2025 – 1st Quarter Report

Support for Conducting Systems & Performance Audits of Clean Air Status and Trends Network (CASTNET) Sites and National Atmospheric Deposition Program (NADP) Monitoring Stations - III

GSA Contract # GS-10F-075AA Blanket Purchase Agreement # 68HERH22A0026

Prepared for:

U.S. Environmental Protection Agency Office of Atmospheric Protection Clean Air and Power Division

Prepared by:

4577E NW 6th St Ext. Gainesville, FL 32609

Report Submitted April 2025

Table of Contents

1.0 CAS	TNET Quarterly Report	.1
1.1	Introduction	1
1.2	Project Objectives	2
1.3	CASTNET Sites Visited First Quarter 2025	4
1.4	CASTNET Audit Results	4
2.0 NAL	OP Quarterly Report	6
	DP Quarterly Report Introduction	
2.1	- • •	6
2.1 2.2	Introduction	6 6

List of Appendices

Appendix A	CASTNET Audit Report Forms
Appendix B	CASTNET Site Spot Report Forms

List of Tables

Table 1.	Performance Audit Challenge and Acceptance Criteria	2
Table 2.	CASTNET Site Audit Visits	4
Table 3.	NADP Site Audit Visits	7

List of Acronyms and Abbreviations

List of Acronyms and Addrey	
% diff	percent difference
A/D	analog to digital converter
ARS	Air Resource Specialists, Inc.
ASTM	American Society for Testing and Materials
BLM	Bureau of Land Management
BLM-WSO	Bureau of Land Management – Wyoming State Office
CAL	Central Analytical Laboratory
CASTNET	Clean Air Status and Trends Network
CMAQ	Community Multiscale Air Quality
DAS	data acquisition system
deg	degree
DVM	digital voltmeter
ECCC	Environment and Climate Change Canada
EEMS	Environmental, Engineering & Measurement Services, Inc.
EPA	U.S. Environmental Protection Agency
ESC	Environmental Systems Corporation
FSA	Field Systems Audit
FSAD	Field Site Audit Database
GPS	geographical positioning system
HAL	Mercury Analytical Laboratory
LADCO	Lake Michigan Air Directors Consortium
lpm	liters per minute
ME DEP	Maine Department of Environmental Protection
MD DNR	Maryland Department of Natural Resources
MLM	Multilayer Model
MN PCA	Minnesota Pollution Control Agency
m/s	meters per second
mv	millivolt
NESCAUM	Northeast States for Coordinated Air Use Management
NIST	National Institute of Standards and Technology
NOAA	National Oceanic and Atmospheric Administration
NPS	National Park Service
NYDEC	New York Department of Conservation
NYSERDA	New York State Energy Research and Development Authority
OH EPA	Ohio Environmental Protection Agency
PE	Performance Evaluation
QAPP	Quality Assurance Project Plan
SLT	State, Local, and Tribal
SCDHEC	South Carolina Department of Health and Environmental Control
SFWMD	South Florida Water Management District
SOP	standard operating procedure
TDEP	Total Deposition
TEI	Thermo Environmental Instruments
USDA-FS	United States Department of Agriculture - Forest Service

USFS	United States Forest Service
USFWS	United States Fish and Wildlife Service
USGS	United States Geological Survey
USNO	United States Naval Observatory
VDC	volts direct current
WDEQ	Wyoming Department of Environmental Quality
WDNR	Wisconsin Department of Natural Resources
WRR	World Radiation Reference
WSLH	Wisconsin State Laboratory of Hygiene

1.0 CASTNET Quarterly Report

1.1 Introduction

The Clean Air Status and Trends Network (CASTNET) is a national air monitoring program established in 1988 by the US EPA. Nearly all CASTNET sites measures weekly concentrations of acidic gases and particles to provide accountability for EPA's emission reduction programs. Most sites measure ground-level ozone as well as supplemental measurements such as meteorology and/or other trace gas concentrations.

Ambient concentrations are used to estimate deposition rates of the various pollutants with the objective of determining relationships between emissions, air quality, deposition, and ecological effects. In conjunction with other national monitoring networks, CASTNET data are used to determine the effectiveness of national emissions control programs and to assess temporal trends and spatial deposition patterns in atmospheric pollutants. CASTNET data are also used for long-range transport model evaluations and critical loads research.

Historically, CASTNET pollutant flux measurements have been reported as the aggregate product of weekly measured concentrations and model-estimated deposition velocities. The Multi-layer Model (MLM) was used to derive deposition velocity estimates from on-site meteorological parameters, land use types, and site characteristics. In 2011, EPA discontinued meteorological measurements at most EPA-sponsored CASTNET sites.

Currently, CASTNET pollutant flux estimates are calculated as the aggregate product of weekly measured chemical concentrations and gridded model-estimated deposition velocities. Total deposition is assessed using the NADP's Total Deposition Hybrid Method (TDEP; EPA, 2015c; Schwede and Lear, 2014), which combines data from established ambient monitoring networks and chemical-transport models. To estimate dry deposition, ambient measurement data from CASTNET and other networks were merged with dry deposition rates and flux output from the Community Multiscale Air Quality (CMAQ) modeling system.

Since 2011 nearly all CASTNET ozone monitors have adhered to the requirements for State, Local, and Tribal (SLT) air monitoring stations as specified by the EPA in 40 CFR Part 58. As such, the ozone data collected must meet the requirements in 40 CFR Part 58 Appendix A, which defines the quality assurance (QA) requirements for gaseous pollutant ambient air monitoring. The audits performed by EEMS under this contract fulfilled the requirement for annual performance evaluation audits of pollutant monitors in the network. The QA requirements can be found at: https://www.epa.gov/amtic/regulations-guidance-and-monitoring-plans

Currently more than 85 CASTNET sites measure ground-level ozone concentrations. Annual performance evaluation (PE), ozone audit data are submitted to the Air Quality System (AQS) database.

As of January 2025, the network is comprised of 91 active rural sampling sites across the United States and Canada, cooperatively operated by the Environmental Protection Agency (EPA), the National Park Service (NPS), Bureau of Land Management – Wyoming State Office (BLM-WSO) and several independent partners. WSP is responsible for operating the EPA sponsored sites, and Air Resource Specialists, Inc. (ARS) is responsible for operating the NPS and BLM-WSO sponsored sites

1.2 Project Objectives

The objectives of this project are to establish an independent and unbiased program of performance and systems audits for all CASTNET sampling sites. Ongoing Quality Assurance (QA) programs are an essential part of any long-term monitoring network.

Performance audits verify that all reported variables are consistent with the accuracy goals as defined in the CASTNET Quality Assurance Project Plan (QAPP). The parameter specific accuracy goals are presented in Table 1.

Sensor	Parameter	Audit Challenge	Acceptance Criteria
Precipitation	Response	10 manual tips	1 DAS count per tip
Precipitation	Accuracy	2 introductions of known amounts of water	$\leq \pm 10.0\%$ of input amount
Relative Humidity	Accuracy	Compared to reference instrument or standard solution	$\leq \pm 10.0\%$ RH
Solar Radiation	Accuracy	Compared to WRR traceable standard	$\leq \pm 10.0\%$ of daytime average
Surface Wetness	Response	Distilled water spray mist	Positive response
Surface Wetness	Sensitivity	1% decade resistance	N/A
Temperature	AccuracyComparison to 3 NIST measured baths (~ 0° C, ambient, ~ full-scale)		≤±0.5° C
Temperature Difference	Accuracy	Comparison to station temperature sensor	$\leq \pm 0.50^{\circ} \mathrm{C}$

 Table 1. Performance Audit Challenge and Acceptance Criteria

Sensor	Parameter	Audit Challenge	Acceptance Criteria
Shelter Temperature	Accuracy	Comparison to station temperature sensor	\leq \pm 2.0° C
Wind Direction	Orientation Accuracy	Parallel to alignment rod/crossarm, or sighted to distant point	$\leq \pm 5^{\circ}$ from degrees true
Wind Direction	Linearity	Eight cardinal points on test fixture	$\leq \pm 5^{\circ}$ mean absolute error
Wind Direction	Response Threshold	Starting torque tested with torque gauge	< 10 g-cm Climatronics; < 20 g-cm R.M. Young
Wind Speed	Accuracy	Shaft rotational speed generated and measured with certified synchronous motor	$\leq \pm 0.5$ mps below 5.0 mps input; $\leq \pm 5.0\%$ of input at or above 5.0 mps
Wind Speed	Starting Threshold	Starting torque tested with torque gauge	< 0.5 g-cm
Mass Flow Controller	Flow Rate	Comparison with Primary Standard	$\leq \pm 5.0\%$ of designated rate
Ozone	Slope	Linear regression of multi-point	$0.9000 \le m \le 1.1000$
Ozone	Intercept	test gas concentration as	-5.0 ppb ≤ b ≤ 5.0 ppb
Ozone	Correlation Coefficient	measured with a certified transfer standard	$0.9950 \le r$
Ozone	Percent Difference	Comparison with Level 2 standard concentration	$\leq \pm 15.1\%$ of test gas concentration and $\leq \pm 0.0015$ ppm actual difference
DAS	Accuracy	Comparison with certified standard	$\leq \pm 0.003 \text{ VDC}$

Performance audits are conducted using standards that are traceable to the National Institute of Standards and Technology (NIST), or another authoritative organization, at least annually.

Field site systems audits (FSA) are intended to provide a qualitative appraisal of the total measurement system. Site planning, organization, and operation are evaluated to ensure that good Quality Assurance/Quality Control (QA/QC) practices are being applied. At a minimum the following audit issues were addressed at each site systems audit:

- Site locations and configurations match those provided in the CASTNET QAPP.
- Meteorological instruments are in good physical and operational condition and are sited to meet EPA ambient monitoring guidelines (EPA-600/4-82-060).
- Sites are accessible, orderly, and if applicable, compliant with OSHA safety standards.
- Sampling lines are free of leaks, kinks, visible contamination, weathering, and moisture.

- Site shelters provide adequate temperature control.
- All ambient air quality instruments are functional, being operated in the appropriate range, and the zero-air supply desiccant is unsaturated.
- All instruments are in current calibration.
- Site documentation (maintenance schedules, on-site SOPs, etc.) is current and log book records are complete.
- All maintenance and on-site SOPs are performed on schedule.
- Corrective actions are documented and appropriate for required maintenance/repair activity.
- Site operators demonstrate an adequate knowledge and ability to perform required site activities, including documentation and maintenance activities.

1.3 CASTNET Sites Visited First Quarter 2025

This report consists of the systems and performance, and other audit results from the CASTNET sites visited during the first quarter (January through March) of 2025. The site locations, sponsor, visit dates, and parameters audited, are included in Table 2.

Site ID	Date	MET	FSA	O3 PE	SO2	СО	NOy	FLOW	Sponsor
SUM156	2/7/2025			1					EPA
ALC188	2/10/2025		1	1				1	EPA
BBE401	2/12/2025		1	1				1	NPS
CAV436	2/14/2025		1	1					NPS
PAL190	2/17/2025		1	1				1	EPA
CHA467	3/31/2025			1					NPS

Table 2. CASTNET Site Audit Visits

1.4 CASTNET Audit Results

The observations and results of the systems, performance, and Ozone PE audits are included in Appendix A, *CASTNET Audit Report Forms* by site, arranged by audit date. Photographs of site conditions are included within each system report where necessary. Copies of the spot reports that were sent following the audit of each site are included as Appendix B, *CASTNET Site Spot Report Forms*.

Results of the PE audits of the gaseous pollutant monitors other than ozone, were submitted immediately following the PE and are not included in this report. All TTP PE results of gaseous pollutant monitors are uploaded to AQS and are available there. All audit data and reports are available from the EPA CASTNET website: <u>https://www.epa.gov/castnet/documents-reports#QuarterlyQualityAssuranceReports</u>

2.0 NADP Quarterly Report

2.1 Introduction

The National Atmospheric Deposition Program (NADP) operates two precipitation chemistry networks and two atmospheric concentration networks. The National Trends Network (NTN) has been measuring acidic precipitation since 1978. The network currently has more than 250 sites. The precipitation event-based Atmospheric Integrated Research Monitoring Network (AIRMoN) began operation in 1992, and as of July 2019 is no longer in operation. The Mercury Deposition Network (MDN) measures total mercury in precipitation samples from approximately 90 stations. The MDN began operation in 1996 and includes sites throughout the US and Canada. The Atmospheric Mercury Network (AMNet) and the Ammonia Monitoring Network (AMoN) measure ambient concentrations of mercury and ammonia, respectively.

The NADP and other long-term monitoring networks provide critical information to the EPA regarding evaluating the effectiveness of emission reduction control programs from the power industry. The networks of the NADP are sponsored by several federal, state, and local agencies as well as private organizations.

The NADP Program Office (PO) operates and administers the two precipitation chemistry networks (NTN and MDN), two atmospheric concentration networks (AMNet and AMoN), and the NADP analytical laboratory (NAL) from the Wisconsin State Lab of Hygiene (WSLH) at the University of Wisconsin in Madison. The network equipment depot (NED) is also located at the WSLH.

2.2 **Project Objectives**

The objective of this project is to perform independent and unbiased evaluations of the sites and their operation. These evaluations provide quality assurance pertaining to siting, sample collection and handling, equipment operation and maintenance, record keeping and field laboratory procedures.

More specifically, the audits determine and report findings based on an established methodology consisting of completing a site questionnaire, testing the equipment and documenting with photographs the location, siting criteria, existing equipment, and any issues encountered that require such documentation.

2.3 NADP Sites Visited First Quarter 2025

This report presents the NADP sites audited during the first quarter (January through March) of 2025. The station locations, sponsors, network. and dates of the surveys are presented in Table 3.

Site ID	Date	NTN	MDN	AMoN	Site Sponsor	Site Name
FL23	2/7/2025			1	WSP - EPA	Sumatra
TX41	2/10/2025			1	WSP - EPA	Alabama-Coushatta
TX22	2/13/2025	1			USGS - NIFA	Guadalupe Mountains National Park Frijole Ranger Station
TX43	2/17/2025	1		1 Texas A&M University / WSP - EPA		Cañónceta
CO81	3/25/2025	1		1	Weld County	Missile Site Park
CO82	3/25/2025	1		1	Weld County	Orchard
CO01	3/26/2025	1			USGS - NIFA	Las Animas Fish Hatchery
AZ98	3/31/2025	1		1	NPS / WSP -EPA	Chiricahua

Table 3.	NADP	Site Audit	Visits
rabic 5.		Site Muult	1 19109

2.4 NADP Audit Results

NADP site audit results are entered into a relational database. The database in turn generates Site Spot Reports which are distributed among the interested parties as soon as all the site data has been entered. Database tables with all the data and photos collected, are available for download by the NADP Program Office and the U.S. EPA Project Officers, following the QA process, usually the month following site audits.

Given the volume of data generated, and the fact that data is distributed and/or is available via the internet, no audit results are included in this report.

