2024 – 1st Quarter Report Support for Conducting Systems & Performance Audits of Clean Air Status and Trends Network (CASTNET) Sites and National Atmospheric Deposition Program (NADP) Monitoring Stations - III

GSA Contract # GS-10F-075AA Blanket Purchase Agreement # 68HERH22A0026

Prepared for:

U. S. Environmental Protection Agency

Prepared by:

4577E NW 6th St Ext. Gainesville, FL 32609

Report Submitted March 2024

Table of Contents

1.0 CAS	TNET Quarterly Report	.1
1.1	Introduction	.1
1.2	Project Objectives	.2
1.3	CASTNET Sites Visited First Quarter 2024	.4
1.4	CASTNET Audit Results	.4
2 0 N A T		-
2.0 NAL	PP Quarterly Report	.6
	PP Quarterly Report	
2.1		.6
2.1 2.2	Introduction	.6 .6

List of Appendices

Appendix A	CASNTET Audit Report Forms
Appendix B	CASTNET Site Spot Report Forms

List of Tables

Table 1.	Performance Audit Challenge and Acceptance Criteria	2
Table 2.	CASTNET Site Audit Visits	4
Table 3.	NADP Site Audit Visits	7

List of Acronyms and Abbreviations

List of Acronyms and Abbrev	lauons
% diff	percent difference
A/D	analog to digital converter
ARS	Air Resource Specialists, Inc.
ASTM	American Society for Testing and Materials
BLM	Bureau of Land Management
BLM-WSO	Bureau of Land Management – Wyoming State Office
CAL	Central Analytical Laboratory
CASTNET	Clean Air Status and Trends Network
CMAQ	Community Multiscale Air Quality
DAS	data acquisition system
deg	degree
DVM	digital voltmeter
ECCC	Environment and Climate Change Canada
EEMS	Environmental, Engineering & Measurement Services, Inc.
EPA	U.S. Environmental Protection Agency
ESC	Environmental Systems Corporation
FSA	Field Systems Audit
FSAD	Field Site Audit Database
GPS	geographical positioning system
HAL	Mercury Analytical Laboratory
LADCO	Lake Michigan Air Directors Consortium
lpm	liters per minute
ME DEP	Maine Department of Environmental Protection
MD DNR	Maryland Department of Natural Resources
MLM	Multilayer Model
MN PCA	Minnesota Pollution Control Agency
m/s	meters per second
mv	millivolt
NESCAUM	Northeast States for Coordinated Air Use Management
NIST	National Institute of Standards and Technology
NOAA	National Oceanic and Atmospheric Administration
NPS	National Park Service
NYDEC	New York Department of Conservation
NYSERDA	New York State Energy Research and Development Authority
OH EPA	Ohio Environmental Protection Agency
PE	Performance Evaluation
QAPP	Quality Assurance Project Plan
SLT	State Local and Tribal
SCDHEC	South Carolina Department of Health and Environmental Control
SFWMD	South Florida Water Management District
SOP	standard operating procedure
TDEP	Total Deposition
TEI	Thermo Environmental Instruments
USDA-FS	United States Department of Agriculture – Forest Service

Lapa	
USFS	United States Forest Service
USFWS	United States Fish and Wildlife Service
USGS	United States Geological Survey
USNO	United States Naval Observatory
VDC	volts direct current
WDEQ	Wyoming Department of Environmental Quality
WDNR	Wisconsin Department of Natural Resources
WRR	World Radiation Reference
WSLH	Wisconsin State Laboratory of Hygiene

1.0 CASTNET Quarterly Report

1.1 Introduction

The Clean Air Status and Trends Network (CASTNET) is a national air monitoring program established in 1988 by the US EPA. Nearly all CASTNET sites measures weekly concentrations of acidic gases and particles to provide accountability for EPA's emission reduction programs. Most sites measure ground-level ozone as well as supplemental measurements such as meteorology and/or other trace gas concentrations.

Ambient concentrations are used to estimate deposition rates of the various pollutants with the objective of determining relationships between emissions, air quality, deposition, and ecological effects. In conjunction with other national monitoring networks, CASTNET data are used to determine the effectiveness of national emissions control programs and to assess temporal trends and spatial deposition patterns in atmospheric pollutants. CASTNET data are also used for long-range transport model evaluations and critical loads research.

Historically, CASTNET pollutant flux measurements have been reported as the aggregate product of weekly measured concentrations and model-estimated deposition velocities. The Multi-layer Model (MLM) was used to derive deposition velocity estimates from on-site meteorological parameters, land use types, and site characteristics. In 2011, EPA discontinued meteorological measurements at most EPA-sponsored CASTNET sites.

Currently, CASTNET pollutant flux estimates are calculated as the aggregate product of weekly measured chemical concentrations and gridded model-estimated deposition velocities. Total deposition is assessed using the NADP's Total Deposition Hybrid Method (TDEP; EPA, 2015c; Schwede and Lear, 2014), which combines data from established ambient monitoring networks and chemical-transport models. To estimate dry deposition, ambient measurement data from CASTNET and other networks were merged with dry deposition rates and flux output from the Community Multiscale Air Quality (CMAQ) modeling system.

Since 2011 nearly all CASTNET ozone monitors have adhered to the requirements for State Local and Tribal (SLT) air monitoring stations as specified by the EPA in 40 CFR Part 58. As such, the ozone data collected must meet the requirements in 40 CFR Part 58 Appendix A, which defines the quality assurance (QA) requirements for gaseous pollutant ambient air monitoring. The audits performed by EEMS under this contract fulfilled the requirement for annual performance evaluation audits of pollutant monitors in the network. The QA requirements can be found at: https://www.epa.gov/amtic/regulations-guidance-and-monitoring-plans

Currently more than 85 CASTNET sites measure ground-level ozone concentrations. Annual performance evaluation (PE), ozone audit data are submitted to the Air Quality System (AQS) database.

As of March 2024, the network is comprised of 92 active rural sampling sites across the United States and Canada, cooperatively operated by the Environmental Protection Agency (EPA), the National Park Service (NPS), Bureau of Land Management – Wyoming State Office (BLM-WSO) and several independent partners. WSP is responsible for operating the EPA sponsored sites, and Air Resource Specialists, Inc. (ARS) is responsible for operating the NPS and BLM-WSO sponsored sites

1.2 Project Objectives

The objectives of this project are to establish an independent and unbiased program of performance and systems audits for all CASTNET sampling sites. Ongoing Quality Assurance (QA) programs are an essential part of any long-term monitoring network.

Performance audits verify that all reported variables are consistent with the accuracy goals as defined in the CASTNET Quality Assurance Project Plan (QAPP). The parameter specific accuracy goals are presented in Table 1.

Sensor	Parameter	Audit Challenge	Acceptance Criteria
Precipitation	Response	10 manual tips	1 DAS count per tip
Precipitation	Accuracy	2 introductions of known amounts of water	$\leq \pm 10.0\%$ of input amount
Relative Humidity	Accuracy	Compared to reference instrument or standard solution $\leq \pm 10.0\%$ RH	
Solar Radiation	Accuracy	Compared to WRR traceable standard	$\leq \pm 10.0\%$ of daytime average
Surface Wetness	Response	Distilled water spray mist	Positive response
Surface Wetness	Sensitivity	1% decade resistance	N/A
Temperature	Accuracy	Comparison to 3 NIST measured baths (~ 0° C, ambient, ~ full-scale)	$\leq \pm 0.5^{\circ} \mathrm{C}$
Temperature Difference	Accuracy	Comparison to station temperature sensor	\leq \pm 0.50° C

 Table 1. Performance Audit Challenge and Acceptance Criteria

Sensor	Parameter	Audit Challenge	Acceptance Criteria
Shelter Temperature	Accuracy	Comparison to station temperature sensor	$\leq \pm 2.0^{\circ} \mathrm{C}$
Wind Direction	Orientation Accuracy	Parallel to alignment rod/crossarm, or sighted to distant point	$\leq \pm 5^{\circ}$ from degrees true
Wind Direction	Linearity	Eight cardinal points on test fixture	≤±5° mean absolute error
Wind Direction	Response Threshold	Starting torque tested with torque gauge	< 10 g-cm Climatronics; < 20 g-cm R.M. Young
Wind Speed	Accuracy	Shaft rotational speed generated and measured with certified synchronous motor	$\leq \pm 0.5$ mps below 5.0 mps input; $\leq \pm 5.0\%$ of input at or above 5.0 mps
Wind Speed	Starting Threshold	Starting torque tested with torque gauge	< 0.5 g-cm
Mass Flow Controller	Flow Rate	Comparison with Primary Standard	$\leq \pm 5.0\%$ of designated rate
Ozone	Slope	Linear regression of multi-point	$0.9000 \le m \le 1.1000$
Ozone	Intercept	test gas concentration as	-5.0 ppb \leq b \leq 5.0 ppb
Ozone	Correlation measured with a certified Ozone Coefficient		$0.9950 \le r$
Ozone	Percent Difference	Comparison with Level 2 standard concentration $\leq \pm 15.1\%$ of test gas concentration $\leq \pm 0.0015$ ppm actual difference	
DAS	Accuracy	Comparison with certified standard	$\leq \pm 0.003 \text{ VDC}$

Performance audits are conducted using standards that are traceable to the National Institute of Standards and Technology (NIST), or another authoritative organization, at least annually.

Field site systems audits (FSA) are intended to provide a qualitative appraisal of the total measurement system. Site planning, organization, and operation are evaluated to ensure that good Quality Assurance/Quality Control (QA/QC) practices are being applied. At a minimum the following audit issues were addressed at each site systems audit:

- Site locations and configurations match those provided in the CASTNET QAPP.
- Meteorological instruments are in good physical and operational condition and are sited to meet EPA ambient monitoring guidelines (EPA-600/4-82-060).
- Sites are accessible, orderly, and if applicable, compliant with OSHA safety standards.
- Sampling lines are free of leaks, kinks, visible contamination, weathering, and moisture.

