

Technical Support Document (TSD): Preparation of Emissions Inventories for the 2022v1 North American Emissions Modeling Platform

Technical Support Document (TSD) Preparation of Emissions Inventories for the 2022v1 North American Emissions Modeling Platform

U.S. Environmental Protection Agency
Office of Air Quality Planning and Standards
Air Quality Assessment Division
Research Triangle Park, NC

Authors:

Alison Eyth (EPA/OAR)
Jeff Vukovich (EPA/OAR)
Caroline Farkas (EPA/OAR)
Janice Godfrey (EPA/OAR)
Karl Seltzer (EPA/OAR)
Lindsay Dayton (EPA/OAR)
Yijia Dietrich (EPA/OAR)

TABLE OF CONTENTS

LIST OF TA	ABLES	VIII
LIST OF FI	GURES	XI
ACRONYN	1S	XII
1 INTR	ODUCTION	15
2 BASE	YEAR EMISSIONS INVENTORIES AND APPROACHES	17
2.1 Poi	NT SOURCES (PTEGU, PT_OILGAS, PTNONIPM, AIRPORTS)	22
2.1.1	EGU sector (ptegu)	24
2.1.2	Point source oil and gas sector (pt_oilgas)	
2.1.3	Aircraft and ground support equipment (airports)	
2.1.4	Non-IPM sector (ptnonipm)	
	NPOINT SOURCES (AFDUST, FERTILIZER, LIVESTOCK, NP_OILGAS, RWC, NP_SOLVENTS, NONPT)	
2.2.1	Area fugitive dust sector (afdust)	
2.2.2	Agricultural Livestock (livestock)	
2.2.3	Agricultural Fertilizer (fertilizer)	
2.2.4	Nonpoint Oil and Gas Sector (np_oilgas)	
2.2.5	Residential Wood Combustion (rwc)	
2.2.6 2.2.7	Solvents (np_solvents)	
2.2.7	Open burning (openburn)	
	ROAD MOBILE SOURCES (ONROAD)	
2.3 ON	Inventory Development using SMOKE-MOVES	
2.3.2	Onroad Activity Data Development	
2.3.3	MOVES Emission Factor Table Development	
2.3.4	Onroad California Inventory Development (onroad_ca_adj)	
	NROAD MOBILE SOURCES (CMV, RAIL, NONROAD)	
2.4.1	Category 1, Category 2 Commercial Marine Vessels (cmv_c1c2)	
2.4.2	Category 3 Commercial Marine Vessels (cmv_c3)	
2.4.3	Railway Locomotives (rail)	
2.4.4	Nonroad Mobile Equipment (nonroad)	73
2.5 FIRE	ES (PTFIRE-RX, PTFIRE-WILD, PTAGFIRE)	75
2.5.1	Wild and Prescribed Fires (ptfire-rx, ptfire-wild)	76
2.5.2	Point source Agriculture Fires (ptagfire)	83
	GENIC SOURCES (BEIS)	
2.7 Sou	JRCES OUTSIDE OF THE UNITED STATES	
2.7.1	Point Sources in Canada and Mexico (canmex_point)	
2.7.2	Fugitive Dust Sources in Canada (canada_afdust, canada_ptdust)	
2.7.3	Agricultural Sources in Canada and Mexico (canmex_ag)	
2.7.4	Surface-level Oil and Gas Sources in Canada (canada_og2D)	
2.7.5	Nonpoint and Nonroad Sources in Canada and Mexico (canmex_area)	
2.7.6	Onroad Sources in Canada and Mexico (canada_onroad, mexico_onroad)	
2.7.7 2.7.8	Fires in Canada and Mexico (ptfire_othna)Ocean Chlorine, Ocean Sea Salt, and Volcanic Mercury	
_		
	SIONS MODELING	
	SSIONS MODELING OVERVIEW	
3.2.1	VOC speciation	
3.2.2	PM speciation	
_	2.1 Diesel PM	
3.2.3	NO _X speciation	

	3.2.4	Sulfuric Acid Vapor (SULF)10					
	3.2.5	,					
	3.3 TEMP	ORAL ALLOCATION	108				
	3.3.1	Use of FF10 format for finer than annual emissions	110				
	3.3.2	Temporal allocation for non-EGU sources (ptnonipm)	110				
	3.3.3	Electric Generating Utility temporal allocation (ptegu)	111				
	3.3.4	Airport Temporal allocation (airports)					
	3.3.5	Residential Wood Combustion Temporal allocation (rwc)					
	3.3.6	Agricultural Ammonia Temporal Profiles (livestock)					
	3.3.7	Oil and gas temporal allocation (np_oilgas)					
	3.3.8	Onroad mobile temporal allocation (onroad)					
	3.3.9	Nonroad mobile temporal allocation (nonroad)					
	3.3.10	Fugitive dust temporal profiles (afdust)					
	3.3.11	Additional sector specific details (beis, cmv, rail, nonpt, np_solvents, ptfire-rx, ptfire-wild)					
		ALALLOCATION					
		Spatial Surrogates for U.S. emissions					
	3.4.1						
	3.4.2	Allocation method for airport-related sources in the U.S					
	3.4.3	Surrogates for Canada and Mexico emission inventories	148				
1	ANALY	TIC YEAR EMISSIONS INVENTORIES AND APPROACHES	159				
-							
		Point Source Projections (Ptegu)					
	4.2 SECTO	DRS WITH PROJECTIONS COMPUTED USING COST					
	4.2.1	Background on the Control Strategy Tool (CoST)					
	4.2.2	CoST CLOSURE Packet (ptnonipm, pt_oilgas)					
	4.2.3	COST PROJECTION Packets (afdust, airports, cmv, livestock, nonpt, np_oilgas, np_solvents, ptnc	onipm, pt_oilgas,				
	rail)	171					
	4.2.3						
	4.2.3						
	4.2.3						
	4.2.3						
	4.2.3						
	4.2.3	1 ,					
	4.2.3 4.2.3	(F=)					
	4.2.3	(12 8 71 2 8 7					
		10 Railroads (rail)					
		11 Residential Wood Combustion (rwc)					
	4.2.4	CoST CONTROL Packets (nonpt, np_oilgas, ptnonipm, pt_oilgas, np_solvents)					
	4.2.4						
	4.2.4						
	4.2.4						
	4.2.4	4 Natural Gas Turbines NO _x NSPS (ptnonipm, pt_oilgas)	204				
	4.2.4	" " " " " " " " " " " " " " " " " " " "					
	4.2.4	6 State-specific controls (nonpt, np_solvents, ptnonipm)	209				
	4.3 SECT	ors with Projections Computed Outside of CoST					
	4.3.1	Nonroad Mobile Equipment Sources (nonroad)	210				
	4.3.2	Onroad Mobile Sources (onroad)					
	4.3.3	Sources Outside of the United States (canada_onroad, mexico_onroad, canmex_point, canmex	_ag, canada_og2D				
	ptfire_o	hna, canmex_area, canada_afdust, canada_ptdust)	213				
	4.3.3						
	4.3.3						
	4.3.3	1 = 7 = 57					
	433	4 Onroad sources in Canada and Mexico (canada, onroad, canada, onroad)	214				

5	EMISSION SUMMARIES2	215
6	REFERENCES2	220

List of Tables

Table 2-1. Platform sectors used in the Emissions Modeling Process	18
Table 2-2. Point source oil and gas sector NAICS Codes	26
Table 2-3. Point source oil and gas sector emissions for 2022	27
Table 2-4. SCCs for the airports sector	28
Table 2-5. Afdust sector SCCs	30
Table 2-6. Total impact of 2022 fugitive dust adjustments to the unadjusted inventory	31
Table 2-7. SCCs for the livestock sector	
Table 2-8. Source of input variables for EPIC	
Table 2-9. Nonpoint oil and gas emissions for 2022	39
Table 2-10. State emissions totals for year 2022 for Pipeline Blowdowns and Pigging sources	41
Table 2-11. State emissions totals for year 2022 for Abandoned Wells sources	
Table 2-12. SCCs for the residential wood combustion sector	44
Table 2-13. SCCs in the openburn sector	
Table 2-14. Datasets used to Develop Factors to Adjust Nonpoint Emissions from 2020 to 2022	46
Table 2-15. MOVES vehicle (source) types	
Table 2-16. The fraction of IHS vehicle populations retained for 2020 NEI and 2022 emissions modeling	
platform by model year	
Table 2-17. SCCs for the cmv_c1c2 sector	
Table 2-18. Vessel groups in the cmv_c1c2 sector	
Table 2-19. SCCs for cmv_c3 sector	
Table 2-20. SCCs for the Rail Sector	
Table 2-21. 2020 and 2022 R-1 Reported Locomotive Fuel Use for Class I Railroads	69
Table 2-22. 2020 Class II/III Line Haul Fleet by Tier Level	
Table 2-23. Rail Freight Values by year (quadrillion BTU)	
Table 2-24. SCCs included in the ptfire sector for the 2022 platform	
Table 2-25. Types of State-provided Fire Activity Data	
Table 2-26. SCCs included in the ptagfire sector	83
Table 2-27. Meteorological variables required by BEIS4	
Table 3-1. Key emissions modeling steps by sector.	
Table 3-2. Descriptions of the platform grids	
Table 3-3. Emission model species produced for CB6R5_AE7 for CMAQ	
Table 3-4. Additional HAP gaseous model species generated for toxics modeling	
Table 3-5. Additional HAP particulate model species generated for toxics modeling	
Table 3-6. PAH/POM pollutant groups	
Table 3-7. Integration status for each platform sector	
Table 3-8. Integrated species from MOVES sources	
Table 3-9. Mobile Speciation Profile Updates	
Table 3-10. Mobile NOx and HONO fractions	
Table 3-11. NO _X speciation profiles	
Table 3-12. Sulfate Split Factor Computation	
Table 3-13. SO ₂ speciation profiles	
Table 3-14. Particle Size Speciation of Metals	
Table 3-15. Mercury Speciation Profiles	
Table 3-16. Temporal settings used for the platform sectors in SMOKE	
Table 3-17. U.S. Surrogates available for the 2022 modeling platforms	136

Table 3-18. Shapefiles used to develop U.S. Surrogates	137
Table 3-19. Surrogates used to gapfill U.S. Surrogates	141
Table 3-20. Off-Network Mobile Source Surrogates	144
Table 3-21. Spatial Surrogates for Oil and Gas Sources	144
Table 3-22. Selected 2022 CAP emissions by sector for U.S. Surrogates (short tons in 12US1)	146
Table 3-23. Canadian Spatial Surrogates	149
Table 3-24. Shapefiles and Attributes used to Compute Canadian Spatial Surrogates	150
Table 3-25. Shapefiles and Attributes used to Compute Mexican Spatial Surrogates	155
Table 3-26. 2022 CAP Emissions Allocated to Mexican and Canadian Spatial Surrogates for 12US1 (short	
tons)	155
Table 4-1. Overview of projection methods by sector for the analytic years	159
Table 4-2. EGU sector NOx emissions by State for the 2022v1 cases	164
Table 4-3. Subset of CoST Packet Matching Hierarchy	167
Table 4-4. Summary of non-EGU projections subsections	
Table 4-5. Tons reduced from all facility/unit/stack-level closures in 2026 from 2022 emissions levels	170
Table 4-6. Growth Indicators used to grow SCCs in the afdust sector	172
Table 4-7. Increase in afdust PM _{2.5} emissions from projections	173
Table 4-8. TAF 2023 growth factors for major airports, 2022 to 2026	173
Table 4-9. Impact of growth factors on 2022 airport emissions for 2026	174
Table 4-10. Resulting C1C2 Emissions for 2026 Compared to 2022 (tons/yr)	175
Table 4-11. Resulting C3 Emissions for 2026 Compared to 2022 (tons/yr)	176
Table 4-12. Impact of 2026 projection factors on livestock	177
Table 4-13. Impact of 2022-2026 projection factors on nonpt emissions	178
Table 4-14. SCCs in nonpt that were held constant	178
Table 4-15. SCCs in nonpt that use Human Population Growth for Projections	180
Table 4-16. Human population projections by state	182
Table 4-17. SCCs in nonpt that use EIA's AEO for Projections	183
Table 4-18. SCCs in np_solvents that use Human Population Growth for Projections	
Table 4-19. Impact of projection factors on np_solvents emissions	190
Table 4-20. Impact of projections on pt_oilgas emissions	
Table 4-21. Three year average of national oil and gas exploration emissions	193
Table 4-22. Impact of projections on np_oilgas emissions	193
Table 4-23. Annual Energy Outlook (AEO) 2023 tables used to project industrial sources	194
Table 4-24. Impact of projections other than refinery adjustments on ptnonipm emissions	
Table 4-25. Projection factors for Rail SCCs from the 2022 Base Year	
Table 4-26. Assumed new source emission factor ratios for NSPS rules	196
Table 4-27. Emissions reductions for the oil and gas sectors due to applying the Oil and Gas NSPS	198
Table 4-28. SCCs in np_oilgas for which the Oil and Gas NSPS controls were applied	198
Table 4-29. SCCs in pt_oilgas for which the Oil and Gas NSPS controls were applied	
Table 4-30. Emissions reductions in nonpt due to RICE NSPS	202
Table 4-31. Emissions reductions in ptnonipm due to the RICE NSPS	
Table 4-32. Emissions reductions in np_oilgas due to the RICE NSPS	202
Table 4-33. Emissions reductions in pt_oilgas due to the RICE NSPS	
Table 4-34. SCCs and Engine Types where RICE NSPS controls applied for nonpt and ptnonipm	
Table 4-35. Non-point Oil and Gas SCCs where RICE NSPS controls are applied	
Table 4-36. Point source SCCs in pt_oilgas sector where RICE NSPS controls applied	203
Table 4-37. Summary of Organic Liquids Distribution NESHAP controls on ptnonipm emissions	204

Table 4-38. Stationary gas turbines NSPS analysis and RACT regulations in selected states	205
Table 4-39. Emissions reductions due to the Natural Gas Turbines NSPS	206
Table 4-40. SCCs in ptnonipm for which Natural Gas Turbines NSPS controls were applied	206
Table 4-41. SCCs in pt_oilgas for which Natural Gas Turbines NSPS controls were applied	206
Table 4-42. Process Heaters NSPS analysis emission rates used to estimate controls	207
Table 4-43. Emissions reductions due to the application of the Process Heaters NSPS	207
Table 4-44. SCCs in ptnonipm for which Process Heaters NSPS controls were applied	208
Table 4-45. SCCs in pt_oilgas for which Process Heaters NSPS controls were applied	208
Table 4-46. SCCs in nonpt, np_solvents, and ptnonipm for which state-specific controls were applied	209
Table 4-47. Summary of SLT-provided controls on 2022 emissions	210
Table 4-48. Projection factors for VMT by Fuel and Vehicle Class	212
Table 5-1. National by-sector CAP emissions for the 2022 platform, year 2022, 12US1 grid (tons/yr)	216
Table 5-2. National by-sector VOC HAP emissions for the 2022 platform, year 2022, 12US1 grid (tons/	yr) 217
Table 5-3. National by-sector CAP emissions for the 2022 platform, year 2026, 12US1 grid (tons/yr)	218
Table 5-4. National by-sector VOC HAP emissions for the 2022 platform, year 2026, 12US1 grid (tons/	yr) 219

List of Figures

Figure 2-1. Fugitive dust emissions and impact of adjustments due to transportable fraction, precipit	ation,
and cumulative	
Figure 2-2. "Bidi" modeling system used to compute emissions from fertilizer application	37
Figure 2-3. Map of 2022 Representative Counties	53
Figure 2-4. NEI Commercial Marine Vessel Boundaries and Automatic Identification System Request E	3oxes
for the 2022 Emissions Modeling Platform	
Figure 2-5. 2019 Class I Railroad Line Haul Activity	
Figure 2-6. Class II and III Railroads in the United States	
Figure 2-7. Amtrak National Rail Network	
Figure 2-8 Amtrak Diesel Fuel Use 2020-2022	
Figure 2-9. Processing flow for fire emission estimates in the 2022 inventory	79
Figure 2-10. Default fire type assignment by state and month where data are only from satellites	80
Figure 2-11. Blue Sky Modeling Pipeline	81
Figure 2-12. Flint Hills Acreage Burned in 2022	82
Figure 2-13. Annual biogenic VOC BEIS4 emissions for the 12US1 domain	87
Figure 3-1. Air quality modeling domains	
Figure 3-2. Process of integrating HAPs and speciating VOC in a modeling platform	101
Figure 3-3. Eliminating unmeasured spikes in CEMS data	111
Figure 3-4. Regions used to Compute Temporal non-CEMS EGU Temporal Profiles	113
Figure 3-5. Example Daily Temporal Profiles for the LADCO Region and the Gas Fuel Type	114
Figure 3-6. Example Diurnal Temporal Profiles for the MANE-VU Region and the Coal Fuel Type	114
Figure 3-7. 2022 Airport Diurnal Profiles for PHX and state of Texas	
Figure 3-8. 2022 Wisconsin and Atlanta annual-to-month profile for airport emissions	
Figure 3-9. Alaska seaplane profile	
Figure 3-10. Example of RWC temporal allocation using a 50 versus 60 °F threshold	
Figure 3-11. Example of Annual-to-day temporal pattern of recreational wood burning emissions	
Figure 3-12. RWC diurnal temporal profile	
Figure 3-13. Data used to produce a diurnal profile for hydronic heaters	
Figure 3-14. Monthly temporal profile for hydronic heaters	
Figure 3-15. Examples of livestock temporal profiles in several parts of the country	
Figure 3-16. Example of animal NH ₃ emissions temporal allocation approach (daily total emissions)	
Figure 3-17. TMAS Data: VMT Fraction by Hour of Day and Day of Week	
Figure 3-18. Example temporal variability of VMT compared to onroad NO _X emissions	
Figure 3-19. Example Nonroad Day-of-week Temporal Profiles	
Figure 3-20. Example Nonroad Diurnal Temporal Profiles	
Figure 3-21. Agricultural burning diurnal temporal profile	
Figure 3-22. Prescribed and Wildfire diurnal temporal profiles	
Figure 3-23. 2020 Residential Wood Combustion Emissions using NLCD Low Intensity Surrogate	
Figure 3-24. 2020 Residential Wood Combustion Emissions using ACS-based Surrogate	
Figure 4-1. EIA Oil and Gas Supply Regions as of AEO2023	191

Acronyms

AADT Annual average daily traffic

AE6 CMAQ Aerosol Module, version 6, introduced in CMAQ v5.0

AEO Annual Energy Outlook

AERMOD American Meteorological Society/Environmental Protection Agency Regulatory