APPENDIX A

CASTNET Audit Report Forms

Site Inventory by Site Visit

Site V	Site Visit Date Parameter		Mfg Owner ID		Model Number	Serial Number
SUM	156-Marti	n Valvur-02/07/2025				
1	2/7/2025	DAS	Campbell	000352	CR3000	2130
2	2/7/2025	Ozone	ThermoElectron Inc	000724	49i A1NAA	1105347328
3	2/7/2025	Ozone Standard	ThermoElectron Inc	000511	49i A3NAA	0922236888
4	2/7/2025	Zero air pump	Werther International	06882	C 70/4	000815255

Ozone Data Form

Mfg	Serial Numbe	r Ta Site	Т	echnician	Site Visit Date	Parameter	Owner ID
ThermoElectron Inc	1105347328	SUM156	6 N	lartin Valvur	02/07/2025	Ozone	000724
Slope:).98252 Slop	e: C	.00000	Mfg	ThermoElectron I	nc Paramete	ozone
		· · · · · ·	0.00000	Serial Number	CM23147126	Tfer Desc	C. Ozone primary stan
CorrCoff ().99999 Cori	·Coff C	0.00000	Tfer ID	01116		
DAS 1:	DA	AS 2:		Slope	0.99260	Intercept	0.04790
A Avg % Diff: A M	Iax % Di A	Avg %Diff A	Max % Di	-		, ▲	
0.0%	0.0%			Cert Date	4/10/2024	CorrCoff	0.99999
UseDescription	ConcGroup	Tfer Raw	Tfer Corr	Site	Site Unit	RelPerDif	AbsDif
primary	1	-0.06	-0.10	0.09	ppb		0.19
primary	2	12.45	12.34	11.76	ppb		-0.58
primary	3	32.48	32.27	31.31	ppb	-3.02	
primary	4	62.71	62.35	61.17	ppb	-1.91	
primary	5	113.87	113.27	111.20	ppb	-1.84	
Sensor Componer	nt Audit Pressu	ıre	Condit	ion 755 mmHg		Status pass	
Sensor Componen	nt 26.6 degree	unobstructed ru	le Condit	ion True		Status pass	
Sensor Compone	nt Tree dewline	e >10m or below	inlet Condit	ion True		Status pass	
Sensor Compone	nt ADT 1000-1	0000 vehicles fu	rther Condit	ion True		Status pass	
Sensor Componer	nt ADT <1000	vehicles further	than Condit	ion True		Status pass	
Sensor Compone	nt Sample Trai	n	Condit	ion Good		Status pass	
Sensor Compone	nt Inlet Filter C	ondition	Condit	ion Clean		Status pass	
Sensor Componer	nt Offset		Condit	ion -0.2		Status pass	
Sensor Compone	nt Span		Condit	ion 1.006		Status pass	
Sensor Compone	nt Zero Voltage	9	Condit	ion N/A		Status pass	
Sensor Componer	nt Fullscale Vo	Itage	Condit	ion N/A		Status pass	
Sensor Componer	nt Cell A Freq.		Condit	ion 98.6 kHz		Status pass	
Sensor Componer	nt Cell A Noise		Condit	ion 1.9 ppb		Status pass	
Sensor Componen	t Cell A Flow		Condit	ion 0.72 lpm		Status pass	
Sensor Componen	nt Cell A Press	ure	Condit	ion 726.2 mmHg		Status pass	
Sensor Componer	nt Cell A Tmp.		Condit	ion 37.4 C		Status pass	
Sensor Componer	nt Cell B Freq.		Condit	ion 97.1 kHz		Status pass	
Sensor Componer	nt Cell B Noise		Condit	ion 1.9 ppb		Status pass	
Sensor Componen	t Cell B Flow		Condit	ion 0.71 lpm		Status pass	
Sensor Componer	nt Cell B Press	ure	Condit	ion 725.9 mmHg		Status pass	
Sensor Componer	nt Nafion dryer	installed	Condit	ion True		Status pass	
Sensor Componer	nt System Mer	no	Condit	ion		Status pass	

Site Inventory by Site Visit

Site	Visit Date	Parameter	Mfg	Owner ID	Model Number	Serial Number
ALC	C188-Martin	v Valvur-02/10/2025				
1	2/10/2025	Computer	Dell	07006	Inspiron 15	373MC12
2	2/10/2025	DAS	Campbell	000335	CR3000	2114
3	2/10/2025	Elevation	Elevation	None	1	None
4	2/10/2025	Filter pack flow pump	Thomas	02980	107CA18	608102A
5	2/10/2025	Flow Rate	Apex	000886	AXMC105LPMDPCV	illegible
6	2/10/2025	Infrastructure	Infrastructure	none	none	none
7	2/10/2025	Modem	Digi	07202	LR54	Illegible
8	2/10/2025	Ozone	ThermoElectron Inc	000742	49i A1NAA	1105347313
9	2/10/2025	Ozone Standard	ThermoElectron Inc	000512	49i A3NAA	0922236890
10	2/10/2025	Sample Tower	Aluma Tower	000136	В	none
11	2/10/2025	Shelter Temperature	Campbell	none	107-L	none
12	2/10/2025	Siting Criteria	Siting Criteria	None	1	None
13	2/10/2025	Temperature	RM Young	07289	41342	032128
14	2/10/2025	Zero air pump	Werther International	06899	C 70/4	000821902

DAS Data Form

DAS Time Max Error: 0

Mfg	Mfg Serial Number		e 7	Fechnician	Site Visit Date	Parameter	Use Desc.
Campbell	2114	AL	-C188	Martin Valvur	02/10/2025	DAS	Primary
	2 /10/2025 8:34:00	Audit Date		Mfg	Fluke	Parameter	DAS
Das Time: Das Day:	6.34.00 41	Audit Time Audit Day	41	Serial Number	95740243	Tfer Desc.	DVM
Low Channel:		High Chann	iel:	Tfer ID	01312		
Avg Diff:	Max Diff:	Avg Diff:	Max Diff:	Slope	1.0000	0 Intercept	0.00000
0.0000	0.0	0.000	0.0000	Cert Date	1/5/202	5 CorrCoff	1.00000
Channel	Input	DVM Output	DAS Output	InputUnit	OutputUnit	Difference	
4	0.0000	0.0000	0.0000) V	V	0.0000	

Flow Data Form

Mfg	Serial Nun	nber Ta	Site	Тес	chnician	Site Visit I	Date Paran	neter	Owner ID
Арех	illegible		ALC188	Ma	artin Valvur	02/10/2025	5 Flow R	late	000886
					Mfg Serial Number Tfer ID	BIOS 131818 01417		arameter Flo	
					Slope	0.	99266 Inte	ercept	0.00014
					Cert Date	4/6	6/2024 Co i	rrCoff	0.99986
DAS 1: A Avg % Diff: 2.76%	A Max % Di 3.47%	DAS 2: A Avg %	Diff A Max	a % Di	Cal Factor Z Cal Factor F Rotometer R	ull Scale	0.0)2 1 .4	
Desc.	Test type	Input l/m	Input Corr	MfcDisp.	OutputSignal	Output S E	InputUnit	OutputSignal	IPctDifference
primary	pump off	0.000	0.000	0.00	0.000	0.02	l/m	l/m	
primary	leak check	0.000	0.000	0.02	0.000	0.02	l/m	l/m	
primary	test pt 1	1.430	1.440	1.50	0.000	1.49	l/m	l/m	3.47%
primary	test pt 2	1.438	1.450	1.50	0.000	1.50	l/m	l/m	3.45%
primary	test pt 3	1.465	1.480	1.50	0.000	1.50	l/m	l/m	1.35%
Sensor Comp	oonent Leak Tes	st		Conditio	n		Status	pass	
Sensor Comp	oonent Tubing C	ondition		Conditio	n Good		Status	pass	
Sensor Comp	oonent Filter Pos	sition		Conditio	n Good		Status	pass	
Sensor Comp	oonent Rotomete	er Conditio	n	Conditio	n Clean and dry		Status	pass	
Sensor Comp	oonent Moisture	Present		Conditio	n See comments	3	Status	pass	
Sensor Comp	oonent Filter Dis	tance		Conditio	n 4.0 cm		Status	pass	
Sensor Comp	oonent Filter Dep	oth		Conditio	n 3.5 cm		Status	pass	
Sensor Comp	ponent Filter Azi	muth		Conditio	n 180 deg		Status	pass	
Sensor Comp	oonent System N	/lemo		Conditio	n		Status	pass	

Ozone Data Form

Mfg	Serial Number	r Ta Site	Те	echnician	Site Visit Date	Parameter	Owner ID
ThermoElectron Inc	1105347313	ALC188	Μ	artin Valvur	02/10/2025	Ozone	000742
Intercept		cept (0.00000 0.00000 0.00000 Max % Di	Mfg Serial Number Tfer ID Slope Cert Date	ThermoElectron CM23147126 01116 0.9926 4/10/202	0 Intercept	er ozone c. Ozone primary stan 0.04790 0.99999
UseDescription	ConcGroup	Tfer Raw	Tfer Corr	Site	Site Unit	RelPerDif	AbsDif
primary	1	0.23	0.18	0.22	ppb		0.04
primary	2	11.83	11.72	11.08	ppb		-0.64
primary	3	32.00	31.79	30.97	ppb	-2.61	
primary	4	63.03	62.67	60.52	ppb	-3.49	
primary	5	114.97	114.36	110.90	ppb	-3.07	
Sensor Compone	Audit Pressu	re	Conditi	on 750 mmHg		Status pass	
Sensor Compone	ent 26.6 degree	unobstructed ru	le Conditi	on True		Status pass	
Sensor Compone	ent Tree dewline	>10m or below	inlet Conditi	on True		Status pass	
Sensor Compone	ent ADT 1000-10	0000 vehicles fu	rther Conditi	on True		Status pass	
Sensor Compone	ent ADT <1000 v	vehicles further	than Conditi	on True		Status pass	
Sensor Compone	ent Sample Trair	ı	Conditi	on Good		Status pass	
Sensor Compone	ent Inlet Filter Co	ondition	Conditi	on Clean		Status pass	
Sensor Compone	ent Offset		Conditi	on -0.4		Status pass	
Sensor Compone	ent Span		Conditi	on 1.107		Status pass	
Sensor Compone	ent Zero Voltage	•	Conditi	on N/A		Status pass	
Sensor Compone	ent Fullscale Vol	tage	Conditi	on N/A		Status pass	
Sensor Compone	ent Cell A Freq.		Conditi	on 88.3 kHz		Status pass	
Sensor Compone	ent Cell A Noise		Conditi	on 1.0 ppb		Status pass	
Sensor Compone	ent Cell A Flow		Conditi	on 0.65 lpm		Status pass	
Sensor Compone	ent Cell A Press	ure	Conditi	on 732.5 mmHg		Status pass	
Sensor Compone	ent Cell A Tmp.		Conditi	on 31.6 C		Status pass	
Sensor Compone	ent Cell B Freq.		Conditi	on 92.7 kHz		Status pass	
Sensor Compone	ent Cell B Noise		Conditi	on 1.0 ppb		Status pass	
Sensor Compone	ent Cell B Flow		Conditi	on 0.67 lpm		Status pass	
Sensor Compone	ent Cell B Press	ure	Conditi	on 732.5 mmHg		Status pass	
Sensor Compone	ent Nafion dryer	installed	Conditi	on True		Status pass	
Sensor Compone	ent System Mem	10	Conditi			Status pass	

Temperature Data Form

Mfg	Serial Number	Fa Site	Т	echni	ician	Site V	isit Date	Param	eter	Owner ID	
RM Young	032128	ALC188	1	Martin	Valvur	02/10)/2025	Temper	ature	07289	
				Mf	g	Fluke		Pa	rameter Te	emperature	
					Serial Number 2085085)85	Tfer Desc.		٢D	
				Tfe	er ID	01226	6				
DAS 1:	DAS	2.		Slo	ре		1.0003	1 Inte	rcept	-0.042	52
Abs Avg Err Abs Max Err Abs Avg Err Abs Ma				ax Err Cert Date			1/8/2025 Corr		rCoff	0.999	99
0.10	0.17										
UseDesc.	Test type	InputTmpRaw	InputTmp	Corr.	OutputTmp	Signal	OutputSig	gnalEng	OSE Unit	Difference	
primary	Temp Low Range	0.00	0.04		0.000		0.2	2	С	0.17	
primary	Temp Mid Range	22.78	22.82		0.000		22.	9	С	0.09	
primary	Temp High Range	46.97	47.00		0.000		47.	0	С	-0.05	
Sensor Com	ponent Shield		Condit	ion C	Clean			Status	pass		
Sensor Component Blower				ion N	I/A			Status	s pass		
Sensor Component Properly Sited				tion F	Properly sited			Status	us pass		
Sensor Com	ponent System Memo		Condit	ion				Status	pass		

Shelter Temperature Data For

Mfg	Serial Number Ta	Site	Technician	Site Visit Date	Parameter Owner ID
Campbell	none	ALC188	Martin Valvur	02/10/2025	Shelter Temperature none
DAS 1:	DAS 2:		Mfg	Fluke	Parameter Shelter Temperatur
Abs Avg ErrAb0.63	s Max Err Abs Avg 0.68	Err Abs Max Err	Serial Number	2085085	Tfer Desc. RTD
			Tfer ID	01226	
			Slope	1.0003	1 Intercept -0.04252
			Cert Date	1/8/202	25 CorrCoff 0.99999

UseDesc.	Test type	InputTmpRaw	InputTmpCorr.	OutputTmpSignal	OutputSignalEng	OSE Unit	Difference
primary	Temp Mid Range	21.84	21.88	0.000	22.5	С	0.63
primary	Temp Mid Range	22.18	22.22	0.000	22.8	С	0.58
primary	Temp Mid Range	22.04	22.08	0.000	22.8	С	0.68
Sensor Con	nponent System Memo)	Condition		Status	pass	

Siting Criteria Form

Sensor Component Large point source of	of So2 or Nox Condition	Status	pass
Sensor Component City > 50,000	Condition	Status	pass
Sensor Component City 1,000 to 10,000	Condition	Status	pass
Sensor Component City 10,000 to 50,00	0 Condition	Status	pass
Sensor Component Feedlot operations	Condition	Status	pass
Sensor Component Large parking lot	Condition	Status	pass
Sensor Component Limited agriculture of	perations Condition	Status	pass
Sensor Component Major industrial sour	ce Condition	Status	pass
Sensor Component Secondary road < or	r = 100 per da Condition	Status	pass
Sensor Component Secondary road >10	0 vehicles/da Condition	Status	pass
Sensor Component Small parking lot	Condition	Status	pass
Sensor Component System Memo	Condition	Status	pass
Sensor Component Major highway, airpo	ort, or rail yard Condition	Status	pass
Sensor Component Intensive agriculture	operations Condition	Status	pass

Infrastructure Data For

Site ID	ALC188	Technician	Martin Valvur		Site Visit Date 02/	10/2025	
Shelter N	lake	Shelter Model		Shelte	r Size		
Shelter O	ie	8128-2311		1024 c	uft		
110 JACOB TYNEST		CONTRACTOR STATES IN THE		101752355			

Sensor Component	Sample Tower Type	Condition	Туре В	Status	pass
Sensor Component	Conduit	Condition	Good	Status	pass
Sensor Component	Met Tower	Condition	N/A	Status	pass
Sensor Component	Moisture Trap	Condition	Installed	Status	pass
Sensor Component	Moisture Trap Type	Condition	Glass bottle and filter	Status	pass
Sensor Component	Power Cables	Condition	Good	Status	pass
Sensor Component	Shelter Temp Control	Condition	Functioning	Status	pass
Sensor Component	Rotometer	Condition	Installed	Status	pass
Sensor Component	Sample Tower	Condition	Good	Status	pass
Sensor Component	Shelter Condition	Condition	Good	Status	pass
Sensor Component	Shelter Door	Condition	Good	Status	pass
Sensor Component	Shelter Roof	Condition	Good	Status	pass
Sensor Component	Shelter Floor	Condition	Good	Status	pass
Sensor Component	Shelter walls	Condition	Good	Status	pass
Sensor Component	Excessive mold present	Condition	Good	Status	pass
Sensor Component	Signal Cable	Condition	Good	Status	pass
Sensor Component	Tubing Type	Condition	3/8 teflon	Status	pass
Sensor Component	Sample Train	Condition	Good	Status	pass
Sensor Component	System Memo	Condition		Status	pass

Site Visit Comments

Parameter	Site	Technician	S.V. Date	Component	Mfg	Serial No.	Hazaro	Problem		
Flow Rate	ALC188	Martin Valvur	02/10/2025	Moisture Present	Apex	4735				
The filter sample tubing has drops of moisture in low sections outside the shelter.										

Field Systems Comments

1 Parameter: DocumentationCo

WIFI available at site and manuals and documents maintained on the site computer.

2 Parameter: SitingCriteriaCom

The site is well located with respect to CASTNET siting criteria, however there is a small campground 0.5 km to the northwest which may be a source of smoke.

3 Parameter: ShelterCleanNotes

The site is clean and neat.

4 Parameter: PollAnalyzerCom

There are moisture traps in both the flow and ozone sample lines.