- Site shelters provide adequate temperature control.
- All ambient air quality instruments are functional, being operated in the appropriate range, and the zero-air supply desiccant is unsaturated.
- All instruments are in current calibration.
- Site documentation (maintenance schedules, on-site SOPs, etc.) is current and log book records are complete.
- All maintenance and on-site SOPs are performed on schedule.
- Corrective actions are documented and appropriate for required maintenance/repair activity.
- Site operators demonstrate an adequate knowledge and ability to perform required site activities, including documentation and maintenance activities.

1.3 CASTNET Sites Visited First Quarter 2024

This report consists of the systems and performance, and other audit results from the CASTNET sites visited during the first quarter (January through March) of 2024. The site locations, sponsor, visit dates, and parameters audited, are included in Table 2.

Site ID	Date	FSA	O3 PE	FLOW	Sponsor
SUM156	2/13/2024	1	1	1	EPA
IRL141	2/15/2024	1	1	1	EPA
ALC188	2/26/2024		1		EPA
PAL190	3/10/2024		1		EPA

Table 2. CASTNET Site Audit Visits

1.4 CASTNET Audit Results

The observations and results of the systems, performance, and Ozone PE audits are included in Appendix A, *CASTNET Audit Report Forms* by site, arranged by audit date. Photographs of site conditions are included within each system report where necessary. Copies of the spot reports that were sent following the audit of each site are included as Appendix B, *CASTNET Site Spot Report Forms*.

Results of the PE audits of the gaseous pollutant monitors other than ozone, were submitted immediately following the PE and are not included in this report. All TTP PE results of gaseous pollutant monitors are uploaded to AQS and are available there. All audit data and reports are available from the EPA CASTNET website: <u>https://www.epa.gov/castnet/documents-reports#QuarterlyQualityAssuranceReports</u>

2.0 NADP Quarterly Report

2.1 Introduction

The National Atmospheric Deposition Program (NADP) operates two precipitation chemistry networks and two atmospheric concentration networks. The National Trends Network (NTN) has been measuring acidic precipitation since 1978. The network currently has more than 250 sites. The precipitation event-based Atmospheric Integrated Research Monitoring Network (AIRMoN) began operation in 1992, and as of July 2019 is no longer in operation. The Mercury Deposition Network (MDN) measures total mercury in precipitation samples from approximately 90 stations. The MDN began operation in 1996 and includes sites throughout the US and Canada. The Atmospheric Mercury Network (AMNet) and the Ammonia Monitoring Network (AMoN) measure ambient concentrations of mercury and ammonia, respectively.

The NADP and other long-term monitoring networks provide critical information to the EPA regarding evaluating the effectiveness of emission reduction control programs from the power industry. The networks of the NADP are sponsored by several federal, state, and local agencies as well as private organizations.

The NADP Program Office (PO) operates and administers the two precipitation chemistry networks (NTN and MDN), two atmospheric concentration networks (AMNet and AMoN), and two analytical laboratories (CAL and HAL), from the Wisconsin State Lab of Hygiene (WSLH) at the University of Wisconsin in Madison. The labs have been combined and renamed as the NADP Analytical Laboratory (NAL). The network equipment depot (NED) is also located at the WSLH.

2.2 **Project Objectives**

The objective of this project is to perform independent and unbiased evaluations of the sites and their operation. These evaluations provide quality assurance pertaining to siting, sample collection and handling, equipment operation and maintenance, record keeping and field laboratory procedures.

More specifically, the audits determine and report findings based on an established methodology consisting of completing a site questionnaire, testing the equipment and documenting with photographs the location, siting criteria, existing equipment, and any issues encountered that require such documentation.

2.3 NADP Sites Visited First Quarter 2024

This report presents the NADP sites audited during the first quarter (January through March) of 2024. The station locations, sponsors, network. and dates of the surveys are presented in Table 3.

Site ID	Date	NTN	MDN	AMON	Site Sponsor	Site Name
FL23	2/13/2024			1	WSP -EPA	Sumatra
FL19	2/15/2024			1	WSP -EPA	Indian River
GA09	2/20/2024	1	1		U.S. Fish and Wildlife Service	Okefenokee NWR
MS12	2/23/2024	1	1		NOAA - NIFA	Grand Bay NERR
TX41	2/26/2024			1 WSP -EPA		Alabama-Coushatta
TX10	2/27/2024	1			USGS - NIFA	Attwater Prairie Chicken NWR
TX03	2/28/2024	1			USGS - NIFA Beeville	
TX43	3/10/2024			1	1 Texas A&M University Cañónceta	
LA30	3/22/2024	1			USGS - NIFA	Southeast Research Station

Table 3. NADP Site Audit Visits

2.4 NADP Audit Results

NADP site audit results are entered into a relational database. The database in turn generates Site Spot Reports which are distributed among the interested parties as soon as all the site data has been entered. Database tables with all the data collected and reviewed are then sent to the NADP Program Office and to the U.S. EPA Project Officers.

Other items gathered during the audits (i.e. photographs) are uploaded to the EPA OneDrive account where the NADP PO and the U.S. EPA POs can access them and download them as needed.

Given the volume of data generated, and the fact that data is distributed and/or is available via the internet, no audit results are included in this report.

APPENDIX A

CASTNET Audit Report Forms

Site Inventory by Site Visit

Site	Visit Date	Parameter	Mfg	Owner ID	Model Number	Serial Number
SUM	1156-Martii	1 Valvur-02/13/2024				
1	2/13/2024	Computer	Dell	07013	Inspiron 15	3L2MC12
2	2/13/2024	DAS	Campbell	000348	CR3000	2127
3	2/13/2024	Elevation	Elevation	None	1	None
4	2/13/2024	Filter pack flow pump	Thomas	00235	107CA18	00688001783
5	2/13/2024	Flow Rate	Арех	000898	AXMC105LPMDPCV	illegible
6	2/13/2024	Infrastructure	Infrastructure	none	none	none
7	2/13/2024	Modem	Digi	07158	LR54	unknown
8	2/13/2024	Ozone	ThermoElectron Inc	000623	49i A1NAA	1009241790
9	2/13/2024	Ozone Standard	ThermoElectron Inc	000511	49i A3NAA	0922236888
10	2/13/2024	Sample Tower	Aluma Tower	03542	A	none
11	2/13/2024	Shelter Temperature	Campbell	none	107-L	none
12	2/13/2024	Siting Criteria	Siting Criteria	None	1	None
13	2/13/2024	Temperature	RM Young	05043	41342VO	9639
14	2/13/2024	Zero air pump	Werther International	06882	C 70/4	000815255

DAS Data Form

DAS Time Max Error: 0

Mfg	Serial	Number Si	ite T	Fechnician	Site Visit Date	Parameter	Use Desc.
Campbell	2127	S	SUM156	Martin Valvur	02/13/2024	DAS	Primary
Das Date: 2 Das Time: 2 Das Day: 2	2 /13/2024 9:45:00 44	Audit Data Audit Tim Audit Day	e 9:45:00	Mfg Serial Number	Fluke 95740243	Parameter Tfer Desc.	
Low Channel:	Max Diff: 0.00	High Chan Avg Diff:	mel: Max Diff:	Tfer ID Slope Cert Date	01312 1.0000 1/31/202		0.00000
Channel 4	Input 0.0000	DVM Output 0.0000	DAS Output 0 0.0000	InputUnit V	OutputUnit V	Difference 0.0000	

Flow Data Form

Mfg	Serial Nun	nber Ta	Site	Tee	chnician	Site Visit I	Date Param	ieter	Owner ID
Apex	illegible		SUM156	Ма	artin Valvur	02/13/2024	Flow R	ate	000898
					Mfg Serial Number	BIOS 152253	I	arameter Flo	
					Tfer ID	15225			
					Slope	1.	00000 Inte	ercept	0.00000
					Cert Date	5/2	2/2022 Co	rCoff	1.00000
DAS 1: A Avg % Diff: 1.12%	A Max % Di 2.04%	DAS 2: A Avg %	Diff A Max	: % Di	Cal Factor Z Cal Factor F Rotometer R	ull Scale	1.(0)2	
Desc.	Test type	Input 1/m	Input Corr	MfcDisp.					ll PctDifference
primary	pump off	0.000	0.000	0.00	0.000	0.00	l/m	l/m	
primary	leak check	0.000	0.000	0.01	0.000	0.03	l/m	1/m	
primary	test pt 1	1.520	1.520	1.47	0.000	1.50	l/m	l/m	-1.32%
primary	test pt 2	1.470	1.470	1.47	0.000	1.50	l/m	l/m	2.04%
primary	test pt 3	1.500	1.500	1.47	0.000	1.50	l/m	l/m	0.00%
Sensor Comp	onent Leak Tes	st		Conditio	on		Status	pass	
Sensor Comp	onent Tubing C	ondition		Conditio	Good		Status	pass	
Sensor Comp	onent Filter Pos	sition		Conditio	Good		Status	pass	
Sensor Comp	onent Rotomete	er Conditio	n	Conditio	Clean and dry		Status	pass	
Sensor Comp	onent Moisture	Present		Conditio	n No moisture p	resent	Status	pass	
Sensor Component Filter Distance		Conditio	n 5.0 cm	5.0 cm		pass			
Sensor Component Filter Depth			Conditio	2.0 cm	2.0 cm Status pass				
Sensor Comp	onent Filter Azi	muth		Conditio	290 deg		Status	pass	
Sensor Comp	onent System M	Nemo		Conditio	on		Status	pass	