Model

AIS Automated Identification System

APU Auxiliary power unit

BEIS Biogenic Emissions Inventory System
BELD Biogenic Emissions Land use Database
BenMAP Benefits Mapping and Analysis Program

BPS Bulk Plant Storage
BSP Blue Sky Pipeline

BTP Bulk Terminal (Plant) to Pump

Category 1 and 2 commercial marine vessels
Category 3 (commercial marine vessels)

CAMD EPA's Clean Air Markets Division

CAM_X Comprehensive Air Quality Model with Extensions

CAP Criteria Air Pollutant

CARB California Air Resources Board

CB05 Carbon Bond 2005 chemical mechanism
CB6 Version 6 of the Carbon Bond mechanism

CBM Coal-bed methane

CDB County database (input to MOVES model)
CEMS Continuous Emissions Monitoring System

CISWI Commercial and Industrial Solid Waste Incinerators

CMAQ Community Multiscale Air Quality

CMV Commercial Marine Vessel
CNG Compressed natural gas

CO Carbon monoxide

CONUS Continental United States
CoST Control Strategy Tool

CRC Coordinating Research Council
CSAPR Cross-State Air Pollution Rule

E0, E10, E85 0%, 10% and 85% Ethanol blend gasoline, respectively

ECA Emissions Control Area

ECCC Environment and Climate Change Canada

EF Emission Factor

EGU Electric Generating Units

EIA Energy Information Administration

EIS Emissions Inventory System

EPA Environmental Protection Agency

EMFAC EMission FACtor (California's onroad mobile model)

EPIC Environmental Policy Integrated Climate modeling system

FAA Federal Aviation Administration

FCCS Fuel Characteristic Classification System

FEST-C Fertilizer Emission Scenario Tool for CMAQ

FF10 Flat File 2010

FINN Fire Inventory from the National Center for Atmospheric Research

FIPS Federal Information Processing Standards

FHWA Federal Highway Administration

HAP Hazardous Air PollutantHMS Hazard Mapping System

HPMS Highway Performance Monitoring System

ICI Industrial/Commercial/Institutional (boilers and process heaters)

I/M Inspection and Maintenance IMO International Marine Organization

IPM Integrated Planning Model

LADCO Lake Michigan Air Directors Consortium

LDV Light-Duty Vehicle
LPG Liquified Petroleum Gas

MACT Maximum Achievable Control Technology

MARAMA Mid-Atlantic Regional Air Management Association

MATS Mercury and Air Toxics Standards

MCIP Meteorology-Chemistry Interface Processor

MMS Minerals Management Service (now known as the Bureau of Energy

Management, Regulation and Enforcement (BOEMRE)

MOVES Motor Vehicle Emissions Simulator
MSA Metropolitan Statistical Area
MTBE Methyl tert-butyl ether
MWC Municipal waste combustor

MY Model year

NAAQS National Ambient Air Quality Standards

NAICS North American Industry Classification System

NBAFM Naphthalene, Benzene, Acetaldehyde, Formaldehyde and Methanol

NCAR National Center for Atmospheric Research
NEEDS National Electric Energy Database System

NEI National Emission Inventory

NESCAUM Northeast States for Coordinated Air Use Management

NH₃ Ammonia

NLCD National Land Cover Database

NOAA National Oceanic and Atmospheric Administration

NONROAD OTAQ's model for estimation of nonroad mobile emissions

NO_x Nitrogen oxides

NSPS New Source Performance Standards

OHH Outdoor Hydronic Heater

ONI Off network idling

OTAQ EPA's Office of Transportation and Air Quality
ORIS Office of Regulatory Information System
ORD EPA's Office of Research and Development
OSAT Ozone Source Apportionment Technology

pcSOA Potential combustion Secondary Organic Aerosol

PFC Portable Fuel Container

PM_{2.5} Particulate matter less than or equal to 2.5 microns PM₁₀ Particulate matter less than or equal to 10 microns

POA Primary Organic Aerosol

ppm Parts per million

ppmv Parts per million by volume

PSAT Particulate Matter Source Apportionment Technology

RACT Reasonably Available Control Technology

RBT Refinery to Bulk Terminal Regulatory Impact Analysis

RICE Reciprocating Internal Combustion Engine

RWC Residential Wood Combustion

RPD Rate-per-vehicle (emission mode used in SMOKE-MOVES)

RPH Rate-per-hour for hoteling (emission mode used in SMOKE-MOVES)

RPHO Rate-per-hour for off-network idling (emission mode used in SMOKE-MOVES)

RPP Rate-per-profile (emission mode used in SMOKE-MOVES)
RPS Rate-per-start (emission mode used in SMOKE-MOVES)
RPV Rate-per-vehicle (emission mode used in SMOKE-MOVES)

RVP Reid Vapor Pressure

SCC Source Classification Code

SMARTFIRE2 Satellite Mapping Automated Reanalysis Tool for Fire Incident Reconciliation

version 2

SMOKE Sparse Matrix Operator Kernel Emissions

SO₂ Sulfur dioxide

SOA Secondary Organic Aerosol
SIP State Implementation Plan

SPDPRO Hourly Speed Profiles for weekday versus weekend

S/L/T state, local, and tribal
TAF Terminal Area Forecast

TCEQ Texas Commission on Environmental Quality

TOG Total Organic Gas

TSD Technical support document

USDA United States Department of Agriculture
VIIRS Visible Infrared Imaging Radiometer Suite

VOC Volatile organic compounds

VMT Vehicle miles traveled VPOP Vehicle Population

WRAP Western Regional Air Partnership

WRF Weather Research and Forecasting Model

2014NEIv2 2014 National Emissions Inventory (NEI), version 2

1 Introduction

The U.S. Environmental Protection Agency (EPA), in conjunction with the National Emissions Collaborative, developed an air quality modeling platform for criteria air pollutants that represents the year 2022. The platform is based on the 2020 National Emissions Inventory (2020 NEI) published in April 2023 (EPA, 2023), with many sectors adjusted to better reflect 2022 and/or using data specific to the year 2022. The air quality modeling platform consists of all the emissions inventories and ancillary data files used for emissions modeling, as well as the meteorological, initial condition, and boundary condition files needed to run the air quality model. This document focuses on the emissions modeling component of the 2022 air quality modeling platform, including the emission inventories, the ancillary data files, and the approaches used to transform inventories for use in air quality modeling.

The emissions data in the modeling platform include criteria air pollutants and their precursors (CAPs), two groups of hazardous air pollutants (HAPs), and diesel particulate matter. The first group of HAPs are those explicitly used by the chemical mechanism in the Community Multiscale Air Quality (CMAQ) model (Appel, 2018) for ozone/particulate matter (PM): chlorine (CI), hydrogen chloride (HCI), naphthalene, benzene, acetaldehyde, formaldehyde, and methanol (the last five are abbreviated as NBAFM in subsequent sections of the document). The second group of HAPs consists of over 50 HAPs or HAP groups (such as polycyclic aromatic hydrocarbon groups) that are included in the emissions inventories for the purposes of air quality modeling for a HAP+CAP platform, although HAP+CAP modeling is not planned with version 1 of the 2022 platform.

Emissions were prepared for the Community Multiscale Air Quality (CMAQ) model version 5.4,² which is used to model ozone (O₃) particulate matter (PM), and HAP concentrations. CMAQ requires hourly and gridded emissions of the following inventory pollutants: carbon monoxide (CO), nitrogen oxides (NO_X), volatile organic compounds (VOC), sulfur dioxide (SO₂), ammonia (NH₃), primary particulate matter less than or equal to 10 microns (PM₁₀), and individual component species for primary particulate matter less than or equal to 2.5 microns (PM_{2.5}). In addition, the Carbon Bond mechanism version 6 (CB6) with chlorine chemistry within CMAQ allows for explicit treatment of the VOC HAPs naphthalene, benzene, acetaldehyde, formaldehyde and methanol (NBAFM), includes anthropogenic HAP emissions of HCl and Cl, and can model additional HAPs as described in Section 3. The short abbreviation for the modeling case name was "2022hc", where 2022 is the year modeled, 'h' represents that it was based on the 2020 NEI, and 'c' represents that it was the third version of a 2020 NEI-based platform.

This TSD discusses the application of the emissions modeling platform for which CMAQ and the Comprehensive Air Quality Model with Extensions (CAMx) were run. The effort to create the emissions inputs for this study included development of emission inventories to represent emissions during the year of 2022, along with application of emissions modeling tools to convert the inventories into the format and resolution needed by CMAQ and CAMx, although this platform is not designed to be used for analyses with the American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD).

² CMAQ version 5.4: https://zenodo.org/record/7218076. CMAQ is also available from https://www.epa.gov/cmaq and the Community Modeling and Analysis System (CMAS) Center at: https://www.epa.gov/cmaq and the Community Modeling and Analysis System (CMAS) Center at: https://www.epa.gov/cmaq and the Community Modeling and Analysis System (CMAS) Center at: https://www.cmascenter.org.

In addition to the base year emissions representing 2022, emissions were projected to the year 2026. The year 2026 emissions are needed by states to develop State Implementation Plans (SIPs) for nonattainment areas classified as serious for the 2015 National Ambient Air Quality Standards (NAAQS) for ozone. The analytic year emissions reflect on-the-books Federal and some state regulations that were effective as of April, 2024.

The emissions modeling platform includes point sources, nonpoint sources, onroad mobile sources, nonroad mobile sources, biogenic emissions and fires for the U.S., Canada, and Mexico. Some platform categories use more disaggregated data than are made available in the NEI. For example, in the platform, onroad mobile source emissions are represented as hourly emissions by vehicle type, fuel type, road type and process, while the NEI emissions are aggregated to vehicle type/fuel type totals and annual temporal resolution. Emissions used in the CMAQ modeling from Canada are provided by Environment and Climate Change Canada (ECCC) and Mexico are mostly provided by SEMARNAT and are not part of the NEI. Year-specific emissions were used for fires, biogenic sources, fertilizer, point sources, and onroad and nonroad mobile sources. Where available, hourly continuous emission monitoring system (CEMS) data were used for electric generating unit (EGU) emissions.

The primary emissions modeling tool used to create the CMAQ model-ready emissions was the Sparse Matrix Operator Kernel Emissions (SMOKE) modeling system. SMOKE version 5.1 was used to create CMAQ-ready emissions files for a 12-km grid covering the continental U.S. Additional information about SMOKE is available from http://www.cmascenter.org/smoke.

The gridded meteorological model used to provide input data for the emissions modeling was developed using the Weather Research and Forecasting Model (WRF, https://github.com/wrf-model/WRF/releases) version 4.2, Advanced Research WRF core (Skamarock, et al., 2008). The WRF Model is a mesoscale numerical weather prediction system developed for both operational forecasting and atmospheric research applications. The WRF model was run for 2022 over a domain covering the continental U.S. (CONUS) at both 12km resolution and 36km resolution with 35 vertical layers, and also for domains that cover Alaska, Hawaii, and Puerto Rico plus the Virgin Islands. The run for this platform included high resolution sea surface temperature data from the Group for High Resolution Sea Surface Temperature (GHRSST) (see https://www.ghrsst.org/) and is given the EPA meteorological case abbreviation "22m." The full case abbreviation includes this suffix following the emissions portion of the case name to fully specify the abbreviation of the case as "2022hc cb6 22m."

Data files and summaries for this platform are available from this section of the air emissions modeling website https://www.epa.gov/air-emissions-modeling/2022v1-emissions-modeling-platform.

This document contains five additional sections. Section 2 describes the emission inventories input to SMOKE. Section 3 describes the emissions modeling and the ancillary files used to process the emission inventories into air quality model-ready inputs. The analytic year emissions are described in Section 4. Data summaries are provided in Section 5, and Section 6 provides references.

2 Base Year Emissions Inventories and Approaches

This section describes the emissions inventories created for input to SMOKE, which are based on the April 2023 version of the 2020 NEI with updates to reflect emissions in the year 2022. The NEI includes four main data categories: a) nonpoint sources (which now include fires); b) point sources; c) nonroad mobile sources; and d) onroad mobile sources. For CAPs, the NEI data are largely compiled from data submitted by state, local and tribal (S/L/T) agencies. HAP emissions data are often augmented (generated through speciation of relevant CAPs, e.g., VOC and PM_{2.5}) by EPA when they are not voluntarily submitted to the NEI by S/L/T agencies. The NEI was compiled using the Emissions Inventory System (EIS). EIS collects and stores facility inventory and emissions data for the NEI and includes hundreds of automated QA checks to improve data quality, and it also supports release point (stack) coordinates separately from facility coordinates. EPA collaboration with S/L/T agencies helped prevent duplication between point and nonpoint source categories such as industrial boilers. The 2020 NEI Technical Support Document describes in detail the development of the 2020 emission inventories and is available at https://www.epa.gov/air-emissions-inventories/2020-national-emissions-inventory-nei-technical-support-document-tsd (EPA, 2023).

A complete set of emissions for all source categories is developed for the NEI every three years, with 2020 being the most recent year represented with a full "triennial" NEI. S/L/T agencies are required to submit all applicable point sources to the NEI in triennial years, including the year 2020. Because only point source emissions were submitted by S/L/T agencies for 2022, emissions for any point sources not submitted for 2022, and not marked as shutdown, were pulled forward from the 2020 NEI. The SMARTFIRE2 system and the BlueSky Pipeline (https://github.com/pnwairfire/bluesky) emissions modeling system were used to develop the fire emissions. SMARTFIRE2 categorizes all fires as either prescribed burning or wildfire, and the BlueSky Pipeline system includes fuel loading, consumption and emission factor estimates for both types of fires. Onroad and nonroad mobile source emissions were developed for this project using MOVES4 (https://www.epa.gov/moves).

With the exception of fire emissions, Canadian emissions were provided by Environment Canada and Climate Change (ECCC) for the years 2020 and 2023 and most 2022 emissions were developed by interpolating between 2020 and 2023. For point EGUs, instead of interpolating from 2020 and 2023 (which unlike other point sources, has different sources in 2020 vs 2023), the provided 2023 emissions were used as is to represent 2022. For Mexico, year 2016-based inventories from the 2019 emissions modeling platform (EPA, 2022b) were used as the starting point with area, nonroad, and point data for border states (i.e., Baja California, Chihuahua, Coahuila, Nuevo Leon, Sonora, and Tamaulipas) supplemented with data for calendar year 2018, which is newer than the data used in the 2019 platform, developed by SEMARNAT in collaboration with U.S. EPA.

The emissions modeling process was performed using SMOKE v5.1. Through this process, the emissions inventories were apportioned into the grid cells used by CMAQ and temporally allocated into hourly values. In addition, the pollutants in the inventories (e.g., NOx, PM and VOC) were split into the chemical species needed by CMAQ. For the purposes of preparing the CMAQ- ready emissions, the NEI emissions inventories by data category were split into emissions modeling platform "sectors"; and emissions from sources other than the NEI are added, such as the Canadian, Mexican, and offshore inventories. Emissions within the emissions modeling platform were separated into sectors for groups of related emissions source categories that were run through the appropriate SMOKE programs, except the final

merge, independently from emissions categories in the other sectors. The final merge program called Mrggrid combines low-level sector-specific gridded, speciated and temporalized emissions to create the final CMAQ-ready emissions inputs. For biogenic and fertilizer emissions, the CMAQ model allows for these emissions to be included in the CMAQ-ready emissions inputs, or to be computed within CMAQ itself (the "inline" option). This study used the option to compute biogenic emissions within the model and the CMAQ bidirectional ammonia process to compute the fertilizer emissions.

Following the compilation of the initial draft of the base year emission inventories within the 2022v1 Emissions Modeling Platform, the inventories were posted to the 2022v1 EPA website and to the Data Retrieval Tool associated with the platform. Stakeholders were then given the opportunity to comment on the inventory during an approximate 30-day period, with comments submitted to the 2022v1 Sharepoint site setup by the EPA. Following the comment period, where possible, EPA incorporated the comments into the inventories prior to finalization. In total, 30 individual organizations submitted 127 comments during the base-year review. A similar process was followed when the inventories for 2026 were completed.

Table 2-1 presents the sectors in the emissions modeling platform used to develop the year 2022 emissions for this project. The sector abbreviations are provided in italics and start with lower case letters; these abbreviations are used in the SMOKE modeling scripts, the inventory file names, and throughout the remainder of this section. Note that while the fires sectors are in nonpoint NEI data category, in the modeling platform they are treated as day-specific point sources.

Table 2-1. Platform sectors used in the Emissions Modeling Process

Platform Sector: abbreviation	NEI Data Category	Description and resolution of the data input to SMOKE
EGU units: ptegu	Point	2022 NEI point source EGUs, replaced with hourly Continuous Emissions Monitoring System (CEMS) values for NO _X and SO ₂ , and the remaining pollutants temporally allocated according to CEMS heat input where the units are matched to the NEI. Emissions for all sources not matched to CEMS data come from the 2022 NEI point inventory. EGUs closed in 2022 are not part of the inventory. Annual resolution for sources not matched to CEMS data, hourly for CEMS sources.
Point source oil and gas: pt_oilgas	Point	2022 NEI point sources that include oil and gas production emissions processes for facilities with North American Industry Classification System (NAICS) codes related to Oil and Gas Extraction, Natural Gas Distribution, Drilling Oil and Gas Wells, Support Activities for Oil and Gas Operations, Pipeline Transportation of Crude Oil, and Pipeline Transportation of Natural Gas. Includes U.S. offshore oil production. Annual resolution.
Aircraft and ground support equipment: airports	Point	EPA estimated 2022 emissions, including aircraft and airport ground support for the top 51 airports. Smaller airports, including aircraft and airport ground support were projected from 2020 NEI to 2022 based on the 2023 Terminal Area Forecast (TAF). Georgia provided emissions for HJAIA. Annual resolution.