Field Systems Data Form

F-02058-1500-S1-rev002

Site ID	ALC188	Technician Martin Valvur		n Valvur	Site Visit Date 02/10/2025				
	<i>.</i>				USGS Map		Dallardsville		
Site Sponsor ((agency)	EPA			-		Danardsvine		
Operating Gr	oup	Alabama	-Coushatta Environm	ental Gr	Map Scale				
AQS #		48-373-9	991		Map Date				
Meteorologic	al Type	R.M. You	Ing						
Air Pollutant	Analyzer	Ozone			QAPP Latitu	ıde	30.4210		
Deposition M	easurement	dry			QAPP Longitude -94.4045				
Land Use		woodland - mixed			QAPP Eleva	tion Meters	101		
Terrain		gently rolling			QAPP Declin	nation	3.8		
Conforms to 3	MLM	Yes			QAPP Declin	nation Date	9/16/2005		
Site Telephone		(936) 563-2973			Audit Latitu	de		30	.701577
Site Address 1		Poncho I	Rd.		Audit Longitude		-94.67401		.674011
Site Address 2		571 Park	Rd. 56		Audit Elevat	ion			105
County		Polk			Audit Declin	ation	2.5		
City, State		Livingston, TX				Present			
Zip Code		77351			Fire Extingu	isher 🔽	New in 2015		
Time Zone		Central			First Aid Kit				
Primary Ope	rator				Safety Glass	es 🗌			
Primary Op.	Phone #				Safety Hard	Hat			
Primary Op.	E-mail				Climbing Be	lt 🗌			
Backup Oper	ator				Security Fen	ce 🗸			
Backup Op.	Phone #				Secure Shelt	er 🗸			
Backup Op.	E-mail				Stable Entry	Step 🔽			
Shelter Work	ing Room ☑	Make	Shelter One	Mo	odel 8128-231	11	Shelter Size	1024 cuft	
Shelter Clean	\checkmark	Notes	The site is clean and	d neat.					
Site OK	\checkmark	Notes							
Driving Direc	for Ala the lef	abama-Co ft. Just pa	proceed east on rou ushatta Tribe and the st the campground e and left at the second	e Indian Vill ntrance, tu	age. Continue rn left onto a dii	past the facility	y and campground	d by the small la	ake on

Field Systems Data Form			F-02058-1500-S3-rev002			
Site	ALC188 Technician Martin Valvur		Site Visit Date 02/10/2025			
1	Are wind speed and direction sensors sited so as to avoid being influenced by obstructions?		N/A			
2	Are wind sensors mounted so as to minimize tower effects? (i.e. wind sensors should be mounted atop the tower or on a horizontally extended boom >2x the max diameter of the tower into the prevailing wind)		N/A			
3	Are the tower and sensors plumb?	✓	N/A			
4	Are the temperature shields pointed north or positioned to avoid radiated heat sources such as buildings, walls, etc?		Temperature sensor facing west			
5	Are temperature and RH sensors sited to avoid unnatural conditions? (i.e. ground below sensors should be natural surface and not steeply sloped. Ridges, hollows, and areas of standing water should be avoided)					
6	Is the solar radiation sensor plumb?	✓	N/A			
7	Is it sited to avoid shading, or any artificial or reflected light?		N/A			
8	Is the rain gauge plumb?	✓	N/A			
9	Is it sited to avoid sheltering effects from buildings, trees, towers, etc?		N/A			
10	Is the surface wetness sensor sited with the grid surface facing north?	✓	N/A			
11	Is it inclined approximately 30 degrees?	✓	N/A			
Pro	wide any additional explanation (photograph or sketch if nece	scar	x) regarding conditions listed above, or any other features			

Provide any additional explanation (photograph or sketch if necessary) regarding conditions listed above, or any other features natural or man-made, that may affect the monitoring parameters:

Field Systems Data Form

F-02058-1500-S4-rev002

Site	e ID	ALC188	Technician	Martin Valvur		Site Visit Date 02/10/2025
1 Do all the meterological sensors appear to be intact, in good condition, and well maintained?		✓	Temperature only			
2	2 Are all the meteorological sensors operational online, and reporting data?			l online, and	✓	Temperature only
3	Are the s	hields for the temper	ature and RH s	ensors clean?	✓	
4	Are the a	aspirated motors worl	king?			N/A
5	Is the sol scratches	ar radiation sensor's s?	lens clean and f	free of	✓	N/A
6	Is the su	rface wetness sensor g	grid clean and u	indamaged?	✓	N/A
7		sensor signal and pow 1, and well maintained		, in good	✓	
8		ensor signal and pow elements and well ma		tions protected	✓	

Provide any additional explanation (photograph or sketch if necessary) regarding conditions listed above, or any other features, natural or man-made, that may affect the monitoring parameters:

Field Systems Data Form			F-02058-1500-S5-rev002
Site	e ID ALC188 Technician Martin Valvur		Site Visit Date 02/10/2025
	Siting Criteria: Are the pollutant analyzers and deposition eq	uipı	nent sited in accordance with 40 CFR 58, Appendix E
1	Do the sample inlets have at least a 270 degree arc of unrestricted airflow?	✓	
2	Are the sample inlets 3 - 15 meters above the ground?	✓	
3	Are the sample inlets > 1 meter from any major obstruction, and 20 meters from trees?		
	Pollutant analyzers and deposition equipment operations and	l ma	intenance
1	Do the analyzers and equipment appear to be in good condition and well maintained?	✓	
2	Are the analyzers and monitors operational, on-line, and reporting data?	✓	
3	Describe ozone sample tube.		1/4 teflon by 12 meters
4	Describe dry dep sample tube.		3/8 teflon by 12 meters
5	Are in-line filters used in the ozone sample line? (if yes indicate location)		At inlet
6	Are sample lines clean, free of kinks, moisture, and obstructions?	✓	
7	Is the zero air supply desiccant unsaturated?	✓	
8	Are there moisture traps in the sample lines?	✓	
9	Is there a rotometer in the dry deposition filter line, and is it clean?		Clean and dry

Provide any additional explanation (photograph or sketch if necessary) regarding conditions listed above, or any other features, natural or man-made, that may affect the monitoring parameters:

There are moisture traps in both the flow and ozone sample lines.

Fi	eld Systems Data Form	F-02058-1500-S6-rev002				
Site	e ID ALC188 Technician Martin Valvur		Site Visit Da	te 02/10/202	5	
	DAS, sensor translators, and peripheral equipment operation	ons a	<u>nd maintenance</u>			
1	Do the DAS instruments appear to be in good condition and well maintained?					
2	Are all the components of the DAS operational? (printers, modem, backup, etc)	✓				
3	Do the analyzer and sensor signal leads pass through lightning protection circuitry?		Temperature only	,		
4	Are the signal connections protected from the weather and well maintained?	✓				
5	Are the signal leads connected to the correct DAS channel?	✓				
6	Are the DAS, sensor translators, and shelter properly grounded?					
7	Does the instrument shelter have a stable power source?	✓				
8	Is the instrument shelter temperature controlled?					
9	Is the met tower stable and grounded?		Stable		Grounded	
10	Is the sample tower stable and grounded?					
11	Tower comments?		Met tower remove	ed		

Provide any additional explanation (photograph or sketch if necessary) regarding conditions listed above, or any other features, natural or man-made, that may affect the monitoring parameters:

Field Systems Data Fo	orm				F-02	058-1	500- S7-rev 002
Site ID ALC188	Tec	hnician	Martin Valvur	Site Visit Date	02/10/2025		
Documentation							
Does the site have the required i	<u>nstrum</u>	nent and	<u>equipment manuals?</u>				
YesWind speed sensorWind direction sensorTemperature sensorRelative humidity sensorSolar radiation sensorSurface wetness sensorWind sensor translatorTemperature translatorHumidity sensor translatorSolar radiation translatorSolar radiation translatorFilter pack flow controller			Data logge Data logge Strip chart Computer Modem Printer Zero air pu Filter flow Surge prot UPS Lightning Shelter hea	r recorder imp pump ector protection device	Yes	No V	N/A □ ✓ ✓ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
Filter pack MFC power supply			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
Does the site have the required	and m	lost recen	nt QC documents and	<u>report forms?</u>			
Pr	esent				Curren	t	
Station Log SSRF Site Ops Manual HASP Field Ops Manual Calibration Reports Ozone z/s/p Control Charts	 > ><	Oct 201 Oct 2014			> > > > >		
Preventive maintenance schedule	\checkmark						

1 Is the station log properly completed during every site visit?

- 2 Are the Site Status Report Forms being completed and current?
- 3 Are the chain-of-custody forms properly used to document sample transfer to and from lab?
- 4 Are ozone z/s/p control charts properly completed and current?

✓	
✓	
✓	Control charts not used

Provide any additional explanation (photograph or sketch if necessary) regarding conditions listed above, or any other features, natural or man-made, that may affect the monitoring parameters:

WIFI available at site and manuals and documents maintained on the site computer.

Field Systems Data Form

Site Visit Date 02/10/2025 Site ID ALC188 Technician Martin Valvur Site operation procedures Trained by previous site operator Has the site operator attended a formal CASTNET training 1 course? If yes, when and who instructed? 2 Has the backup operator attended a formal CASTNET training course? If yes, when and who instructed? Is the site visited regularly on the required Tuesday ✓ 3 schedule? ✓ Are the standard CASTNET operational procedures being 4 flollowed by the site operator? Is the site operator(s) knowledgeable of, and able to perform 5 the required site activities? (including documentation)

Are regular operational QA/QC checks performed on meteorological instruments?

QC Check Performed		Frequency
Multipoint Calibrations	\checkmark	Semiannually
Visual Inspections	\checkmark	Weekly
Translator Zero/Span Tests (climatronics)		N/A
Manual Rain Gauge Test	\checkmark	N/A
Confirm Reasonableness of Current Values	\checkmark	Weekly
Test Surface Wetness Response	\checkmark	N/A

Are regular operational QA/QC checks performed on the ozone analyzer?

✓

 \checkmark

✓

✓

✓

 \checkmark

 \checkmark

 \checkmark

QC Check Performed
Multi-point Calibrations

Automatic Zero/Span Tests
Manual Zero/Span Tests
Automatic Precision Level Tests
Manual Precision Level Test
Analyzer Diagnostics Tests
In-line Filter Replacement (at inlet)
In-line Filter Replacement (at analyze
Sample Line Check for Dirt/Water
Zero Air Desiccant Check

1	Do multi-point calibration gases go through the complete
	sample train including all filters?

2	Do automatic and manual z/s/p gasses go through the
	complete sample train including all filters?

3	Are the automatic and manual z/s/p checks monitored an	ıd
	reported? If yes, how?	

N/A	\checkmark	
Weekly	\checkmark	
Weekly	\checkmark	
complete		
n the		

✓ SSRF, call-in

Provide any additional explanation (photograph or sketch if necessary) regarding conditions listed above, or any other features, natural or man-made, that may affect the monitoring parameters:

Frequency

As needed

As needed

Every 2 weeks

Weekly

Daily

Daily

Semiannually

Compliant

✓

 \checkmark

✓

✓

 \checkmark

✓

✓

✓ ✓

Compliant

✓ \checkmark

✓ ✓

F-()205	8-15	00-S8	8-rev	00

2

Fi	eld Sy	stems Data Form			F-02058-1500-S9-rev002			
Site	e ID	ALC188 Tec	hnician Martin Valvur		Site Visit Date 02/10/2025			
	<u>Site ope</u>	ration procedures						
1	Is the fi	lter pack being changed ever	y Tuesday as scheduled	·	Filter changed afternoons			
2	Are the correctl	Site Status Report Forms be y?	ing completed and filed	✓				
3	Are dat schedul	a downloads and backups be ed?	ing performed as		No longer required			
4	Are gen	eral observations being mad	e and recorded? How?	✓	SSRF			
5		supplies on-hand and replen ?	ished in a timely	✓				
6	fashion?6 Are sample flow rates recorded? How?7 Are samples sent to the lab on a regular schedule in a				SSRF, call-in			
7	Are san fashion		ılar schedule in a timely	✓				
8		ers protected from contamina oping? How?	ation during handling		Clean gloves on and off			
9		site conditions reported reguons manager or staff?	ılarly to the field	✓				
QC	Check P	erformed	Frequency		Compliant			
N	Aulti-poi	nt MFC Calibrations	Semiannually					
	-	em Leak Checks	✓ Weekly					
		k Inspection						
F	low Rate	e Setting Checks	✓ Weekly					
١	Visual Check of Flow Rate Rotometer V Weekly							
Ι	n-line Fil	ter Inspection/Replacement	Semiannually					
S	ample L	ine Check for Dirt/Water	✓ Weekly					

Provide any additional explanation (photograph or sketch if necessary) regarding conditions listed above, or any other features, natural or man-made, that may affect the monitoring parameters:

Field Systems Data Form

ALC188

F-02058-1500-S10-rev002

Site ID

Techn

Technician Martin Valvur

Site Visit Date 02/10/2025

Site Visit Sensors

Parameter	Manufacturer	Model	S/N	Client ID
Computer	Dell	Inspiron 15	373MC12	07006
DAS	Campbell	CR3000	2114	000335
Elevation	Elevation	1	None	None
Filter pack flow pump	Thomas	107CA18	608102A	02980
Flow Rate	Apex	AXMC105LPMDPC	illegible	000886
Infrastructure	Infrastructure	none	none	none
Modem	Digi	LR54	Illegible	07202
Ozone	ThermoElectron Inc	49i A1NAA	1105347313	000742
Ozone Standard	ThermoElectron Inc	49i A3NAA	0922236890	000512
Sample Tower	Aluma Tower	В	none	000136
Shelter Temperature	Campbell	107-L	none	none
Siting Criteria	Siting Criteria	1	None	None
Temperature	RM Young	41342	032128	07289
Zero air pump	Werther International	C 70/4	000821902	06899

Site Inventory by Site Visit

Site	Visit Date	Parameter	Mfg	Owner ID	Model Number	Serial Number
BBE	401-Martin	Valvur-02/12/2025				
1	2/12/2025	Computer	panasonic	none	Tough Book	CF-532BL28CM
2	2/12/2025	DAS	Campbell	None	CR1000X	12388
3	2/12/2025	Elevation	Elevation	None	1	None
4	2/12/2025	Filter pack flow pump	Thomas	none	107CA18A	608102A
5	2/12/2025	Flow Rate	Alicat	none	MC-10SLPM-D-PCV	134657
6	2/12/2025	Infrastructure	Infrastructure	none	none	none
7	2/12/2025	Ozone	Teledyne	none	T400	7455
8	2/12/2025	Ozone Standard	ThermoElectron Inc	none	49i A3NAA	1023943901
9	2/12/2025	Sample Tower	Aluma Tower	none	В	AT-5381-F9-1
10	2/12/2025	Shelter Temperature	ARS	none	none	none
11	2/12/2025	Siting Criteria	Siting Criteria	None	1	None
12	2/12/2025	Temperature2meter	Vaisala	none	WXT536	V4920649
13	2/12/2025	Zero air pump	Werther International	none	PC 70/4	000855581

DAS Data Form

DAS Time Max Error: 0.2

Mfg	Serial	Number Si	te T	Technician	Site Visit Date	Parameter	Use Desc.
Campbell	12388	в В	BE401	Martin Valvur	02/12/2025	DAS	Primary
Das Date: Das Time: Das Day: Low Channe Avg Diff: 0.000	Max Diff:	Audit Dato Audit Tim Audit Day High Chan Avg Diff: 0000 0.00	e 8:25:12 43 nel: Max Diff:	Mfg Serial Number Tfer ID Slope Cert Date Mfg Serial Number Tfer ID Slope	HY 12010039329 01322 1.0000 6/15/201 Fluke 95740243 01312 1.0000 1/5/202	 Intercept CorrCoff Parameter Tfer Desc. Intercept 	Source generator (D 0.00000 1.00000 DAS
			1	Cert Date			1.00000
Channel	Input	DVM Output	DAS Output	InputUnit	OutputUnit	Difference	
4	0.0000	0.0000	0.0000	V	V	0.0000	