Ozone Data Form

Mfg	Serial Numbe	er Tag Site	Т	echnician	Site Visit Date	Parameter	Owner ID	
ThermoElectron Inc	ThermoElectron Inc 1009241790 SUM156		6 N	lartin Valvur	02/13/2024	Ozone	000623	
Intercept		rcept	0.00000 0.00000 0.00000	Mfg Serial Number	ThermoElectron I CM23147126		er ozone c. Ozone primary stan	
				Tfer ID	01116			
DAS 1:		AS 2:		Slope	1.00654	4 Intercept	-0.03885	
A Avg % Diff: A N	Max % Dif A 0.0%	Avg %Diff A	Max % Dif	Cert Date	9/19/2023	3 CorrCoff	1.00000	
0.076	0.070							
UseDescription	ConcGroup	Tfer Raw	Tfer Corr	Site	Site Unit	RelPerDif	AbsDif	
primary	1	0.09	-0.01	-0.12	ppb		-0.11	
primary	2 3	11.31 29.29	11.29 29.10	11.33 30.30	ppb	4.04	0.04	
primary primary	<u> </u>	59.76	59.28	62.18	ppb	4.04		
primary	5	110.88	109.91	115.30	ppb ppb	4.78		
Sensor Compone		1		ion 755.0 mmHg	ppo	Status pass		
Sensor Compone				ion True		Status pass		
Sensor Compone				ion True		Status pass		
-								
Sensor Component ADT 1000-10000 vehicles further t					Status pass			
Sensor Component ADT <1000 vehicles further than 5					Status pass			
Sensor Compone				ion Good		Status pass		
Sensor Compone	ent Inlet Filter C	ondition	Condit	ion Clean		Status pass		
Sensor Compone	ent Offset		Condit	ion 0.1		Status pass		
Sensor Compone	ent Span		Condit	ion 1.180		Status pass		
Sensor Compone	ent Zero Voltage	e	Condit	ion N/A		Status pass		
Sensor Compone	ent Fullscale Vo	ltage	Condit	ion N/A		Status pass		
Sensor Compone	ent Cell A Freq.		Condit	ion 99.8 kHz		Status pass		
Sensor Compone	ent Cell A Noise	;	Condit	ion 0.6 ppb		Status pass		
Sensor Compone	ent Cell A Flow		Condit	ion 0.68 lpm		Status pass		
Sensor Compone	ent Cell A Press	sure	Condit	ion 726.7 mmHg		Status pass		
Sensor Compone	ent Cell A Tmp.		Condit	ion 33.4 C		Status pass		
Sensor Compone	ent Cell B Freq.			ion 105.4 kHz		Status pass		
Sensor Compone	Sensor Component Cell B Noise			ion 0.6 ppb		Status pass		
Sensor Compone				ion 0.71 lpm		Status pass		
Sensor Compone		sure		ion 725.8 mmHg		Status pass		
Sensor Compone				ion True		Status pass		
Sensor Compone						Status pass		
Sensor Compone			Condit			Status pass		

Temperature Data Form

Mfg	Serial Number	Га Site	Т	Fechnician S		Site Visit Date		Parameter		Owner ID	
RM Young	9639	SUM156	1	Martin	Valvur	02/13	02/13/2024 Ter		ature	05043	
			Mfg		Fluke	Fluke Pa		rameter Temperature			
				Serial Number		32751	3275143		Tfer Desc. RTD		
				Tfe	er ID	01229)				
DAS 1: DAS 2:				Slo	ре	1.00022 Inte		rcept	-0.0050	05	
Abs Avg Err Abs Max Err Abs Avg Err Abs Max Er		Max Err	Err Cert Date			2/12/202	4 Cor	rCoff 1.00000		00	
0.13	0.25										
UseDesc.	Test type	InputTmpRaw	InputTmp(Corr.	OutputTmpS	Signal	nal OutputSignalEn		OSE Unit	Difference	
primary T	emp Low Range	0.00	0.01		0.000		0.1		С	0.05	
primary T	emp Mid Range	24.56	24.56		0.000		24.	8	С	0.25	
primary T	emp High Range	46.47	46.46		0.000		46.	6	С	0.09	
Sensor Comp	onent Shield		Condit	tion	Clean			Status	pass		
Sensor Component Blower				Condition N/A				Status	pass		
Sensor Component Properly Sited				Condition Properly sited			Status pass				
Sensor Comp	onent System Memo		Condit	Condition				Status	15 pass		

Shelter Temperature Data For

Mfg	Serial Number Ta	Site	Technician	Site Visit Date	Parameter Owner ID
Campbell	none	SUM156	Martin Valvur	02/13/2024	Shelter Temperature none
DAS 1:	DAS 2:		Mfg	Fluke	Parameter Shelter Temperatur
Abs Avg Err Ab	s Max Err Abs Avg 0.91	Err Abs Max Err	Serial Number	3275143	Tfer Desc. RTD
			Tfer ID	01229	
			Slope	1.0002	2 Intercept -0.00505
			Cert Date	2/12/202	²⁴ CorrCoff 1.00000

UseDesc.	Test type	InputTmpRaw	InputTmpCorr.	OutputTmpSignal	OutputSignalEng	OSE Unit	Difference
primary	Temp Mid Range	22.84	22.84	0.000	23.8	С	0.91
primary	Temp Mid Range	23.85	23.85	0.000	24.2	С	0.38
primary	Temp Mid Range	24.77	24.77	0.000	24.8	С	0.03
Sensor Con	nponent System Memo)	Condition	Status pass			

Siting Criteria Form

Sensor Component Large point source of	of So2 or Nox Condition	Status	pass
Sensor Component City > 50,000	Condition	Status	pass
Sensor Component City 1,000 to 10,000	Condition	Status	pass
Sensor Component City 10,000 to 50,00	0 Condition	Status	pass
Sensor Component Feedlot operations	Condition	Status	pass
Sensor Component Large parking lot	Condition	Status	pass
Sensor Component Limited agriculture of	perations Condition	Status	pass
Sensor Component Major industrial sour	ce Condition	Status	pass
Sensor Component Secondary road < or	r = 100 per da Condition	Status	pass
Sensor Component Secondary road >10	0 vehicles/da Condition	Status	pass
Sensor Component Small parking lot	Condition	Status	pass
Sensor Component System Memo	Condition	Status	pass
Sensor Component Major highway, airpo	ort, or rail yard Condition	Status	pass
Sensor Component Intensive agriculture	operations Condition	Status	pass

Infrastructure Data For

Site ID	SUM156	Technician Martin V	alvur Site Visit Date 02/13/2024
Shelter	Make	Shelter Model	Shelter Size
Ekto		8810	640 cuft

Sensor Component	Sample Tower Type	Condition	Туре В	Status	pass
Sensor Component	Conduit	Condition	N/A	Status	pass
Sensor Component	Met Tower	Condition	N/A	Status	pass
Sensor Component	Moisture Trap	Condition	Installed	Status	pass
Sensor Component	Moisture Trap Type	Condition	Glass bottle and filter	Status	pass
Sensor Component	Power Cables	Condition	Good	Status	pass
Sensor Component	Shelter Temp Control	Condition	Functioning	Status	pass
Sensor Component	Rotometer	Condition	Installed	Status	pass
Sensor Component	Sample Tower	Condition	Good	Status	pass
Sensor Component	Shelter Condition	Condition	Good	Status	pass
Sensor Component	Shelter Door	Condition	Good	Status	pass
Sensor Component	Shelter Roof	Condition	Good	Status	pass
Sensor Component	Shelter Floor	Condition	Good	Status	pass
Sensor Component	Shelter walls	Condition	Good	Status	pass
Sensor Component	Excessive mold present	Condition	Good	Status	pass
Sensor Component	Signal Cable	Condition	Good	Status	pass
Sensor Component	Tubing Type	Condition	3/8 teflon	Status	pass
Sensor Component	Sample Train	Condition	Good	Status	pass
Sensor Component	System Memo	Condition		Status	pass

Field Systems Data Form

F-02058-1500-S1-rev002

Site ID SUM156	Technician Martin Valvur	Site Visit Date 02/13	3/2024							
Site Sponsor (agency)	EPA	USGS Map	Sumatra							
Operating Group	USFS/private	Map Scale								
AQS #	12-077-9991	Map Date								
Meteorological Type	R.M. Young									
Air Pollutant Analyzer	Ozone	QAPP Latitude								
Deposition Measurement	dry, wet	QAPP Longitude								
Land Use	wetlands, Woodland - evergreen	QAPP Elevation Meters								
Terrain	flat	QAPP Declination								
Conforms to MLM	Yes	QAPP Declination Date								
Site Telephone	(850) 670-8376	Audit Latitude	30.110603							
Site Address 1	Rt 65	Audit Longitude	-84.990114							
Site Address 2	Apalachicola National Forest	Audit Elevation	9							
County	Liberty	Audit Declination	-3							
City, State	Bristol, FL	Present								
Zip Code	32321	Fire Extinguisher 🔽	New in 2015							
Time Zone	Eastern	First Aid Kit								
Primary Operator		Safety Glasses								
Primary Op. Phone #		Safety Hard Hat								
Primary Op. E-mail	none	Climbing Belt								
Backup Operator	none	Security Fence								
Backup Op. Phone #		Secure Shelter								
Backup Op. E-mail		Stable Entry Step 🔽								
Shelter Working Room ✓	Make Ekto Mo	odel 8810	Shelter Size640 cuft							
	Notes									
Site OK	Notes									
Hosfor										

Fi	eld Sy	stems Data	Form	F-02058-1500-S3-rev(
Site	e ID	SUM156	Technician Martin Valvur		Site Visit Date 02/13/2024				
1		d speed and direc fluenced by obstr	tion sensors sited so as to avoid uctions?		N/A				
2	(i.e. win horizon	d sensors should l	d so as to minimize tower effects? oe mounted atop the tower or on a om >2x the max diameter of the wind)		N/A				
3	3 Are the tower and sensors plumb?				N/A				
4			ds pointed north or positioned to es such as buildings, walls, etc?	✓					
5	conditio surface	ns? (i.e. ground b	sensors sited to avoid unnatural elow sensors should be natural oped. Ridges, hollows, and areas of avoided)						
6	Is the so	lar radiation sens	or plumb?	✓	N/A				
7	Is it site light?	d to avoid shading	g, or any artificial or reflected	✓	N/A				
8	Is the ra	iin gauge plumb?		✓	N/A				
9	Is it site towers,		ing effects from buildings, trees,		N/A				
10	Is the su facing n		sor sited with the grid surface	✓	N/A				
11	Is it inc	lined approximat	ely 30 degrees?		N/A				
Pro	ovide any	additional explan	nation (photograph or sketch if neco	essar	ry) regarding conditions listed above, or any other features,				

natural or man-made, that may affect the monitoring parameters:

Field Systems Data Form

F-02058-1500-S4-rev002

Site	e ID	SUM156	Technician	Martin Valvur		Site Visit Date 02/13/2024				
1	1 Do all the meterological sensors appear to be intact, in good condition, and well maintained?					Temperature only				
2	2 Are all the meteorological sensors operational online, and reporting data?					Temperature only				
3	3 Are the shields for the temperature and RH sensors clean?									
4	Are the aspirated motors working?					N/A				
5	Is the solar radiation sensor's lens clean and free of scratches?			free of	✓	N/A				
6	Is the surface wetness sensor grid clean and undamaged?			indamaged?	✓	N/A				
7	Are the sensor signal and power cables intact, in good condition, and well maintained?			, in good						
8	Are the sensor signal and power cable connections protected from the elements and well maintained?			tions protected	✓					

Fi	eld Sy	stems Data Fo	orm			F-02058-1500-S5-rev002
Site	e ID	SUM156	Technician	Martin Valvur		Site Visit Date 02/13/2024
	<u>Siting C</u>	Criteria: Are the pollut	ant analyzers a	nd deposition eq	<u>uipr</u>	nent sited in accordance with 40 CFR 58, Appendix E
1		sample inlets have at le icted airflow?	east a 270 degre	e arc of		
2	Are the sample inlets 3 - 15 meters above the ground?				✓	
3	Are the sample inlets > 1 meter from any major obstruction and 20 meters from trees?					
	Pollutant analyzers and deposition equipment operations a					intenance
1		analyzers and equipme on and well maintained		e in good		
2		analyzers and monitoning data?	rs operational,	on-line, and		
3	Describ	e ozone sample tube.				1/4 teflon by 15 meters
4	Describ	e dry dep sample tube				3/8 teflon by 15 meters
5		ine filters used in the c location)	ozone sample lir	ne? (if yes		At inlet only
6	Are san obstruc	nple lines clean, free of tions?	'kinks, moistur	e, and	✓	
7	Is the ze	ero air supply desiccan	t unsaturated?		✓	
8	Are the	re moisture traps in th	e sample lines?		✓	Flow line only
9	Is there a rotometer in the dry deposition filter line, and is clean?			er line, and is it		Clean and dry

Fi	eld Sy	stems Data Fo	rm					F-02	2058-15	00-S6-rev002
Site	SUM156 Technician Martin Valvur			Site Visit	t Date	02/13/2024	Ļ			
	DAS, sei	<u>isor translators, and p</u>	<u>eripheral equi</u>	pment operatio	ns ai	nd maintenar	<u>1ce</u>			
1	1 Do the DAS instruments appear to be in good condition and well maintained?									
2 Are all the components of the DAS operational? (printers, modem, backup, etc)					✓					
3 Do the analyzer and sensor signal leads pass through lightning protection circuitry?						Temperature	only			
4	4 Are the signal connections protected from the weather and well maintained?			✓						
5	Are the signal leads connected to the correct DAS channel?			DAS channel?	✓					
6	Are the grounde	DAS, sensor translator d?	rs, and shelter	properly	✓					
7	Does the	instrument shelter ha	ve a stable pov	ver source?	✓					
8	Is the in	strument shelter tempo	erature contro	lled?						
9	Is the m	et tower stable and gro	ounded?			Stable			Grounded	
10	Is the sa	mple tower stable and	grounded?							
11	Tower c	omments?								

Field	d Systems Data	For	m					F-02	058-	1500-	S7-re	v002
Site II	SUM156		Techni	ician I	Martin Valvur		Site Visit Date	02/13/2024				
<u>Doc</u>	<u>umentation</u>											
Doe	s the site have the requi	red inst	trumen			<u>nuals?</u>						
Wind of Tempe Relativ Solar r Surface Wind s Tempe Humid Solar r Tippin Ozone Filter p	speed sensor direction sensor rature sensor re humidity sensor radiation sensor e wetness sensor sensor translator rature translator dity sensor translator adiation translator g bucket rain gauge analyzer back flow controller back MFC power supply				Data Data Strij Con Mod Prin Zero Filto Sura UPS Ligh Shel Shel	aputer lem lter o air pu er flow ge prot ge prot htning j lter hea lter air	r recorder imp pump ector protection device ter conditioner	Yes				
<u>Do</u>	bes the site have the requ			t recen	<u>t QC documen</u>	its and	<u>report forms?</u>	Current				
HASP Field C Calibra Ozone Preven	os Manual Ops Manual ation Reports z/s/p Control Charts tive maintenance schedu			ct 2010 ct 2010)			Curre	nt			
1 Is	the station log properly	compl	eted du	ring e	very site visit?							
	re the Site Status Repor irrent?	t Form	s being	compl	leted and							
	re the chain-of-custody f mple transfer to and fro			y used	to document							
	re ozone z/s/p control ch irrent?	arts pr	operly	compl	eted and		ontrol charts not us	sed				

Field Systems Data Form

SUM156 Technician Martin Valvur Site Visit Date 02/13/2024 Site ID Site operation procedures Trained on-site in 1989 Has the site operator attended a formal CASTNET training 1 course? If yes, when and who instructed? 2 Has the backup operator attended a formal CASTNET training course? If yes, when and who instructed? Is the site visited regularly on the required Tuesday ✓ 3 schedule? \checkmark Are the standard CASTNET operational procedures being 4 flollowed by the site operator? Is the site operator(s) knowledgeable of, and able to perform 5 the required site activities? (including documentation)

Are regular operational QA/QC checks performed on meteorological instruments?

QC Check Performed		Frequency	Compliant
Multipoint Calibrations	\checkmark	N/A	
Visual Inspections	\checkmark	N/A	\checkmark
Translator Zero/Span Tests (climatronics)		N/A	\checkmark
Manual Rain Gauge Test	\checkmark	N/A	\checkmark
Confirm Reasonableness of Current Values	\checkmark	N/A	\checkmark
Test Surface Wetness Response	\checkmark	N/A	\checkmark

Are regular operational QA/QC checks performed on the ozone analyzer?

QC Check Performed
Multi-point Calibrations
Automatic Zero/Span Tests
Manual Zero/Span Tests
Automatic Precision Level Tests
Manual Precision Level Test
Analyzer Diagnostics Tests
In-line Filter Replacement (at inlet)
In-line Filter Replacement (at analyz
Sample Line Check for Dirt/Water
Zero Air Desiccant Check

	Frequency	Со
✓	Semiannually	✓
✓	Daily	\checkmark
✓	As needed	\checkmark
✓	Daily	\checkmark
✓	As needed	✓
✓	Weekly	✓
✓	Every 2 weeks	✓
	N/A	✓
✓	Weekly	✓
✓	Weekly	✓

- Do multi-point calibration gases go through the complete 1 sample train including all filters?
- Do automatic and manual z/s/p gasses go through the 2 complete sample train including all filters?

3	Are the automatic and	manual z/s/p	checks	monitored	and
	reported? If yes, how?				

	Unknown
✓	SSRF, logbook, call-in

Provide any additional explanation (photograph or sketch if necessary) regarding conditions listed above, or any other features, natural or man-made, that may affect the monitoring parameters:

mpliant

F-02058-1500-S8-rev002

Fi	Field Systems Data Form				F-02058-1500-S9-rev002				
Sit	e ID	SUM156 Tec	hnician Martin Valvur		Site Visit Date 02/13/2024				
	Site ope	eration procedures							
1	Is the fi	lter pack being changed ever	y Tuesday as scheduled	?⊻	✓ Filter changed mornings				
2	Are the Site Status Report Forms being completed and filed correctly?			✓					
3	Are data downloads and backups being performed as scheduled?				No longer required				
4	Are ger	eral observations being mad	e and recorded? How?	✓	SSRF, logbook				
5	Are site supplies on-hand and replenished in a timely fashion?			✓					
6	Are san	nple flow rates recorded? Ho	w?	✓	SSRF, logbook, call-in				
7	Are san fashion	nples sent to the lab on a regu ?	ılar schedule in a timely						
8		ers protected from contamina pping? How?	ation during handling	✓	✓ Clean gloves on and off				
9		site conditions reported reguons manager or staff?	llarly to the field						
QC	Check P	erformed	Frequency		Compliant				
N	Aulti-poi	nt MFC Calibrations	Semiannually						
I	Flow Syst	em Leak Checks	✓ Weekly						
Filter Pack Inspection									
Flow Rate Setting Checks		✓ Weekly							
		✓ Weekly							
I	n-line Fi	lter Inspection/Replacement	 Semiannually 						
S	Sample L	ine Check for Dirt/Water	✓ Weekly						

Field Systems Data Form

SUM156

F-02058-1500-S10-rev002

Techni

Technician Martin Valvur

Site Visit Date 02/13/2024

Site Visit Sensors

Parameter	Manufacturer	Model	S/N	Client ID
Computer	Dell	Inspiron 15	3L2MC12	07013
DAS	Campbell	CR3000	2127	000348
Elevation	Elevation	1	None	None
Filter pack flow pump	Thomas	107CA18	00688001783	00235
Flow Rate	Apex	AXMC105LPMDPC	illegible	000898
Infrastructure	Infrastructure	none	none	none
Modem	Digi	LR54	unknown	07158
Ozone	ThermoElectron Inc	49i A1NAA	1009241790	000623
Ozone Standard	ThermoElectron Inc	49i A3NAA	0922236888	000511
Sample Tower	Aluma Tower	A	none	03542
Shelter Temperature	Campbell	107-L	none	none
Siting Criteria	Siting Criteria	1	None	None
Temperature	RM Young	41342VO	9639	05043
Zero air pump	Werther International	C 70/4	000815255	06882