Platform Sector: abbreviation	NEI Data Category	Description and resolution of the data input to SMOKE
Remaining non-EGU point: ptnonipm	Point	All 2022 NEI point source records not matched to the airports, ptegu, or pt_oilgas sectors. Includes 2020 NEI rail yard emissions projected to 2022 using updated R-1 reported yard fuel usage. Annual resolution.
Livestock: livestock	Nonpoint	2022 nonpoint livestock emissions developed using a similar method to 2020 NEI but with adjusted animal counts and using 2022 meteorology. Livestock includes ammonia and other pollutants (except PM _{2.5}). County and annual resolution.
Agricultural Fertilizer: fertilizer	Nonpoint	2022 agricultural fertilizer ammonia emissions based on bidirectional flux calculations computed inline within CMAQ.
Area fugitive dust: afdust_adj	Nonpoint	PM ₁₀ and PM _{2.5} nonpoint fugitive dust sources including building construction, road construction, agricultural dust from crops, and mining and quarrying which were all held constant. Additional dust sources not held constant include paved road dust and agricultural dust from livestock, where paved road dust emissions were adjusted to 2022 based on VMT and dust from livestock based on animal count differences. The emissions modeling system applies a transportable fraction reduction and zero-out adjustments based on the year-specific gridded hourly meteorology (precipitation and snow/ice cover). County and annual resolution.
Biogenic: beis	Nonpoint	Year 2022 emissions from biogenic sources. These were left out of the CMAQ-ready merged emissions, in favor of inline biogenic emissions produced during the CMAQ model run itself. Version 4 of the Biogenic Emissions Inventory System (BEIS) was used with Version 6 of the Biogenic Emissions Landuse Database (BELD6). The CMAQ-generated emissions are similar to the biogenic emissions generated through running SMOKE, but they are not exactly the same. Gridded and hourly resolution.
Category 1, 2 CMV: cmv_c1c2	Nonpoint	2022 Category 1 (C1) and Category 2 (C2), commercial marine vessel (CMV) emissions based on 2022 Automatic Identification System (AIS) data categorized using SCCs specific to ship type. Point and hourly resolution.
Category 3 CMV: cmv_c3	Nonpoint	2022 Category 3 (C3) commercial marine vessel (CMV) emissions based on 2022 AIS data categorized using SCCs specific to ship type. Point and hourly resolution.
Locomotives : rail	Nonpoint	Class I line haul rail locomotives emissions from 2020 NEI projected to 2022 using R-1 reported fuel usage. County and annual resolution. Class II and III locomotive emissions were projected from 2020 based on the 2021 U.S. Energy Information Administration's Annual Energy Outlook. Commuter rail was projected from 2020 using fuel use per company from the Federal Transit Administration's (FTA) 2022 National Transit Database. Amtrak emissions were adjusted down based on 2020 fuel use reported in Amtrak's FY22 AMTRAK Sustainability Report. County and annual resolution.

Platform Sector: abbreviation	NEI Data Category	Description and resolution of the data input to SMOKE
Nonpoint source oil and gas: np_oilgas	Nonpoint	2022 well activity data (production and exploration of oil, gas, etc.) run through Oil and Gas tool. Abandoned wells based on 2022, plus other state-specific inputs. County and annual resolution.
Open Burning: openburn	Nonpoint	This new sector for the 2022v1 platform was split out from the prior nonpt sector and includes emissions from yard waste, land clearing, and residential household waste burning. These are SCCs starting with 261. County and annual resolution.
Residential Wood Combustion: rwc	Nonpoint	2020 NEI nonpoint sources with residential wood combustion (RWC) processes, projected to 2022 with state-level adjustment factors derived from the State Energy Data System (SEDS) plus specific adjustments for California and Idaho. County and annual resolution.
Solvents: np_solvents	Nonpoint	Emissions of solvents based on methods used for the 2020 NEI. 2021 emissions are used to represent 2022. Includes household cleaners, personal care products, adhesives, architectural and aerosol coatings, printing inks, and pesticides. Annual and county resolution.
Remaining nonpoint: nonpt	Nonpoint	Nonpoint sources not included in other platform sectors. Mostly held constant at 2020 levels, but with some SCCs adjusted to 2022 based on population, energy consumption ratios and employment data. County and annual resolution.
Nonroad: nonroad	Nonroad	2022 nonroad equipment emissions developed with MOVES4, including the updates made to spatial apportionment that were developed with the 2016v1 platform. MOVES4 was used for all states except California, which submitted their own emissions for 2020 and 2023 that were then interpolated to 2022. County and monthly resolution.
Onroad: onroad	Onroad	Onroad mobile source gasoline and diesel vehicles from parking lots and moving vehicles for 2022 developed using VMT from many states, along with VMT data from 2020 NEI projected to 2022 using factors based on FHWA VM-2 data. Includes the following emission processes: exhaust, extended idle, auxiliary power units, evaporative, permeation, refueling, vehicle starts, off network idling, long-haul truck hoteling, and brake and tire wear. MOVES4 was run for 2022 to generate year-specific emission factors. County/gridded and hourly resolution.
Onroad California: onroad_ca_adj	Onroad	California-provided 2022 emissions for CAPs. VOC HAPs were projected from California-provided 2020 NEI HAP emissions using CAP trends. Onroad mobile source gasoline and diesel vehicles from parking lots and moving vehicles based on Emission Factor (EMFAC), gridded and temporalized based on outputs from MOVES4. County/gridded and hourly resolution.

Platform Sector:	NEI Data	Description and resolution of the data input to SMOKE
abbreviation	Category	
Point source agricultural fires: ptagfire	Nonpoint	Agricultural fire sources for 2022 developed by EPA as point and day-specific emissions. ³ Includes 2022 satellite data and land use. Florida, Georgia, Idaho, and North Carolina have separate datasets and are removed from the national datasets. Washington has supplemental datasets, to be used along with WA from the national datasets. Agricultural fires are in the nonpoint data category of the NEI, but in the modeling platform, they are treated as day-specific point sources. Point and daily resolution.
Point source prescribed fires: ptfire-rx	Nonpoint	Point source day-specific prescribed fires for 2022 computed using SMARTFIRE 2 and BlueSky Pipeline. The ptfire emissions were run as two separate sectors: ptfire-rx (prescribed, including Flint Hills / grasslands) and ptfire-wild. Point and daily resolution
Point source wildfires: ptfire-wild	Nonpoint	Point source day-specific wildfires for 2022 computed using SMARTFIRE 2 and BlueSky Pipeline. Point and daily resolution
Non-US. Fires: ptfire_othna	N/A	Point source day-specific wildfires and agricultural fires outside of the U.S. for 2022. Canadian fires were computed using SMARTFIRE 2 and BlueSky Pipeline. Mexico, Caribbean, Central American, and other international fires, are from v2.5 of the Fire INventory (FINN) from National Center for Atmospheric Research (Wiedinmyer, C., 2023). Point and daily resolution.
Canada Area Fugitive dust sources: canada_afdust	N/A	Area fugitive dust sources from ECCC for 2022 (interpolated between provided 2020 and 2023 emissions) with transport fraction and snow/ice adjustments based on 2022 meteorological data. Annual and province resolution.
Canada Point Fugitive dust sources: canada_ptdust	N/A	Point source fugitive dust sources from ECCC for 2022 (interpolated between provided 2020 and 2023 emissions) with transport fraction and snow/ice adjustments based on 2022 meteorological data. Monthly and province resolution.
Canada and Mexico stationary point sources: canmex_point	N/A	Canada and Mexico point source emissions not included in other sectors. Canada point sources were provided by ECCC for 2020 and 2023 and interpolated to 2022. Mexico point source emissions for six border states represent 2018 and were developed by SEMARNAT in collaboration with EPA, while emissions for all other states were carried forward from 2019ge (EPA, 2022b). Annual and monthly point resolution.
Canada and Mexico agricultural sources: canmex_ag	N/A	Canada and Mexico agricultural emissions. Canada emissions were provided by ECCC for 2020 and 2023; EGUs for 2023 were used directly, and other point inventories were interpolated to 2022. Mexico agricultural emissions were provided by SEMARNAT and include updated emissions for six border states representing 2018 developed by SEMARNAT in collaboration with EPA, while emissions for all other states were carried forward from 2019ge. Annual municipio and province resolution.

³ Only EPA-developed agricultural fire data were included in this study; data submitted by states to the NEI were excluded.

Platform Sector: abbreviation	NEI Data Category	Description and resolution of the data input to SMOKE
Canada low-level oil and		Canada emissions from upstream oil and gas, provided by ECCC for 2020 and 2023 and interpolated to 2022. This sector contains
gas sources: canada_og2D	N/A	the portion of oil and gas emissions which are not subject to plume rise. The rest of the Canada oil and gas emissions are in the canmex_point sector. Annual province resolution.
Canada and Mexico nonpoint and nonroad sources: canmex_area	N/A	Canada and Mexico nonpoint source emissions not included in other sectors. Canada: ECCC provided surrogates and 2020 and 2023 inventories, that were interpolated to 2022. Mexico: included updated emissions for six border states representing 2018 developed by SEMARNAT in collaboration with EPA, while emissions for all other states were carried forward from 2019ge. Annual and monthly municipio and province resolution.
Canada onroad sources: canada_onroad	N/A	Canada onroad emissions. 2020 and 2023 Canada inventories provided by ECCC and interpolated to 2022; processed using updated surrogates. Province monthly resolution.
Mexico onroad sources: mexico_onroad	N/A	Mexico onroad emissions. 2020 and 2023 emissions output from MOVES-Mexico were interpolated to 2022. Municipio monthly resolution.

Ocean chlorine emissions were also merged in with the above sectors. The ocean chlorine gas emission estimates are based on the build-up of molecular chlorine (Cl_2) concentrations in oceanic air masses (Bullock and Brehme, 2002). Ocean chlorine data at 12 km resolution were available from earlier studies and were not modified other than the name "CHLORINE" was changed to "CL2" because that is the name required by the CMAQ model.

The emission inventories in SMOKE input formats for the platform are available from EPA's Air Emissions Modeling website: https://www.epa.gov/air-emissions-modeling/2022v1-emissions-modeling-platform. The platform informational text file indicates the zipped files associated with each platform sector. Some emissions data summaries are available with the data files for the 2022v1 platform. The types of reports include state summaries of inventory pollutants and model species by modeling platform sector and county annual totals by modeling platform sector.

2.1Point sources (ptegu, pt oilgas, ptnonipm, airports)

Point sources are sources of emissions for which specific geographic coordinates (e.g., latitude and longitude) are specified, as in the case of an individual facility. A facility may have multiple emission release points that may be characterized as units such as boilers, reactors, spray booths, kilns, waste piles, etc. A unit may have multiple processes (e.g., a boiler that sometimes burns residual oil and sometimes burns natural gas). With a couple of minor exceptions, this section describes only NEI point sources within the contiguous U.S. The offshore oil platform (pt_oilgas sector) and CMV emissions (cmv_c1c2 and cmv_c3 sectors) are processed by SMOKE as point source inventories and are discussed later in this section. A complete NEI is developed every three years. At the time of this writing, 2020 is the most recently finished complete NEI. A comprehensive description about the development of the 2020 NEI is available in the 2020 NEI TSD (EPA, 2023). Point inventories are also available in EIS for non-triennial NEI years such as 2019 and 2021. In the interim year point inventories, states are required to update large sources with the emissions that occurred in that year, while sources not updated by states

for the interim year were either carried forward from the most recent triennial NEI or marked as closed and removed.

In preparation for modeling, the complete set of point sources in the NEI was exported from EIS for the year 2022 into the Flat File 2010 (FF10) format that is compatible with SMOKE (see https://cmascenter.org/smoke/documentation/5.1/html/ch06s02s08.html) and was then split into several sectors for modeling. Any sources without specific locations (i.e., the FIPS code ends in 777) were dropped and inventories for the other point source sectors were created from the remaining point sources. The point sectors are: EGUs (ptegu), point source oil and gas extraction-related sources (pt_oilgas), airport emissions (airports), and the remaining non-EGUs (ptnonipm). The EGU emissions were split out from the other sources to facilitate the use of distinct SMOKE temporal processing and future-year projection techniques. The oil and gas sector emissions (pt_oilgas) and airport emissions (airports) were processed separately for the purposes of developing emissions summaries and due to distinct projection techniques from the remaining non-EGU emissions (ptnonipm).

In some cases, data about facility or unit closures are entered into EIS after the inventory modeling inventory flat files have been extracted. Prior to processing through SMOKE, submitted facility and unit closures were reviewed and where closed sources were found in the inventory, those were removed.

For this platform, an analysis of point source stack parameters (e.g., stack height, diameter, temperature, and velocity) was performed due to the presence of unrealistic and repeated stack parameters. The defaulted values were noticed in data submissions for the states of Illinois, Louisiana, Michigan, Pennsylvania, Texas, and Wisconsin. Where these defaults were detected and deemed to be unreasonable for the specific process, the affected stack parameters were replaced by values from the PSTK file that is input to SMOKE. PSTK contains default stack parameters by source classification code (SCC). These updates impacted the ptnonipm and pt_oilgas inventories.

The inventory pollutants processed through SMOKE for input to CMAQ for the ptegu, pt_oilgas, ptnonipm, and airports sectors included: CO, NO_X, VOC, SO₂, NH₃, PM₁₀, and PM_{2.5} and the following HAPs: HCl (pollutant code = 7647010), Cl (code = 7782505), and several dozen other HAPs listed in Section 3. NBAFM pollutants from the point sectors were utilized.

The ptnonipm, pt_oilgas, and airports sector emissions were provided to SMOKE as annual emissions. For sources in the ptegu sector that could be matched to 2022 CEMS data, hourly CEMS NO_X and SO_2 emissions for 2022 from EPA's Acid Rain Program were used rather than annual inventory emissions. For all other pollutants (e.g., VOC, $PM_{2.5}$, HCl), annual emissions were used as-is from the annual inventory but were allocated to hourly values using heat input from the CEMS data. For the unmatched units in the ptegu sector, annual emissions were allocated to daily values using IPM region- and pollutant-specific profiles, and similarly, region- and pollutant-specific diurnal profiles were applied to create hourly emissions.

The non-EGU stationary point source (ptnonipm) emissions were used as inputs to SMOKE as annual emissions. The full description of how the NEI emissions were developed is provided in the NEI documentation - a brief summary of their development follows:

a. CAP and HAP data were provided by States, locals and tribes under the Air Emissions Reporting

Rule (AERR) [the reporting size threshold is larger for inventory years between the triennial inventory years of 2011, 2014, 2017, 2020, ...].

- b. EPA corrected known issues and filled PM data gaps.
- c. EPA added HAP data from the Toxic Release Inventory (TRI) where corresponding data was not already provided by states/locals.
- d. EPA stored and applied matches of the point source units to units with CEMS data and also for all EGU units modeled by EPA's Integrated Planning Model (IPM).
- e. Data for airports and rail yards were incorporated.
- f. Off-shore platform data were added from the Bureau of Ocean Energy Management (BOEM).

The changes made to the NEI point sources prior to modeling with SMOKE are as follows:

- The tribal data, which do not use state/county Federal Information Processing Standards (FIPS) codes in the NEI, but rather use the tribal code, were assigned a state/county FIPS code of 88XXX, where XXX is the 3-digit tribal code in the NEI. This change was made because SMOKE requires all sources to have a state/county FIPS code.
- Sources that did not have specific counties assigned (i.e., the county code ends in 777) were not included in the modeling because it was only possible to know the state in which the sources resided, but no more specific details related to the location of the sources were available.

Each of the point sectors is processed separately through SMOKE as described in the following subsections.

2.1.1 EGU sector (ptegu)

The ptegu sector contains emissions from EGUs in the 2022 point source inventory that could be matched to units found in the National Electric Energy Database System (NEEDS) v6 that is used by the Integrated Planning Model (IPM) to develop projected EGU emissions. It was necessary to put these EGUs into a separate sector in the platform because EGUs use different temporal profiles than other sources in the point sector and it is useful to segregate these emissions from the rest of the point sources to facilitate summaries of the data. Sources not matched to units found in NEEDS were placed into the pt_oilgas or ptnonipm sectors. For studies that include analytic years, the sources in the ptegu sector are fully replaced with analytic year emissions computed by IPM or through engineering analysis. It is therefore important that the matching between the NEI and NEEDS database be as complete as possible because there can be double-counting of emissions in analytic year modeling scenarios if emissions for units projected by IPM are not properly matched to the units in the base year point source inventory.

The 2022 ptegu emissions inventory is a subset of the point source flat file exported from the Emissions Inventory System (EIS). In the point source flat file, emission records for sources that have been matched to the NEEDS database have a value filled into the IPM_YN column based on the matches stored within EIS. Thus, unit-level emissions were split into a separate EGU flat file for units that have a populated

(non-null) ipm_yn field. A populated ipm_yn field indicates that a match was found for the EIS unit in the NEEDS v6 database. Updates were made to the flat file output from EIS as follows:

 ORIS facility and unit identifiers were updated based on additional matches in a cross-platform spreadsheet, based on state comments, and using the EIS alternate identifiers table as described later in this section.

Some units in the ptegu sector are matched to Continuous Emissions Monitoring System (CEMS) data via Office of Regulatory Information System (ORIS) facility codes and boiler IDs. For the matched units, the annual emissions of NO_X and SO_2 in the flat file were replaced with the hourly CEMS emissions in base year modeling. For other pollutants at matched units, the hourly CEMS heat input data were used to allocate the NEI annual emissions to hourly values. All stack parameters, stack locations, and Source Classification Codes (SCCs) for these sources come from the flat file. If CEMS data exists for a unit, but the unit is not matched to the NEI, the CEMS data for that unit were not used in the modeling platform. However, if the source exists in the NEI and is not matched to a CEMS unit, the emissions from that source are still modeled using the annual emission value in the NEI temporally allocated to hourly values.

EIS stores many matches from NEI units to the ORIS facility codes and boiler IDs used to reference the CEMS data. In the flat file, emission records for point sources matched to CEMS data have values filled into the ORIS_FACILITY_CODE and ORIS_BOILER_ID columns. The CEMS data are available at https://campd.epa.gov/data. Many smaller emitters in the CEMS program cannot be matched to the NEI due to differences in the way a unit is defined between the NEI and CEMS datasets, or due to uncertainties in source identification such as inconsistent plant names in the two data systems. In addition, the NEEDS database of units modeled by IPM includes many smaller emitting EGUs that do not have CEMS. Therefore, there will be more units in the ptegu sector than have CEMS data.

Matches from the NEI to ORIS codes and the NEEDS database were improved in the platform where applicable. In some cases, NEI units in EIS match to many CAMD units. In these cases, a new entry was made in the flat file with a "_M_" in the ipm_yn field of the flat file to indicate that there are "multiple" ORIS IDs that match that unit. This helps facilitate appropriate temporal allocation of the emissions by SMOKE. Temporal allocation for EGUs is discussed in more detail in the Ancillary Data section below.