Flow Data Form

Mfg	Serial Nun	nber Ta	Site	Te	chnician	Site Visit I	Date Param	neter	Owner ID
Alicat 134657 BBE401		Ма	Martin Valvur 02/12/2025		5 Flow R	late	none		
					Mfg Serial Number Tfer ID	BIOS 131818 01417		arameter Fla fer Desc. Bl	
					Slope	0.	99266 Inte	ercept	0.00014
					Cert Date	4/	6/2024 Co i	rrCoff	0.99986
DAS 1: A Avg % Diff: 0.70%	A Max % Di 0.77%	DAS 2: A Avg %	Diff A Max	x % Di	Cal Factor Z Cal Factor F Rotometer R	ull Scale	3	0 1 .3	
Desc.	Test type	Input l/m	Input Corr	MfcDisp.	OutputSignal	Output S E	InputUnit	OutputSignal	ll PctDifference
primary	pump off	0.000	0.000	0.00	0.000	0.00	l/m	l/m	
primary	leak check	0.000	0.000	0.04	0.000	0.00	l/m	l/m	
primary	test pt 1	2.983	3.000	2.98	0.000	2.98	l/m	l/m	-0.67%
primary	test pt 2	2.980	3.000	2.98	0.000	2.98	l/m	l/m	-0.77%
primary	test pt 3	2.980	3.000	2.98	0.000	2.98	l/m	l/m	-0.67%
Sensor Component Leak Test		Conditio	ondition		Status	pass			
Sensor Comp	onent Tubing C	ondition		Conditio	Condition Good			Status pass	
Sensor Component Filter Position		Conditio	lition Good		Status	Status pass			
Sensor Component Rotometer Condition		Conditio	Clean and dry		Status	pass			
Sensor Component Moisture Present		Conditio	n No moisture present		Status	Status pass			
Sensor Component Filter Distance		Conditio	5.5 cm		Status	Status pass			
Sensor Component Filter Depth		Conditio	0.3 cm		Status	Status pass			
Sensor Comp	onent Filter Azi	muth		Conditio	n 180 deg		Status	Status pass	
Sensor Comp	onent System N	Лето		Conditio	n		Status	pass	

Ozone Data Form

Mfg Se	rial Number	Ta Site	Те	chnician	Site Visit Date	Parameter	Owner ID
Teledyne 74	455	BBE401	M	artin Valvur	02/12/2025	Ozone	none
Intercept -0.34	9424 Slope 4373 Inter	cept 0	0.00000	Mfg Serial Number	ThermoElectron CM23147126		er ozone c. Ozone primary stan
CorrCoff 0.99	9994 Corr	Coff 0	0.00000	Tfer ID	01116		
DAS 1:	DA	.S 2:		Slope	0.99260	0 Intercept	0.04790
A Avg % Diff: A Max		Avg %Diff A	Max % Di	-			
0.0%	0.0%			Cert Date	4/10/202	4 CorrCoff	0.99999
UseDescription Co	oncGroup	Tfer Raw	Tfer Corr	Site	Site Unit	RelPerDif	AbsDif
primary	1	0.12	0.07	0.40	ppb		0.33
primary	2	13.25	13.13	12.27	ppb		-0.86
primary	3	33.42	33.21	32.14	ppb	-3.27	
primary	4	63.62	63.26	62.77	ppb	-0.78	
primary	5	116.93	116.31	115.38	ppb	-0.8	
Sensor Component	Audit Pressu	re	Conditi	on 659 mmHg		Status pass	
Sensor Component	26.6 degree ı	unobstructed ru	le Conditi	n True		Status pass	
Sensor Component	Tree dewline	>10m or below	inlet Conditi	n True		Status pass	
Sensor Component	ADT 1000-10)000 vehicles fu	rther Condition	n True		Status pass	
Sensor Component	ADT <1000 v	ehicles further t	than Condition	on True		Status pass	
Sensor Component	Sample Trair	ı	Condition	on Good		Status pass	
Sensor Component	Inlet Filter Co	ondition	Conditio	on Clean		Status pass	
Sensor Component	Offset		Conditio	0.9		Status pass	
Sensor Component	Span		Conditio	on 4850.5		Status pass	
Sensor Component	Zero Voltage		Conditio	n N/A		Status pass	
Sensor Component	Fullscale Vol	tage	Conditio	n N/A		Status pass	
Sensor Component	Cell A Freq.		Condition	Dn N/A		Status pass	
Sensor Component	Cell A Noise		Condition	Dn N/A		Status pass	
Sensor Component	Cell A Flow		Condition	0.89 lpm		Status pass	
Sensor Component	Cell A Pressu	ure	Conditio	on 24.1 inHg		Status pass	
Sensor Component	Cell A Tmp.		Conditio	on 25.4 C		Status pass	
Sensor Component	Cell B Freq.		Conditio	n N/A		Status pass	
Sensor Component	Cell B Noise		Conditio	on N/A		Status pass	
Sensor Component	Cell B Flow		Conditio	n N/A		Status pass	
Sensor Component	Cell B Pressu	ure	Conditio	n N/A		Status pass	
Sensor Component	Nafion dryer	installed	Conditio	on False		Status pass	
Sensor Component	System Mem	0	Conditio	on		Status pass	

2 Meter Temperature Data Form

α		D		0		
` 0	0		пι	t OI	POP	ice
a	IU.	D				IUU

Mfg	Serial Number Ta	Site	Tech	hnician	Site Visit Date	Parameter	Owner ID
Vaisala	V4920649	BBE401	Mar	tin Valvur	02/12/2025	Temperature2meter	none
			N	Mfg	Fluke	Parameter Ten	nperature
			S	Serial Number	2085085	Tfer Desc. RTI)
			1	Ffer ID	01226		
DAS 1:	DAS 2:		S	Slope	1.0003	1 Intercept	-0.04252
Abs Avg Err Ab	s Max Err Abs Av	g Err Abs Max Ei	rr (Cert Date	1/8/202	5 CorrCoff	0.99999
0	0	0	0				
UseDescription	Test type Inpu	utTmpRaw InputTm	pCorre	cted OutputTm	pSignal OutputS	SignalEng OSE Unit	Difference
primary		0.00		0.00	0.000	0.00 C	0
Sensor Compone	Shield	Со	ndition	1		Status pass	
Sensor Compone	nt Properly Sited	Со	ndition	1		Status pass	
Sensor Compone	ent Blower	Co	ndition	1		Status pass	
Sensor Compone	ent System Memo	Co	ndition	1		Status pass	

Shelter Temperature Data For

Mfg	Serial Number Ta	Site	Technician	Site Visit Date	Parameter Owner ID
ARS	none	BBE401	Martin Valvur	02/12/2025	Shelter Temperature none
DAS 1:	DAS 2:		Mfg	Fluke	Parameter Shelter Temperatur
Abs Avg Err Ab	0.20 Abs Avg	Err Abs Max Err	Serial Number	2085085	Tfer Desc. RTD
			Tfer ID	01226	
			Slope	1.0003	1 Intercept -0.04252
			Cert Date	1/8/202	25 CorrCoff 0.99999

UseDesc.	Test type	InputTmpRaw	InputTmpCorr.	OutputTmpSignal	OutputSignalEng	OSE Unit	Difference
primary	Temp Mid Range	22.28	22.32	0.000	22.5	С	0.2
primary	Temp Mid Range	22.59	22.63	0.000	22.8	С	0.19
primary	Temp Mid Range	23.40	23.44	0.000	23.4	С	-0.04
Sensor Con	nponent System Memo		Condition		Status	pass	

Siting Criteria Form

Sensor Component Large point source of	of So2 or Nox Condition	Status	pass
Sensor Component City > 50,000	Condition	Status	pass
Sensor Component City 1,000 to 10,000	Condition	Status	pass
Sensor Component City 10,000 to 50,00	0 Condition	Status	pass
Sensor Component Feedlot operations	Condition	Status	pass
Sensor Component Large parking lot	Condition	Status	pass
Sensor Component Limited agriculture of	perations Condition	Status	pass
Sensor Component Major industrial sour	ce Condition	Status	pass
Sensor Component Secondary road < or	r = 100 per da Condition	Status	pass
Sensor Component Secondary road >10	0 vehicles/da Condition	Status	pass
Sensor Component Small parking lot	Condition	Status	pass
Sensor Component System Memo	Condition	Status	pass
Sensor Component Major highway, airpo	ort, or rail yard Condition	Status	pass
Sensor Component Intensive agriculture	operations Condition	Status	pass

Infrastructure Data For

Site ID	BBE401	Technician Martin V	Site Visit Date 02/12/2025
Shelter M	lake	Shelter Model	Shelter Size
Ekto		8814	896 cuft

Sensor Component	Sample Tower Type	Condition	Туре В	Status	pass
Sensor Component	Conduit	Condition	Good	Status	pass
Sensor Component	Met Tower	Condition	N/A	Status	pass
Sensor Component	Moisture Trap	Condition	Installed	Status	pass
Sensor Component	Moisture Trap Type	Condition	Filter	Status	pass
Sensor Component	Power Cables	Condition	Good	Status	pass
Sensor Component	Shelter Temp Control	Condition	Functioning	Status	Pass
Sensor Component	Rotometer	Condition	Installed	Status	pass
Sensor Component	Sample Tower	Condition	Good	Status	pass
Sensor Component	Shelter Condition	Condition	Good	Status	pass
Sensor Component	Shelter Door	Condition	Good	Status	pass
Sensor Component	Shelter Roof	Condition	Good	Status	pass
Sensor Component	Shelter Floor	Condition	Good	Status	pass
Sensor Component	Shelter walls	Condition	Good	Status	pass
Sensor Component	Excessive mold present	Condition	Good	Status	pass
Sensor Component	Signal Cable	Condition	Good	Status	pass
Sensor Component	Tubing Type	Condition	3/8 teflon	Status	pass
Sensor Component	Sample Train	Condition	Good	Status	pass
Sensor Component	System Memo	Condition		Status	pass

Site Visit Comments

Parameter	Site	Technician	S.V. Date	Component	Mfg	Serial No.	Hazar	d Problem
Temperature2meter	BBE401	Martin Valvur	02/12/2025	System Memo	Vaisala	4852		
TE (11)	1 11.		1	1 . 1		1. 1.1.0	11.	

Temperature and relative humidity are being measured using a combination sensor which cannot be submerged in a water bath for audits.

Field Systems Comments

1 Parameter: DasComments

Met tower no longer in use.

2 Parameter: SiteOpsProcedures

The ozone sample line is leak tested every two weeks when the inlet filter is replaced.

3 Parameter: ShelterCleanNotes

The shelter is clean, neat, and well organized.

4 Parameter: MetSensorComme

Meteorological parameters are being measured with an "all-in-one" sensor which is not submergible. Temperature data were not available for display on the site DAS and it was not tested.

Field Systems Data Form

F-02058-1500-S1-rev002

Site ID BBE401	Technician Martin Valvur	Site Visit Date 02/1	2/2025
S'4. S	NPS	USGS Map	Panther Junction
Site Sponsor (agency)		-	
Operating Group	NPS	Map Scale	
AQS #	48-043-0101	Map Date	
Meteorological Type	Climatronics		
Air Pollutant Analyzer	Ozone, IMPROVE, PM2.5	QAPP Latitude	29.3022
Deposition Measurement	dry, wet	QAPP Longitude	-103.1772
Land Use	desert	QAPP Elevation Meters	1052
Terrain	complex	QAPP Declination	
Conforms to MLM	Marginally	QAPP Declination Date	
Site Telephone	(432) 477-2258	Audit Latitude	29.302651
Site Address 1	K-Bar Ranch	Audit Longitude	-103.177813
Site Address 2	Big Bend National Park	Audit Elevation	1057
County	Brewster	Audit Declination	7.0
City, State	Big Bend National Park, TX	Present	
Zip Code	79834	Fire Extinguisher 🗌	
Time Zone	Central	First Aid Kit	
Primary Operator		Safety Glasses	
Primary Op. Phone #		Safety Hard Hat	
Primary Op. E-mail		Climbing Belt	
Backup Operator		Security Fence	
Backup Op. Phone #		Secure Shelter	
Backup Op. E-mail		Stable Entry Step 🔽	
Shelter Working Room ✓	Make Ekto M	odel 8814	Shelter Size 896 cuft
Shelter Clean	Notes The shelter is clean, neat, and	well organized.	
Site OK	Notes		
Nation the vis contin	interstate 10 in Fort Stockton, turn south nal Park. Continue on the park road past sitor center. Turn left (east) and continue ue approximately 0.5 miles. Turn right or ouse) on the right. The site is 400 meters	the entrance station 26 miles to approximately 2.5 miles. Turn the service road just past the	o the stop sign at Panther Junction near left on the dirt road marked K-Bar and

Fi	eld Systems Data Form		F-02058-1500-S3-rev002
Site	BBE401 Technician Martin Valvur		Site Visit Date 02/12/2025
1	Are wind speed and direction sensors sited so as to avoid being influenced by obstructions?		N/A
2	Are wind sensors mounted so as to minimize tower effects? (i.e. wind sensors should be mounted atop the tower or on a horizontally extended boom >2x the max diameter of the tower into the prevailing wind)		N/A
3	Are the tower and sensors plumb?	✓	N/A
4	Are the temperature shields pointed north or positioned to avoid radiated heat sources such as buildings, walls, etc?		
5	Are temperature and RH sensors sited to avoid unnatural conditions? (i.e. ground below sensors should be natural surface and not steeply sloped. Ridges, hollows, and areas of standing water should be avoided)		
6	Is the solar radiation sensor plumb?	✓	N/A
7	Is it sited to avoid shading, or any artificial or reflected light?		N/A
8	Is the rain gauge plumb?	✓	N/A
9	Is it sited to avoid sheltering effects from buildings, trees, towers, etc?		N/A
10	Is the surface wetness sensor sited with the grid surface facing north?	✓	N/A
11	Is it inclined approximately 30 degrees?	✓	N/A
	wide any additional explanation (nhotograph or sketch if nece	ccor	x) regarding conditions listed above, or any other feature

Provide any additional explanation (photograph or sketch if necessary) regarding conditions listed above, or any other features, natural or man-made, that may affect the monitoring parameters:

Meteorological parameters are being measured with an "all-in-one" sensor which is not submergible. Temperature data were not available for display on the site DAS and it was not tested.

Field Systems Data Form

F-02058-1500-S4-rev002

Site	e ID	BBE401	Technician	Martin Valvur		Site Visit Date 02/12/2025
1		e meterological senso 1, and well maintained		intact, in good		Temperature only
2					✓	Temperature only
3	Are the s	hields for the tempera	ature and RH s	ensors clean?	✓	Temperature only
4	Are the a	spirated motors worl	king?		✓	N/A
5	Is the sol scratches	ar radiation sensor's	lens clean and f	free of	✓	N/A
6	Is the su	rface wetness sensor g	rid clean and u	indamaged?	✓	N/A
7		ensor signal and pow 1, and well maintained		, in good		
8		ensor signal and pow elements and well ma		tions protected		

Field Systems Data Form						F-02058-1500-S5-rev002
Site	e ID	BBE401	Technician M	lartin Valvur		Site Visit Date 02/12/2025
	<u>Siting C</u>	Criteria: Are the pollut	ant analyzers and	d deposition equ	iipn	nent sited in accordance with 40 CFR 58, Appendix E
1		sample inlets have at le icted airflow?	east a 270 degree	arc of	✓	
2	Are the	sample inlets 3 - 15 m	eters above the g	round?	✓	
3		sample inlets > 1 mete meters from trees?	er from any majo	r obstruction,	✓	
	<u>Pollutar</u>	nt analyzers and depos	sition equipment of	operations and 1	mai	ntenance
1		analyzers and equipme on and well maintained		n good	✓	
2		analyzers and monitonig data?	rs operational, or	n-line, and	✓	
3	Describ	e ozone sample tube.				1/4 teflon by 12 meters
4	Describ	e dry dep sample tube				3/8 teflon by 12 meters
5		ine filters used in the o location)	ozone sample line	? (if yes		At inlet only
6	Are sam obstruct	nple lines clean, free of tions?	f kinks, moisture,	and	✓	
7	Is the ze	ero air supply desiccan	nt unsaturated?	[✓	
8	Are the	re moisture traps in th	e sample lines?	[✓	Flow line only
9	Is there clean?	a rotometer in the dry	y deposition filter	line, and is it		Clean and dry

Field Systems Data Form						F-02058-1500-S6-rev002				
Site	e ID	BBE401	Technician	Martin Valvur		Site Visi	it Date	02/12/2025	5]
	DAS, ser	nsor translators, and g	peripheral equi	pment operatio	ns ai	<u>ıd maintena</u>	<u>nce</u>			
1		OAS instruments appe ntained?	ar to be in good	l condition and	✓					
2		he components of the backup, etc)	DAS operation	al? (printers,	✓					
3		nalyzer and sensor sig g protection circuitry?		through	✓	Temperature	e only			
4		signal connections pro ntained?	otected from the	e weather and	✓					
5	Are the	signal leads connected	to the correct	DAS channel?	✓					
6	Are the grounde	DAS, sensor translato d?	rs, and shelter	properly	✓					
7	Does the	e instrument shelter ha	ave a stable pov	ver source?	✓					
8	Is the in	strument shelter temp	perature control	lled?						
9	Is the m	et tower stable and gr	ounded?			Stable			Grounded	
10	Is the sa	mple tower stable and	l grounded?							
11	Tower c	omments?								