Site Inventory by Site Visit

Site V	Visit Date	Parameter	Mfg	Owner ID	Model Number	Serial Number
IRL14	41-Martin	Valvur-02/15/2024				
1	2/15/2024	Computer	Dell	007024	Inspiron 15	8W2MC12
2	2/15/2024	DAS	Campbell	000340	CR3000	2119
3	2/15/2024	Elevation	Elevation	None	1	None
4	2/15/2024	Filter pack flow pump	Thomas	02759	107CAB18	1192001899
5	2/15/2024	Flow Rate	Арех	000866	AXMC105LPMDPCV	illegible
6	2/15/2024	Infrastructure	Infrastructure	none	none	none
7	2/15/2024	Modem	Digi	07124	LR54	unknown
8	2/15/2024	Ozone	ThermoElectron Inc	000698	49i A1NAA	1030244797
9	2/15/2024	Ozone Standard	ThermoElectron Inc	000443	49i A3NAA	CM08200019
10	2/15/2024	Sample Tower	Aluma Tower	000020	В	AT-61152-A-H8-F
11	2/15/2024	Shelter Temperature	Campbell	none	107-L	none
12	2/15/2024	Siting Criteria	Siting Criteria	None	1	None
13	2/15/2024	Temperature	RM Young	07285	41342VC	31776
14	2/15/2024	Zero air pump	Werther International	06910	C 70/4	000829160

DAS Time Max Error: 0

Mfg	Serial Nu	mber Site	e 1	Fechnician	Site Visit Date	Parameter	Use Desc.
Campbell	2119	IRI	_141	Martin Valvur	02/15/2024	DAS	Primary
Das Date: Das Time: Das Day:	2 /15/2024 10:23:00 46	Audit Date Audit Time Audit Day	10:23:00 46	Mfg Serial Number Tfer ID	HY 12010039329 01322	Parameter Tfer Desc.	DAS Source generator (D
Low Channel: Avg Diff: 0.0000	Max Diff:	High Chann Avg Diff:	Max Diff:	Slope Cert Date	1.0000 6/15/201		0.00000
				Mfg	Fluke	Parameter	DAS
				Serial Number	95740243	Tfer Desc.	DVM
				Tfer ID	01312		
				Slope	1.0000	0 Intercept	0.00000
				Cert Date	1/31/202	4 CorrCoff	1.00000
Channel	Input D	VM Output	DAS Output	InputUnit	OutputUnit	Difference	
4	0.0000	0.0000	0.0000) V	V	0.0000	

Flow Data Form

Mfg	Serial Num	iber Tag	Site	Тес	chnician	Site Vis	sit Date	Paran	ieter	Owner ID
Арех	illegible		IRL141	Ma	artin Valvur	02/15/2	2024	Flow R	ate	000866
					Mfg	BIOS		Р	arameter Flo	w Rate
					Serial Number	152253		Т	fer Desc. Blo	DS 220-H
					Tfer ID	15225				
								_	_	
					Slope		1.000	00 Inte	ercept	0.00000
					Cert Date		5/2/20	22 Co	rrCoff	1.00000
DAS 1:		DAS 2:		L	Cal Factor Z	lero		0.0	01	
A Avg % Diff:	A Max % Dif	A Avg %	Diff A Max	x % Dif	Cal Factor F	ull Scale		1.0	02	
0.90%	1.35%				Rotometer R	eading:		1	.4	
Desc.	Test type	Input l/m	n Input Corr	MfcDisp.	OutputSignal	Output S	S E Inp	outUnit	OutputSignal	PctDifference
primary	pump off	0.000	0.000	-0.01	0.000	0.00		l/m	l/m	
primary	leak check	0.000	0.000	0.00	0.000	0.00		l/m	l/m	
primary	test pt 1	1.487	1.490	1.47	0.000	1.50		l/m	l/m	0.67%
primary	test pt 2	1.487	1.490	1.47	0.000	1.50		l/m	l/m	0.67%
primary	test pt 3	1.484	1.480	1.47	0.000	1.50		l/m	l/m	1.35%
Sensor Com	<mark>ponent</mark> Leak Tes	t		Conditio	on			Statu	s pass	
Sensor Com	ponent Tubing C	ondition		Conditio	Good			Statu	s pass	
Sensor Com	ponent Filter Pos	ition		Conditio	n Fair			Statu	s pass	
Sensor Com	ponent Rotomete	er Conditio	n	Conditio	Clean and dry			Statu	s pass	
Sensor Com	ponent Moisture	Present		Conditio	n No moisture p	resent		Statu	s pass	
Sensor Comj	ponent Filter Dist	ance		Conditio	n 5.5 cm			Statu	s pass	
Sensor Component Filter Depth			Conditio	0.3 cm			Status Fail			
Sensor Component Filter Azimuth			Conditio	on 120 deg			Status pass			
Sensor Com	<mark>ponent</mark> System M	lemo		Conditio	on			Statu	s pass	

Ozone Data Form

Mfg	Serial Numbe	er Tag Site	T	echnician	Site Visit Date	Parameter	Owner ID
ThermoElectron Inc	1030244797	IRL141		lartin Valvur	02/15/2024	Ozone	000698
Slope: Intercept CorrCoff:		rcept	0.00000 0.00000 0.00000	Mfg Serial Number Tfer ID	ThermoElectron CM23147126 01116		er ozone c. Ozone primary stan
DAS 1:	D	AS 2:			1.0065	54 Intercent	-0.03885
A Avg % Diff: A			Max % Dif	Slope			
0.0%	0.0%			Cert Date	9/19/202	23 CorrCoff	1.00000
UseDescription	ConcGroup	Tfer Raw	Tfer Corr	Site	Site Unit	RelPerDif	AbsDif
primary	1	0.29	0.38	-0.20	ppb		-0.58
primary primary	2 3	11.23 31.88	11.22 31.67	10.80	ppb ppb	0.6	-0.42
primary	4	62.21	61.71	62.71	ppb	1.61	
primary	5	111.77	110.79	113.20	ppb	2.15	
Sensor Compon	ent Audit Press	ure	Condit	ion 758 mmHg		Status pass	
Sensor Compon	ent 26.6 degree	unobstructed ru	le Condit	ion True		Status pass	
Sensor Compon	ent Tree dewlin	e >10m or below	inlet Condit	ion True		Status pass	
Sensor Compon	ent ADT 1000-1	0000 vehicles fu	urther t Condit	ion True		Status pass	
Sensor Compon	ent ADT <1000	vehicles further	than 5 Condit	ion True		Status pass	
Sensor Compon	ent Sample Tra	in	Condit	ion Good		Status pass	
Sensor Compon	ent Inlet Filter C	condition	Condit	ion Clean		Status pass	
Sensor Compon	ent Offset		Condit	ion -0.1		Status pass	
Sensor Compon	ent Span		Condit	ion 1.047		Status pass	
Sensor Compon	ent Zero Voltag	e	Condit	ion N/A		Status pass	
Sensor Compon	ent Fullscale Vo	oltage	Condit	ion N/A		Status pass	
Sensor Compon	ent Cell A Freq.		Condit	ion 100.2 kHz		Status pass	
Sensor Compon	ent Cell A Noise)	Condit	ion 0.9 ppb		Status pass	
Sensor Compon	ent Cell A Flow		Condit	ion 0.68 lpm		Status pass	
Sensor Compon	ent Cell A Press	sure	Condit	ion 735.3 mmHg		Status pass	
Sensor Compon	ent Cell A Tmp.		Condit	ion 33.3 C		Status pass	
Sensor Compon	ent Cell B Freq.		Condit	ion 109.3 kHz		Status pass	
Sensor Compon	ent Cell B Noise	9	Condit	ion 0.9 ppb		Status pass	
Sensor Compon	ent Cell B Flow		Condit	ion 0.68 lpm		Status pass	
Sensor Compon	ent Cell B Press	sure	Condit	ion 735.0 mmHg		Status pass	
Sensor Compon	ent Nafion drye	rinstalled	Condit	ion True		Status pass	
Sensor Compon	ent System Mer	no	Condit	ion		Status pass	

Temperature Data Form

Mfg	Serial Number	Tag Site	Т	echni	ician	Site V	isit Date	Param	eter	Owner ID	
RM Young	31776	IRL141	I	Martin	Valvur	02/15	/2024	Temper	ature	07285	
				Mf	g	Fluke		Pa	rameter Te	mperature	
				Ser	rial Number	32751	43	Tf	er Desc. R	D	
				Tfe	er ID	01229	I				
DAS 1:	DAS	5 2:		Slo	pe		1.0002	2 Inte	rcept	-0.00505	5
Abs Avg Err	Abs Max Err Abs	Avg Err Abs	Max Err	Cer	rt Date		2/12/202	4 Cor	rCoff	1.00000	C
1.60	2.76			L							
UseDesc.	Test type	InputTmpRaw	InputTmp	Corr.	OutputTmpS	Signal	OutputSig	gnalEng	OSE Unit	Difference	
primary	Temp Low Range	0.10	0.11		0.000		-0.4	4	С	-0.47	
primary	Temp Mid Range	24.20	24.20		0.000		22.	6	С	-1.56	
primary	Temp High Range	48.55	48.54		0.000		45.	8	С	-2.76	
Sensor Com	ponent Shield		Condi	tion C	Clean			Status	pass		
Sensor Component Blower			Condi	Condition Functioning				Status	pass		
Sensor Component Properly Sited			Condi	Condition Properly sited				Status	tus pass		
Sensor Com	ponent System Memo)	Condi	tion				Status	pass		

Shelter Temperature Data For

Mfg	Serial Number Tag	Site	Technician	Site Visit Date	Parameter	Owner ID
Campbell	none	IRL141	Martin Valvur	02/15/2024	Shelter Temperature	none
DAS 1:	DAS 2:		Mfg	Fluke	Parameter She	Iter Temperature
Abs Avg Err Ab	0.31 Abs Avg	Err Abs Max Err	Serial Number	3275143	Tfer Desc. RTD)
			Tfer ID	01229		
			Slope	1.0002	2 Intercept	-0.00505
			Cert Date	2/12/202	4 CorrCoff	1.00000

