Crisfield Nature-Based Strategies Research

Technical Working Group 3 12/06/2024

How do Nature-Based Strategies work?

Wave attenuation = Wave energy reduction

https://www.esri.com/about/newsroom/arcnews/gis-helps-integrate-coastal-hazard-risk-and-sea-level-rise/

Crisfield nature-based project options

- Janes Island
 - Marsh restoration
 - Sand dune restoration
 - Artificial oyster reefs
- Lower Annemessex River
 - Living breakwaters
- Cedar Island marsh complexes
 - Marsh restoration
 - Sand dune restoration
 - Artificial oyster reefs

Crisfield NBS Concept Objectives

Location	Solution	Rationale	Concept	Model Representation
anes and Cedar Island Marsh and Dune Complexes	Marsh Restoration by sediment placement in existing marsh and open water areas; strategic runneling	Existing, degraded marsh system with large open water areas necessitates material placement and runneling for hydrologic connectivity	At minimum, maintain current elevations and vegetation density under SLR to 2050 (0.3"/year) via sediment placement <u>Total marsh acreage:</u> ~2,800 acres, Janes Island; 5,000 acres, Ceder Island Complexes <u>Yearly elevation gain:</u> 0.3in	Maintain primary channel (>20m width) representation; estimate finer changes in complexity using variations in roughness based on vegetation characteristics
	Sand Dune Restoration by vegetation planning and stone revetement core	High fetch exposure necessitates dune stabilization; dunes current first line of defense for marsh complex and ultimately Crisfield	Stabilize dunes and raise elevations based on 50-yr storm (MHW + SS = ~5ft NAVD88) + 1ft freeboard <u>Total linear feet:</u> ~24,000 lf, Janes Island; 12,000 lf, Ceder Island Complexes <u>Crest Elevation:</u> ~+6ft NAVD88	Linear representation with consistent width (20m), height (~+6ft NAVD88), and geometry (trapezoidal); maintaining primary channel connectivity into marsh systems
	Oyster Reef Creation by reef balls or similar	High erosion rate and moderate wind-wave energy; dissipates energy prior to dune/marsh system	Create oyster habitat via <i>reef ball placement within the depth of closure</i> <u>Cross shore placement:</u> ~2-3m contour <u>Total linear feet:</u> ~24,000 lf, Janes Island; 46,000 lf, Ceder Island Complexes <u>Crest elevation:</u> ~1m above grade, 1-2m subaqueous	Linear representation along 2- 3m contour with consistent width (20m), height (1m), and geometry (trapezoidal)
Lower Annemessex	Living Coastal Breakwaters	Extreme erosion of sandy cape requires breakwater to protect against longshore drift; primary surge/wave exposure for Crisfield	Attenuate surge and waves at highest community fetch exposure following 2012 USACE feasibility study <u>Total linear footage:</u> ~10,000 lf <u>Crest height:</u> ~+5ft MLLW	Linear representation with consistent width (20m), height (+5ft MLLW), and geometry (trapezoidal)

Crisfield nature-based project options

- Janes Island
 - Marsh restoration: ~2,800 acres
 - ~7.8 inches sediment placement by 2050
 - Sand dune restoration: ~24,000 feet
 - ~6.5 feet above local mean sea level
 - Artificial oyster reefs: ~28,000 feet
 - ~60 feet width (multiple lines of reef balls)
 - ~3 feet tall in water depths of ~6-9 feet
- Lower Annemessex River
 - Living breakwaters: ~10,000 feet
 - ~4 feet above local mean sea level
- Cedar Island marsh complexes
 - Marsh restoration: ~5,000 acres
 - ~7.8 inches sediment placement by 2050
 - Sand dune restoration: ~12,000 feet
 - ~6.5 feet above local mean sea level
 - Artificial oyster reefs: ~48,000 feet
 - ~60 feet width (multiple lines of reef balls)
 - ~3 feet tall in water depths of ~6-9 feet

Modeling Approach

Goal:

 Evaluate NBS effectiveness at attenuating waves and storm surge at Crisfield-edge to inform NBS prioritization and future design projects

Approach:

 Implement *Delft-3D H&H and wave modeling* under various NBS configurations, storm categories & propagations, climate scenarios (60 total simulations)

Notes:

- Iterative process, ongoing refinement of solutions
- Semi quantitative assessment of erosion potential only
- Coordination with blue carbon, fisheries, and recreation modeling

Assumptions:

- Finest resolution of 20m in key areas
- Simplified hydrodynamic processes and NBS representation
- Consistent NBS growth/maintenance under SLR

Suggested locations for model output?

- Model output:
 - Total water level:
 - Storm surge +
 - Wave height +
 - Tides +
 - Sea level rise (for 2050 runs)
 - Inundation estimates
 - Water velocity/currents
 - Wind speed and direction