The EGU flat file was split into two flat files: those that have unit-level matches to CEMS data using the oris_facility_code and oris_boiler_id fields (egu_cems) and those that do not (egu_noncems) so that different temporal profiles could be applied. In addition, the hourly CEMS data were processed through v2.1 of the CEMCorrect tool to mitigate the impact of unmeasured values in the data.

Some comments were received on the base year EGU inventories and were addressed as follows:

 Many units in the engineering analysis had NOX and/or SO2 but did not have the other CAPs, and that those pollutants needed to be gapfilled. The gapfilling process added 1,500 tpy of PM2.5 nationally, across several states. Most increases outside of NOX and SO2 can be attributed to the gapfilling process.

- The drop in Iowa SO2, and the increases in Wisconsin NOX/SO2, are based on corrections provided by Michael Cohen. I believe the Iowa change was from a state comment, and Wisconsin concerned unit(s) that were previously zero but shouldn't have been.
- Facilities in CT, MA, MI, MN, VA, and WA were closed between draft and final, based mostly on state comments, and also based on the NEEDS DB showing some of these were dropped. Most of these were non-engineering-analysis facilities that had previously been carried forward from 2022.
- Kentucky emissions decreased because some units moved from ptegu to ptnonipm.

2.1.2 Point source oil and gas sector (pt oilgas)

The pt_oilgas sector was separated from the ptnonipm sector by selecting sources with specific North American Industry Classification System (NAICS) codes shown in Table 2-2. The emissions and other source characteristics in the pt_oilgas sector are submitted by states, while EPA developed a dataset of nonpoint oil and gas emissions for each county in the U.S. with oil and gas activity that was available for states to use. Nonpoint oil and gas emissions can be found in the np_oilgas sector. The pt_oilgas sector includes emissions from offshore oil platforms. Where available, the point source emissions submitted as part of the 2022 NEI process with refinements based on the Collaborative data review process were used. Sources without data submitted for 2022 were projected to 2022 from 2020 NEI emissions, or where applicable, from 2021 NEI emissions.

Table 2-2. Point source oil and gas sector NAICS Codes

NAICS	NAICS description
2111	Oil and Gas Extraction
	Natural Gas Liquid Extraction (although no emissions for this
211112	NAICS code exist in the 2022 inventory)
21112	Crude Petroleum Extraction
211120	Crude Petroleum Extraction
21113	Natural Gas Extraction
211130	Natural Gas Extraction
213111	Drilling Oil and Gas Wells
213112	Support Activities for Oil and Gas Operations
2212	Natural Gas Distribution
22121	Natural Gas Distribution
221210	Natural Gas Distribution
237120	Oil and Gas Pipeline and Related Structures Construction
4861	Pipeline Transportation of Crude Oil
48611	Pipeline Transportation of Crude Oil
486110	Pipeline Transportation of Crude Oil
4862	Pipeline Transportation of Natural Gas
48621	Pipeline Transportation of Natural Gas
486210	Pipeline Transportation of Natural Gas

Information on the development of the 2020 NEI oil and gas emissions can be found in Section 13 of the 2020 NEI TSD. The point oil and gas emissions for 2022 by state are shown in Table 2-3.

Table 2-3. Point source oil and gas sector emissions for 2022

State	2022 NOx	2022 VOC
Alabama	10,608	1,209
Alaska	38,698	1,730
Arizona	2,374	180
Arkansas	4,029	320
California	2,564	2,430
Colorado	13,642	11,074
Connecticut	59	35
Delaware	6	1
Florida	6,192	696
Georgia	3,114	526
Idaho	1,291	38
Illinois	4,567	1,039
Indiana	949	136
Iowa	3,962	223
Kansas	17,741	3,009
Kentucky	9,201	1,125
Louisiana	27,882	8,160
Maine	32	64
Maryland	188	164
Massachusetts	235	69
Michigan	9,134	990
Minnesota	2,377	172
Mississippi	22,452	1,930
Missouri	2,342	92
Montana	812	1,027
Nebraska	2,757	266
Nevada	236	22
New Jersey	95	94
New Mexico	34,981	63,796
New York	1,072	256
North Carolina	1,681	237
North Dakota	4,197	2,736
Ohio	8,828	1,584
Oklahoma	33,870	26,113
Oregon	1,019	94
Pennsylvania	3,027	918
Puerto Rico	39	25

State	2022 NOx	2022 VOC
Rhode Island	315	121
South Carolina	358	10
South Dakota	6,452	532
Tennessee	46,513	20,607
Texas	2,453	652
Utah	95	94
Virginia	2,725	428
Washington	874	56
West Virginia	8,335	3,263
Wisconsin	429	205
Wyoming	13,283	50,751
Offshore	34,660	31,406
Tribal Data	7,813	2,213

2.1.3 Aircraft and ground support equipment (airports)

Emissions at airports were separated from other sources in the point inventory based on sources that have the facility source type of 100 (airports). The airports sector includes all aircraft types used for public, private, and military purposes and aircraft ground support equipment. The Federal Aviation Administration's (FAA) Aviation Environmental Design Tool (AEDT) is used to estimate emissions for this sector. Additional information about aircraft emission estimates can be found in section 3 of the 2020 NEI TSD (EPA, 2023). EPA ran AEDT for 2022 for the largest (51) airports in the United States. For more information on the estimation of emissions from larger airports, please see, 2022 National Emissions Inventory: Aviation Component (ERG, 2024a). Smaller airport emissions were projected from the 2020 NEI to 2022 using factors derived from the 2023 Terminal Area Forecast (TAF)⁴ data. EPA used airport-specific factors where available. Emissions for Hartsfield-Jackson (ATL) airport were provided by Georgia EPD. Airport emissions were spread out into multiple 12km grid cells when the airport runways were determined to overlap multiple grid cells. Otherwise, airport emissions for a specific airport are confined to one air quality model grid cell. The SCCs included in the airport sector are shown in Table 2-4.

Table 2-4. SCCs for the airports sector

scc	Tier 1 description	Tier 2 description	Tier 3 description	Tier 4 description
2265008005	Mobile Sources	Off-highway Vehicle Gasoline, 4-Stroke	Airport Ground Support Equipment	Total
2270008005	Mobile Sources	Off-highway Vehicle Diesel	Airport Ground Support Equipment	Total
2275001000	Mobile Sources	Aircraft	Military Aircraft	Total
2275020000	Mobile Sources	Aircraft	Commercial Aircraft	Total: All Types
2275050011	Mobile Sources	Aircraft	General Aviation	Piston
2275050012	Mobile Sources	Aircraft	General Aviation	Turbine

28

٠

⁴ See https://www.faa.gov/data_research/aviation/taf for 2023 TAF released in January 2024.

scc	Tier 1 description	Tier 2 description	Tier 3 description	Tier 4 description
2275060011	Mobile Sources	Aircraft	Air Taxi	Piston
2275060012	Mobile Sources	Aircraft	Air Taxi	Turbine
2275070000	Mobile Sources	Aircraft	Auxiliary Power Units	Total

2.1.4 Non-IPM sector (ptnonipm)

With some exceptions, the ptnonipm sector contains the point sources that are not in the ptegu, pt_oilgas, or airports sectors. For the most part, the ptnonipm sector reflects non-EGU emissions sources and rail yards. However, it is possible that some low-emitting EGUs not matched to units in the NEEDS database or to CEMS data are in the ptnonipm sector.

The ptnonipm sector contains a small amount of fugitive dust PM emissions from vehicular traffic on paved or unpaved roads at industrial facilities, coal handling at coal mines, and grain elevators. Sources with state/county FIPS code ending with "777" are in the NEI but are not included in any modeling sectors. These sources typically represent mobile (temporary) asphalt plants that are only reported for some states and are generally in a fixed location for only a part of the year and are therefore difficult to allocate to specific places and days as is needed for modeling. Therefore, these sources are dropped from the point-based sectors in the modeling platform.

The ptnonipm sources (i.e., not EGUs and non -oil and gas sources) were used as-is from the 2022 NEI point inventory following updates from the Collaborative review. Solvent emissions from point sources were removed from the np_solvents sector to prevent double-counting, so that all point sources can be retained in the modeling as point sources rather than as area sources. The modeling was based on the point flat file exported from EIS on June 15, 2024, and included updates from the Collaborative review process for the 2022 base year, and updates specific to ethylene oxide. The np_solvents sector is described in more detail in Section 2.2.6.

Emissions from rail yards are included in the ptnonipm sector. Railyards are from the 2020 NEI railyard inventory with a projection factor applied. Additional information about railyard estimates can be found in section 3 of the 2020 NEI TSD.

2.2 Nonpoint sources (afdust, fertilizer, livestock, np_oilgas, rwc, np_solvents, nonpt)

This section describes the *stationary* nonpoint sources in the NEI nonpoint data category. Locomotives, C1 and C2 CMV, and C3 CMV are included in the NEI nonpoint data category but are mobile sources that are described in Section 2.4. The 2020 NEI TSD includes documentation for the nonpoint data.

Nonpoint tribal emissions submitted to the NEI are dropped during spatial processing with SMOKE due to the configuration of the spatial surrogates. Part of the reason for this is to prevent possible double-counting with county-level emissions and also because spatial surrogates for tribal data are not currently available. These omissions are not expected to have an impact on the results of the air quality modeling at the 12-km resolution used for this platform.

The following subsections describe how the sources in the NEI nonpoint inventory were separated into modeling platform sectors, along with any data that were updated (replaced) with non-NEI data.

2.2.1 Area fugitive dust sector (afdust)

The area-source fugitive dust (afdust) sector contains PM_{10} and $PM_{2.5}$ emission estimates for nonpoint SCCs identified by EPA as dust sources. Categories included in the afdust sector are paved roads, unpaved roads and airstrips, construction (residential, industrial, road and total), agriculture production, and mining and quarrying. It does not include fugitive dust from grain elevators, coal handling at coal mines, or vehicular traffic on paved or unpaved roads at industrial facilities because these are treated as point sources so they are properly located. Table 2-5 is a listing of the Source Classification Codes (SCCs) in the afdust sector.

Table 2-5. Afdust sector SCCs

SCC	Tier 1 description	Tier 2 description	Tier 3 description	Tier 4 description
2294000000	Mobile Sources	Paved Roads	All Paved Roads	Total: Fugitives
2296000000	Mobile Sources	Unpaved Roads	All Unpaved Roads	Total: Fugitives
2311010000	Industrial Processes	Construction: SIC 15 - 17	Residential	Total
2311020000	Industrial Processes	Construction: SIC 15 - 17	Industrial/Commercial/ Institutional	Total
2311030000	Industrial Processes	Construction: SIC 15 - 17	Road Construction	Total
2325000000	Industrial Processes	Mining and Quarrying: SIC 14	All Processes	Total
2325020000	Industrial Processes	Mining and Quarrying: SIC 14	Crushed and Broken Stone	Total
2325030000	Industrial Processes	Mining and Quarrying: SIC 14	Sand and Gravel	Total
2325060000	Industrial Processes	Mining and Quarrying: SIC 10	Lead Ore Mining and Milling	Total
2801000000	Miscellaneous Area Sources	Ag. Production - Crops	Agriculture – Crops	Total
2801000003	Miscellaneous Area Sources	Ag. Production - Crops	Agriculture – Crops	Tilling
2801000005	Miscellaneous Area Sources	Ag. Production - Crops	Agriculture – Crops	Harvesting
2801000008	Miscellaneous Area Sources	Ag. Production - Crops	Agriculture - Crops	Transport
2805100010	Miscellaneous Area Sources	Ag. Production – Livestock	Dust kicked up by Livestock	Beef cattle - finishing operations on feedlots (drylots)
2805100020	Miscellaneous Area Sources	Ag. Production – Livestock	Dust kicked up by Livestock	Dairy Cattle
2805100030	Miscellaneous Area Sources	Ag. Production – Livestock	Dust kicked up by Livestock	Broilers
2805100040	Miscellaneous Area Sources	Ag. Production – Livestock	Dust kicked up by Livestock	Layers
2805100050	Miscellaneous Area Sources	Ag. Production – Livestock	Dust kicked up by Livestock	Swine
2805100060	Miscellaneous Area Sources	Ag. Production – Livestock	Dust kicked up by Livestock	Turkeys

Area Fugitive Dust Transportable Fraction Adjustments

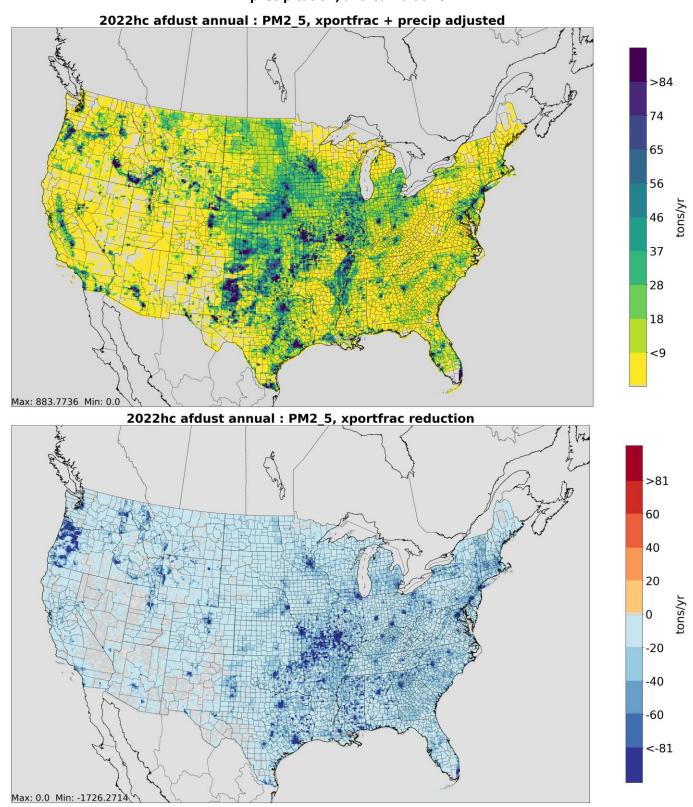
The afdust sector was separated from other nonpoint sectors to allow for the application of a "transportable fraction" and meteorological/precipitation reductions. These adjustments were applied using a script that applies land use-based gridded transport fractions based on landscape roughness, followed by another script that performs meteorological adjustments that zeroes out emissions for days on which at least 0.01 inches of precipitation occurs or there is snow cover on the ground. The land use data used to reduce the NEI emissions determines the amount of emissions that are subject to transport. For example, less dust would be transported on a forest floor, than would be on an open plain. This methodology is discussed in Pouliot, et al., 2010, and in "Fugitive Dust Modeling for the 2008 Emissions Modeling Platform" (Adelman, 2012). Both the transportable fraction and meteorological adjustments are based on the gridded resolution of the platform (i.e., 12km grid cells); therefore, different emissions will result if the process were applied to different grid resolutions. A limitation of the transportable fraction approach is the lack of monthly variability that would be expected with seasonal changes in vegetative cover. While wind speed and direction were not accounted for in the emissions processing, the hourly variability due to soil moisture, snow cover and precipitation were accounted for in the subsequent meteorological adjustment. The factor is treated as a multiplicative factor for the emissions. Thus, if the factor is 1 (i.e., water), the dust emissions are not reduced at all, and if the factor is near 0, the emissions are substantially reduced.

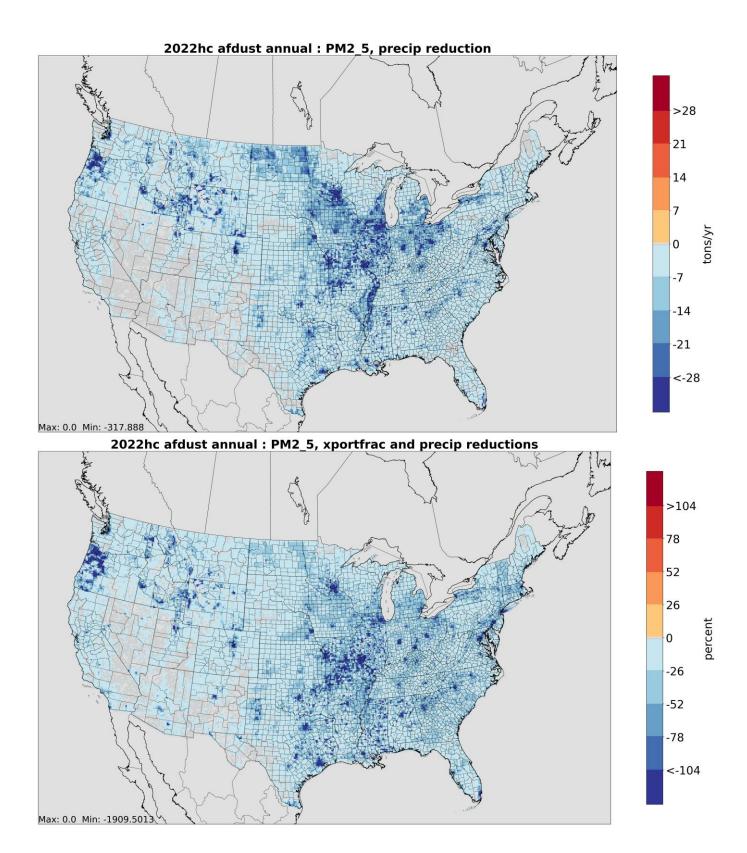
Area Fugitive Dust 2020-2022 Projection Factors

Paved road dust emissions were from the 2020 NEI adjusted to 2022 levels based on changes between 2020 and 2022 VMT. Dust from livestock hooves were also adjusted based on ratios of 2022 to 2020 livestock counts but all other types of dust emissions were held constant from 2020 to 2022. For the fugitive dust emissions compiled into the 2020 NEI, meteorological adjustments were applied to paved and unpaved road SCCs but not transport-related adjustments. This is because the modeling platform applies meteorological adjustments and transportable fraction adjustments based on unadjusted NEI values. For the 2022 platform, the meteorological adjustments that were applied in the NEI for the paved and unpaved road SCCs were backed out and reapplied in SMOKE at an hourly resolution for each grid cell. The FF10 that is run through SMOKE consists of 100% unadjusted emissions, and after SMOKE all afdust sources have both transportable and meteorological adjustments applied according to year 2022 meteorology. The total impacts of the transportable fraction and meteorological adjustments are shown in Table 2-6.