UseDesc.	Test type	InputTmpRaw	InputTmpCorr.	OutputTmpSignal	OutputSignalEng	OSE Unit	Difference
primary	Temp Mid Range	26.63	26.63	0.000	26.3	С	-0.31
primary	Temp Mid Range	27.16	27.16	0.000	27.0	С	-0.15
primary	Temp Mid Range	27.60	27.60	0.000	27.3	С	-0.3
Sensor Component System Memo Condition						pass	

Siting Criteria Form

Sensor Component Large point source of So2 or Nox	Condition	Status pass
Sensor Component City > 50,000	Condition 30 km	Status Fail
Sensor Component City 1,000 to 10,000	Condition	Status pass
Sensor Component City 10,000 to 50,000	Condition 7 km	Status Fail
Sensor Component Feedlot operations	Condition	Status pass
Sensor Component Large parking lot	Condition 100 m	Status Fail
Sensor Component Limited agriculture operations	Condition	Status pass
Sensor Component Major industrial source	Condition	Status pass
Sensor Component Secondary road < or = 100 per da	Condition	Status pass
Sensor Component Secondary road >100 vehicles/da	Condition	Status pass
Sensor Component Small parking lot	Condition	Status pass
Sensor Component System Memo	Condition	Status pass
Sensor Component Major highway, airport, or rail yard	Condition	Status pass
Sensor Component Intensive agriculture operations	Condition	Status pass

Infrastructure Data For

Site ID IF	RL141	Technician	Martin Valvur		Site Visit Date	02/15/2024]
Shelter Mak	ie S	Shelter Model		Shelter	Size		
Ekto	3	8810		640 cuf	ť		
		2954553955455455455		NUMBER OF STREET			

Sensor Component Sample Tower Type	Condition	Туре В	Status	pass
Sensor Component Conduit	Condition	Good	Status	pass
Sensor Component Met Tower	Condition	Good	Status	pass
Sensor Component Moisture Trap	Condition	Installed	Status	pass
Sensor Component Moisture Trap Type	Condition	Glass bottle and filter	Status	pass
Sensor Component Power Cables	Condition	Good	Status	pass
Sensor Component Shelter Temp Control	Condition	Functioning	Status	pass
Sensor Component Rotometer	Condition	Installed	Status	pass
Sensor Component Sample Tower	Condition	Good	Status	pass
Sensor Component Shelter Condition	Condition	Good	Status	pass
Sensor Component Shelter Door	Condition	Good	Status	pass
Sensor Component Shelter Roof	Condition	Good	Status	pass
Sensor Component Shelter Floor	Condition	Good	Status	pass
Sensor Component Shelter walls	Condition	Good	Status	pass
Sensor Component Excessive mold present	Condition	Good	Status	pass
Sensor Component Signal Cable	Condition	Good	Status	pass
Sensor Component Tubing Type	Condition	3/8 teflon	Status	pass
Sensor Component Sample Train	Condition	Good	Status	pass
Sensor Component System Memo	Condition		Status	pass

Site Visit Comments

Parameter	Site	Technician	S.V. Date	Component	Mfg	Serial No.	Hazaro	d Problem
Flow Rate	IRL141	Martin Valvur	02/15/2024	Filter Depth	Apex	4595		

The filter attachment plate is mounted too low in the enclosure resulting in the filter being exposed to wind-driven rain and in the standard geometric orientation.

Field Systems Comments

1 Parameter: SiteOpsProcedures

Manual z/s/p performed following ozone inlet filter changes. Leak checks are no longer performed. A gate has been added that limits fishing parking near the site. The main parking lot for the picnic area and boat ramp is still active.

2 Parameter: ShelterCleanNotes

The shelter is clean and well organized.

Field Systems Data Form

F-02058-1500-S1-rev002

Site ID IRL141	Technician Martin Valvur	Site Visit Date 02/1	5/2024							
	FDA	USGS Map	Sebastian							
Site Sponsor (agency)	EPA	-								
Operating Group	IRC Health Dept	Map Scale								
AQS #	12-061-9991	Map Date								
Meteorological Type	R.M. Young									
Air Pollutant Analyzer	Ozone	QAPP Latitude								
Deposition Measurement	dry	QAPP Longitude								
Land Use	coastal	QAPP Elevation Meters								
Terrain	flat	QAPP Declination								
Conforms to MLM	Yes	QAPP Declination Date								
Site Telephone	(772) 538-2365	Audit Latitude 27.8492								
Site Address 1	Sebastian Inlet State Park	Audit Longitude	-80.455595							
Site Address 2	9700 South A1A	Audit Elevation	2							
County	Indian River	Audit Declination	-5.8							
City, State	Melbourne Beach, FL	Present								
Zip Code	32951	Fire Extinguisher 🔽	inspected Feb 2024							
Time Zone	Eastern	First Aid Kit								
Primary Operator		Safety Glasses 🔽								
Primary Op. Phone #		Safety Hard Hat 🗹								
Primary Op. E-mail		Climbing Belt								
Backup Operator		Security Fence								
Backup Op. Phone #		Secure Shelter								
Backup Op. E-mail		Stable Entry Steps ☑								
Shelter Working Room \Box	Make Ekto Mo	odel 8810	Shelter Size 640 cuft							
Shelter Clean	Notes The shelter is clean and well of	rganized.								
Site OK	Notes									
Sebas										

Fie	eld Sy	stems Data Fo	orm				F-0205	8-15	500-S3	-rev002
Site	e ID	IRL141	Technician	Martin Valvur		Site Visit Date	02/15/2024]	
1		l speed and direction luenced by obstructio				N/A				
2	(i.e. wind horizont	l sensors mounted so l sensors should be m ally extended boom > to the prevailing winc	ounted atop the 2x the max diar	e tower or on a		N/A				
3		tower and sensors plu			✓	N/A				
4		temperature shields p diated heat sources su		positioned to	✓					
5	condition surface a	perature and RH sens ns? (i.e. ground below and not steeply sloped water should be avoi	y sensors should I. Ridges, hollov	be natural						
6	Is the so	lar radiation sensor p	lumb?		✓	N/A				
7	Is it sited	l to avoid shading, or	any artificial o	r reflected light?	✓	N/A				
8	Is the ra	in gauge plumb?			✓	N/A				
9	Is it sited towers, o	l to avoid sheltering e etc?	ffects from buil	dings, trees,	✓	N/A				
10	Is the su facing no	rface wetness sensor s orth?	sited with the gr	rid surface	✓	N/A				
11	Is it incl	ined approximately 3	0 degrees?			N/A				

Field Systems Data Form

F-02058-1500-S4-rev002

Sit	e ID	IRL141	Technician	Martin Valvur		Site Visit Date	02/15/2024	
1		e meterological sensor 1, and well maintained		intact, in good	✓			
2	Are all the reporting	ne meteorological sens g data?	ors operationa	l online, and				
3	Are the s	hields for the tempera	ature and RH s	ensors clean?	✓			
4	4 Are the aspirated motors working?							
5	5 Is the solar radiation sensor's lens clean and free of scratches?				✓	N/A		
6	Is the su	rface wetness sensor g	rid clean and u	ndamaged?		N/A		
7		ensor signal and powe		, in good				
8		ensor signal and powe elements and well ma		tions protected				

Fi	eld Sy	stems Data Fo	orm			F-02058-1	500-S5-rev002
Site	e ID	IRL141	Technician M	artin Valvur		Site Visit Date 02/15/2024	
	<u>Siting (</u>	Criteria: Are the pollut	ant analyzers and	deposition equ	<u>ipn</u>	ent sited in accordance with 40 CFR	58, Appendix E
1		sample inlets have at le icted airflow?	east a 270 degree a	arc of	✓		
2	Are the	sample inlets 3 - 15 m	eters above the gr	ound?	✓		
3		sample inlets > 1 mete meters from trees?	er from any major	obstruction,	✓		
	<u>Polluta</u>	nt analyzers and depos	sition equipment o	perations and r	nai	<u>ntenance</u>	
1		analyzers and equipme on and well maintained		1 good	✓		
2		analyzers and monitoning data?	rs operational, on	-line, and	✓		
3	Describ	e ozone sample tube.				1/4 teflon by 15 meters	
4	Describ	e dry dep sample tube	•			3/8 teflon by 15 meters	
5		ine filters used in the o location)	ozone sample line?	? (if yes	✓	At inlet only	
6	Are san obstruc	nple lines clean, free of tions?	f kinks, moisture,	and	✓		
7	Is the zo	ero air supply desiccan	nt unsaturated?	Ŀ	✓		
8	Are the	re moisture traps in th	e sample lines?	E	✓		
9	Is there clean?	a rotometer in the dry	y deposition filter	line, and is it	✓	Clean and dry	

Fi	eld Sy	stems Data Fo	orm			F-02058-1500-S6-rev002					
Site	e ID	IRL141	Technician	Martin Valvur		Site Visi	t Date 02/15/2	2024]		
	DAS, se	nsor translators, and p	eripheral equi	pment operation	ns ai	<u>ıd maintena</u>	nce				
1		DAS instruments appea intained?	ar to be in good	l condition and	✓						
2		he components of the l backup, etc)	DAS operation	al? (printers,	✓						
3		nalyzer and sensor sig g protection circuitry?		through	✓	Met sensors	only				
4		signal connections pro intained?	tected from the	e weather and	✓						
5	Are the	signal leads connected	to the correct	DAS channel?	✓						
6	Are the grounde	DAS, sensor translator d?	rs, and shelter	properly	✓						
7	Does the	e instrument shelter ha	ive a stable pov	wer source?							
8	Is the in	strument shelter temp	erature contro	lled?							
9	Is the m	et tower stable and gro	ounded?			Stable		Grounded			
10	Is the sa	mple tower stable and	grounded?								
11	Tower c	omments?									