Provide any additional explanation (photograph or sketch if necessary) regarding conditions listed above, or any other features, natural or man-made, that may affect the monitoring parameters:

Met tower no longer in use.

Fie	Field Systems Data Form							F-02	F-02058-1500-S7-rev002			2	
Site	ID	BBE401		Tec	hnician	Martin Valvur		Site Visit Date	02/12/2025				
D	ocument	ation											
D	oes the s	ite have the requir	ed in	<u>strum</u>	ent and	equipment m	anuals?						
			Yes	No	N / <i>A</i>	A			Yes	No	N/A		
Win	d speed s	sensor				Da	ata logge	r		\checkmark			
Win	d directi	on sensor			<u> </u>	Da	ata logge	r					
	perature			 Image: A start of the start of			rip chart	recorder					
		nidity sensor					omputer						
		on sensor			<u> </u>		odem						
		ess sensor					inter						
		translator					ero air pu	-					
	•	e translator					lter flow						
		isor translator					irge prot	ector					
		on translator											
	-	ket rain gauge					0 01	protection device					
	ne analyz			 Image: A start of the start of			elter hea						
	-	ow controller		✓			ielter air	conditioner		\checkmark			
	-	IFC power supply											
	Does the	site have the requi	red a	und m	ost recei	nt QC docum	ents and	<u>report forms?</u>					
			Pres	sent					Curre	nt			
Stat	ion Log			✓	Datavie	W			\checkmark				
SSR			[✓					\checkmark				
	Ops Mai	nual		✓	outdate	d							
HAS													
	d Ops Ma												
	bration I	•			missing								
		Control Charts											
Prev	ventive m	aintenance schedu	le										
1	Is the st	ation log properly	comp	oleted	during	every site visit	t? 🔽 Da	ataview					
2	Are the current	Site Status Report ?	Form	ns bei	ng comp	oleted and	✓ FI	ow section only					
3		chain-of-custody for the second se			erly used	d to document	t 🗸						
4	Are ozo current	ne z/s/p control cha ?	arts p	oropei	ly comp	leted and		ontrol charts not u	sed				
		additional explana an-made, that may						regarding condit	ons listed a	bove, o	or any ot	her features,	
													-

Field Systems Data Form

BBE401 Site Visit Date 02/12/2025 Site ID Technician Martin Valvur Site operation procedures Has the site operator attended a formal CASTNET training 1 course? If yes, when and who instructed? 2 Has the backup operator attended a formal CASTNET training course? If yes, when and who instructed? Is the site visited regularly on the required Tuesday ✓ 3 schedule? \checkmark Are the standard CASTNET operational procedures being 4 flollowed by the site operator? Is the site operator(s) knowledgeable of, and able to perform 🔽 5 the required site activities? (including documentation)

Are regular operational QA/QC checks performed on meteorological instruments?

QC Check Performed Multipoir

Frequency

Frequency

Multipoint Calibrations	\checkmark	Semiannually	\checkmark
Visual Inspections	\checkmark	Weekly	\checkmark
Translator Zero/Span Tests (climatronics)	\checkmark	N/A	\checkmark
Manual Rain Gauge Test	\checkmark	N/A	\checkmark
Confirm Reasonableness of Current Values	\checkmark	Weekly	\checkmark
Test Surface Wetness Response	\checkmark	N/A	\checkmark

Are regular operational QA/QC checks performed on the ozone analyzer?

00	Check	Parforn	hon
VV.	Спеск	Perforn	ieu

Multi-point Calibrations Automatic Zero/Span Tests **Manual Zero/Span Tests Automatic Precision Level Tests Manual Precision Level Test Analyzer Diagnostics Tests In-line Filter Replacement (at inlet) In-line Filter Replacement (at analyze** Sample Line Check for Dirt/Water **Zero Air Desiccant Check**

Semiannually	
Daily	✓
Monthly	✓
Daily	✓
Monthly	✓
Alarm values only	
Every 2 weeks	\checkmark
N/A	
Weekly	
Weekly	

- 1 Do multi-point calibration gases go through the complete sample train including all filters?
- 2 Do automatic and manual z/s/p gasses go through the complete sample train including all filters?

3	Are the automatic and manual z/s/p checks monitored and	V
	reported? If yes, how?	

	Unknown	
✓		
	Dataview	

Provide any additional explanation (photograph or sketch if necessary) regarding conditions listed above, or any other features, natural or man-made, that may affect the monitoring parameters:

The ozone sample line is leak tested every two weeks when the inlet filter is replaced.

F-02058-1500-S8-rev002

Compliant

Compliant

Field Systems Data Form F-02058-1500-S9-rev002 BBE401 Technician Martin Valvur Site Visit Date 02/12/2025 Site ID Site operation procedures Is the filter pack being changed every Tuesday as scheduled? Filter changed morinings 1 Are the Site Status Report Forms being completed and filed 2 correctly? No longer required 3 Are data downloads and backups being performed as scheduled? ✓ Dataview Are general observations being made and recorded? How? 4 ✓ Are site supplies on-hand and replenished in a timely 5 fashion? SSRF Are sample flow rates recorded? How? 6 \checkmark Are samples sent to the lab on a regular schedule in a timely 🗹 7 fashion? ✓ Clean gloves on and off Are filters protected from contamination during handling 8 and shipping? How? Are the site conditions reported regularly to the field 9 operations manager or staff? **QC Check Performed** Compliant Frequency \checkmark Semiannually **Multi-point MFC Calibrations** ✓ Weekly ✓ **Flow System Leak Checks Filter Pack Inspection** \checkmark ✓ Weekly **Flow Rate Setting Checks** \checkmark ✓ Weekly Visual Check of Flow Rate Rotometer Semiannually \checkmark **In-line Filter Inspection/Replacement** ✓ Weekly Sample Line Check for Dirt/Water

Field	S	stems	Data	Form
I'ICIU	D	SUCIIIS	Data	I'UI III

BBE401

F-02058-1500-S10-rev002

Technician Martin Valvur

Site Visit Date 02/12/2025

Site Visit Sensors

Parameter	Manufacturer	Model	S/N	Client ID
Computer	panasonic	Tough Book	CF-532BL28CM	none
DAS	Campbell	CR1000X	12388	None
Elevation	Elevation	1	None	None
Filter pack flow pump	Thomas	107CA18A	608102A	none
Flow Rate	Alicat	MC-10SLPM-D-PC	134657	none
Infrastructure	Infrastructure	none	none	none
Ozone	Teledyne	T400	7455	none
Ozone Standard	ThermoElectron Inc	49i A3NAA	1023943901	none
Sample Tower	Aluma Tower	В	AT-5381-F9-1	none
Shelter Temperature	ARS	none	none	none
Siting Criteria	Siting Criteria	1	None	None
Temperature2meter	Vaisala	WXT536	V4920649	none
Zero air pump	Werther International	PC 70/4	000855581	none

Site Inventory by Site Visit

Site	Visit Date	Parameter	Mfg	Owner ID	Model Number	Serial Number	
CAV	CAV436-Martin Valvur-02/14/2025						
1	2/14/2025	Computer	Hewlett Packard	none	ProBook	5CD01715DB	
2	2/14/2025	DAS	Environmental Sys Corp	None	8864	C2602	
3	2/14/2025	Modem	Sierra wireless	none	GX450	Unknown	
4	2/14/2025	Ozone	ThermoElectron Inc	none	49i A3NAA	0733726103	
5	2/14/2025	Ozone Standard	ThermoElectron Inc	none	49i A1NAA	CM08460009	
6	2/14/2025	Shelter Temperature	ARS	none	none	none	
7	2/14/2025	Temperature	Vaisala	none	WTX536	V5010145	
8	2/14/2025	Zero air pump	Werther International	none	C 70/4	000915011	

DAS Data Form

DAS Time Max Error: 1.5

Mfg	Serial Number Site Tec		Technician	Site Visit Date	Parameter	Use Desc.
Environmental Sys	C2602	CAV436	Martin Valvur	02/14/2025	DAS	Primary
	4/2025 Audit I 8:45:30 Audit 1		Mfg	Fluke	Parameter	DAS
Das Day:	45 Audit I		Serial Number	95740243	Tfer Desc.	DVM
Low Channel:	High Ch	annel:	Tfer ID	01312		
	ax Diff: Avg Dif		Slope	1.0000	0 Intercept	0.00000
0.0000	0.0000	0.0000 0.0000	Cert Date	1/5/202	5 CorrCoff	1.00000
Channel In	put DVM Outpu	It DAS Output	InputUnit	OutputUnit	Difference	
4	0.0000 0.0	000 0.000	0 V	V	0.0000	

Ozone Data Form

Mfg	Serial Number	r Ta Site	Те	chnician	Site Visit Date	Parameter	Owner ID
ThermoElectron Inc	nc 0733726103 CAV436		6 М	artin Valvur	02/14/2025	Ozone	none
		rcept (Coff	0.00000 0.00000 0.00000 Max % Di	Mfg Serial Number Tfer ID Slope	ThermoElectron CM23147126 01116 0.9926	Tfer Des	c. Ozone primary stan
0.0%			Cert Date	4/10/202	24 CorrCoff	0.99999	
UseDescription	escription ConcGroup Tfer Raw Tf		Tfer Corr	Site	Site Unit	RelPerDif	AbsDif
primary	1	0.38	0.33	0.41	ppb		0.08
primary	2	14.03	13.91	13.49	ppb		-0.42
primary	3 4	<u>34.84</u> 65.57	34.62 65.20	33.81 64.14	ppb	-2.37	
primary primary	5	116.96	116.34	114.40	ppb ppb	-1.68	
Sensor Compone				on 642 mmHg		Status pass	
Sensor Component 26.6 degree unobstructed rule				on True		Status pass	
Sensor Compone	ent Tree dewline	e >10m or below	inlet Conditi	on True		Status pass	
Sensor Component ADT 1000-10000 vehicles further				on True		Status pass	
Sensor Component ADT <1000 vehicles further than		than Conditi	on True		Status pass		
Sensor Compone	ent Sample Train	n	Conditi	on Good		Status pass	
Sensor Compone	Inlet Filter Co	ondition	Conditi	on Moderately cle	an	Status pass	
Sensor Compone	offset		Conditi	ondition -0.2		Status pass	
Sensor Compone	ent Span		Conditi	on 1.004		Status pass	
Sensor Compone	ent Zero Voltage	;	Conditi	on N/A		Status pass	
Sensor Compone	ent Fullscale Vo	Itage	Conditi	on N/A		Status pass	
Sensor Compone	ent Cell A Freq.		Conditi	on 112.7 kHz		Status pass	
Sensor Compone	ent Cell A Noise		Conditi	on 0.9 ppb		Status pass	
Sensor Compone	Cell A Flow		Conditi	on 0.71 lpm		Status pass	
Sensor Compone	ent Cell A Press	ure	Conditi	on 638.7 mmHg		Status pass	
Sensor Compone	Cell A Tmp.		Conditi	on 34.3 C		Status pass	
Sensor Compone	Sensor Component Cell B Freq.		Conditi	on 64.8 kHz		Status pass	
	Sensor Component Cell B Noise		Conditi	on 0.6 ppb		Status pass	
Sensor Component Cell B Flow			on 0.73 lpm		Status pass		
Sensor Component Cell B Pressure			on 639.1 mmHg		Status pass		
Sensor Compone	ent Nafion dryer	installed	Conditi	on False		Status pass	
Sensor Compone	ent System Men	าด	Conditi	on		Status pass	

Temperature Data Form

Mfg	Serial Number	Fa Site	Т	Fechnician		Site V	Visit Date Parame		eter	Owner ID	
Vaisala	V5010145	CAV436	1	Martin	Valvur	02/14	4/2025	Temper	ature	none	
				Mf	g	Fluke		Pa	arameter Temperature		
					Serial Number		2085085 Tf		fer Desc. RTD		
				Tfer ID		01226	3				
DAS 1:		Slo	ре		1.0003	1 Inte	ercept -0.04		52		
Abs Avg Err	Max Err	x Err Cert Date			1/8/202	5 Cor	rCoff	0.9999	99		
0.39	0.97			L							
UseDesc.	Test type	InputTmpRaw	InputTmp	putTmpCorr. OutputTmpSi		Signal	OutputSig	gnalEng	OSE Unit	Difference	
primary	Temp Low Range	9.04	9.08	08 0.000		9.1		С	0.02		
primary	Temp Mid Range	10.13	10.17		0.000		10.0		С	-0.17	
primary	Temp Mid Range	13.03	13.07		0.000		12.	1	С	-0.97	
Sensor Comp	ponent Shield		Condit	tion C	Clean			Status	pass		
Sensor Component Blower				tion N	I/A			Status	pass		
Sensor Comp	Sensor Component Properly Sited				Properly sited			Status	pass		
Sensor Comp	ponent System Memo	Condit	Condition See comments				Status	pass			

Shelter Temperature Data For

Mfg	Serial Number Ta	Site	Technician	Site Visit Date	Parameter Owner ID
ARS	none	CAV436	Martin Valvur	02/14/2025	Shelter Temperature none
DAS 1:	DAS 2:		Mfg	Fluke	Parameter Shelter Temperatur
Abs Avg Err Ab	os Max Err Abs Avg 0.59	Err Abs Max Err	Serial Number	2085085	Tfer Desc. RTD
	0.59		Tfer ID	01226	
			Slope	1.0003	1 Intercept -0.04252
			Cert Date	1/8/202	5 CorrCoff 0.99999

UseDesc.	Test type	InputTmpRaw	InputTmpCorr.	OutputTmpSignal	OutputSignalEng	OSE Unit	Difference
primary	Temp Mid Range	21.04	21.08	0.000	21.7	С	0.59
primary	Temp Mid Range	21.19	21.23	0.000	21.4	С	0.16
primary	Temp Mid Range	20.07	20.11	0.000	20.0	С	-0.13
Sensor Con	nponent System Memo	I	Condition		Status	pass	

Site Visit Comments

Parameter	Site	Technician	S.V. Date	Component	Mfg	Serial No.	Hazard Problem
Temperature	CAV436	Martin Valvur	02/14/2025	System Memo	Vaisala	4853	
T	···· 1····· · 1····	1	1		- 4 11	1 :	

Temperature and relative humidity are being measured using a combination sensor which cannot be submerged in a water bath for audits.

Field Systems Comments

1 Parameter: SiteOpsProcComm

Dry deposition samples are not collected at this site.

2 Parameter: DocumentationCo

The site is visited every other Tuesday. WIFI is available at the station and manuals and documents can be obtained online.

3 Parameter: MetSensorComme

The 2-meter temperature sensor has been replaced with an "all-in-one" meteorological sensor mounted at 10m on the sample tower. The sensor cannot be submerged and was tested by placing the RTD standard inside the naturally aspirated shield next to the site sensor.

Field Systems Data Form

F-02058-1500-S1-rev002

Site ID CAV436	Technician Martin Valvur	Site Visit Date 02/14	4/2025				
Site Sponsor (agency)	NPS	USGS Map					
	NPS	Map Scale					
	35-151-0745	Map Date					
Meteorological Type							
Air Pollutant Analyzer	Ozone	QAPP Latitude					
Deposition Measurement		QAPP Longitude					
Land Use		QAPP Elevation Meters					
Terrain		QAPP Declination					
Conforms to MLM		QAPP Declination Date					
Site Telephone		Audit Latitude	32.178141				
Site Address 1		Audit Longitude	-104.443206				
Site Address 2		Audit Elevation	1358				
County		Audit Declination	7				
City, State	Carlsbad, NM	Present					
Zip Code	88220	Fire Extinguisher 🗹	Inspected June 2024				
Time Zone	Mountain	First Aid Kit	in vehicle				
Primary Operator		Safety Glasses					
Primary Op. Phone #		Safety Hard Hat					
Primary Op. E-mail		Climbing Belt					
Backup Operator		Security Fence					
Backup Op. Phone #		Secure Shelter					
Backup Op. E-mail		Stable Entry Step 🗹					
Shelter Working Room		E8129-29034	Shelter Size 768 cutt				
	Notes						
	Notes						
Driving Directions							

Fi	eld Sy	stems Data F	orm			F-02058-1500-S3-rev	002
Site	e ID	CAV436	Technician	Martin Valvur		Site Visit Date 02/14/2025	
1		d speed and direction fluenced by obstruction) as to avoid		✓ N/A	
2	(i.e. win horizon	d sensors mounted so d sensors should be m tally extended boom > nto the prevailing wind	ounted atop the	e tower or on a		N/A	
3	Are the	tower and sensors plu	ımb?		✓	N/A	
4		temperature shields p adiated heat sources s					
5	 avoid radiated heat sources such as buildings, walls, etc? Are temperature and RH sensors sited to avoid unnatural conditions? (i.e. ground below sensors should be natural surface and not steeply sloped. Ridges, hollows, and areas standing water should be avoided) 						
6	Is the so	olar radiation sensor p	olumb?		✓		
7	Is it site light?	d to avoid shading, or	• any artificial o	r reflected	✓		
8	Is the ra	ain gauge plumb?			✓		
9	Is it site towers,	d to avoid sheltering e etc?	effects from bui	ldings, trees,	✓		
10	Is the su facing n	irface wetness sensor orth?	sited with the g	rid surface	✓		
11	Is it inc	lined approximately 3	30 degrees?				

