use Reduction Institute (TURI)

Specializes in assisting facilities in reducing their use of toxic chemicals through education and hands on assistance

- Safety
- Feasibility
- Cost savings of safer alternative

Supports Businesses

- Successfully implement projects that protect their workers, communities and the environment
- Reducing use of toxic chemicals
- Offers grants to help businesses
 - Research
 - Evaluate
 - Adopt safer alternatives

Training, Testing, Technical Assistance, Transfer Success

Provide TUR Background

- History of the program
- Success of the program

Showcase lab resources

- Testing
- CleanerSolutions
- P2OASys
- HSPiP

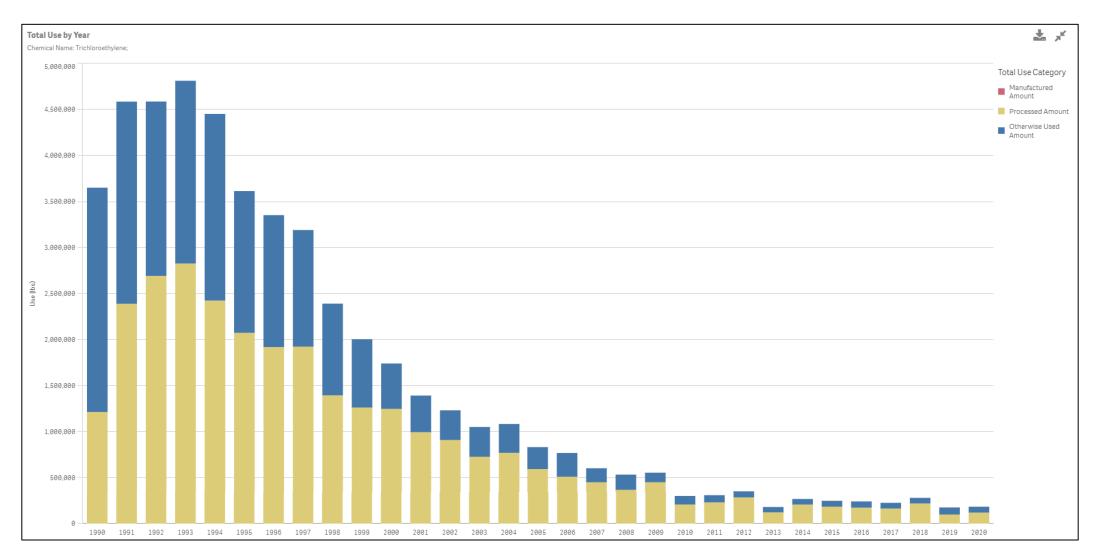
Providing On-site Technical Assistance

- Beginning of project
- During project
- During implementation on-site

Outreach Materials

- Case studies reports
- Videos
- Guidance documents

EPA proposed ban on TCE


Work closely with TCE end users to identify operating conditions that will best fit the desired cleaning needs

Focus on companies within Environmental Justice locations

TCE Usage in Massachusetts

TCE Lab Testing: Massachusetts Companies Assisted

Coston	MA Companies Reporting Use of TCE Since 1993						
Sector	Number (total = 47)	Percentage					
Capacitor Manufacturing	2	4					
Plating and Metalworking	22	47					
Aircraft	1	2					
Semiconductor/Electronics	2	4					
General Manufacturing	14	30					
Jewelry	4	9					
Tools	1	2					
Wire and Cable	1	2					

CleanerSolutions.org

TAKE A TOUR OF THE TURI LAB

Find an Alternative for Current Solvent

Replace a Solvent

Based on testing conducted by lab to replace listed solvent. Displayed results are for alternative chemistries evaluated for solvent selected.

Required Field

You must select one or more solvents.

SOLVENT

Trichloroethylene	×
320 Cleaner	
A.) Pathosans Cleane	r B.) Zep High 🜒
A.) Pinsol B.)Pathosan	IS
ADF Powdered Conce	entrate
AGAE Technologies B	ody Wash
Abrasive Disc	70
Abrasive Slurry	
Acetates	
Acetic Acid	
Acetone	
1 di	Þ

Optional Fields

Filter your search by substrate or equipment type, or leave these fields set to Any to include all results for a given contaminant.