Field S	ystems Data	F-02	2058	-1500-S7-rev002				
Site ID	IRL141		Tech	nnician Ma	artin Valvur Site Visit Date	02/15/2024	1	
Documer	<u>itation</u>							
Does the	<u>site have the requin</u>	red ins	<u>strum</u>	<u>ent and eq</u>	<u>uipment manuals?</u>			
		Yes	No			Yes	No	N/A
Wind speed				\checkmark	Data logger			
Wind direct	tion sensor			\checkmark	Data logger			
Temperatu	re sensor	\checkmark			Strip chart recorder			
Relative hu	midity sensor			\checkmark	Computer			
Solar radiat	tion sensor			\checkmark	Modem		\checkmark	
Surface wet	ness sensor			\checkmark	Printer			
Wind senso	r translator			\checkmark	Zero air pump		\checkmark	
Temperatur	re translator				Filter flow pump		\checkmark	
Humidity se	ensor translator				Surge protector		\checkmark	
Solar radiat	tion translator			\checkmark	UPS			
Tipping buc	eket rain gauge			\checkmark	Lightning protection devic	e 🗌	\checkmark	
Ozone analy	yzer		\checkmark		Shelter heater	\checkmark		
Filter pack	flow controller		\checkmark		Shelter air conditioner	\checkmark		
Filter pack	MFC power supply	,						
Does th	<u>e site have the requ</u>	ired a	nd m	ost recent	QC documents and report forms?			
		Pres	ent			Curre	ent	
Station Log		•	✓			\checkmark		
SSRF			✓			\checkmark		
Site Ops Ma	anual		✓	Feb 2014		\checkmark		
HASP			✓	Feb 2014		\checkmark		
Field Ops N	Ianual	[
Calibration	Reports	•	✓			\checkmark		
Ozone z/s/p	Control Charts	[

1	Is the station log properly completed during every site visit?	\checkmark

Preventive maintenance schedule

2	Are the Site Status Report Forms being completed and
	current?

- ✓ 3 Are the chain-of-custody forms properly used to document sample transfer to and from lab?
- Are ozone z/s/p control charts properly completed and 4 current?

Control charts not used

Provide any additional explanation (photograph or sketch if necessary) regarding conditions listed above, or any other features, natural or man-made, that may affect the monitoring parameters:

✓

Field Systems Data Form

IRL141 Technician Martin Valvur Site Visit Date 02/15/2024 Site ID Site operation procedures on-site 7/9/2001 by MACTEC employee Has the site operator attended a formal CASTNET training 1 course? If yes, when and who instructed? 2 Has the backup operator attended a formal CASTNET training course? If yes, when and who instructed? Is the site visited regularly on the required Tuesday ✓ 3 schedule? \checkmark Are the standard CASTNET operational procedures being 4 flollowed by the site operator? Is the site operator(s) knowledgeable of, and able to perform 5 the required site activities? (including documentation)

Are regular operational QA/QC checks performed on meteorological instruments?

QC Check Performed		Frequency	Compliant
Multipoint Calibrations	\checkmark	N/A	\checkmark
Visual Inspections	\checkmark	N/A	
Translator Zero/Span Tests (climatronics)		N/A	\checkmark
Manual Rain Gauge Test	\checkmark	N/A	\checkmark
Confirm Reasonableness of Current Values	✓	N/A	\checkmark
Test Surface Wetness Response	\checkmark	N/A	\checkmark

Are regular operational QA/QC checks performed on the ozone analyzer?

QC Check Performed		Frequency	Compliant
Multi-point Calibrations	\checkmark	Semiannually	
Automatic Zero/Span Tests	\checkmark	Daily	
Manual Zero/Span Tests			
Automatic Precision Level Tests	\checkmark	Daily	
Manual Precision Level Test			
Analyzer Diagnostics Tests	\checkmark	Weekly	
In-line Filter Replacement (at inlet)	\checkmark	Every 2 weeks	
In-line Filter Replacement (at analyze		N/A	
Sample Line Check for Dirt/Water	\checkmark	Weekly	
Zero Air Desiccant Check	\checkmark	Weekly	\checkmark
1 Do multi point collibustion goods go the	angh th		

- **1** Do multi-point calibration gases go through the complete sample train including all filters?
- 2 Do automatic and manual z/s/p gasses go through the complete sample train including all filters?

3	Are the automatic and manual z/s/p checks monitored and
	reported? If yes, how?

	Unknown	
✓		
	SSRF, logbook, call-in	

Provide any additional explanation (photograph or sketch if necessary) regarding conditions listed above, or any other features, natural or man-made, that may affect the monitoring parameters:

Manual z/s/p performed following ozone inlet filter changes. Leak checks are no longer performed. A gate has been added that limits fishing parking near the site. The main parking lot for the picnic area and boat ramp is still active.

F-02058-1500-S8-rev002

Fi	eld Sy	stems Data For	rm				F-02058- 1	1500-S9-rev002		
Sit	e ID	IRL141	Techni	cian Martin Valvur		Site Visit Date	02/15/2024			
	<u>Site ope</u>	eration procedures								
1	Is the fi	lter pack being changed	every T	uesday as scheduled	? ✓	Filter changed morr	nings			
2	Are the correct	Site Status Report Forr ly?	ns being	completed and filed	✓					
3	Are data downloads and backups being performed as scheduled?					No longer required				
4	4 Are general observations being made and recorded? How?				✓	SSRF, logbook				
5	Are site fashion	e supplies on-hand and r ?	eplenish	ed in a timely	✓					
6	6 Are sample flow rates recorded? How?			✓	SSRF, logbook, call-in					
7	Are san fashion	nples sent to the lab on a ?	ı regular	schedule in a timely	✓					
8		ers protected from conta pping? How?	aminatio	n during handling	✓	Clean gloves on an	d off			
9		site conditions reported ons manager or staff?	l regular	ly to the field						
QC	Check P	erformed		Frequency			Compliant			
]	Multi-poi	nt MFC Calibrations	\checkmark	Semiannually						
]	Flow Syst	em Leak Checks	\checkmark	Weekly						
]	Filter Pac	k Inspection								
]	Flow Rate	e Setting Checks	\checkmark	Weekly			\checkmark			
	Visual Ch	eck of Flow Rate Rotom	neter 🗹	Weekly			\checkmark			
]	In-line Fil	lter Inspection/Replacen	nent 🗹	Semiannually			\checkmark			
1	Sample L	ine Check for Dirt/Wate	er 🗸	Weekly						

Field Systems Data Form

IRL141

F-02058-1500-S10-rev002

Techn

Technician Martin Valvur

Site Visit Date 02/15/2024

Site Visit Sensors

Parameter	Manufacturer	Model	S/N	Client ID
Computer	Dell	Inspiron 15	8W2MC12	007024
DAS	Campbell	CR3000	2119	000340
Elevation	Elevation	1	None	None
Filter pack flow pump	Thomas	107CAB18	1192001899	02759
Flow Rate	Арех	AXMC105LPMDPC	illegible	000866
Infrastructure	Infrastructure	none	none	none
Modem	Digi	LR54	unknown	07124
Ozone	ThermoElectron Inc	49i A1NAA	1030244797	000698
Ozone Standard	ThermoElectron Inc	49i A3NAA	CM08200019	000443
Sample Tower	Aluma Tower	B	AT-61152-A-H8-F	000020
Shelter Temperature	Campbell	107-L	none	none
Siting Criteria	Siting Criteria	1	None	None
Temperature	RM Young	41342VC	31776	07285
Zero air pump	Werther International	C 70/4	000829160	06910

Site Inventory by Site Visit

Site	Visit Date	Parameter	Mfg	Owner ID	Model Number	Serial Number
ALC	188-Martin	v Valvur-02/26/2024				
1	2/26/2024	DAS	Campbell	000335	CR3000	2114
2	2/26/2024	Ozone	ThermoElectron Inc	000742	49i A1NAA	1105347313
3	2/26/2024	Ozone Standard	ThermoElectron Inc	000512	49i A3NAA	0922236890
4	2/26/2024	Zero air pump	Werther International	06902	PC70/4	000829157

Ozone Data Form

Mfg S	erial Number '	Tag Site		Tecl	hnician	Site Visit Date	Parame	ter	Owner ID
ThermoElectron Inc	1105347313	ALC188		Mar	tin Valvur	02/26/2024	Ozone		000742
Intercept -0.	98286 Slope: 36548 Interce 99997 CorrC	ept C).00000).00000).00000	\$	Mfg Serial Number Ffer ID	ThermoElectron CM23147126 01116			ozone Ozone primary stan
DAS 1:	DAS			5	Slope	1.0065	54 Inter	cept	-0.03885
A Avg % Diff: A Ma		vg %Diff A	Max % Dif	1	Cert Date	9/19/202	23 Corr	Coff	1.00000
0.0%	0.0%								
	ConcGroup	Tfer Raw	Tfer Cor	r	Site	Site Unit	RelPer	Dif	AbsDif
primary	1	0.50	0.59		0.53	ppb			-0.06
primary	2	15.00	14.95			ppb		2.41	-0.61
primary	3	34.50	34.26			ppb		-3.41	
primary	4	65.25	64.72			ppb		-3	
primary	5	114.30	113.20		111.20	ppb	Q + +	-1.78	
Sensor Component					n 745 mmHg		Status	pass	
Sensor Component	t 26.6 degree ui	nobstructed ru	le Cond	litio	n True		Status	pass	
Sensor Component	t Tree dewline >	>10m or below	inlet Cond	litio	n True		Status	pass	
Sensor Component	t ADT 1000-100	000 vehicles fu	rther t Cond	litio	n True		Status	pass	
Sensor Component	t ADT <1000 ve	hicles further t	than 5 Cond	litio	n True		Status	pass	
Sensor Component	t Sample Train		Cond	litio	n Good		Status	pass	
Sensor Component	t Inlet Filter Cor	ndition	Cond	litio	n Not tested		Status	pass	
Sensor Component	t Offset		Cond	litio	<mark>n</mark> -0.5		Status	pass	
Sensor Component	t Span		Cond	litio	n 1.029		Status	pass	
Sensor Component	t Zero Voltage		Cond	litio	n N/A		Status	pass	
Sensor Component	t Fullscale Volta	age			n N/A		Status	pass	
Sensor Component	t Cell A Freq.		Cond	litio	n 83 kHz		Status	pass	
Sensor Component	t Cell A Noise		Cond	litio	n 0.8 ppb		Status	pass	
Sensor Component			Cond	litio	n 0.68 lpm		Status	pass	
Sensor Component	t Cell A Pressur	re	Cond	litio	n 728.3 mmHg		Status	pass	
Sensor Component	t Cell A Tmp.		Cond	litio	n 34.2 C		Status	pass	
Sensor Component	t Cell B Freq.		Cond	litio	n 90.4 kHz		Status	pass	
Sensor Component	t Cell B Noise		Conc	litio	n 0.9 ppb		Status	pass	
Sensor Component	t Cell B Flow		Cond	litio	n 0.69 lpm		Status	pass	
Sensor Component	t Cell B Pressur	re	Cond	litio	n 727.7 mmHg		Status	pass	
Sensor Component	t Nafion dryer in	nstalled	Cond	litio	n True		Status	pass	
Sensor Component	t System Memo)	Cond	litio	n		Status	pass	