Table 2-6. Total impact of 2022 fugitive dust adjustments to the unadjusted inventory

State	Unadjusted PM ₁₀	Unadjusted PM _{2.5}	Change in PM ₁₀	Change in PM _{2.5}	PM ₁₀ Reduction	PM _{2.5} Reduction
Alabama	274,336	35,494	-202,367	-25,972	73.4%	72.8%
Arizona	153,731	20,858	-56,262	-7,470	36.0%	35.3%
Arkansas	398,457	55,506	-276,216	-37,439	69.1%	67.2%
California	336,443	43,093	-140,763	-17,470	41.3%	40.0%
Colorado	276,997	39,377	-145,222	-19,463	52.1%	49.1%
Connecticut	21,526	3,333	-15,568	-2,400	71.6%	71.3%
Delaware	16,535	2,554	-9,619	-1,483	57.3%	57.2%


State	Unadjusted PM ₁₀	Unadjusted PM _{2.5}	Change in PM ₁₀	Change in PM _{2.5}	PM ₁₀ Reduction	PM _{2.5} Reduction
District of Columbia	3,494	477	-2,325	-318	65.5%	65.7%
Florida	215,212	34,456	-117,305	-18,353	53.9%	52.7%
Georgia	296,225	41,844	-218,924	-30,614	73.5%	72.8%
Idaho	496,108	58,552	-288,420	-32,354	57.8%	55.0%
Illinois	702,578	90,846	-423,470	-53,837	60.0%	59.0%
Indiana	160,577	29,875	-98,398	-18,297	60.8%	60.8%
Iowa	370,922	54,793	-207,369	-29,999	55.7%	54.6%
Kansas	583,732	79,848	-238,573	-31,989	40.6%	39.9%
Kentucky	179,629	29,151	-127,894	-20,583	70.9%	70.3%
Louisiana	196,181	29,769	-125,867	-18,850	63.8%	63.0%
Maine	41,717	5,878	-33,149	-4,674	79.1%	79.1%
Maryland	60,743	8,821	-39,070	-5,688	63.6%	63.8%
Massachusetts	63,722	8,640	-46,310	-6,151	72.1%	70.6%
Michigan	293,285	38,837	-199,924	-26,154	67.8%	67.0%
Minnesota	537,979	72,776	-331,407	-43,413	61.4%	59.4%
Mississippi	439,287	52,963	-320,342	-37,933	72.6%	71.4%
Missouri	1,439,199	165,014	-960,853	-108,931	66.5%	65.7%
Montana	498,406	66,114	-321,080	-40,509	64.2%	61.1%
Nebraska	507,702	69,197	-194,215	-25,960	38.0%	37.3%
Nevada	125,368	16,303	-43,279	-5,635	33.8%	33.9%
New Hampshire	16,102	3,307	-12,859	-2,634	79.2%	79.0%
New Jersey	36,477	7,100	-23,617	-4,520	64.2%	63.0%
New Mexico	176,997	22,719	-73,934	-9,313	41.4%	40.6%
New York	264,168	37,984	-196,292	-27,753	73.8%	72.6%
North Carolina	257,146	35,016	-183,428	-24,779	70.9%	70.4%
North Dakota	360,358	55,646	-197,013	-29,403	54.5%	52.7%
Ohio	276,882	43,091	-188,841	-29,167	67.7%	67.2%
Oklahoma	562,803	77,603	-279,078	-37,504	49.3%	48.1%
Oregon	731,384	81,811	-548,493	-59,487	74.7%	72.4%
Pennsylvania	149,280	26,152	-106,519	-18,934	70.7%	71.8%
Rhode Island	6,003	1,006	-4,056	-674	66.7%	66.2%
South Carolina	190,577	25,236	-137,314	-18,038	71.7%	71.1%
South Dakota	210,669	37,092	-95,147	-16,442	45.0%	44.2%
Tennessee	141,443	26,022	-98,397	-18,111	69.2%	69.2%
Texas	1,540,940	214,891	-691,078	-94,837	44.5%	43.8%
Utah	142,084	18,020	-80,959	-9,976	56.5%	54.9%
Vermont	58,010	6,495	-50,078	-5,574	86.0%	85.5%
Virginia	138,872	22,095	-106,664	-17,031	76.3%	76.6%


State	Unadjusted PM ₁₀	Unadjusted PM _{2.5}	Change in PM ₁₀	Change in PM _{2.5}	PM ₁₀ Reduction	PM _{2.5} Reduction
Washington	174,558	21,778	-101,076	-12,665	57.3%	57.6%
West Virginia	70,339	9,842	-62,535	-8,718	88.5%	88.2%
Wisconsin	202,901	34,398	-135,251	-22,889	66.2%	66.2%
Wyoming	588,124	62,948	-332,653	-35,219	56.3%	55.7%
Domain Total (12km CONUS)	14,986,209	2,024,623	-8,889,472	-1,175,604	59.0%	57.8%

For categories other than paved roads, where states submitted afdust data to the NEI it was assumed that the state-submitted data were not met-adjusted and therefore the meteorological adjustments were applied. Thus, if states submitted data that were met-adjusted for sources other than paved and unpaved roads, these sources would have been adjusted for meteorology twice. Even with that possibility, air quality modeling shows that, in general, dust is frequently overestimated in the air quality modeling results.

Figure 2-1 illustrates the impact of each step of the adjustment. The reductions due to the transportable fraction adjustments alone are shown at the top of the figure. The reductions due to the precipitation adjustments alone are shown in the middle of the figure. The cumulative emission reductions after both transport fraction and meteorological adjustments are shown at the bottom of the figure. The top plot shows how the transport fraction has a larger reduction effect in the east, where forested areas are more effective at reducing PM transport than in many western areas. The middle plot shows how the meteorological impacts of precipitation, along with snow cover in the north, further reduce the dust emissions.

Figure 2-1. Fugitive dust emissions and impact of adjustments due to transportable fraction, precipitation, and cumulative

2.2.2 Agricultural Livestock (livestock)

The livestock SCCs are shown in Table 2-7. The livestock emissions are related to beef and dairy cattle, poultry production and waste, swine production, waste from horses and ponies, and production and waste for sheep, lambs, and goats. The sector does not include quite all of the livestock NH₃ emissions, as there is a very small amount of NH₃ emissions from livestock in the ptnonipm inventory (as point sources). In addition to NH₃, the sector includes livestock emissions for all pollutants other than PM_{2.5}, since PM_{2.5} from dust kicked up from livestock hooves are included in the afdust sector.

Agricultural livestock emissions in the 2022 platform were developed using methods similar to those used to develop the 2020 NEI, which is a mix of state-submitted data and EPA estimates. The 2020 NEI approach for estimating livestock emissions utilizes daily emission factors by animal and county from a model developed by Carnegie Mellon University (CMU) (Pinder, 2004, McQuilling, 2015) and 2020 U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) survey. Details on the approach used to develop livestock emissions for the 2020 NEI are provided in Section 10 of the 2020 NEI TSD. Animal populations used for estimating livestock emissions came from 2022 USDA survey data (see QuickStats at https://quickstats.nass.usda.gov) for the available counties. The FEM model was run for 2022 using the 2022 animal counts and meteorological data for 2022 to create the emission inventories for the livestock sector.

SCC Tier 1 description Tier 2 description Tier 3 description **Tier 4 description** Miscellaneous Area Ag. Production -Beef cattle production 2805002000 Not Elsewhere Classified Sources Livestock composite Poultry production - layers Miscellaneous Area Ag. Production -2805007100 with dry manure Confinement Sources Livestock management systems Miscellaneous Area Ag. Production -2805009100 Poultry production - broilers Confinement Sources Livestock Miscellaneous Area Ag. Production -2805010100 Poultry production - turkeys Confinement Sources Livestock Miscellaneous Area Ag. Production -2805018000 Dairy cattle composite Not Elsewhere Classified Sources Livestock Not Elsewhere Classified Miscellaneous Area Ag. Production -2805025000 Swine production composite (see also 28-05-039, -047, -Sources Livestock 053) Miscellaneous Area Ag. Production -Horses and Ponies Waste Not Elsewhere Classified 2805035000 Sources Livestock **Emissions** Miscellaneous Area Ag. Production -Sheep and Lambs Waste 2805040000 Total Sources Livestock **Emissions** Miscellaneous Area Ag. Production -2805045000 Not Elsewhere Classified **Goats Waste Emissions** Sources

Table 2-7. SCCs for the livestock sector

2.2.3 Agricultural Fertilizer (fertilizer)

Livestock

As described in the 2020 NEI TSD, fertilizer emissions were based on the FEST-C model (https://www.cmascenter.org/fest-c/). Unlike most of the other emissions input to the CMAQ model, fertilizer emissions are computed during a run of CMAQ in bi-directional mode and are output during the model run. The bidirectional version of CMAQ (v5.4) and the Fertilizer Emissions Scenario Tool for CMAQ FEST-C (v1.3) were used to estimate ammonia (NH $_3$) emissions from agricultural soils. The computed emissions were saved during the CMAQ run so they can be included in emissions summaries and in other model runs that do not use the bidirectional method.

FEST-C is the software program that processes land use and agricultural activity data to develop inputs for the CMAQ model when run with bidirectional exchange. FEST-C reads land use data from the Biogenic Emissions Landuse Dataset (BELD), meteorological variables from the Weather Research and Forecasting (WRF) model for the year to be modeled, and nitrogen deposition data from a previous or historical average CMAQ simulation. FEST-C, then uses the Environmental Policy Integrated Climate (EPIC) modeling system (https://epicapex.tamu.edu/epic/) to simulate the agricultural practices and soil biogeochemistry and provides information regarding fertilizer timing, composition, application method and amount.

An iterative calculation was applied to estimate fertilizer emissions. First, fertilizer application by crop type was estimated using FEST-C modeled data. To develop the emissions for this platform, CMAQ v5.4 was run with the Surface Tiled Aerosol and Gaseous Exchange (STAGE) deposition option along with bidirectional exchange to estimate fertilizer and biogenic NH3 emissions. However, for this study, the M3DRY option was used to develop the fertilizer emissions. Figure 2-2 shows a schematic of the bidirectional modeling system.

Figure 2-2. "Bidi" modeling system used to compute emissions from fertilizer application

Fertilizer Activity Data

The following activity parameters were input into the EPIC model:

- Grid cell meteorological variables from WRF
- Initial soil profiles/soil selection
- Presence of 21 major crops: irrigated and rain fed hay, alfalfa, grass, barley, beans, grain corn, silage corn, cotton, oats, peanuts, potatoes, rice, rye, grain sorghum, silage sorghum, soybeans, spring wheat, winter wheat, canola, and other crops (e.g., lettuce, tomatoes, etc.)
- Fertilizer sales to establish the type/composition of nutrients applied
- Management scenarios for the 10 USDA production regions. These include irrigation, tile
 drainage, intervals between forage harvest, fertilizer application method (injected versus surface
 applied), and equipment commonly used in these production regions.

The WRF meteorological model was used to provide grid cell meteorological parameters for the year 2022 using a national 12-km rectangular grid covering the continental U.S. The meteorological parameters in Table 2-8 were used as EPIC model inputs.

Table 2-8. Source of input variables for EPIC

EPIC input variable	Variable Source
Daily Total Radiation (MJ/m²)	WRF
Daily Maximum 2-m Temperature (C)	WRF
Daily minimum 2-m temperature (C)	WRF
Daily Total Precipitation (mm)	WRF
Daily Average Relative Humidity (unitless)	WRF
Daily Average 10-m Wind Speed (m s ⁻¹)	WRF
Daily Total Wet Deposition Oxidized N (g/ha)	CMAQ
Daily Total Wet Deposition Reduced N (g/ha)	CMAQ
Daily Total Dry Deposition Oxidized N (g/ha)	CMAQ
Daily Total Dry Deposition Reduced N (g/ha)	CMAQ
Daily Total Wet Deposition Organic N (g/ha)	CMAQ

Initial soil nutrient and pH conditions in EPIC were based on the 1992 USDA Soil Conservation Service (CSC) Soils-5 survey. The EPIC model then was run for 25 years using current fertilization and agricultural cropping techniques to estimate soil nutrient content and pH for the 2017 EPIC/WRF/CMAQ simulation.

The presence of crops in each model grid cell was determined using USDA Census of Agriculture data (2012) and USGS National Land Cover data (2011). These two data sources were used to compute the fraction of agricultural land in a model grid cell and the mix of crops grown on that land.

Fertilizer sales data and the 6-month period in which they were sold were extracted from the 2014 Association of American Plant Food Control Officials (AAPFCO,

http://www.aapfco.org/publications.html). AAPFCO data were used to identify the composition (e.g., urea, nitrate, organic) of the fertilizer used, and the amount applied was estimated using the modeled crop demand. These data were useful in making a reasonable assignment of what kind of fertilizer was applied to which crops.

Management activity data refers to data used to estimate representative crop management schemes. The USDA Agricultural Resource Management Survey (ARMS, https://www.ers.usda.gov/data-products/arms-farm-financial-and-crop-production-practices/) was used to provide management activity data. These data cover 10 USDA production regions and provide management schemes for irrigated and rain fed hay, alfalfa, grass, barley, beans, grain corn, silage corn, cotton, oats, peanuts, potatoes, rice, rye, grain sorghum, silage sorghum, soybeans, spring wheat, winter wheat, canola, and other crops (e.g., lettuce, tomatoes, etc.).

2.2.4 Nonpoint Oil and Gas Sector (np_oilgas)

The nonpoint oil and gas (np_oilgas) sector includes onshore and offshore oil and gas emissions. The EPA estimated emissions for all counties with 2022 oil and gas activity data using the Oil and Gas Tool. The types of sources covered include drill rigs, workover rigs, artificial lift, hydraulic fracturing engines, pneumatic pumps and other devices, storage tanks, flares, truck loading, compressor engines, and dehydrators. Because of the importance of emissions from this sector, special consideration was given to the speciation, spatial allocation, and monthly temporalization of nonpoint oil and gas emissions, instead of relying on older, more generalized profiles.

The 2020 NEI version of the Nonpoint Oil and Gas Emission Estimation Tool (i.e., the "NEI oil and gas tool") populated with 2022-specific activity data and updated with Subpart W data was used to estimate 2022. Year 2022 oil and gas activity data were obtained from Enverus' activity database (www.enverus.com) and supplied by some state air agencies. The NEI oil and gas tool is an Access database that utilizes county-level activity data (e.g., oil production and well counts), operational characteristics (types and sizes of equipment), and emission factors to estimate emissions. The tool was used to create a CSV-formatted emissions dataset covering all national nonpoint oil and gas emissions. This dataset was converted to the FF10 format for use in SMOKE modeling. More details on the inputs for and running of the tool for 2020 are provided in the 2020 NEI TSD. Table 2-9 shows the nonpoint oil and gas NOx and VOC emissions for 2022 by state. The Colorado emissions in this table include updated emissions for the state developed from the Oil and Gas Tool and state-submitted emissions, along with emissions submitted to the 2020 NEI within the Southern Ute reservation that are still used in this 2022 platform. For spatial allocation purposes, the Southern Ute oil and gas emissions – totaling 11,663 tons/yr of NOx and 879 tons/yr of VOC - were allocated to Colorado counties, with 95% of the emissions in La Plata County (FIPS 08067) and 5% of the emissions in Archuleta County (FIPS 08007).

Table 2-9. Nonpoint oil and gas emissions for 2022

State	2022 NOx	2022 VOC
Alabama	3,914	11,545
Alaska	2,815	9,665
Arizona	12	137

State	2022 NOx	2022 VOC
Arkansas	4,586	8,526
California	1,298	28,206
Colorado	29,542	56,625
Florida	19	1,123
Georgia	0	0
Idaho	12	99
Illinois	13,887	49,502
Indiana	2,741	13,492
Iowa	0	0
Kansas	22,927	62,638
Kentucky	16,116	42,631
Louisiana	17,099	52,799
Maryland	1	2
Michigan	10,435	13,227
Minnesota	0	0
Mississippi	1,807	17,404
Missouri	232	554
Montana	1,815	31,980
Nebraska	247	1,778
Nevada	4	160
New Mexico	99,096	282,137
New York	887	7,131
North Carolina	0	0
North Dakota	43,681	226,680
Ohio	2,996	30,890
Oklahoma	44,446	170,335
Oregon	6	20
Pennsylvania	58,718	139,865
South Dakota	196	1,291
Tennessee	1,057	3,272
Texas	258,865	1,339,498
Utah	8,442	69,862
Virginia	3,826	7,883
Washington	0	3
West Virginia	25,351	77,700
Wyoming	1,943	8,571

A new source was added to the oil and gas sector for the 2020 NEI. Pipeline Blowdowns and Pigging (SCC= 2310021801) emissions were estimated using US EPA Greenhouse Gas Reporting Program (GHGRP) data. These Pipeline Blowdowns and Pigging emissions for year 2022 included county-level estimates of VOC, benzene, toluene, ethylbenzene, and xylene (BTEX). These emissions estimates were calculated outside of the Oil and Gas Tool and submitted to EIS separately from the Oil and Gas Tool emissions. These emissions were considered EPA default emissions and SLTs had the opportunity to

submit their own Pipeline Blowdowns and Pigging (e.g., Utah) emissions and/or accept/omit these emissions using the Nonpoint Survey. Unfortunately, these EPA default Pipeline Blowdowns and Pigging emissions did not get into the 2020 NEI release for the states that accepted these emissions due to EIS tagging issues. These emissions were included in this 2022 Emissions Modeling Platform. Table 2-10 shows the emissions totals by state for Pipeline Blowdowns and Pigging sources.

An additional new source was added to the oil and gas sector for this 2021 and 2022 modeling platforms. This new source was abandoned oil and gas wells in the USA. The term "abandoned wells" encompasses various types of wells:

- Wells with no recent production, and not plugged. Common terms (such as those used in state databases) might include: inactive, temporarily abandoned, shut-in, dormant, and idle.
- Wells with no recent production and no responsible operator. Common terms might include: orphaned, deserted, long-term idle, and abandoned.
- Wells that have been plugged to prevent migration of gas or fluids.

As of year 2022, there were approximately 3.7 million abandoned wells in the U.S., with around 2.3 million abandoned oil wells, 0.6 million abandoned gas wells, and 0.8 million abandoned dry wells (may be oil or gas wells). Abandoned wells may emit CH4, CO2, VOC, and various HAP.

Estimates of greenhouse gas (GHG) emissions (CH4 and CO2) from abandoned wells have been estimated as part of the Inventory of U.S. Greenhouse Gas Emissions and Sinks since 2018. Currently, the inventory from 1990 – 2022 is available⁵. The GHG inventory (GHGI) methodology and estimates of emissions from abandoned wells served as the starting point for development of the VOC and HAP emissions inventory for abandoned wells used in this year 2022 modeling platform. Year 2022 estimates of VOC and BTEX were estimated and used in this 2022 modeling platform. Table 2-11 shows the emissions totals by state for Pipeline Blowdowns and Pigging sources. The inventories for blowdowns and pigging and abandoned wells are separate from the emissions output from the oil and gas tool.