EQUIPMENT

CONTAMINANT SUBSTRATE Oil X

Abrasive

Alcohol

Algae

Asphalt

Bacteria

Blood

Stainless Immersion/Soak X × Steel 4 Alloys Brillo pad Adhesive Alumina Cold Solvent Aluminum Electrolytic bath Brass High Pressure Spray Cadmium plated steel Low Pressure Spray Carbon Fiber Manual Paint Stripping Bacteria - Gram Negati Carbon Steel Manual Wipe Bacteria - Gram Positive Carpet Manual spreading Cat Litter Mechanical Agitation Bovine Serum Albumin F_ Ceramics Media Blasting n ff. /n l. l. 🥋 Þ 4 6

Optional Search Filters

Any

PRODUCT CLEANING TYPE:

Searching for a Cleaner

lut

SEARCH CRITERIA

Solvent: Trichloroethylene Contaminant: Oil Substrate: Stainless Steel Equipment: Immersion/Soak Effective: Yes RESULTS

Found 70 records Showing records 1 - 50

UMASS LOWELL

COMPARE	COMPANY NAME PRODUCT NAME	SAFETY EVALUATION V	CLASSIFICATION	CONTAMINANT	SUBSTRATE	EQUIPMENT	CLIENT # PROJECT # TRIAL #
	Alconox Inc Citranox	4.1	Acidic Aqueous	Oil	Stainless Steel	Immersion/Soak	481 1 1
	Fisher Scientific Dimethyl glutarate (CAS:1119-40-0)	3.6	Ester Organic	Oil	Stainless Steel	Immersion/Soak	481 1 1
	Keteca USA Water Works Heavy Duty Degreaser	3.6	Alkaline Aqueous	Oil	Stainless Steel	Immersion/Soak	481 1 1
	Kyzen Corporation Metalnox M6386	4.6	Alcohol	Oil	Stainless Steel	Immersion/Soak	481 1 1
	Mirachem Corporation Mirachem 500	4.6	Alkaline Aqueous	Oil	Stainless Steel	Immersion/Soak	481 1 1
	Fisher Scientific Dimethyl glutarate (CAS:1119-40-0)	3.6	Ester Organic	Oil	Stainless Steel	Immersion/Soak	471 1 9
	Gemtek Products SC Aircraft & Metal Cleaner Super Concentrate	4.1	Alkaline Aqueous	Oil	Stainless Steel	Immersion/Soak	471 1 9
	Kyzen Corporation Metalnox M6386	4.6	Alcohol	Oil	Stainless Steel	Immersion/Soak	471 1 9
	Fisher Scientific Dimethyl glutarate (CAS:1119-40-0)	3.6	Ester Organic	Oil	Stainless Steel	Immersion/Soak	471 1 6
	Gemtek Products SC Aircraft & Metal Cleaner Super Concentrate	4.1	Alkaline Aqueous	Oil	Stainless Steel	Immersion/Soak	471 1 6
_	Eicher Criensific		Feter				

Trial Purpose:

The purpose of this experiment was to determine the effectiveness of cleaners on fresh parts provided by the company.

Date Run: 03/22/2021

Experiment Procedure:

Cleaners were prepared to the following concentrations: Metalnox 6386 100%, Dimethyl Glutarate 100%, SC Aircraft & Metal Cleaner 20%. Dimethyl Glutarate and SC Aircraft & Metal were heated to 120°F while Metalnox was kept at room temperature. One stainless steel part provided by the company was obtained for each of the cleaners being tested. Parts were pre-soiled with grind oil by the company. Photos and a white glove test were utilized to show the presence of the soil on the substrates before cleaning. Once solutions reached the proper temperature, parts were submerged into their respective cleaners. Unheated immersion in Metalnox 6386 was conducted for 15 minutes. After 15 minutes had passed, the part was removed from solution and dried with a heat gun. Heated immersion with a stir bar added for agitation was conducted for 30 minutes for both Dimethyl Glutarate and SC Aircraft & Metal Cleaner. After 30 minutes had passed, the part cleaned with SC Aircraft was rinsed in a deionized water bath also at 120°F for 30 seconds. Both parts were then dried with a heat gun. Following the drying step, more photos and an additional white glove test were utilized to show the removal of soil after the cleaning process. Effectiveness of the cleaners was determined.