Provide any additional explanation (photograph or sketch if necessary) regarding conditions listed above, or any other features, natural or man-made, that may affect the monitoring parameters:

The 2-meter temperature sensor has been replaced with an "all-in-one" meteorological sensor mounted at 10m on the sample tower. The sensor cannot be submerged and was tested by placing the RTD standard inside the naturally aspirated shield next to the site sensor.

Field Systems Data Form

F-02058-1500-S4-rev002

Site	e ID	CAV436	Technician	Martin Valvur		Site Visit Date 02/14/2025
1		e meterological sensor 1, and well maintained		intact, in good		Temperature only
2	Are all the reporting	he meteorological sens g data?	sors operationa	l online, and	✓	Temperature only
3	Are the s	shields for the temper	ature and RH s	ensors clean?	✓	
4	Are the a	aspirated motors worl	king?			N/A
5	Is the sol scratche	ar radiation sensor's s?	lens clean and f	free of	✓	N/A
6	Is the su	rface wetness sensor g	grid clean and u	indamaged?	✓	N/A
7		ensor signal and pow 1, and well maintained		, in good	✓	
8		ensor signal and pow elements and well ma		ctions protected		

Fi	eld Systems Data Form		F-02058-1500-S5-rev002
Sit	CAV436 Technician Martin Valvur		Site Visit Date 02/14/2025
	Siting Criteria: Are the pollutant analyzers and deposition e	quipı	nent sited in accordance with 40 CFR 58, Appendix E
1	Do the sample inlets have at least a 270 degree arc of unrestricted airflow?	✓	
2	Are the sample inlets 3 - 15 meters above the ground?	✓	
3	Are the sample inlets > 1 meter from any major obstruction, and 20 meters from trees?	✓	
	Pollutant analyzers and deposition equipment operations and	d ma	intenance
1	Do the analyzers and equipment appear to be in good condition and well maintained?	✓	
2	Are the analyzers and monitors operational, on-line, and reporting data?	✓	
3	Describe ozone sample tube.		1/4 teflon by 10 meters
4	Describe dry dep sample tube.		N/A
5	Are in-line filters used in the ozone sample line? (if yes indicate location)	✓	At inlet only
6	Are sample lines clean, free of kinks, moisture, and obstructions?		
7	Is the zero air supply desiccant unsaturated?	✓	
8	Are there moisture traps in the sample lines?		
9	Is there a rotometer in the dry deposition filter line, and is it clean?	✓	N/A

Fie	eld Sy	stems Data Fo	orm			F-02058-1500-S6-rev002					
Site	e ID	CAV436	Technician	Martin Valvur		Site Visi	t Date	02/14/2025	5		
	DAS, sei	nsor translators, and p	eripheral equi	pment operatio	ns ai	<u>nd maintenai</u>	<u>1ce</u>				
1		DAS instruments appeantained?	ar to be in good	l condition and							
2		he components of the backup, etc)	al? (printers,	✓							
3		nalyzer and sensor sig g protection circuitry?	through	✓	Met sensors	only					
4		signal connections pro ntained?	tected from the	e weather and	✓						
5	Are the	signal leads connected	DAS channel?	✓							
6	Are the grounde	DAS, sensor translator d?	rs, and shelter	properly	✓						
7	Does the	instrument shelter ha	ive a stable pov	ver source?	✓						
8	Is the ins	strument shelter temp	erature contro	lled?							
9	Is the mo	et tower stable and gro	ounded?			Stable			Grounded]	
10	Is the sa	mple tower stable and	grounded?								
11	Tower c	omments?									

Fie	ld Sy	stems Data	For	·m					F-02	2058-	1500-	-S7-rev0	02
Site	ID	CAV436		Techn	ician	Martin Val	vur	Site Visit Date	02/14/202	5			
	ocumen oes the s	tation ite have the requir	ed ins	trumen	t and	equipmen	<u>t manuals?</u>						
Wind Temp Relat Solar Surfa Wind Temp Hum Solar Tipp Ozon Filter	perature tive hun radiati ace wetr l sensor perature idity sen radiati ing buck ne analy r pack f r pack M	sensor on sensor e sensor hidity sensor on sensor tess sensor translator e translator hsor translator on translator on translator	Yes	No □ ✓ ✓ □ □ □ □ □ □ □ □ □ □ □ □ □	N/. Y Y Y Y Y Y Y Y Y Y Y Y Y		Shelter hea Shelter air	r t recorder ump pump ector protection device ater conditioner	Yes	No V V V V V V V V V V V V V			
SSRI Site (HAS) Field Calib Ozon Prevo 1	Ops Ma P Ops M oration I he z/s/p (entive n Is the st Are the current	anual Reports Control Charts naintenance schedu ation log properly Site Status Report	[[[[le [comp Form	leted du	comj	pleted and		ataview		ent			
4	sample	transfer to and fro ne z/s/p control cha	m lab	?									
		additional explana an-made, that may						regarding condit	tions listed	above,	or any ot	her features,	

The site is visited every other Tuesday. WIFI is available at the station and manuals and documents can be obtained online.

Field Systems Data Form

Site	ID	CAV436	Technician	Martin Valvur		Site Visit Date 02/14/2025
1	Has the	<u>ration procedures</u> site operator attended If yes, when and who		FNET training] <mark>N/A</mark>
2		backup operator atter course? If yes, when				N/A
3	Is the site schedule	e visited regularly on t ?	the required Tu	esday		every other Tuesday
4		standard CASTNET o I by the site operator?	• •	edures being	✓	
5		e operator(s) knowled ired site activities? (in			✓	
		1	Calada		. 1	

Are regular operational QA/QC checks performed on meteorological instruments?

QC Check Performed		Frequency	Compliant
Multipoint Calibrations	\checkmark	Semiannually	
Visual Inspections	\checkmark	Bi-monthly	
Translator Zero/Span Tests (climatronics)			
Manual Rain Gauge Test	\checkmark	Bi-monthly	
Confirm Reasonableness of Current Values	\checkmark	Bi-monthly	
Test Surface Wetness Response			

Are regular operational QA/QC checks performed on the ozone analyzer?

QC Check Performed		Fre
Multi-point Calibrations	\checkmark	Sem
Automatic Zero/Span Tests		Dail
Manual Zero/Span Tests	\checkmark	Bi-m
Automatic Precision Level Tests		Dail
Manual Precision Level Test		
Analyzer Diagnostics Tests	\checkmark	Bi-m
In-line Filter Replacement (at inlet)	\checkmark	Mor
In-line Filter Replacement (at analyze		N/A
Sample Line Check for Dirt/Water	\checkmark	Bi-m
Zero Air Desiccant Check		Bi-m

Frequency	C
Semiannually	
Daily	
Bi-monthly	
Daily	
Bi-monthly	
Monthly	
N/A	
Bi-monthly	
Bi-monthly	

Unknown

- **1** Do multi-point calibration gases go through the complete sample train including all filters?
- 2 Do automatic and manual z/s/p gasses go through the complete sample train including all filters?
- 3 Are the automatic and manual z/s/p checks monitored and reported? If yes, how?

Provide any additional explanation (photograph or sketch if necessary) regarding conditions listed above, or any other features,
natural or man-made, that may affect the monitoring parameters:

✓

✓

F-02058-1500-S8-rev002

Compliant

Field S

Are site supplies on-hand and replenished in a timely

Are samples sent to the lab on a regular schedule in a timely \checkmark

Are sample flow rates recorded? How?

fashion?

fashion?

5

6

7

Fie	eld Sy	stems Data	Form		F-02058-1500-S9-rev002			
Site	ID	CAV436	Technician Martin	Valvur	Site Visit Date	02/14/2025]	
	Site oper	ration procedures						
1	Is the fil	ter pack being ch	anged every Tuesday as scl	heduled? 🗹	N/A			
2	Are the correctly		t Forms being completed a	nd filed 🔽	N/A			
3	Are data schedule		oackups being performed a	as 🗸	N/A			
4	Are gen	eral observations	being made and recorded?	PHow? ☑	N/A			

✓ N/A

✓

N/A

N/A

8 Are filters protected from contamina and shipping? How?	Are filters protected from contamination during handling and shipping? How?			
9 Are the site conditions reported regulation operations manager or staff?				
QC Check Performed	Frequency		Compliant	
Multi-point MFC Calibrations	✓ N/A			
Flow System Leak Checks	✓ N/A			
Filter Pack Inspection	✓ N/A			
Flow Rate Setting Checks	✓ N/A			
Visual Check of Flow Rate Rotometer	✓ N/A			
In-line Filter Inspection/Replacement	✓ N/A			
Sample Line Check for Dirt/Water	✓ N/A			

Provide any additional explanation (photograph or sketch if necessary) regarding conditions listed above, or any other features, natural or man-made, that may affect the monitoring parameters:

Dry deposition samples are not collected at this site.

Field S	ystems Data Fo	orm	F-02058-1500-S10-rev002			
Site ID	CAV436	Technician	Martin Valvur	Site Visit Date	02/14/2025	

Site Visit Sensors

Parameter	Manufacturer	Model	S/N	Client ID
Computer	Hewlett Packard	ProBook	5CD01715DB	none
DAS	Environmental Sys Corp	8864	C2602	None
Modem	Sierra wireless	GX450	Unknown	none
Ozone	ThermoElectron Inc	49i A3NAA	0733726103	none
Ozone Standard	ThermoElectron Inc	49i A1NAA	CM08460009	none
Shelter Temperature	ARS	none	none	none
Temperature	Vaisala	WTX536	V5010145	none
Zero air pump	Werther International	C 70/4	000915011	none

Site Inventory by Site Visit

Site	Visit Date	Parameter	Mfg	Owner ID	Model Number	Serial Number
PAL	190-Martin	Valvur-02/17/2025				
1	2/17/2025	Computer	Dell	07056	Inspiron 15	FF3MC12
2	2/17/2025	DAS	Campbell	000343	CR3000	2122
3	2/17/2025	Elevation	Elevation	None	1	None
4	2/17/2025	Filter pack flow pump	Thomas	02752	107CA110	11920011905
5	2/17/2025	Flow Rate	Арех	000858	AXMC105LPMDPCV	illegible
6	2/17/2025	Infrastructure	Infrastructure	none	none	none
7	2/17/2025	Modem	Digi	07175	LR54	Illegible
8	2/17/2025	Ozone	ThermoElectron Inc	000726	49i A1NAA	1105347314
9	2/17/2025	Ozone Standard	ThermoElectron Inc	000375	49i A3NAA	0726124696
10	2/17/2025	Sample Tower	Aluma Tower	missing	В	AT-7200-582
11	2/17/2025	Shelter Temperature	Campbell	none	107-L	10755-148
12	2/17/2025	Siting Criteria	Siting Criteria	None	1	None
13	2/17/2025	Temperature	RM Young	06303	41342VO	12542
14	2/17/2025	Zero air pump	Werther International	06922	C 70/4	000836217

DAS Time Max Error: 0

Mfg	Serial Nu	mber Sit	e 7	Fechnician	Site Visit Date	Parameter	Use Desc.
Campbell	2122	PA	AL190	Martin Valvur	02/17/2025	DAS	Primary
Das Date: Das Time:	2 /17/2025 8:28:20	Audit Date Audit Time		Mfg Serial Number	HY 12010039329	Parameter	DAS Source generator (D
Das Day:	48	Audit Day High Chann	48	Tfer ID	01322	Tier Desc.	
Avg Diff: 0.0000	Max Diff: 0.0000	Avg Diff: 0.000	Max Diff: 00 0.0000	Slope	1.0000	0 Intercept	0.00000
<u> </u>				Cert Date	6/15/201	4 CorrCoff	1.00000
				Mfg	Fluke	Parameter	DAS
				Serial Number	95740243	Tfer Desc.	DVM
				Tfer ID	01312		
				Slope	1.0000	0 Intercept	0.00000
				Cert Date	1/5/202	25 CorrCoff	1.00000
Channel	Input D	VM Output	DAS Output	InputUnit	OutputUnit	Difference	
4	0.0000	0.0000	0.0000) V	V	0.0000	

Flow Data Form

Mfg	Serial Nur	nber Tag 🖇	Site	Te	chnician	Site Visi	t Date Para	imeter	Owner ID	
Apex	illegible		PAL190		artin Valvur	02/17/20)25 Flow	Rate	000858	
					Mfg Serial Number Tfer ID	BIOS 131818 01417		Parameter Fl Tfer Desc. Bl		
					Slope Cert Date			ntercept	0.00014	
DAS 1: A Avg % Diff: 0.11%	Diff A Max	a % Dif	Cal Factor Z Cal Factor F Rotometer R	Ill Scale 0.95						
Desc.	Test type	Input l/m	Input Corr	MfcDisp	. OutputSignal	Output S	E InputUni	t OutputSigna	ll PctDifference	
primary	pump off	0.000	0.000	0.00	0.000	0.03	l/m	l/m		
primary	leak check	0.000	0.000	0.01	0.000	0.03	l/m	l/m		
primary	test pt 1	2.982	3.000	3.22	0.000	3.00	l/m	l/m	0.00%	
primary	test pt 2	2.975	3.000	3.22	0.000	3.00	l/m	l/m	0.00%	
primary	test pt 3	2.974	3.000	3.22	0.000	2.99	l/m	l/m	-0.33%	
Sensor Component Leak Test Sensor Component Tubing Condition				Condition Good			Status pass Status pass			
	•			_			Sta			
Sensor Com	ponent Filter Pos	sition		Conditio	on Good		Sta	t <mark>us</mark> pass		
Sensor Comj	ponent Rotomet	er Conditior	ו	Conditio	dition Clean and dry			tus pass		
Sensor Component Moisture Present				Condition No moisture present			Sta	tus pass		
Sensor Component Filter Distance				Conditio	ondition 6.5 cm			Status pass		
Sensor Component Filter Depth				on 0.5 cm	Sta	Status pass				
Sensor Component Filter Azimuth				Conditio	Condition 135 deg			Status pass		
Sensor Com	ponent System N	Nemo		Condition	on		Sta	t <mark>us</mark> pass		