Site Inventory by Site Visit

Site	Visit Date	Parameter	Mfg	Owner ID	Model Number	Serial Number
PAL	190-Martin	v Valvur-03/10/2024				
1	3/10/2024	DAS	Campbell	000343	CR3000	2122
2	3/10/2024	Ozone	ThermoElectron Inc	000726	49i A1NAA	1105347314
3	3/10/2024	Ozone Standard	ThermoElectron Inc	000375	49i A3NAA	0726124696
4	3/10/2024	Zero air pump	Werther International	06922	C 70/4	000836217

Ozone Data Form

Mfg	Serial Numbe	er Tag Site	Te	echnician	Site Visit Date	Parameter	Owner ID
ThermoElectron In	c 1105347314	PAL190	M	lartin Valvur	03/10/2024	Ozone	000726
Slope: Intercept CorrCoff:		rcept	0.00000 0.00000 0.00000	Mfg Serial Number Tfer ID	ThermoElectron CM23147126 01116		er ozone c. Ozone primary stan
DAS 1:	D	AS 2:		Slope	1.0065	54 Intercept	-0.03885
A Avg % Diff: A	Max % Dif A	Avg %Diff A	Max % Dif		9/19/202		1.00000
0.0%	0.0%			Cert Date	9/19/202	23 CorrCoff	1.00000
UseDescription	ConcGroup	Tfer Raw	Tfer Corr	Site	Site Unit	RelPerDif	AbsDif
primary	1 2	0.18 14.35	0.27	0.40	ppb		0.13 0.06
primary primary	3	34.48	34.24	34.48	ppb ppb	0.7	0.00
primary	4	61.85	61.35	61.24	ppb	-0.18	
primary	5	113.05	112.06	111.90	ppb	-0.14	
Sensor Compon	ent Audit Press	ure	Condit	ion 669 mmHg		Status pass	
Sensor Compor	ent 26.6 degree	unobstructed ru	le Condit	ion False		Status Fail	
Sensor Compon	ent Tree dewlin	e >10m or below	inlet Condit	ion True		Status pass	
Sensor Compon	ent ADT 1000-1	0000 vehicles fu	urther t Condit	ion True		Status pass	
Sensor Compon	ent ADT <1000	vehicles further	than 5 Condit	ion True		Status pass	
Sensor Compon	ent Sample Tra	in	Condit	ion Good		Status pass	
Sensor Compon	ent Inlet Filter C	Condition	Condit	ion Clean		Status pass	
Sensor Compon	ent Offset		Condit	ion -0.4		Status pass	
Sensor Compon	lent Span		Condit	ion 1.016		Status pass	
Sensor Compon	ent Zero Voltag	e	Condit	ion N/A		Status pass	
Sensor Compon	ent Fullscale Vo	oltage	Condit	ion N/A		Status pass	
Sensor Compon	ent Cell A Freq.		Condit	ion 88.9 kHz		Status pass	
Sensor Compon	ent Cell A Noise	9	Condit	ion 1.1 ppb		Status pass	
Sensor Compon	ent Cell A Flow		Condit	ion 0.69 lpm		Status pass	
Sensor Compon	ent Cell A Press	sure	Condit	ion 655.2 mmHg		Status pass	
Sensor Compon	ent Cell A Tmp.		Condit	ion 30.9 C		Status pass	
Sensor Compon	ent Cell B Freq.		Condit	ion 97.3 kHz		Status pass	
Sensor Compon	ent Cell B Noise	9	Condit	ion 0.9 ppb		Status pass	
Sensor Compon	ent Cell B Flow		Condit	ion 0.70 lpm		Status pass	
Sensor Compon	ent Cell B Press	sure	Condit	ion 654.7 mmHg		Status pass	
Sensor Compon	ent Nafion drye	r installed	Condit	ion False		Status pass	
Sensor Compon	ent System Mei	no	Condit	ion		Status pass	

APPENDIX B

CASTNET Site Spot Report Forms

EEMS Spot Report

Data Compiled: 3/24/2024 6:14:23 PM

SiteVisitDateSiteTechnician02/26/2024ALC188Martin Valvur

Records with valid pass/fail criteria

Line	Audited Parameter	DAS	Ch. #	Criteria +/-	Counts	QaResult	Units	Pass/Fail
1	Ozone Slope	Р	0	1.1	4	0.98286	unitless	Р
2	Ozone Intercept	Р	0	5	4	-0.36548	ppb	Р
3	Ozone correlation	Р	0	0.995	4	0.99997	unitless	Р
4	Ozone % difference avg	Р	7	10	4	3.0	%	Р
5	Ozone Absolute Difference g1	Р	7	3	1	-0.06	ppb	Р
6	Ozone Absolute Difference g2	Р	7	1.5	1	-0.61	ppb	Р

EEMS Spot Report

Data Compiled: 2/22/2024 10:40:52 AM

SiteVisitDate Site Technician

02/15/2024 IRL141 Martin Valvur

Records with valid pass/fail criteria

Line	Audited Parameter	DAS	Ch. #	Criteria +/-	Counts	QaResult	Units	Pass/Fail
1	Temperature average error	Р	4	0.5	3	1.6	с	Fail
2	Temperature max error	Р	4	0.5	3	2.76	с	Fail
3	Ozone Slope	Р	0	1.1	4	1.0188	unitless	Р
4	Ozone Intercept	Р	0	5	4	-0.49489	ppb	Р
5	Ozone correlation	Р	0	0.995	4	0.99999	unitless	Р
6	Ozone % difference avg	Р	7	10	4	1.8	%	Р
7	Ozone Absolute Difference gl	Р	7	3	1	-0.58	ppb	Р
8	Ozone Absolute Difference g2	Р	7	1.5	1	-0.42	ppb	Р
9	Flow Rate average % difference	Р	10	5	4	0.90	%	Р
10	Flow Rate max % difference	Р	10	5	4	1.35	%	Р
11	DAS Voltage average error	Р	4	0.003	15	0.0000	V	Р
12	Shelter Temperature average error	Р	5	2	24	0.25	с	Р
13	Shelter Temperature max error	Р	5	2	24	0.31	c	Р

02/15/2024 IRL141

Technician Martin Valvur

Field Performance Comments

 1 Parameter:
 Flow Rate
 SensorComponent:
 Filter Depth
 CommentCode:
 71

The filter attachment plate is mounted too low in the enclosure resulting in the filter being exposed to wind-driven rain and in the standard geometric orientation.

Field Systems Comments

1 Parameter: SiteOpsProcedures

Manual z/s/p performed following ozone inlet filter changes. Leak checks are no longer performed. A gate has been added that limits fishing parking near the site. The main parking lot for the picnic area and boat ramp is still active.

2 Parameter: ShelterCleanNotes

The shelter is clean and well organized.

EEMS Spot Report

Data Compiled: 3/25/2024 6:02:50 PM

SiteVisitDateSiteTechnician03/10/2024PAL190Martin Valvur

Records with valid pass/fail criteria

Line	Audited Parameter	DAS	Ch. #	Criteria +/-	Counts	QaResult	Units	Pass/Fail
1	Ozone Slope	Р	0	1.1	4	0.99710	unitless	Р
2	Ozone Intercept	Р	0	5	4	0.16087	ppb	Р
3	Ozone correlation	Р	0	0.995	4	1.00000	unitless	Р
4	Ozone % difference avg	Р	7	10	4	0.4	%	Р
5	Ozone Absolute Difference g1	Р	7	3	1	0.13	ppb	Р
6	Ozone Absolute Difference g2	Р	7	1.5	1	0.06	ppb	Р

EEMS Spot Report

Data Compiled: 2/22/2024 10:01:56 AM

SiteVisitDate Site Technician

02/13/2024 SUM156 Martin Valvur

Records with valid pass/fail criteria

Line	Audited Parameter	DAS	Ch. #	Criteria +/-	Counts	QaResult	Units	Pass/Fail
1	Temperature average error	Р	4	0.5	21	0.13	c	Р
2	Temperature max error	Р	4	0.5	21	0.25	с	Р
3	Ozone Slope	Р	0	1.1	4	1.05201	unitless	Р
4	Ozone Intercept	Р	0	5	4	-0.29588	ppb	Р
5	Ozone correlation	Р	0	0.995	4	0.99999	unitless	Р
6	Ozone % difference avg	Р	7	10	4	3.6	%	Р
7	Ozone Absolute Difference g1	Р	7	3	1	-0.11	ppb	Р
8	Ozone Absolute Difference g2	Р	7	1.5	1	0.04	ppb	Р
9	Flow Rate average % difference	Р	10	5	2	1.12	%	Р
10	Flow Rate max % difference	Р	10	5	2	2.04	%	Р
11	DAS Voltage average error	Р	4	0.003	3	0.0000	V	Р
12	Shelter Temperature average error	Р	5	2	24	0.44	с	Р
13	Shelter Temperature max error	Р	5	2	24	0.91	c	Р