Table 2-10. State emissions totals for year 2022 for Pipeline Blowdowns and Pigging sources

State	VOC (tpy)	Benzene (tpy)	Ethylbenzene (tpy)	Toluene (tpy)	Xylene (tpy)
Alabama	329	1.35	0.074	1.17	0.35
Alaska	14	0.06	0.004	0.06	0.02
Arizona	97	0.44	0.025	0.39	0.11
Arkansas	22	0.01	0.000	0.00	0.00
California	146	0.67	0.038	0.59	0.17
Colorado	2,137	5.47	0.273	6.86	2.14
Florida	2	0.00	0.000	0.00	0.00
Illinois	210	0.77	0.043	0.68	0.19
Indiana	180	0.73	0.042	0.65	0.19
Kansas	1,326	2.34	0.273	1.98	0.86
Kentucky	531	2.40	0.136	2.14	0.61
Louisiana	365	3.01	0.000	0.30	0.51
Maryland	0	0.00	0.000	0.00	0.00

⁵ Inventory of U.S. Greenhouse Gas Emissions and Sinks | US EPA

State	VOC (tpy)	Benzene (tpy)	Ethylbenzene (tpy)	Toluene (tpy)	Xylene (tpy)
Michigan	239	1.08	0.061	0.97	0.27
Mississippi	2,183	3.35	0.072	1.29	1.08
Missouri	4	0.00	0.000	0.00	0.00
Montana	147	0.67	0.038	0.59	0.17
Nebraska	57	0.14	0.007	0.17	0.05
New Mexico	1,044	0.00	0.000	0.00	0.00
New York	140	0.63	0.036	0.57	0.16
North Dakota	9	0.04	0.002	0.04	0.01
Ohio	391	1.77	0.100	1.58	0.45
Oklahoma	2,004	1.47	0.090	1.16	0.89
Oregon	8	0.04	0.002	0.03	0.01
Pennsylvania	66	0.30	0.017	0.27	80.0
South Dakota	2	0.01	0.001	0.01	0.00
Tennessee	13	0.06	0.003	0.05	0.01
Texas	9,599	9.05	0.236	3.82	3.23
Utah	18	0.09	0.005	0.08	0.04
Virginia	189	0.86	0.049	0.77	0.22
West Virginia	859	3.89	0.221	3.47	0.99
Wyoming	680	4.19	0.327	2.04	1.34
US Total	23,010	44.92	2.172	31.77	14.15

Table 2-11. State emissions totals for year 2022 for Abandoned Wells sources

State	2022 VOC (tpy)	
Alabama	198	
Alaska	64	
Arizona	10	
Arkansas	794	
California	5,357	
Colorado	451	
Florida	32	
Georgia	0	
Idaho	0	
Illinois	6,738	
Indiana	3,326	
Iowa	0	
Kansas	6,663	
Kentucky	12,817	
Louisiana	3,195	
Maryland	1	
Michigan	487	
Minnesota	0	
Mississippi	749	
Missouri	118	

State	2022 VOC (tpy)
Montana	740
Nebraska	141
Nevada	34
New Mexico	348
New York	596
North Carolina	0
North Dakota	401
Ohio	22,286
Oklahoma	8,944
Oregon	3
Pennsylvania	69,730
South Dakota	31
Tennessee	1,329
Texas	31,588
Utah	178
Virginia	69
Washington	3
West Virginia	2,723
Wyoming	552
US Total	180,694

Lastly, EPA and the state of Oklahoma, New Mexico and Kansas worked together to exercise the point source subtraction step in the Oil and Gas Tool during the 2022 platform development period. This point source subtraction step is a process used to eliminate possible double counting of sources in the Oil and Gas Tool that are already defined in the point source inventory.

2.2.5 Residential Wood Combustion (rwc)

The residential wood combustion (rwc) sector includes residential wood burning devices such as fireplaces, fireplaces with inserts (inserts), free standing woodstoves, pellet stoves, outdoor hydronic heaters (also known as outdoor wood boilers), indoor furnaces, and outdoor burning in firepots and chimeneas. Free standing woodstoves and inserts are further differentiated into three categories:
1) conventional (not EPA certified); 2) EPA certified, catalytic; and 3) EPA certified, noncatalytic.
Generally speaking, the conventional units were constructed prior to 1988. Units constructed after 1988 have to meet EPA emission standards and they are either catalytic or non-catalytic. As with the other nonpoint categories, a mix of S/L and EPA estimates were used. The EPA's estimates use updated methodologies for activity data and some changes to emission factors. The source classification codes (SCCs) in the rwc sector are listed in Table 2-12.

The 2022 platform RWC emissions are adjusted from 2020 NEI using SEDS data for 2021. Additionally, Idaho provided new 2022 RWC emissions data, and California (CARB) requested two updates: use EPA estimates for the SCC 2104008700, and remove emissions other than NH3 from the SCCs 2104008210, 2104008200, and 2104008230. Some improvements to RWC emissions estimates were developed as part of the 2020 NEI process. The EPA, along with the Commission on Environmental Cooperation (CEC),

the Northeast States for Coordinated Air Use Management (NESCAUM), and Abt Associates, conducted a national survey of wood-burning activity in 2018. The results of this survey were used to estimate county-level burning activity data. The activity data for RWC processes is the amount of wood burned in each county, which is based on data from the CEC survey on the fraction of homes in each county that use each wood-burning appliance and the average amount of wood burned in each appliance. These assumptions were used with the number of occupied homes in each county to estimate the total amount of wood burned in each county, in cords for cordwood appliances and tons for pellet appliances. Cords of wood were converted to tons using county-level density factors from the U.S. Forest Service. RWC emissions were calculated by multiplying the tons of wood burned by emissions factors. For more information on the development of the residential wood combustion emissions, see Section 27 of the 2020 NEI TSD.

Table 2-12. SCCs for the residential wood combustion sector

scc	Tier 1 Description	Tier 2 Description	Tier 3 Description	Tier 4 Description
2104008100	Stationary Source Fuel Combustion	Residential	Wood	Fireplace: general
2104008210	Stationary Source Fuel Combustion	Residential	Wood	Woodstove: fireplace inserts; non-EPA certified
2104008220	Stationary Source Fuel Combustion	Residential	Wood	Woodstove: fireplace inserts; EPA certified; non-catalytic
2104008230	Stationary Source Fuel Combustion	Residential	Wood	Woodstove: fireplace inserts; EPA certified; catalytic
2104008300	Stationary Source Fuel Combustion	Residential	Wood	Woodstove: freestanding, general
2104008310	Stationary Source Fuel Combustion	Residential	Wood	Woodstove: freestanding, non- EPA certified
2104008320	Stationary Source Fuel Combustion	Residential	Wood	Woodstove: freestanding, EPA certified, non-catalytic
2104008330	Stationary Source Fuel Combustion	Residential	Wood	Woodstove: freestanding, EPA certified, catalytic
2104008400	Stationary Source Fuel Combustion	Residential	Wood	Woodstove: pellet-fired, general (freestanding or FP insert)
2104008510	Stationary Source Fuel Combustion	Residential	Wood	Furnace: Indoor, cordwood-fired, non-EPA certified
2104008530	Stationary Source Fuel Combustion	Residential	Wood	Furnace: Indoor, pellet-fired, general
2104008610	Stationary Source Fuel Combustion	Residential	Wood	Hydronic heater: outdoor
2104008620	Stationary Source Fuel Combustion	Residential	Wood	Hydronic heater: indoor
2104008630	Stationary Source Fuel Combustion	Residential	Wood	Hydronic heater: pellet-fired
2104008700	Stationary Source Fuel Combustion	Residential	Wood	Outdoor wood burning device, NEC (fire-pits, chimeneas, etc)
2104009000	Stationary Source Fuel Combustion	Residential	Firelog	Total: All Combustor Types

2.2.6 Solvents (np_solvents)

The np_solvents sector is a diverse collection of emission sources for which emissions are driven by evaporation. Included in this sector are everyday items, such as cleaners, personal care products, adhesives, architectural and aerosol coatings, printing inks, and pesticides. These sources exclusively emit organic gases and feature origins spanning residential, commercial, institutional, and industrial settings. The organic gases that evaporate from these sources often fulfill other functions than acting as a traditional solvent (e.g., propellants, fragrances, emollients). For this reason, the solvents sector is often referred to as "volatile chemical products." The base methodology used to estimate these emissions are unchanged from the 2020 NEI, which is described in Section 32 of the 2020 NEI TSD, including the SCCs that are included in the sector.

For 2022, all np_solvent emissions, except asphalt paving, are projected using the 2020 NEI as a base year. This includes State, Locality, and Tribal emissions submissions. Here, the model used to estimate a majority of the nonpoint solvent emissions in the NEI (VCPy) was used to estimate 2021 emissions (2022 usage data were not available). From there a SCC-specific ratio (of 2021 / 2020) was applied to the 2020 NEI. This method ensures that state-submitted emissions magnitudes are preserved. In addition, some updates were made based on comments provided by New Jersey, and asphalt-related SCCs featured temporal profile updates using EIA-based monthly profiles for "asphalt and road oil" by PADD region.

2.2.7 Open burning (openburn)

This new sector for 2022v1 platform was split out from the nonpt sector and includes emissions from @yard waste, land clearing, and residential household waste burning (SCCs starting with 261). For 2022v1, these emissions were held constant at 2020 NEI levels.

SCC	Description
2610000100	Waste Disposal, Treatment, and Recovery; Open Burning; All Categories; Yard Waste -
2010000100	Leaf Species Unspecified
2610000400	Waste Disposal, Treatment, and Recovery; Open Burning; All Categories; Yard Waste -
2010000400	Brush Species Unspecified
2610000500	Waste Disposal, Treatment, and Recovery; Open Burning; All Categories; Land Clearing
2010000300	Debris
2610030000	Waste Disposal, Treatment, and Recovery; Open Burning; Residential; Household Waste
2610000300	Waste Disposal, Treatment, and Recovery; Open Burning; All Categories; Yard Waste -
2010000300	Weed Species Unspecified (incl Grass)

Table 2-13. SCCs in the openburn sector

2.2.8 Nonpoint (nonpt)

The 2022 platform nonpt sector inventory is based on the April 2023 version of the 2020 NEI but adjusted to better reflect 2022 emissions levels as described below. Stationary nonpoint sources that were not subdivided into the afdust, livestock, fertilizer, np_oilgas, rwc or np_solvents sectors were assigned to the "nonpt" sector. Locomotives and CMV mobile sources from the 2020 NEI nonpoint inventory are described with the mobile sources. The types of sources in the nonpt sector include:

 stationary source fuel combustion, including industrial, commercial, and residential and orchard heaters;

- chemical manufacturing;
- industrial processes such as commercial cooking, metal production, mineral processes, petroleum refining, wood products, fabricated metals, and refrigeration;
- storage and transport of petroleum for uses such as portable gas cans, bulk terminals, gasoline service stations, aviation, and marine vessels;
- storage and transport of chemicals;
- waste disposal, treatment, and recovery via incineration, open burning, landfills, and composting; and
- miscellaneous area sources such as cremation, hospitals, lamp breakage, and automotive repair shops.

The nonpt sector includes emission estimates for Portable Fuel Containers (PFCs), also known as "gas cans." The PFC inventory consists of three distinct sources of PFC emissions, further distinguished by residential or commercial use. The three sources are: (1) displacement of the vapor within the can; (2) emissions due to evaporation (i.e., diurnal emissions); and (3) emissions due to permeation. Note that spillage and vapor displacement associated with using PFCs to refuel nonroad equipment are included in the nonroad inventory.

The factors used to adjust the emissions were developed using the datasets as described in Table 2-14. Emissions for SCC groups other than those listed in this table (e.g., waste disposal, treatment and recovery) were held constant at 2020 NEI levels in the 2022 base year inventory.

Table 2-14. Datasets used to Develop Factors to Adjust Nonpoint Emissions from 2020 to 2022

Source Category Group	2020-2022 Projection Method
All Other Nonpoint Source Fuel Combustion	Apply EIA State Energy Data System energy consumption ratios. Note that 2021 SEDS data are available for all fuels and 2022 data are available for some fuels.
Stage 1 Gasoline Unloading at Service Stations	Apply EIA State Energy Data System Transportation Sector/Motor Gasoline consumption ratios
Stage 1 Gasoline Unloading at Bulk Terminals/Plants	Apply EIA State Energy Data System Total Motor Gasoline consumption ratios
Aviation Gasoline Stage I and II	Apply EIA State Energy Data System Aviation Gasoline consumption ratios
Pipeline Gasoline	Apply EIA State Energy Data System Total Motor Gasoline consumption ratios
Human Cremation	Estimate 2022 county-level number of cremations from 2022 actual county-level deaths from CDC's Wonder Database and 2022 state-level (projected) cremation rates from National Funeral Directors Association's "Cremation and Burial Report" and apply 2022/2020 county-level cremation ratios to 2020 NEI cremation emissions to compute 2022 cremation emissions
Commercial Cooking	Hold constant
Portable Fuel Containers	Hold constant
Asphalt Paving	Hold constant

Source Category Group	up 2020-2022 Projection Method	
Landfills/POTWs	Hold constant	
Charcoal Grilling	Hold constant	

2.3 Onroad Mobile sources (onroad)

Onroad mobile sources include emissions from motorized vehicles operating on public roadways. These include passenger cars, motorcycles, minivans, sport-utility vehicles, light-duty trucks, heavy-duty trucks, and buses. The sources are further divided by the fuel they use, including diesel, gasoline, E-85, compressed natural gas (CNG), or electric vehicles. The sector characterizes emissions from parked vehicle processes (e.g., starts, hot soak, and extended idle) as well as from on-network processes (i.e., from vehicles as they move along the roads). For more details on the approach and for a summary of the MOVES inputs submitted by states, see Section 5 of the 2020 NEI TSD (EPA, 2023).

For the 2022 emissions modeling platform activity data (i.e., vehicle miles traveled (VMT) and vehicle population (VPOP)) were based on data submitted by state and local agencies for the 2020 NEI and for the 2022 platform, as well as data from Federal Highway Administration (FHWA) annual VMT at the county level. VMT were based on county-level VM-2 data from FHWA. VPOP was mostly held constant at 2020 levels. A new MOVES run for 2022 was done using MOVES4 to obtain year-specific emission factors.

Except for California, all onroad emissions were generated using the SMOKE-MOVES emissions modeling framework that leverages MOVES-generated emission factors https://www.epa.gov/moves), county and SCC-specific activity data, and hourly 2022 meteorological data. Specifically, EPA used vehicle miles traveled (VMT) and other 2022-specific activity data, along with tools that interface between the MOVES model and SMOKE. In this way, it was possible to take advantage of the gridded hourly temperature data available from meteorological modeling that are also used for air quality modeling. The onroad source classification codes (SCCs) in the emissions modeling platform are more finely resolved than those in the National Emissions Inventory (NEI). The NEI SCCs distinguish vehicles and fuels, while the SCCs used in the model platform also distinguish between emissions processes (i.e., off-network, onnetwork, and extended idle), and road types. EPA mostly elected to keep 2020 NEI fuel splits (derived from MOVES3) and not upgrade to MOVES4 fuels.

MOVES4 includes the following updates from MOVES3 that impacted the development of the emissions modeling platform:

- Incorporates updates to fuel supply, inspection and maintenance programs, and emission rates.
- Accounts for the emission impacts of the EPA heavy-duty low NOx rule for model years 2027 and later and the light-duty greenhouse gas rule for model years 2023 and later.
- Adds the ability to model heavy-duty battery-electric and fuel-cell vehicles, as well as compressed natural gas (CNG) long-haul combination trucks.
- Improves the modeling of light-duty electric vehicles.

2.3.1 Inventory Development using SMOKE-MOVES

Except for California, onroad emissions were computed with SMOKE-MOVES by multiplying specific types of vehicle activity data by the appropriate emission factors. This section includes discussions of the

activity data and the emission factor development. The vehicles (aka source types) for which MOVES computes emissions are shown in Table 2-15. SMOKE-MOVES was run for specific modeling grids. Emissions for the contiguous U.S. states and Washington, D.C., were computed for a grid covering those areas. Emissions for Alaska, Hawaii, Puerto Rico, and the U.S. Virgin Islands were computed by running SMOKE-MOVES for distinct grids covering each of those regions and are included in the onroad non-Conus sector. In some summary reports these non-CONUS emissions are aggregated with emissions from the onroad sector.

Table 2-15. MOVES vehicle (source) types

MOVES vehicle type	Description	HPMS vehicle type
11	Motorcycle	10
21	Passenger Car	25
31	Passenger Truck	25
32	Light Commercial Truck	25
41	Other Bus	40
42	Transit Bus	40
43	School Bus	40
51	Refuse Truck	50
52	Single Unit Short-haul Truck	50
53	Single Unit Long-haul Truck	50
54	Motor Home	50
61	Combination Short-haul Truck	60
62	Combination Long-haul Truck	60

SMOKE-MOVES makes use of emission rate "lookup" tables generated by MOVES that differentiate emissions by process (i.e., running, start, vapor venting, etc.), vehicle type, road type, temperature, speed, hour of day, etc., to generate the MOVES emission rates that could be applied across the U.S., EPA used an automated process to run MOVES to produce year 2022-specific emission factors by temperature and speed for a series of "representative counties," to which every other county was mapped. The representative counties for which emission factors were generated were selected according to their state, elevation, fuels, age distribution, ramp fraction, and inspection and maintenance programs. Each county was then mapped to a representative county based on its similarity to the representative county with respect to those attributes. For this study, there are 259 representative counties in the continental U.S. and a total of 298 including the non-CONUS areas. The only differences between 2020 and 2022 being a change in Alaska county equivalents which removed one borough (county ID 2261, Valdez-Cordova Census Area) which in 2019 split into two areas (county ID 2063, Chugach Census Area; and county ID 2066, Copper River Census Area), as well as some updates recommended by Texas.

Once representative counties were identified, emission factors were generated with MOVES for each representative county and for two "fuel months" – January to represent winter months, and July to represent summer months – due to the different types of fuels used. SMOKE selected the appropriate MOVES emissions rates for each county, hourly temperature, SCC, and speed bin and then multiplied the emission rate by appropriate activity data. For on-roadway emissions, vehicle miles traveled (VMT) is the activity data; off-network processes use vehicle population (VPOP), vehicle starts, and hours of off-

network idling (ONI); and hoteling hours are used to develop emissions for extended idling of combination long-haul trucks. These calculations were done for every county and grid cell in the continental U.S. for each hour of the year.