Trial Results:

Cleaner	Observations
Metalnox 6386	Can see a clear distinction between cleaned and uncleaned area.
Dimethyl Glutarate	Solution has developed a slight yellow tint indicating the removal of the oil. Clear distinction between cleaned and uncleaned area.
SC Aircraft & Metal	Oil visibly pooling at the surface of solution indicating removal.

All parts dried very quickly using the heat gun (approximately 2 minutes).

All cleaners were visibly effective at removing the oil from stainless steel parts. Photos will be provided that clearly show the removal of the oil following the cleaning process. Parts did not sustain any visible damage or changes from the cleaners. Next steps would be to discuss the results with the company.

Success Rating:

Results successful using TACT (time, agitation, concentration, and temperature, as well as rinsing and drying) and/or other cleaning chemistries examined.

Conclusion:

Upon completion of testing, it was verified that all cleaners were effective at removing the oil from stainless steel parts. Next steps would be to discuss the results with the company.

Metalnox M6386

VENDOR PROVIDED INFORMATION

Product information cited in this section is supplied directly by the vendors. The Institute has not verified the accuracy of any of this information and is not liable for any claims made by the vendors. TURI is likewise not responsible for any typographical errors.

Vendor Name: Kyzen Corporation

Product Classification: Alcohol

Recommended Contaminants: Cutting/Tapping Fluids, Oil

Recommended Equipment: Immersion/Soak, Mechanical Agitation

Recommended Substrates: Aluminum, Brass, Copper, Glass/Quartz, Gold, Nickel, Stainless Steel, Steel, Sterling/Silver, Tin, Titanium

Safety Evaluation Detail

Safery Evaluation Defail								
+ About the evaluation		CLIENT #	PROJECT #	TRIAL #	CONTAMINANT	SUBSTRATE	EQUIPMENT	EFFECTIVE
		457	1	0	Lubricating/Lapping Oils, Oil	Titanium	Immersion/Soak	8
CATEGORY	SCORE	457	1	1	Oil	Titanium	Immersion/Soak	0
Acute Human Effect	8	457	1	2	Oil	Titanium	Ultrasonics	0
Chronic Human Effects	2	457	1	3	Oil	Titanium	Ultrasonics	0
Ecological Hazards	4	332	1	1	Buffing/Polishing Compounds	Aluminum	Immersion/Soak	0
Environmental Fate & Transport	5	332	1	2	Buffing/Polishing Compounds	Aluminum	Immersion/Soak	⊗
Atmospheric Hazard	2	458	1	8	Oil	Steel	Immersion/Soak	0
Physical Properties	8	458	1	9	Oil	Steel	Immersion/Soak	0
Process Factors	4	458	1	10	Oil	Steel	Immersion/Soak	0
Life Cycle Factors	4	458	1	13	Oil	Cold Rolled Steel	Immersion/Soak	8
Overall Score	4.6	332	1	8	Buffing/Polishing Compounds	Aluminum	Immersion/Soak	8

Pollution Prevention Options Analysis System Hazard Discussion Tool (P2OASys)

p2oasys.turi.org Toxics Use Reduction Institute University of Massachusetts Lowell

P2OASys Hazard Assessment Tool

Allows user to assess potential impacts of alternative chemistries/technologies

- Environmental
- Worker
- Public health

Help users use a more comprehensive and systematic way of thinking about

- Current and alternative processes
- Based on quantitative and qualitative factors

P2OASys is

For screening purposes

One resource in your decision-making process

Used to organize chemical hazard information obtained from various sources

Helpful to organize manufacturing process information that can affect occupational health and safety Designed to compare the EHS attributes of formulated products (using both SDS and chemical ingredient information) Easily used to clarify environmental, occupational or public health hazards prior to adopting alternative chemicals, products or processes

TURI developed the Pollution Prevention Options Analysis System tool to help companies and others organize information to compare the environmental, health and safety attributes of chemicals, formulated products and production process changes

See full description <u>here</u>

START	LOA		IMPORT	COMPARE	VIEW
ASSESSMENT	FROM DAT		FROM FILE	SUMMARY	RAW DATA
Nan Trichl	ne oroethylene	Data Poi 80 / 8.4	nts / Safety Evaluation	Act	ions