Ozone Data Form

Mfg	Serial	Number '	Tag Site		Тес	chnician	Site Visit Date	Paramete	er Owner ID		
ThermoElectro	n Inc 11053	47314	PAL190)	Ma	artin Valvur	02/17/2025	Ozone	000726		
Slope: Intercept CorrCoff:	0.92999 0.19685 0.99998	5 Interce	ept (0.00000 0.00000 0.00000		Mfg Serial Number Tfer ID	ThermoElectron CM23147126 01116		Desc. Ozone primary stan		
DAS 1:		DAS	3 2:			Slone	0.9926	0 Interce	ept 0.04790		
A Avg % Diff: A Max % Dif A Avg %Diff A Max % 0.0% 0.0%						Slope Cert Date	4/10/202				
UseDescripti	on Conc	Group	Tfer Raw	Tfei	r Corr	Site	Site Unit	RelPerD	if AbsDif		
primary	1		0.36		.31	0.26	ppb		-0.05		
primary primary	2		13.97 34.35		3.85 4.13	12.93 32.25	ppb		-0.92		
primary	4		64.90		4.53	60.51	ppb ppb		6.43		
primary	5		116.69		6.07	107.90	ppb		-7.3		
					Condition 661 mmHg			Status pass			
Sensor Component 26.6 degree unobstructed rule					Condition False			Status Fail			
Sensor Component Tree dewline >10m or below inlet					Condition True			Status pass			
Sensor Component ADT 1000-10000 vehicles further t					Condition True			Status pass			
Sensor Component ADT <1000 vehicles further than 5					ondition True			Status pass			
Sensor Component Sample Train					Condition Good			Status pass			
Sensor Component Inlet Filter Condition					Condition Clean			Status pass			
Sensor Component Offset					C <mark>ondit</mark> io	ndition -0.4			Status pass		
Sensor Component Span					C <mark>onditi</mark> o	n 1.016		Status pass			
Sensor Component Zero Voltage				C <mark>ondit</mark> io	n N/A		Status pass				
Sensor Component Fullscale Voltage				Conditio	n N/A		Status pass				
Sensor Component Cell A Freq.					C <mark>ondit</mark> io	n 88.8 khz		Status pass			
Sensor Component Cell A Noise					Condition 0.9 ppb			Status pass			
Sensor Component Cell A Flow					Condition 0.68 lpm			Status pa	ass		
Sensor Component Cell A Pressure					Condition 649.8 mmHg			Status pa	ass		
Sensor Component Cell A Tmp.					Conditio	ondition 30.1 C			Status pass		
Sensor Component Cell B Freq.					Conditio	ondition 102.5 kHz			ass		
Sensor Component Cell B Noise					Conditio	on 0.8 ppb		Status pa	ass		
Sensor Component Cell B Flow					Conditio	n 0.69 lpm		Status pa	ass		
Sensor Component Cell B Pressure					Conditio	on 649.5 mmHg		Status pass			
Sensor Component Nafion dryer installed					Conditio	n False		Status pa	ass		
Sensor Com	ponent Syst	em Memo)	(Conditio	n		Status pa	ass		

Temperature Data Form

Mfg	Serial Number	Tag Site	Т	echni	echnician		isit Date	Param	eter	Owner ID	
RM Young	12542	PAL190		Martin	Valvur	02/17	/2025	Temper	ature	06303	_
				Mf	g	Fluke		Pa	rameter Te	mperature	
				Ser	rial Number	20850	85	Tf	er Desc. R	D	
				Tfe	er ID	01226	i				
DAS 1: DAS 2:				Slo	pe	1.00031 Inter		ercept -0.04252			
Abs Avg Err Abs Max Err Abs Avg Err Abs Ma				x Err Cert Date			1/8/202	5 Cor	rCoff	0.99999	
0.12	0.27			<u></u>							
UseDesc.	Test type	InputTmpRaw	InputTmp	TmpCorr. OutputTmpS		Signal	Signal OutputSignalEng		OSE Unit	Difference	
primary	Temp Low Range	0.00	0.04		0.000		0.1		С	0.01	
primary	Temp Mid Range	23.17	23.21		0.000		23.	1	С	-0.09	
primary	Temp High Range	47.80	47.83		0.000		47.	6	С	-0.27	
Sensor Con	ponent Shield		Condi	tion C	Clean			Status	pass		
Sensor Component Blower			Condi	Condition N/A				Status	pass		
Sensor Component Properly Sited				Condition Properly sited				Status	s pass		
Sensor Com	nponent System Memo)	Condi	Condition				Status	pass		

Shelter Temperature Data For

Mfg	Serial Number Tag	Site	Technician	Site Visit Date	Parameter	Owner ID
Campbell	10755-148	PAL190	Martin Valvur	02/17/2025	Shelter Temperature	none
DAS 1:	DAS 2:		Mfg	Fluke	Parameter She	Iter Temperature
Abs Avg Err Ab	Abs Max Err Abs Avg Err Abs Max Err 0.28		Serial Number	2085085	Tfer Desc. RTD)
			Tfer ID	01226		
			Slope	1.0003	1 Intercept	-0.04252
			Cert Date	1/8/202	5 CorrCoff	0.99999

UseDesc.	Test type	InputTmpRaw	InputTmpCorr.	OutputTmpSignal	OutputSignalEng	OSE Unit	Difference
primary	Temp Mid Range	23.16	23.20	0.000	23.0	С	-0.19
primary	Temp Mid Range	22.24	22.28	0.000	22.4	С	0.1
primary	Temp Mid Range	20.66	20.70	0.000	21.0	С	0.28
Sensor Component System Memo			Condition	status pass			

Siting Criteria Form

Sensor Component Large point source of So2 or Nox	Condition	Status pass
Sensor Component City > 50,000	Condition	Status pass
Sensor Component City 1,000 to 10,000	Condition	Status pass
Sensor Component City 10,000 to 50,000	Condition	Status pass
Sensor Component Feedlot operations	Condition	Status pass
Sensor Component Large parking lot	Condition	Status pass
Sensor Component Limited agriculture operations	Condition	Status pass
Sensor Component Major industrial source	Condition	Status pass
Sensor Component Secondary road < or = 100 per da	Condition	Status pass
Sensor Component Secondary road >100 vehicles/da	Condition	Status pass
Sensor Component Small parking lot	Condition	Status pass
Sensor Component System Memo	Condition	Status pass
Sensor Component Major highway, airport, or rail yard	Condition	Status pass
Sensor Component Intensive agriculture operations	Condition	Status pass

Infrastructure Data For

Site ID	PAL190	Technician Martin V	Site Visit Date 02/17/2025
Shelter 1	Make	Shelter Model	Shelter Size
Shelter C	Dne	E-8109-26012-2	720 cuft
CONTRACTOR AND A			

Sensor Component Sample Tower Type	Condition	Туре В	Status	pass
Sensor Component Conduit	Condition	Good	Status	pass
Sensor Component Met Tower	Condition	N/A	Status	pass
Sensor Component Moisture Trap	Condition	Installed	Status	pass
Sensor Component Moisture Trap Type	Condition	Glass bottle and filter	Status	pass
Sensor Component Power Cables	Condition	Good	Status	pass
Sensor Component Shelter Temp Control	Condition	Functioning	Status	pass
Sensor Component Rotometer	Condition	Installed	Status	pass
Sensor Component Sample Tower	Condition	Good	Status	pass
Sensor Component Shelter Condition	Condition	Good	Status	pass
Sensor Component Shelter Door	Condition	Good	Status	pass
Sensor Component Shelter Roof	Condition	Good	Status	pass
Sensor Component Shelter Floor	Condition	Good	Status	pass
Sensor Component Shelter walls	Condition	Good	Status	pass
Sensor Component Excessive mold present	Condition	Good	Status	pass
Sensor Component Signal Cable	Condition	Good	Status	pass
Sensor Component Tubing Type	Condition	3/8 teflon	Status	pass
Sensor Component Sample Train	Condition	Good	Status	pass
Sensor Component System Memo	Condition		Status	pass

Field Systems Comments

1 Parameter: SiteOpsProcedures

The ozone sample train is leak tested every two weeks.

2 Parameter: SitingCriteriaCom

The site is located 40 km southeast of Amarillo TX which has a population of approximately 178,000.

3 Parameter: ShelterCleanNotes

The shelter is in good condition.

4 Parameter: MetSensorComme

The meteorological tower and sensors have been removed.

Field Systems Data Form

F-02058-1500-S1-rev002

Site ID PAL190	Technician Martin Valvur	Site Visit Date 02/17	7/2025
		LICCE Mar	Fortress Cliff
Site Sponsor (agency)	EPA	USGS Map	
Operating Group	TX A&M University	Map Scale	
AQS #	48-381-9991	Map Date	
Meteorological Type	R.M. Young		
Air Pollutant Analyzer	Ozone	QAPP Latitude	
Deposition Measurement	dry, wet	QAPP Longitude	
Land Use	agriculture	QAPP Elevation Meters	
Terrain	Complex	QAPP Declination	
Conforms to MLM	Marginally	QAPP Declination Date	
Site Telephone		Audit Latitude	34.88061
Site Address 1		Audit Longitude	-101.664703
Site Address 2		Audit Elevation	1053
County	Randall	Audit Declination	6.6
City, State	Canyon, TX	Present	
Zip Code	79015	Fire Extinguisher 🗹	No inspection date
Time Zone	Central	First Aid Kit	
Primary Operator		Safety Glasses	
Primary Op. Phone #		Safety Hard Hat 🗹	
Primary Op. E-mail		Climbing Belt	
Backup Operator		Security Fence	
Backup Op. Phone #		Secure Shelter	
Backup Op. E-mail		Stable Entry Steps	
Shelter Working Room	Make Shelter One M	odel E-8109-26012-2	Shelter Size 720 cuft
Shelter Clean	Notes The shelter is in good condition	on.	
Site OK	Notes		
dirt ros Pullma	I27 take exit 99 and go east on Hungate ad. At the next intersection turn left (eas an. Continue and follow sharp right turn ng. Site will be visible on the left.	t) on Lawrence (also dirt). Cont	inue and follow sharp left turn onto

Fi	eld Sy	stems Data Fo	orm		F-02058-1500-S3-rev0					
Site	e ID	PAL190	Technician	Martin Valvur		Site Visit Date	02/17/2025			
1	being in	d speed and direction fluenced by obstruction	ons?			N/A				
2	(i.e. win horizon	d sensors mounted so d sensors should be m tally extended boom > to the prevailing wind	ounted atop the 2x the max dia	e tower or on a		N/A				
3	Are the	tower and sensors plu	mb?		✓	N/A				
4		temperature shields p diated heat sources su			✓					
5	conditio surface	perature and RH sens ns? (i.e. ground below and not steeply sloped g water should be avoi	y sensors should I. Ridges, hollow	be natural						
6	Is the so	lar radiation sensor p	lumb?		✓	N/A				
7	Is it site	d to avoid shading, or	any artificial o	r reflected light?		N/A				
8	Is the ra	in gauge plumb?			✓	N/A				
9	Is it site towers,	d to avoid sheltering e etc?	effects from bui	ldings, trees,	✓	N/A				
10	Is the su facing n	urface wetness sensor s orth?	sited with the g	rid surface	✓	N/A				
11	Is it inc	lined approximately 3	0 degrees?		✓	N/A				

Provide any additional explanation (photograph or sketch if necessary) regarding conditions listed above, or any other features, natural or man-made, that may affect the monitoring parameters:

The meteorological tower and sensors have been removed.

Field Systems Data Form

F-02058-1500-S4-rev002

Site	e ID	PAL190	Technician	Martin Valvur		Site Visit Date 02/17/2025
1 2	condition	e meterological sensor 1, and well maintained 1e meteorological sens	1?		>	
3		hields for the temper	ature and RH s	ensors clean?	✓	
4	Are the a	spirated motors worl	king?		✓	N/A
5	Is the solar radiation sensor's lens clean and free of scratches?					N/A
6	Is the su	rface wetness sensor g	grid clean and u	indamaged?	✓	N/A
7		ensor signal and pow 1, and well maintained		, in good	✓	
8		ensor signal and pow elements and well ma		ctions protected		

Fi	eld Sy	stems Data Fo	orm			F-02	2058-1	500-S5-rev002
Sit	e ID	PAL190	Technician	Martin Valvur		Site Visit Date 02/17/2025	;	
	<u>Siting C</u>	Criteria: Are the pollut	ant analyzers a	nd deposition eq	<u>uipn</u>	nent sited in accordance with	40 CFR 5	58, Appendix E
1		sample inlets have at le icted airflow?	east a 270 degre	e arc of				
2	Are the sample inlets 3 - 15 meters above the ground?							
3	Are the sample inlets > 1 meter from any major obstruction and 20 meters from trees?							
	Polluta	nt analyzers and depos	sition equipmen	t operations and	mai	<u>ntenance</u>		
1		analyzers and equipme on and well maintained		in good	✓			
2		analyzers and monitoning data?	rs operational, o	on-line, and	✓			
3	Describ	e ozone sample tube.				1/4 teflon by 15 meters		
4	Describ	e dry dep sample tube				3/8 teflon by 15 meters		
5		ine filters used in the o location)	ozone sample lin	e? (if yes		At inlet only		
6	Are san obstruc	nple lines clean, free of tions?	kinks, moistur	e, and				
7	Is the zo	ero air supply desiccan	nt unsaturated?		✓			
8	Are the	re moisture traps in th	e sample lines?		✓	Flow line only		
9	Is there clean?	a rotometer in the dry	y deposition filte	er line, and is it		Clean and dry		

Fi	eld Sy	stems Data Fo	orm				F-0 2	2058-15	00-S6-rev002
Site	e ID	PAL190	Technician	Martin Valvur		Site Visit Date	02/17/202	5	
	<u>DAS, se</u>	nsor translators, and p	eripheral equi	pment operatio	ns and	maintenance			
1		DAS instruments appea intained?	ar to be in good	l condition and					
2		the components of the backup, etc)	DAS operation	al? (printers,					
3		nalyzer and sensor sig g protection circuitry?		through					
4		signal connections pro intained?	e weather and						
5	Are the	signal leads connected	to the correct	DAS channel?					
6	Are the ground	DAS, sensor translator ed?	rs, and shelter	properly					
7	Does the	e instrument shelter ha	ive a stable pov	ver source?					
8	Is the in	strument shelter temp	erature contro	lled?					
9	Is the m	et tower stable and gro	ounded?			Stable		Grounded	
10	Is the sa	mple tower stable and	grounded?						
11	Tower o	comments?			n	net tower removed	1		

Field Systems Data	F-0 2	F-02058-1500-S7-rev002					
Site ID PAL190			Technician Martin Valvur Site Visi		02/17/2025		
Documentation							
Does the site have the requ	ired ins	strume	ent and eq	<u>uipment manuals?</u>			
	Yes	No	N/A		Yes	No	N/A
Wind speed sensor			\checkmark	Data logger		\checkmark	
Wind direction sensor			\checkmark	Data logger			
Temperature sensor		✓		Strip chart recorder			
Relative humidity sensor			\checkmark	Computer			
Solar radiation sensor			\checkmark	Modem		\checkmark	
Surface wetness sensor			\checkmark	Printer			\checkmark
Wind sensor translator				Zero air pump		\checkmark	
Temperature translator				Filter flow pump		\checkmark	
Humidity sensor translator			\checkmark	Surge protector			\checkmark
Solar radiation translator			\checkmark	UPS			
Tipping bucket rain gauge			\checkmark	Lightning protection device			
Ozone analyzer		\checkmark		Shelter heater		\checkmark	
Filter pack flow controller		\checkmark		Shelter air conditioner		\checkmark	
Filter pack MFC power supp	ly 🗌		\checkmark				
Does the site have the req	uired a	<u>nd mo</u>	<u>st recent (</u>	OC documents and report forms?			
	Pres	ent			Curr	ent	
Station Log	[✓			\checkmark		
SSRF	[✓			\checkmark		
Site Ops Manual	[<	Oct 2014		\checkmark		
HASP	[Oct 2014		\checkmark		
Field Ops Manual	[Oct 2014		\checkmark		
Calibration Reports	[_	Electronic	сору	\checkmark		

1	Is the station log properly completed during every site visit?		
1	is the station log property completed during every site visit.	•	
2	Are the Site Status Report Forms being completed and current?		
3	Are the chain-of-custody forms properly used to document sample transfer to and from lab?		

4 Are ozone z/s/p control charts properly completed and current?

Ozone z/s/p Control Charts

Preventive maintenance schedule

Control charts not used

Field Systems Data Form

PAL190 Technician Martin Valvur Site Visit Date 02/17/2025 Site ID Site operation procedures Trained by previous operator Has the site operator attended a formal CASTNET training 1 course? If yes, when and who instructed? 2 Has the backup operator attended a formal CASTNET Trained on site by current operator \checkmark training course? If yes, when and who instructed? Is the site visited regularly on the required Tuesday \checkmark 3 schedule? ✓ Are the standard CASTNET operational procedures being 4 flollowed by the site operator? Is the site operator(s) knowledgeable of, and able to perform 5 the required site activities? (including documentation)

Are regular operational QA/QC checks performed on meteorological instruments?

QC Check Performed		Frequency	Compliant
Multipoint Calibrations	\checkmark	Semiannually	
Visual Inspections	\checkmark	Weekly	\checkmark
Translator Zero/Span Tests (climatronics)		N/A	\checkmark
Manual Rain Gauge Test	\checkmark	N/A	\checkmark
Confirm Reasonableness of Current Values	\checkmark	Weekly	\checkmark
Test Surface Wetness Response	\checkmark	N/A	\checkmark

Are regular operational QA/QC checks performed on the ozone analyzer?