The SMOKE-MOVES process for creating the model-ready emissions consists of the following steps:

- 1) Determine which counties will be used to represent other counties in the MOVES runs.
- 2) Determine which months will be used to represent other month's fuel characteristics.
- 3) Create inputs needed only by MOVES. MOVES requires county-specific information on vehicle populations, age distributions, and inspection-maintenance programs for each of the representative counties.
- 4) Create inputs needed both by MOVES and by SMOKE, including temperatures and activity data.
- 5) Run MOVES to create emission factor tables for the temperatures found in each county.
- 6) Run SMOKE to apply the emission factors to activity data (VMT, VPOP, STARTS, off-network idling, and HOTELING) to calculate emissions based on the gridded hourly temperatures in the meteorological data.
- 7) Aggregate the results to the county-SCC level for summaries and quality assurance.

The onroad emissions were processed in six processing streams that were then merged together into the onroad sector emissions after each of the six streams have been processed:

- <u>rate-per-distance (RPD)</u> uses VMT as the activity data plus speed and speed profile information to compute on-network emissions from exhaust, evaporative, permeation, refueling, and brake and tire wear processes;
- <u>rate-per-vehicle (RPV)</u> uses VPOP activity data to compute off-network emissions from exhaust, evaporative, permeation, and refueling processes;
- <u>rate-per-profile (RPS)</u> uses STARTS activity data to compute off-network emissions from vehicles starts;
- <u>rate-per-profile (RPP)</u> uses VPOP activity data to compute off-network emissions from evaporative fuel vapor venting, including hot soak (immediately after a trip) and diurnal (vehicle parked for a long period) emissions;
- <u>rate-per-hour (RPH)</u> uses hoteling hours activity data to compute off-network emissions for idling of long-haul trucks from extended idling and auxiliary power unit process; and
- <u>rate-per-hour off-network idling (RPHO)</u> uses off network idling hours activity data to compute off-network idling emissions for all types of vehicles.

The onroad emissions inputs to MOVES for the 2022 emissions modeling platform are based on the 2020 NEI, described in more detail in Section 5 of the 2020 NEI TSD. These inputs include:

- Key parameters in the MOVES County databases (CDBs) including Low Emission Vehicle (LEV) table
- Fuel months
- Activity data (e.g., VMT, VPOP, speed, HOTELING)

Fuel months, age distributions, and other inputs were consistent with those used to compute the 2020 NEI. Activity data submitted by states and development of the EPA default activity data sets for VMT, VPOP, hoteling hours, starts, and off-network idling (ONI) hours follows a similar process to the 2020 NEI, but based on 2022-specific VMT. These methods are described in detail in the 2020 NEI TSD and supporting documents. Details specific to 2022 activity data development are described below.

2.3.2 Onroad Activity Data Development

SMOKE-MOVES uses vehicle miles traveled (VMT), vehicle population (VPOP), vehicle starts, hours of offnetwork idling (ONI), and hours of hoteling, to calculate emissions. These datasets are collectively known as "activity data." For each of these activity datasets, first a national dataset was developed; this national dataset is called the "EPA default" dataset. The default was supplemented with data submitted by state and local agencies. In the EPA default dataset, VMT was derived from FHWA's county-level VM-2 data for 2022. EPA default VPOP was held constant at 2020 levels, as were the starts and fuel splits. Hours of hoteling and off-network idling were computed from 2022 VMT. EPA default activity was used for California, but the emissions were scaled to California-supplied values during the emissions processing.

Vehicle Miles Traveled (VMT) and Vehicle Population (VPOP)

Activity data submitted by states and development of the EPA default activity data sets for VMT, VPOP, and hoteling hours are described in detail in the 2020 NEI TSD (EPA, 2023) and supporting documents. The process for developing VMT for 2022 is similar to the 2020 NEI process, except starting with 2022-specific VMT from the FHWA VM-2 (county-level and by road type) and VM-4 (distributions of VMT by state and HPMS vehicle type). The VM-2 and VM-4 data were combined to create a 2022 VMT dataset by county, HPMS vehicle type, and road type. 2020 NEI VMT was then used to allocate VMT from HPMS vehicle type to MOVES vehicle type, and to different fuel types. New monthly profiles for 2022 VMT were also used, based on FHWA's Travel Monitoring and Analysis System (TMAS) data. See Section 3.3.8 for more information on the use of TMAS data.

The following states submitted VMT for the 2022 platform base year: AK, CO, CT, DE, GA, KS, MA, MI, MD, ME, NC, NH, NJ, NY, OR, PA, SC, TN, TX, UT, VA, WA, WI, WV, and Jefferson Co. KY. In the final base year data, VMT for Colorado are based on EPA default data, and other activity based on VMT was adjusted as a result of this change. VPOP was mostly held constant with the 2020 NEI VPOP except for a few states that supplied VPOP data: DE, GA, NY, and WI.

Speed Activity (SPDIST)

In SMOKE 4.7, SMOKE-MOVES was updated to use speed distributions similarly to how they are used when running MOVES in inventory mode. The speed distribution file, called SPDIST, specifies the amount of time spent in each MOVES speed bin for each county, vehicle (aka source) type, road type, weekday/weekend, and hour of day. This file contains the same information at the same resolution as the Speed Distribution table used by MOVES but is reformatted for SMOKE.

Speeds are based on data for January 2020 as speed data were not available for 2021 or 2022 in time for the 2022v1 platform. Speed data from the StreetLight dataset were used to generate hourly speed profiles by county, SCC, and month. The SPDIST files for the 2022 emissions modeling platform are based

on a combination of the StreetLight project data and 2020 NEI MOVES CDBs. More information can be found in the 2020 NEI TSD (EPA, 2023) and supporting documents.

Hoteling Hours (HOTELING)

Hoteling hours were computed from the 2022 VMT, using a factor of 0.007248 hoteling hours pet VMT for combination long haul trucks on restricted highways. This is the same approach as in 2020 NEI, except based on 2022 VMT. Hoteling hours were capped by county at a theoretical maximum and any excess hours of the maximum were reduced. For calculating reductions, a dataset of truck stop parking space availability was used, which includes a total number of parking spaces per county. This same dataset is used to develop the spatial surrogate for allocating county-total hoteling emissions to model grid cells. The parking space dataset was last updated during the development of the 2016 platforms. There are 8,760 hours in the year 2022; therefore, the maximum number of possible hoteling hours in a particular county is equal to 8,760 * the number of parking spaces in that county. Hoteling hours were capped at that theoretical maximum value for 2022 in all counties, with some exceptions. Also, Texas submitted hoteling activity for 2020 NEI, and their 2020 hoteling activity was projected to 2022 using ratios of 2022 VMT / 2020 VMT for combination long haul trucks.

Because the truck stop parking space dataset may be incomplete in some areas, and trucks may sometimes idle in areas other than designated spaces, it was assumed that every county has at least 12 parking spaces, even if fewer parking spaces are found in the parking space dataset. Therefore, hoteling hours were never reduced below 105,120 hours for the year in any county. If the unreduced hoteling hours were already below that maximum, the hours were left unchanged; in other words, hoteling activity were never increased in this analysis. For recent NEIs, four states requested that no reductions be applied to the hoteling activity based on parking space availability: CO, ME, NJ, and NY. For these states, reductions based on parking space availability were not applied. Reductions were also not applied in Texas, because the hoteling activity in that state are based on state-submitted data.

The final step related to hoteling activity is to split county totals into separate values for extended idling (SCC 2202620153) and Auxiliary Power Units (APUs) (SCC 2202620191). For 2022 modeling with MOVES4, an 9.8% APU split is used nationwide, meaning that during 9.8% of the hoteling hours auxiliary power units are assumed to be running.

<u>Starts</u>

Onroad "start" emissions are the instantaneous exhaust emissions that occur at the engine start (e.g., due to the fuel rich conditions in the cylinder to initiate combustion) as well as the additional running exhaust emissions that occur because the engine and emission control systems have not yet stabilized at the running operating temperature. Operationally, start emissions are defined as the difference in emissions between an exhaust emissions test with an ambient temperature start and the same test with the engine and emission control systems already at operating temperature. As such, the units for start emission rates are instantaneous grams/start.

MOVES4 uses vehicle population information to sort the vehicle population into source bins defined by vehicle source type, fuel type (gas, diesel, etc.), regulatory class, model year and age. The model uses default data from instrumented vehicles (or user-provided values) to estimate the number of starts for

each source bin and to allocate them among eight operating mode bins defined by the amount of time parked ("soak time") prior to the start. Thus, MOVES4 accounts for different amounts of cooling of the engine and emission control systems. Each source bin and operating mode has an associated g/start emission rate. Start emissions are also adjusted to account for fuel characteristics, light duty inspection and maintenance (I/M) programs, and ambient temperatures. Starts were mostly held constant from 2020 to 2022, except where the VPOP changed and thus starts were changed in proportion to the change in VPOP. Additionally, new monthly profiles were applied for 2022.

Off-network Idling Hours

After creating VMT inputs for SMOKE-MOVES, Off-network idle (ONI) activity data were also needed. ONI is defined in MOVES as time during which a vehicle engine is running idle and the vehicle is somewhere other than on the road, such as in a parking lot, a driveway, or at the side of the road. This engine activity contributes to total mobile source emissions but does not take place on the road network. Examples of ONI activity include:

- light duty passenger vehicles idling while waiting to pick up children at school or to pick up passengers at the airport or train station,
- single unit and combination trucks idling while loading or unloading cargo or making deliveries, and
- vehicles idling at drive-through restaurants.

Note that ONI does not include idling that occurs on the road, such as idling at traffic signals, stop signs, and in traffic—these emissions are included as part of the running and crankcase running exhaust processes on the other road types. ONI also does not include long-duration idling by long-haul combination trucks (hoteling/extended idle), as that type of long duration idling is accounted for in other MOVES processes.

ONI activity hours were calculated based on VMT. For each representative county, the ratio of ONI hours to onroad VMT (on all road types) was calculated using the MOVES ONI Tool by source type, fuel type, and month. These ratios are then multiplied by each county's total VMT (aggregated by source type, fuel type, and month) to get hours of ONI activity.

2.3.3 MOVES Emission Factor Table Development

MOVES4 was run in emission rate mode to create emission factor tables for 2022, for all representative counties and fuel months. The county databases used to run MOVES to develop the emission factor tables included the state-specific control measures such as the California LEV program, and fuels representing the year 2022. The range of temperatures run along with the average humidities used were specific to the year 2022. The remaining settings for the CDBs are documented in the 2020 NEI TSD. To create the emission factors, MOVES was run separately for each representative county and fuel month for each temperature bin needed for the calendar year 2022. The MOVES results were post-processed into CSV-formatted emission factor tables that can be read by SMOKE-MOVES. Additionally, MOVES was run for all counties in Alaska, Hawaii, and Virgin Islands, and for a single representative county in Puerto Rico.

The county databases (CDBs) used to run MOVES to develop the emission factor tables were based on those used for the 2020 NEI. The 2022 emissions modeling platform development included an extensive review of the various tables including speed distributions. Each county in the continental U.S. was classified according to its state, altitude (high or low), fuel region, the presence of I/M programs, and the mean light-duty age. A binning algorithm was executed to identify "like counties." The result was 259 representative counties for the CONUS shown in Figure 2-3 along with 39 for Alaska, Hawaii, Puerto Rico, and the US Virgin Islands. The CONUS representation counties for 2022 are the same as those used for 2020 NEI with the exception of Alaska, which, in 2019, removed one borough (county ID 2261, Valdez-Cordova Census Area) and split that into two areas (county ID 2063, Chugach Census Area; and county ID 2066, Copper River Census Area); as well as some updates recommended by Texas.

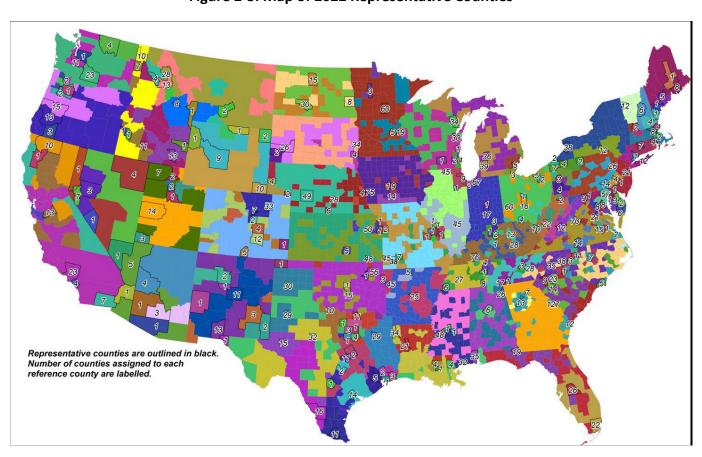


Figure 2-3. Map of 2022 Representative Counties

Age distributions are a key input to MOVES in determining emission rates. Age distributions were held constant from 2020 for the 2022 emissions modeling platform; with the exception of Georgia, who supplied their own age distribution. The age distributions for 2020 were updated based on vehicle registration data obtained from IHS Markit, subject to reductions for older vehicles. For more information on how age distributions were developed for the 2020 NEI, please see Section 5 of the 2020 NEI TSD.

EPA calculated the adjustment factors representing the fraction of population remaining in every model year, with two exceptions. Model years from 2011 to 2020 received no adjustment and the model year 1990 received a capped adjustment that equals the adjustment for model year 1991. The adjustment

factors in Table 2-16 were applied to the 2020 IHS data to create the EPA Default set of population and age distributions for the NEI.

Table 2-16. The fraction of IHS vehicle populations retained for 2020 NEI and 2022 emissions modeling platform by model year

Model Year	LDV Adjustment Factor	
pre-1991	0.722	
1991	0.722	
1992	0.728	
1993	0.742	
1994	0.754	
1995	0.766	
1996	0.774	
1997	0.790	
1998	0.787	
1999	0.798	
2000	0.796	
2001	0.806	
2002	0.808	
2003	0.828	
2004	0.844	
2005	0.857	
2006	0.874	
2007	0.892	
2008	0.905	
2009	0.919	
2010	0.929	
2011 - 2021	1	

EPA also removed the county-specific fractions of antique license plate vehicles present in the registration data from IHS, based on the assumption that antique vehicles are operated significantly less than average. States without any CDB submittals received EPA default populations and age distributions based on the adjusted IHS data, and some states with submittals were overridden, decided on a case-by-case basis.

In addition to removing the older and antique plate vehicles from the IHS data, 28 counties found to be outliers because their fleet age was significantly younger than in typical counties. The outlier review was limited to LDV source types 21, 31, and 32. Many rural counties have outliers for low-population source types such as Transit Bus and Refuse Truck due to small sample sizes, but these do not have much of an impact on the inventory overall and reflect sparse data in low-population areas and therefore do not require correction.

The most extreme examples of LDV outliers were Light Commercial Truck age distributions where over 85 percent of the population in the entire county is 0 and 1 years old. These sorts of young fleets can

happen if the headquarters of a leasing or rental company is the owner/entity of a relatively large number of newer vehicles relative to the county-wide population. While the business owner of thousands of new vehicles may reside in a single county, the vehicles likely operate in broader areas without being registered where they drive.

In areas where submitted vehicle population data were accepted for the 2020 NEI, the relative populations of cars vs. light-duty trucks were reapportioned (while retaining the magnitude of the light-duty vehicles from the submittals) using the county-specific percentages from the IHS data. In this way, the categorization of cars versus light trucks is consistent from state to state. The county total light-duty vehicle populations were preserved through this process.

To create the emission factors, MOVES was run separately for each representative county and fuel month and for each temperature bin needed for calendar year 2022. The CDBs used to run MOVES include the state-specific control measures such as the California low emission vehicle (LEV) program. In addition, the range of temperatures and the average humidities used in the CDBs were specific to the year 2022. The MOVES results were post-processed into CSV-formatted emission factor tables that can be read by SMOKE-MOVES.

2.3.4 Onroad California Inventory Development (onroad_ca_adj)

California uses their own emission model, EMFAC, to develop onroad emissions inventories and provides those inventories to EPA. EMFAC uses emission inventory codes (EICs) to characterize the emission processes instead of SCCs. The EPA and California worked together to develop a code mapping to better match EMFAC's EICs to EPA MOVES' detailed set of SCCs that distinguish between off-network and onnetwork and brake and tire wear emissions. This detail is needed for modeling but not for the NEI. California submitted onroad emissions for all 2022v1 platform years, including 2022. Since California's 2022 inventory did not contain HAPs, VOC-based speciation factors were used to estimate VOC HAPs for 2022. Other HAPs such as PAHs and metals are not needed for this platform. The EPA added NH₃ to the CARB inventory by using the state total NH₃ from MOVES and allocating it at the county level based on CO. Refueling emissions were taken from MOVES for California.

California onroad mobile source emissions were created through a hybrid approach of combining state-supplied annual emissions with EPA-developed SMOKE-MOVES runs. Through this approach, the platform was able to reflect the California-developed emissions, while leveraging the more detailed SCCs and the highly resolved spatial patterns, temporal patterns, and speciation from SMOKE-MOVES. The basic steps involved in temporally allocating onroad emissions from California based on SMOKE-MOVES results were:

- 1) Run CA using EPA inputs through SMOKE-MOVES to produce hourly emissions hereafter known as "EPA estimates." These EPA estimates for CA were run in a separate sector called "onroad_ca."
- 2) Calculate ratios between state-supplied emissions and EPA estimates. The ratios were calculated for each county/SCC/pollutant combination based on the California onroad emissions inventory. The 2020 California data did not separate off and on-network emissions or extended idling, and also did not include information for vehicles fueled by E-85, so these differentiations were obtained using MOVES.

- 3) Create an adjustment factor file (CFPRO) that includes EPA-to-state estimate ratios.
- 4) Rerun CA through SMOKE-MOVES using EPA inputs and the new adjustment factor file.

Through this process, adjusted model-ready files were created that sum to annual totals from California, but have the temporal and spatial patterns reflecting the highly resolved meteorology and SMOKE-MOVES. After adjusting the emissions, this sector is called "onroad_ca_adj." Note that in emission summaries, the emissions from the "onroad" and "onroad_ca_adj" sectors were summed and designated as the emissions for the onroad sector.