P2OASys Categories

	EXPAND ALL				
SAVE CHANGES	COLLAPSE ALL				
Acute Human Effects Chronic Human Effects Ecological Hazards	8 ¥ 9 ¥ 8 ¥	Inhalation Toxicity Oral Toxicity Dermal Toxicity			
Environmental Fate & Transport	9 🗸	Respiratory Irritation	4		
Atmospheric Hazard	6 🗸	Dermal Irritation	8	Units	
Physical Properties	10 🗸	Eye Irritation	8	Key Phrases GHS Category Level	Reversible : ~ 1B ~
Process Factors	7 🗸	Exposure Limits	8	GHS H Phrases	H315 ~
Life Cycle Factors	10 🗸	IDLH	2		
		Health	6		

Memo

Score

8

8

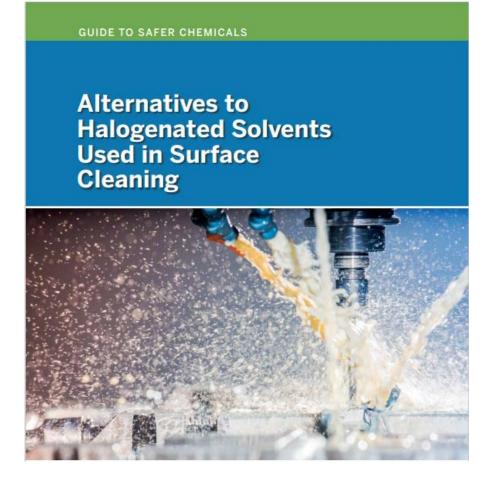
8

What Makes P2OASys Different

Process Factors	7 ^
Heat	~
Noise Generation	~
Vibration	~
Ergonomic Hazard	6 🗸
Psychosocial Hazard	8 🗸
High Pressure System	2 🗸
High Temperature System	4 🗸
Water Use	~
Energy Use	~
Exposure Potential	6 🗸

e Cycle Factors	10
Upstream Effects	8 🗸
Consumer Hazard	10 🗸
Disposal Hazard (landfill, incineration)	8 🗸
Reportable Quantity	4 🗸
Recycling	~
Renewable to Nonrenewable Resource	10 🗸

Categories	Trichloroethylene	Aquavantage 1400 GD	Emerald HD 2	Buckeye Immersion Cleaner	Alconox	Dimethyl Glutarate	
Acute Human Effects	8	7	5	9	8	2	
Chronic Human Effects	9	8	2	4	2	2	
Ecological Hazards	8	7	4	5	7	3	
Environmental Fate & Transport	9	8	4	7	8	8	
Atmospheric Hazard	6	2	2	2	2	2	
Physical Properties	10	8	7	7	6	5	
Process Factors	7	4	6	5	6	4	
Life Cycle Factors	10	4	4	4	6	3	
Product Score	8.4	6	4.3	5.4	5.6	3.6	



Hazards of Concern ≥8	Trichloroethylene	Aquavantage 1400 GD	Emerald HD 2	Buckeye Immersion Cleaner	Alconox	Dimethyl Glutarate
Acute Human Effects						
Inhalation				10		
Dermal Irritation	8				8	
Eye Irritation	8	8		8	8	
PEL/TLV	8					
Chronic Human Effects						
Carcinogen	10					
Mutagen/ Teratogen	8					
Reproductive/Devlopmental	8					
Neurotoxicity	8					
Endocrine System Effects	8	10				
Other Chronic Organ Effects	8					

Review

- Cleanersolutions.org can be a great starting point
 - Request testing for chemicals not in database
- P2OASys is a great tool to organize your options and review the pros and cons of each alternative you are considering
- Resources available through TURI
 - <u>http://guides.turi.org/beyond_sds</u>
 - Alternatives Testing Laboratory
 - Assessment of Alternatives to Halogenated Solvents Used in Surface Cleaning

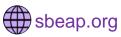
turi.org/publications/alternatives-to-halogenated-solvents-used-in-surface-cleaning/

Toxics Use Reduction Institute www.turi.org 978-934-3275 The Offices at Boott Mills West 126 John Street, Suite 14 Lowell, MA 01852

Jason Marshall TURI Lab Director Jason_Marshall@uml.edu 978-934-3133

P2 Tools in Action

Pathways to Safer Solutions Cris Brazil, PhD – Pollution Prevention Specialist cristianekbrazil@ksu.edu



Pollution Prevention Institute (PPI)

- Since 1989
- K-State College of Engineering -Engineering Extension
- 100% grant-funded
- Non-regulatory
- P2 Program
- Small Business Environmental Assistance Program (SBEAP)