\mathbf{OC}	Check	Dorf	ormod
VU.	Unter	ICIN	or meu

Multi-point Calibrations Automatic Zero/Span Tests Manual Zero/Span Tests Automatic Precision Level Tests Manual Precision Level Test Analyzer Diagnostics Tests In-line Filter Replacement (at inlet) In-line Filter Replacement (at analyze Sample Line Check for Dirt/Water **Zero Air Desiccant Check**

Frequency	Compliant
Semiannually	
Daily	
As needed	
Daily	\checkmark
As needed	\checkmark
Weekly	\checkmark
Every 2 weeks	\checkmark
N/A	
Weekly	\checkmark
Weekly	

- 1 Do multi-point calibration gases go through the complete sample train including all filters?
- 2 Do automatic and manual z/s/p gasses go through the complete sample train including all filters?
- Are the automatic and manual z/s/p checks monitored and 3 reported? If yes, how?

	Unknown
✓	
✓	SSRF

Provide any additional explanation (photograph or sketch if necessary) regarding conditions listed above, or any other features, natural or man-made, that may affect the monitoring parameters:

The ozone sample train is leak tested every two weeks.

F-02058-1500-S8-rev002

Field Systems Data Form F-02058-1500-S9-rev002 PAL190 Technician Martin Valvur Site Visit Date 02/17/2025 Site ID Site operation procedures Is the filter pack being changed every Tuesday as scheduled? Filter changed morinings 1 Are the Site Status Report Forms being completed and filed 2 correctly? No longer required 3 Are data downloads and backups being performed as scheduled? SSRF, logbook Are general observations being made and recorded? How? 4 ✓ Are site supplies on-hand and replenished in a timely 5 fashion? SSRF Are sample flow rates recorded? How? 6 \checkmark Are samples sent to the lab on a regular schedule in a timely 7 fashion? ✓ Clean gloves on and off Are filters protected from contamination during handling 8 and shipping? How? ✓ Are the site conditions reported regularly to the field 9 operations manager or staff? **QC Check Performed** Compliant Frequency \checkmark Semiannually **Multi-point MFC Calibrations** ✓ Weekly ✓ **Flow System Leak Checks Filter Pack Inspection** \checkmark ✓ Weekly **Flow Rate Setting Checks** ✓ Weekly \checkmark Visual Check of Flow Rate Rotometer

Provide any additional explanation (photograph or sketch if necessary) regarding conditions listed above, or any other features, natural or man-made, that may affect the monitoring parameters:

 \checkmark

 \checkmark

✓ As needed

✓ Weekly

In-line Filter Inspection/Replacement

Sample Line Check for Dirt/Water

Field Systems Data Form

PAL190

F-02058-1500-S10-rev002

Site	ID
Site	ID

Tech

Technician Martin Valvur

Site Visit Date 02/17/2025

Site Visit Sensors

Parameter	Manufacturer	Model	S/N	Client ID
Computer	Dell	Inspiron 15	FF3MC12	07056
DAS	Campbell	CR3000	2122	000343
Elevation	Elevation	1	None	None
Filter pack flow pump	Thomas	107CA110	11920011905	02752
Flow Rate	Apex	AXMC105LPMDPC	illegible	000858
Infrastructure	Infrastructure	none	none	none
Modem	Digi	LR54	Illegible	07175
Ozone	ThermoElectron Inc	49i A1NAA	1105347314	000726
Ozone Standard	ThermoElectron Inc	49i A3NAA	0726124696	000375
Sample Tower	Aluma Tower	B	AT-7200-582	missing
Shelter Temperature	Campbell	107-L	10755-148	none
Siting Criteria	Siting Criteria	1	None	None
Temperature	RM Young	41342VO	12542	06303
Zero air pump	Werther International	C 70/4	000836217	06922

Site Inventory by Site Visit

Site	Visit Date	Parameter	Mfg	Owner ID	Model Number	Serial Number
CHA	467-Martii	n Valvur-03/31/2025				
1	3/31/2025	DAS	Environmental Sys Corp	90611	8816	2613
2	3/31/2025	Ozone	ThermoElectron Inc	none	49i A3NAA	CM08460007
3	3/31/2025	Ozone Standard	ThermoElectron Inc	none	49i A1NAA	CM08460051
4	3/31/2025	Zero air pump	Werther International	none	PC70/4	531392

Ozone Data Form

Mfg	Serial Numbe	r Ta Site	Te	chnician	Site Visit Date	Parameter	Owner ID
ThermoElectron Inc	CM08460007	CHA46	7 M	artin Valvur	03/31/2025	Ozone	none
Intercept	1.00226 Slope 0.19243 Inter 1.00000 Corr	rcept	D.00000 D.00000 D.00000	Mfg Serial Number Tfer ID	ThermoElectron CM23147126 01116		er ozone c. Ozone primary stan
DAS 1:	DA	AS 2:		Slope	0.9926	0 Intercept	0.04790
A Avg % Diff: A N	Max % Di A	Avg %Diff A	Max % Di	-		P	
0.0%	0.0%			Cert Date	4/10/202	24 CorrCoff	0.99999
UseDescription	ConcGroup	Tfer Raw	Tfer Corr	Site	Site Unit	RelPerDif	AbsDif
primary	1	0.26	0.21	0.05	ppb		-0.16
primary	2	14.37	14.25	13.97	ppb		-0.28
primary	3	32.19	31.98	31.96	ppb	-0.06	
primary primary	4 5	62.82 114.36	62.46 113.75	62.41 113.80	ppb ppb	-0.08 0.04	
Sensor Compone				on 628 mmHg	ppo	Status pass	
Sensor Compone			le Conditi	on True		Status pass	
Sensor Compone	nt Tree dewline	e >10m or below				Status pass	
Sensor Compone	ent ADT 1000-1	0000 vehicles fu	urther Conditi	on True		Status pass	
Sensor Compone	ent ADT <1000	vehicles further	than Conditi	on True		Status pass	
Sensor Compone	ent Sample Trai	n	Conditi	on Good		Status pass	
Sensor Compone	nt Inlet Filter C	ondition	Conditi	on Clean		Status pass	
Sensor Compone	ent Offset		Conditi	on -0.1		Status pass	
Sensor Compone	ent Span		Conditi	on 1.025		Status pass	
Sensor Compone	ent Zero Voltage	9	Conditi	on 0.000		Status pass	
Sensor Compone	ent Fullscale Vo	Itage	Conditi	on 0.9999		Status pass	
Sensor Compone	ent Cell A Freq.		Conditi	on 101.2 kHz		Status pass	
Sensor Compone	ent Cell A Noise		Conditi	0n 1.8 ppb		Status pass	
Sensor Compone	Cell A Flow		Conditi	on 0.70 lpm		Status pass	
Sensor Compone	ent Cell A Press	ure		on 631.5 mmHg		Status pass	
Sensor Compone	ent Cell A Tmp.			on 35.0 C		Status pass	
Sensor Compone				on 85.1 kHz		Status pass	
Sensor Compone				on 1.4 ppb		Status pass	
Sensor Compone				on 0.67 lpm		Status pass	
Sensor Compone	ent Cell B Press	ure		on 631.2 mmHg		Status pass	
Sensor Compone			Conditi	on False		Status pass	
Sensor Compone	ent System Men	no	Conditi	on		Status pass	

APPENDIX B

CASTNET Site Spot Report Forms

Data Compiled: 2/18/2025 3:12:07 PM

SiteVisitDate Site Technician

02/10/2025 ALC188 Martin Valvur

Line	Audited Parameter	DAS	Ch. #	Criteria +/-	Counts	QaResult	Units	Pass/Fail
1	Temperature average error	Р	4	0.5	6	0.10	с	Р
2	Temperature max error	Р	4	0.5	6	0.17	с	Р
3	Ozone Slope	Р	0	1.1	4	0.96984	unitless	Р
4	Ozone Intercept	Р	0	5	4	-0.07461	ppb	Р
5	Ozone correlation	Р	0	0.995	4	0.99999	unitless	Р
6	Ozone % difference avg	Р	7	10	4	3.6	%	Р
7	Ozone Absolute Difference g1	Р	7	3	1	0.04	ppb	Р
8	Ozone Absolute Difference g2	Р	7	1.5	1	-0.64	ppb	Р
9	Flow Rate average % difference	Р	10	5	3	2.76	%	Р
10	Flow Rate max % difference	Р	10	5	3	3.47	%	Р
11	DAS Voltage average error	Р	4	0.003	16	0.0000	V	Р
12	Shelter Temperature average error	Р	5	2	21	0.63	с	Р
13	Shelter Temperature max error	Р	5	2	21	0.68	c	Р

Technician

02/10/2025 ALC188

Martin Valvur

Field Performance Comments

1	Parameter:	Flow Rate	SensorComponent:	Moisture Present	CommentCode: 72
---	------------	-----------	------------------	------------------	-----------------

The filter sample tubing has drops of moisture in low sections outside the shelter.

Field Systems Comments

1 Parameter: DocumentationCo

WIFI available at site and manuals and documents maintained on the site computer.

2 Parameter: SitingCriteriaCom

The site is well located with respect to CASTNET siting criteria, however there is a small campground 0.5 km to the northwest which may be a source of smoke.

3 Parameter: ShelterCleanNotes

The site is clean and neat.

4 Parameter: PollAnalyzerCom

There are moisture traps in both the flow and ozone sample lines.

Data Compiled: 2/18/2025 3:15:10 PM

SiteVisitDate Site Technician

02/12/2025 BBE401 Martin Valvur

Line	Audited Parameter	DAS	Ch. #	Criteria +/-	Counts	QaResult	Units	Pass/Fail
1	Ozone Slope	Р	0	1.1	4	0.99424	unitless	Р
2	Ozone Intercept	Р	0	5	4	-0.34373	ppb	Р
3	Ozone correlation	Р	0	0.995	4	0.99994	unitless	Р
4	Ozone % difference avg	Р	7	10	4	2.8	%	Р
5	Ozone Absolute Difference g1	Р	7	3	1	0.33	ppb	Р
6	Ozone Absolute Difference g2	Р	7	1.5	1	-0.86	ppb	Р
7	Flow Rate average % difference	Р	10	5	3	0.70	%	Р
8	Flow Rate max % difference	Р	10	5	3	0.77	%	Р
9	DAS Voltage average error	Р	4	0.003	1	0.0000	V	Р
10	Shelter Temperature average error	Р	5	2	24	0.14	c	Р
11	Shelter Temperature max error	Р	5	2	24	0.20	c	Р

Technician

02/12/2025 BBE401

Martin Valvur

Field Performance Comments

 1
 Parameter:
 Temperature2mete
 SensorComponent:
 System Memo
 CommentCode:
 217

Temperature and relative humidity are being measured using a combination sensor which cannot be submerged in a water bath for audits.

Field Systems Comments

1 Parameter: DasComments

Met tower no longer in use.

2 Parameter: SiteOpsProcedures

The ozone sample line is leak tested every two weeks when the inlet filter is replaced.

3 Parameter: ShelterCleanNotes

The shelter is clean, neat, and well organized.

4 Parameter: MetSensorComme

Meteorological parameters are being measured with an "all-in-one" sensor which is not submergible. Temperature data were not available for display on the site DAS and it was not tested.

Data Compiled: 2/18/2025 3:46:54 PM

SiteVisitDate Site Technician

02/14/2025 CAV436 Martin Valvur

Line	Audited Parameter	DAS	Ch. #	Criteria +/-	Counts	QaResult	Units	Pass/Fail
1	Temperature average error	Р	4	0.5	3	0.39	с	Р
2	Temperature max error	Р	4	0.5	3	0.97	c	Fail
3	Ozone Slope	Р	0	1.1	4	0.98395	unitless	Р
4	Ozone Intercept	Р	0	5	4	-0.09027	ppb	Р
5	Ozone correlation	Р	0	0.995	4	1.00000	unitless	Р
6	Ozone % difference avg	Р	7	10	4	2.2	%	Р
7	Ozone Absolute Difference g1	Р	7	3	1	0.08	ppb	Р
8	Ozone Absolute Difference g2	Р	7	1.5	1	-0.42	ppb	Р
9	DAS Voltage average error	Р	4	0.003	5	0.0000	V	Р
10	Shelter Temperature average error	Р	5	2	12	0.29	с	Р
11	Shelter Temperature max error	Р	5	2	12	0.59	с	Р

Technician

02/14/2025 CAV436

Martin Valvur

Field Performance Comments

 1
 Parameter:
 Temperature
 SensorComponent:
 System Memo
 CommentCode:
 217

Temperature and relative humidity are being measured using a combination sensor which cannot be submerged in a water bath for audits.

Field Systems Comments

1 Parameter: SiteOpsProcComm

Dry deposition samples are not collected at this site.

2 Parameter: DocumentationCo

The site is visited every other Tuesday. WIFI is available at the station and manuals and documents can be obtained online.

3 Parameter: MetSensorComme

The 2-meter temperature sensor has been replaced with an "all-in-one" meteorological sensor mounted at 10m on the sample tower. The sensor cannot be submerged and was tested by placing the RTD standard inside the naturally aspirated shield next to the site sensor.

Data Compiled: 4/8/2025 12:33:56 PM

SiteVisitDateSiteTechnician03/31/2025CHA467Martin Valvur

Line	Audited Parameter	DAS	Ch. #	Criteria +/-	Counts	QaResult	Units	Pass/Fail
1	Ozone Slope	Р	0	1.1	4	1.00226	unitless	Р
2	Ozone Intercept	Р	0	5	4	-0.19243	ppb	Р
3	Ozone correlation	Р	0	0.995	4	1.00000	unitless	Р
4	Ozone % difference avg	Р	7	10	4	0.5	%	Р
5	Ozone Absolute Difference g1	Р	7	3	1	-0.16	ppb	Р
6	Ozone Absolute Difference g2	Р	7	1.5	1	-0.28	ppb	Р

Data Compiled: 3/2/2025 8:54:24 PM

SiteVisitDate Site Technician

02/17/2025 PAL190 Martin Valvur

Line	Audited Parameter	DAS	Ch. #	Criteria +/-	Counts	QaResult	Units	Pass/Fail
1	Temperature average error	Р	4	0.5	27	0.12	с	Р
2	Temperature max error	Р	4	0.5	27	0.27	с	Р
3	Ozone Slope	Р	0	1.1	4	0.92999	unitless	Р
4	Ozone Intercept	Р	0	5	4	0.19685	ppb	Р
5	Ozone correlation	Р	0	0.995	4	0.99998	unitless	Р
6	Ozone % difference avg	Р	7	10	4	6.4	%	Р
7	Ozone Absolute Difference gl	Р	7	3	1	-0.05	ppb	Р
8	Ozone Absolute Difference g2	Р	7	1.5	1	-0.92	ppb	Р
9	Flow Rate average % difference	Р	10	5	3	0.11	%	Р
10	Flow Rate max % difference	Р	10	5	3	0.33	%	Р
11	DAS Voltage average error	Р	4	0.003	15	0.0000	V	Р
12	Shelter Temperature average error	Р	5	2	27	0.19	с	Р
13	Shelter Temperature max error	Р	5	2	27	0.28	c	Р

Field Systems Comments

1 Parameter: SiteOpsProcedures

The ozone sample train is leak tested every two weeks.

2 Parameter: SitingCriteriaCom

The site is located 40 km southeast of Amarillo TX which has a population of approximately 178,000.

3 Parameter: ShelterCleanNotes

The shelter is in good condition.

4 Parameter: MetSensorComme

The meteorological tower and sensors have been removed.

Data Compiled: 4/8/2025 12:08:38 PM

SiteVisitDateSiteTechnician02/07/2025SUM156Martin Valvur

Line	Audited Parameter	DAS	Ch. #	Criteria +/-	Counts	QaResult	Units	Pass/Fail
1	Ozone Slope	Р	0	1.1	4	0.98252	unitless	Р
2	Ozone Intercept	Р	0	5	4	-0.15045	ppb	Р
3	Ozone correlation	Р	0	0.995	4	0.99999	unitless	Р
4	Ozone % difference avg	Р	7	10	4	2.8	%	Р
5	Ozone Absolute Difference g1	Р	7	3	1	0.19	ppb	Р
6	Ozone Absolute Difference g2	Р	7	1.5	1	-0.58	ppb	Р