Supporting Kansas through Pollution Prevention (P2)

We work with industries, communities, and institutions to:

- Preserve Kansas resources
- Promote sustainable practices
- Protect public health
- Support the economy
- Highlight Environmental Justice (EJ)
- Amplify P2 efforts

Workshops, seminars, and educational materials

Internship program

Technical assistance to any size industry

2024 Summer Interns

The Benefits of Reducing Toxic Chemicals

Community Cleaner air for nearby residents

Industry

Lower regulatory burden, reduced waste generation, increased operational efficiency

People Planet Profit

Water

Protection of local waterways and aquatic systems

Workers

Healthier workplaces for employees

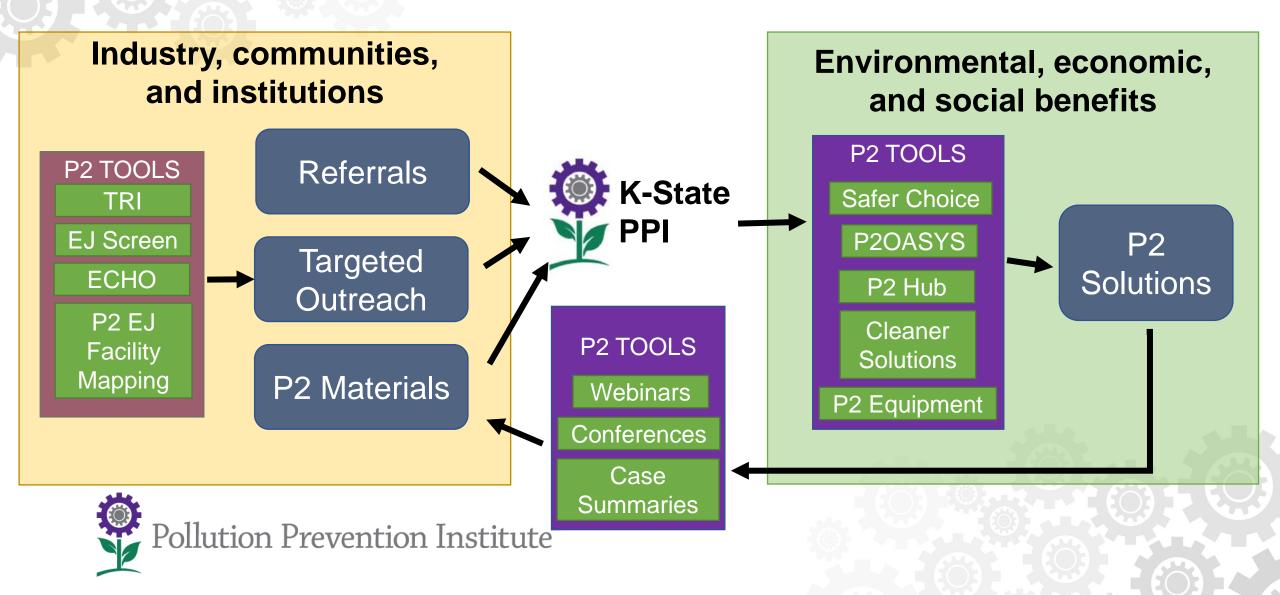
lution Prevention Institute

In an Ideal World...

- We could reach all companies in Kansas
- Identify every potential project
- Have access to all solutions and technologies
- Companies would implement every opportunity

Resistance to change Technical constraints Limited resources

Which companies should we prioritize? How do we engage companies? Which P2 projects are most feasible?


How P2 Tools Address Challenges

- Enhancing decision-making
- Bridging technical gaps
- Amplifying education and support
- Identifying high-impact, inclusive opportunities

How P2 Happens

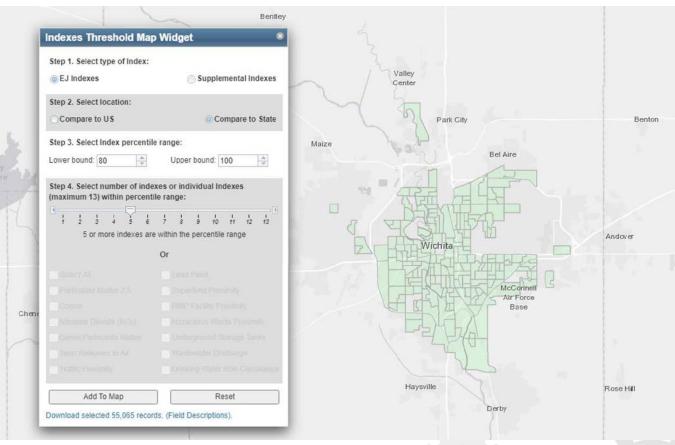
Targeted Outreach - Examples

- Toxics Release Inventory (TRI)
 - Identify industries with significant environmental impact and commonly used chemicals
- P2 EJ Facility Mapping Tool
 - Identify facilities in overburdened EJ communities
- Enforcement and Compliance History Online (ECHO)
 - Prioritize outreach to facilities needing compliance assistance
- EJ Screen
 - Identify areas with high pollution burden and socio-economic challenges

Pollution Prevention Institute

Finding P2 Solutions - Examples

- Case Summaries, P2 Hub, Webinars
 - Successful examples, new ideas, technical solutions
- Cleaner Solutions, Safer Choice, P2OASYS
 - Identify less hazardous chemicals and materials


www.sbeap.org

Targeting TCE Reduction

TRI Trichloroethylene (TCE) releases in KS

EJ Screen

CleanerSolutions Database

Solutions for Surface Cleaning

FIND	REPLACE	SAFETY	BROWSE	PARTS
A PRODUCT	A SOLVENT	EVALUATION	CLIENT TYPES	DESCRIPTION SEARCH

3P PROCESSING

Intern: Sarah Baden Major: Biosystems and Environmental Engineering School: Kansas State University

Current Search Information

SEARCH CRITERIA

Solvent: Trichloroethylene Substrate: Aluminum Effective: Yes Currently Available Results Only: Yes

RESULTS

Found 106 records Showing records 1 - 50

REFINE YOUR SEARCH BY SAFETY EVALUATION

- 2 < 4 Lower concern (13)
- 4 < 6 Medium concern (63)
- 6 < 8 High concern (29)
- 8 10 Very high concern (1)

SUMMARY OF 2024 P2 INTERN RECOMMENDATIONS

Project	Annual estimated environmental impact	Estimated cost savings (\$/year)	Status	
TCE vapor degreaser replacement	7,825 lbs. solvent 90,100 kWh electricity -29,615 gallons of water 87.16 MTCO ₂ e	\$31,320	Recommended	
Paint gun cleaning, solvent use reduction	14,990 lbs. solvent -2,000 kWh electricity 10.54 MTCO ₂ e	\$24,025	Recommended	
Tank covers, water use reduction	128,300 kWh electricity 96,760 gallons of water 124.93 MTCO ₂ e	\$4,915	Recommended	
Hazardous waste reduction	More research needed	\$290	More research needed	
Total ¹	22,815 lbs. solvent 216,400 kWh 67,145 gallons of water	\$60,260		
GHG reductions ^{1,2}	222.63 MTCO ₂ e			

REDGUARD

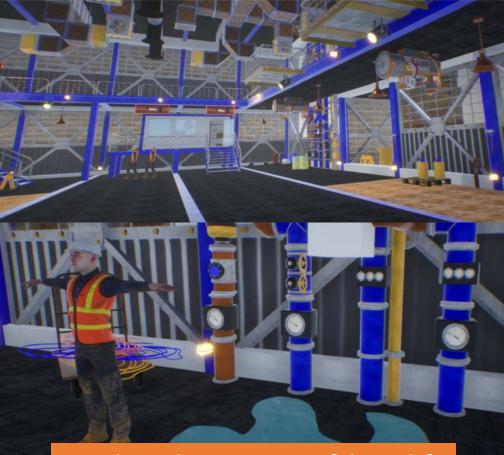
Intern: Franseira Maldonado Mundo Major: Industrial systems and manufacturing engineering School: Wichita State University

SUMMARY OF 2024 INTERN RECOMMENDATIONS

Project	Annual estimated environmental impact	Estimated cost savings (\$/year)	Status
Powder coat	2,956 lbs. of MEK 12,715 lbs. of VOC 1,026 lbs. of HAP	\$98,451	Recommended
Lighting exchange	236,7 82 kWh 253 MTCO ₂ e	\$24,554	In progress – 33 %
Water consumption reduction	526,100 gallons of water 77,920 kWh, 78 MTCO ₂ e	\$10,823	Recommended
Solar panels	5,733 kWh 5 MTCO ₂ e	\$32,722	Recommended
Solar panel water pump	5,733 kWh 5 MTCO ₂ e	\$596	Not recommended
Total ²	2,956 lbs. of MEK 12,689 lbs. of VOC 1,026 lbs. of HAP 629,333 kWh 526,100 gallons of water	\$167,146	
GHG reductions ^{1,2}	527 metric tons CO ₂ e		

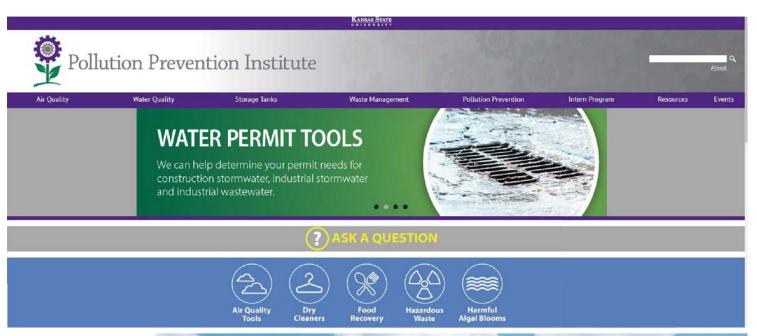
SPIRIT AEROSYSTEMS CASE STUDY

Wichita, Kansas • EPA Region 7 NAICS: 336411 Aircraft Manufacturing NAICS: 423860: Transportation Equipment and Supplies (except Motor vehicle) Merchant Wholesalers


TABLE 1 – SUMMARY OF ALL PROJECTS				
Reductions	Annual Estimated Environmental Impact	Estimated cost savings (\$/year)	Status	
Overflow solvent reduction- machine replacement	11.5 tons VOCs 2.71 tons HAPs 3,300-gal hazardous material and hazardous waste reduced	\$48,000	Recommended	
Returned solvent waste reduction	3.9 tons VOCs 1.9 tons HAPs 1,100 gal of hazardous material and hazardous waste reduced	\$14,000	Implemented	
Fuselage integration solvent reduction	12.5 tons VOCs 3.3 tons HAPs 3600-gal of hazardous material and hazardous waste reduced	\$42,500	Implemented	
Strut Nacelle East distillation unit	4 tons VOCs 0.4 tons HAPs 970 gallons of hazardous material 1,200 gallons hazardous waste	\$14,000	Implemented	
Facility-wide distillation units	160 tons VOCs 16 tons HAPs 38,000 gallons hazardous material 47,000 galions hazardous waste reduced	\$620,000	Recommended	
Pollut	190 tons VOCs 100 Presentation II 46,000 hazardous material reduced 55,000 gallons hazardous waste reduced	nstitute	roject status updated 5/2024	

P2 Virtual Reality Training Tool

- Simulate real-world P2 scenarios
- Users step into the role of a pollution prevention specialist
- Interactive learning and broader reach
- Explore virtual facilities and identify opportunities for improvement
 - Air leaks, water leaks, lighting, chemical replacements
- Launch expected for Spring 2025

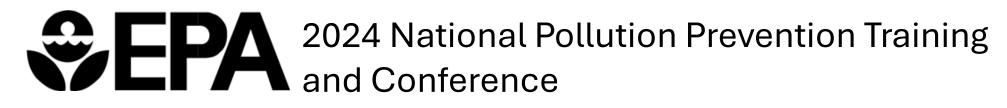


Project in partnership with the K-State Salina XR lab

Thank you!

- www.sbeap.org
- ksu-ppi@ksu.edu

- Cris Brazil
- cristianekbrazil@ksu.edu


KSU Pollution Prevention Institute

@ksupollutionpreventioninst5939 · 47 subscribers · 108 videos

The K-State Pollution Prevention Institute (PPI) is housed within the College of Engineerin ...more

sbeap.org

Subscribe

P2 Tools for Success

December 11, 2024 11:00AM – 12:00PM ET

Moderated by Alizabeth Olhasso, EPA

Speakers:

- Charlotte (Charlie) Snyder, EPA, Data Analysis and Right to Know Branch
- Jason Marshall, Toxics Use Reduction Institute
- Dr. Cris Brazil, Kansas State University

epa.gov/p2