2.4 Nonroad Mobile sources (cmv, rail, nonroad)

The nonroad mobile source emission modeling sectors consist of nonroad equipment emissions (nonroad), locomotive (rail), and commercial marine CMV emissions (cmv c1c2 and cmv c3).

2.4.1 Category 1, Category 2 Commercial Marine Vessels (cmv_c1c2)

The cmv_c1c2 sector contains Category 1 and 2 (C1C2) CMV emissions. Category 1 and 2 vessels use diesel fuel. All emissions in this sector are annual and at county-SCC resolution; however, in the emissions modeling platform they are provided at the sub-county level (i.e., port shape ids) and by SCC and emission type (e.g., hoteling, maneuvering). For the 2021 emissions modeling platform EPA expanded the list of SCCs. SCCs are now further resolved based on ship type than they were for the 2020 NEI. A list of SCCs for the C1C2 sector can be seen in Table 2-17 For more information on the 2022 CMV C1C2 emissions development, see the supplemental documentation (ERG, 2024b). C1C2 emissions that occur outside of state waters are not assigned to states. For this modeling platform, all CMV emissions in the cmv_c1c2 sector are treated as hourly gridded point sources with stack parameters that should result in them being placed in layer 1.

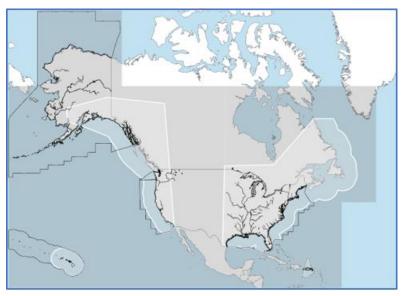
Sulfur dioxide (SO2) emissions reflect rules that reduced sulfur emissions for CMV that took effect in the year 2015. The cmv_c1c2 inventory sector contains small to medium-size engine CMV emissions. Category 1 and Category 2 marine diesel engines typically range in size from about 700 to 11,000 hp. These engines are used to provide propulsion power on many kinds of vessels including tugboats, towboats, supply vessels, fishing vessels, and other commercial vessels in and around ports. They are also used as stand-alone generators for auxiliary electrical power on many types of vessels. Category 1 represents engines up to 7 liters per cylinder displacement. Category 2 includes engines from 7 to 30 liters per cylinder.

The cmv_c1c2 inventory sector contains sources that traverse state and federal waters along with emissions from surrounding areas of Canada, Mexico, and international waters. The cmv_c1c2 sources are modeled as point sources but using plume rise parameters that cause the emissions to be released in the ground layer of the air quality model.

The cmv_c1c2 sources within state waters are identified in the inventory with the Federal Information Processing Standard (FIPS) county code for the state and county in which the vessel is registered. The cmv_c1c2 sources that operate outside of state waters but within the Emissions Control Area (ECA) are encoded with a state FIPS code of 85. The ECA areas include parts of the Gulf of Mexico, and parts of the Atlantic and Pacific coasts. The cmv_c1c2 sources are categorized as operating either in-port or underway and as main and auxiliary engines are encoded using the SCCs listed in Table 2-17. Level 1 and

Level 2 descriptions for all of the entries are "Mobile Sources", and "Marine Vessels, Commercial", respectively.

Table 2-17. SCCs for the cmv_c1c2 sector


SCC	Level 3 Description	Level 4 Description
2280201113	Diesel Barge	C1C2 Port Emissions: Main Engine
2280202113	Diesel Offshore support	C1C2 Port Emissions: Main Engine
2280203113	Diesel Bulk Carrier	C1C2 Port Emissions: Main Engine
2280204113	Diesel Commercial Fishing	C1C2 Port Emissions: Main Engine
2280205113	Diesel Container Ship	C1C2 Port Emissions: Main Engine
2280206113	Diesel Ferry	C1C2 Port Emissions: Main Engine
2280207113	Diesel General Cargo	C1C2 Port Emissions: Main Engine
2280208113	Diesel Government	C1C2 Port Emissions: Main Engine
2280209113	Diesel Miscellaneous	C1C2 Port Emissions: Main Engine
2280210113	Diesel RollOn RollOff	C1C2 Port Emissions: Main Engine
2280211113	Diesel Tanker	C1C2 Port Emissions: Main Engine
2280212113	Diesel Tour Boat	C1C2 Port Emissions: Main Engine
2280213113	Diesel Tug	C1C2 Port Emissions: Main Engine
2280214113	Diesel Refrigerated	C1C2 Port Emissions: Main Engine
2280215113	Diesel Cruise	C1C2 Port Emissions: Main Engine
2280216113	Diesel Passenger Other	C1C2 Port Emissions: Main Engine
2280201114	Diesel Barge	C1C2 Port Emissions: Auxiliary Engine
2280202114	Diesel Offshore support	C1C2 Port Emissions: Auxiliary Engine
2280203114	Diesel Bulk Carrier	C1C2 Port Emissions: Auxiliary Engine
2280204114	Diesel Commercial Fishing	C1C2 Port Emissions: Auxiliary Engine
2280205114	Diesel Container Ship	C1C2 Port Emissions: Auxiliary Engine
2280206114	Diesel Ferry	C1C2 Port Emissions: Auxiliary Engine
2280207114	Diesel General Cargo	C1C2 Port Emissions: Auxiliary Engine
2280208114	Diesel Government	C1C2 Port Emissions: Auxiliary Engine
2280209114	Diesel Miscellaneous	C1C2 Port Emissions: Auxiliary Engine
2280210114	Diesel RollOn RollOff	C1C2 Port Emissions: Auxiliary Engine
2280211114	Diesel Tanker	C1C2 Port Emissions: Auxiliary Engine
2280212114	Diesel Tour Boat	C1C2 Port Emissions: Auxiliary Engine
2280213114	Diesel Tug	C1C2 Port Emissions: Auxiliary Engine
2280214114	Diesel Refrigerated	C1C2 Port Emissions: Auxiliary Engine
2280215114	Diesel Cruise	C1C2 Port Emissions: Auxiliary Engine
2280216114	Diesel Passenger Other	C1C2 Port Emissions: Auxiliary Engine
2280201123	Diesel Barge	C1C2 Underway emissions: Main Engine
2280202123	Diesel Offshore support	C1C2 Underway emissions: Main Engine
2280203123	Diesel Bulk Carrier	C1C2 Underway emissions: Main Engine
2280204123	Diesel Commercial Fishing	C1C2 Underway emissions: Main Engine
2280205123	Diesel Container Ship	C1C2 Underway emissions: Main Engine
2280206123	Diesel Ferry	C1C2 Underway emissions: Main Engine
2280207123	Diesel General Cargo	C1C2 Underway emissions: Main Engine

SCC	Level 3 Description	Level 4 Description
2280208123	Diesel Government	C1C2 Underway emissions: Main Engine
2280209123	Diesel Miscellaneous	C1C2 Underway emissions: Main Engine
2280210123	Diesel RollOn RollOff	C1C2 Underway emissions: Main Engine
2280211123	Diesel Tanker	C1C2 Underway emissions: Main Engine
2280212123	Diesel Tour Boat	C1C2 Underway emissions: Main Engine
2280213123	Diesel Tug	C1C2 Underway emissions: Main Engine
2280214123	Diesel Refrigerated	C1C2 Underway emissions: Main Engine
2280215123	Diesel Cruise	C1C2 Underway emissions: Main Engine
2280216123	Diesel Passenger Other	C1C2 Underway emissions: Main Engine
2280201124	Diesel Barge	C1C2 Underway emissions: Auxiliary Engine
2280202124	Diesel Offshore support	C1C2 Underway emissions: Auxiliary Engine
2280203124	Diesel Bulk Carrier	C1C2 Underway emissions: Auxiliary Engine
2280204124	Diesel Commercial Fishing	C1C2 Underway emissions: Auxiliary Engine
2280205124	Diesel Container Ship	C1C2 Underway emissions: Auxiliary Engine
2280206124	Diesel Ferry	C1C2 Underway emissions: Auxiliary Engine
2280207124	Diesel General Cargo	C1C2 Underway emissions: Auxiliary Engine
2280208124	Diesel Government	C1C2 Underway emissions: Auxiliary Engine
2280209124	Diesel Miscellaneous	C1C2 Underway emissions: Auxiliary Engine
2280210124	Diesel RollOn RollOff	C1C2 Underway emissions: Auxiliary Engine
2280211124	Diesel Tanker	C1C2 Underway emissions: Auxiliary Engine
2280212124	Diesel Tour Boat	C1C2 Underway emissions: Auxiliary Engine
2280213124	Diesel Tug	C1C2 Underway emissions: Auxiliary Engine
2280214124	Diesel Refrigerated	C1C2 Underway emissions: Auxiliary Engine
2280215124	Diesel Cruise	C1C2 Underway emissions: Auxiliary Engine
2280216124	Diesel Passenger Other	C1C2 Underway emissions: Auxiliary Engine

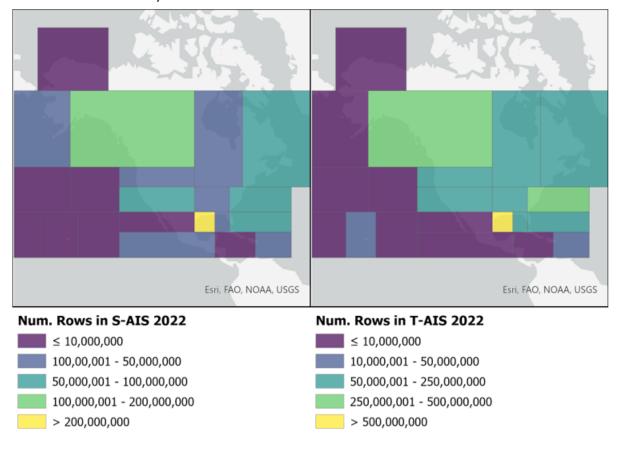

Category 1 and 2 CMV emissions were developed for the 2022 platform and were not based on 2020 NEI although the methods used to develop the emissions were similar. The emissions were developed based on signals from Automated Identification System (AIS) transmitters. AIS is a tracking system used by vessels to enhance navigation and avoid collision with other AIS transmitting vessels. The USEPA Office of Transportation and Air Quality received AIS data from the U.S. Coast Guard (USCG) to quantify all ship activity which occurred between January 1 and December 31, 2022. During the acquisition of the 2022 AIS data from the U.S. Coast Guard, EPA was made aware of a data quality issue that started in late March and continued through late June of 2022. To address this, emissions were substituted in from the 2021 CMV C1C2 inventory for this period. To ensure coverage for all of the areas needed by the NEI, the requested and provided AIS data extend beyond 200 nautical miles from the U.S. coast. The area covered by the AIS Area, 2022 Modeling Platform Geographical Extent, and U.S. ECA is shown in Figure 2-4 (a). This boundary is roughly equivalent to the border of the U.S Exclusive Economic Zone and the North American ECA, although some non-ECA activity are captured as well. Two types of AIS data were received: satellite (S-AIS) and terrestrial (T-AIS). The distribution of terrestrial and satellite AIS data for the 2022 emissions modeling platform are shown in Figure 2-4 (b). An additional enhancement for the 2022 C1C2 CMV inventory was the development and application of a mask that was applied to remove any emissions over land due to stray AIS signals.

Figure 2-4. NEI Commercial Marine Vessel Boundaries and Automatic Identification System Request Boxes for the 2022 Emissions Modeling Platform

a) Entire AIS Area (Transparent Gray), 2022 Modeling Platform Geographical Extent (Black Outline), and U.S. ECA (White Outline)

b) Distribution of Terrestrial and Satellite AIS Data

The AIS data were compiled into five-minute intervals by the USCG, providing a reasonably refined assessment of a vessel's movement. For example, using a five-minute average, a vessel traveling at 25 knots would be captured every two nautical miles that the vessel travels. For slower moving vessels, the distance between transmissions would be less. The ability to track vessel movements through AIS data and link them to attribute data, has allowed for the development of an inventory of very accurate emission estimates. These AIS data were used to define the locations of individual vessel movements, estimate hours of operation, and quantify propulsion engine loads. The compiled AIS data also included the vessel's International Marine Organization (IMO) number and Maritime Mobile Service Identifier (MMSI); which allowed each vessel to be matched to their characteristics obtained from the Clarksons ship registry (Clarksons, 2021).

The engine bore and stroke data were used to calculate cylinder volume. Any vessel that had a calculated cylinder volume greater than 30 liters was incorporated into the USEPA's new Category 3 Commercial Marine Vessel (C3CMV) model. The remaining records were assumed to represent Category 1 and 2 (C1C2) or non-ship activity. The C1C2 AIS data were quality assured including the removal of duplicate messages, signals from pleasure craft, and signals that were not from CMV vessels (e.g., buoys, helicopters, and vessels that are not self-propelled).

The emissions were calculated for each time interval between consecutive AIS messages for each vessel and allocated to the location of the message following to the interval. Emissions were calculated according to Equation 2-1.

$$Emissions_{interval} = Time \ (hr)_{interval} \times Power(kW) \times EF(\frac{g}{kWh}) \times LLAF$$
 Equation 2-1

Power was calculated for the propulsive (main), auxiliary, and auxiliary boiler engines for each interval and emission factor (EF) reflects the assigned emission factors for each engine, as described below. LLAF represents the low load adjustment factor, a unitless factor which reflects increasing propulsive emissions during low load operations. Time indicates the activity duration time between consecutive intervals.

Next, vessels were identified to determine their vessel type, and thus their vessel group, power rating, and engine tier information which are required for the emissions calculations. See the 2022 C1 C2 CMV development documentation for more details on this process. Following the identification, 236 different vessel types were matched to the C1C2 vessels. Vessel attribute data were not available for all these vessel types, so the vessel types were aggregated into 13 different vessel groups for which surrogate data were available as shown in Table 2-18. 19,322 vessels were directly identified by their ship and cargo number. The remaining group of miscellaneous ships represent 1.6 percent of the AIS vessels (excluding recreational vessels) for which a specific vessel type could not be assigned.

Table 2-18. Vessel groups in the cmv_c1c2 sector

	2017 Entire	2020 Entire		
	Area Ship	Area Ship	2021 Entire	2022 Entire
Vessel Group	Count	Count	Area Ship Count	Area Ship Count
Bulk Carrier	45	44	46	47
Commercial Fishing	1,686	4,262	5,826	5,859
Container Ship	8	16	11	15
Ferry Excursion	482	724	849	997
General Cargo	1,555	3,451	3,190	3,122
Government	1,368	1,192	1,179	1,216
Miscellaneous	1,810	269	291	300
Offshore support	1,203	1,337	1,416	1,377
Pilot	NA	17	15	15
Reefer	15	13	12	28
Ro Ro	27	218	219	212
Tanker	144	555	591	677
Tug	4,203	5,661	5,299	5,289
Work Boat	83	151	162	168
Total in Inventory:	12,629	17,910	19,106	19,322

As shown in Equation 2-1, power is an important component of the emissions computation. Vessel-specific installed propulsive power ratings and service speeds were pulled from Clarksons ship registry and adopted from the Global Fishing Watch (GFW) dataset when available. However, there is limited vessel specific attribute data for most of the C1C2 fleet. This necessitated the use of surrogate engine power and load factors, which were computed for each vessel group. In addition to the power required by propulsive engines, power needs for auxiliary engines were also computed for each vessel group. Emissions from main and auxiliary engines are inventoried with different SCCs as shown in Table 2-17.

The final components of the emissions computation equation are the emission factors and the low load adjustment factor. The emission factors used in this inventory take into consideration the EPA's marine vessel fuel regulations as well as exhaust standards that are based on the year that the vessel was manufactured to determine the appropriate regulatory tier. Emission factors in g/kWhr by tier for NO_x , PM_{10} , $PM_{2.5}$, CO, CO_2 , SO_2 and VOC were developed using Tables 3-7 through 3-10 in USEPA's (2008) Regulatory Impact Analysis on engines less than 30 liters per cylinder. To compile these emissions factors, population-weighted average emission factors were calculated per tier based on C1C2 population distributions grouped by engine displacement. Boiler emission factors were obtained from an earlier Swedish Environmental Protection Agency study (Swedish EPA, 2004). If the year of manufacture was unknown then it was assumed that the vessel was Tier 0, such that actual emissions may be less than those estimated in this inventory. Without more specific data, the magnitude of this emissions difference cannot be estimated.

Propulsive emissions from low-load operations were adjusted to account for elevated emission rates associated with activities outside the engines' optimal operating range. The emission factor adjustments were applied by load and pollutant, based on the data compiled for the Port Everglades 2015 Emission

Inventory.⁶ Hazardous air pollutants and ammonia were added to the inventory according to multiplicative factors applied either to VOC or PM_{2.5}.

The stack parameters used for cmv_c1c2 are a stack height of 1 ft, stack diameter of 1 ft, stack temperature of 70°F, and a stack velocity of 0.1 ft/s. These parameters force emissions into layer 1.

For more information on the emission computations for 2022, see the supporting documentation for the development of the 2022 C1C2 CMV emissions (ERG, 2024). The cmv_c1c2 emissions were aggregated to total hourly values in each grid cell and run through SMOKE as point sources. SMOKE requires an annual inventory file to go along with the hourly data and this file was generated for 2022.

2.4.2 Category 3 Commercial Marine Vessels (cmv_c3)

The cmv_c3 sector contains large engine CMV emissions. Category 3 (C3) marine diesel engines at or above 30 liters per cylinder. Typically, these are the largest CMV engines and are rated at 3,000 to 100,000 hp. C3 engines are typically used for propulsion on ocean-going vessels including container ships, oil tankers, bulk carriers, and cruise ships. Emissions control technologies for C3 CMV sources are limited due to the nature of the residual fuel used by these vessels. The cmv_c3 sector contains sources that traverse state and federal waters; along with sources in waters not covered by the NEI in surrounding areas of Canada, Mexico, and international waters.

The cmv_c3 sources that operate outside of state waters but within the federal Emissions Control Area (ECA) are encoded with a FIPS state code of 85, with the "county code" digits representing broad regions such as the Atlantic, Gulf of Mexico, and Pacific. The ECA areas include parts of the Gulf of Mexico, and parts of the Atlantic and Pacific coasts. CMV C3 sources around Puerto Rico, Hawaii and Alaska, which are outside the ECA areas, are included in the inventory but are in separate files from the emissions around the continental United States (CONUS). The cmv_c3 sources in the inventory are categorized as operating either in-port or underway and are encoded using the SCCs listed in Table 2-19 and distinguish between diesel and residual fuel, in port areas versus underway, and main and auxiliary engines. The Level 1 and Level 2 descriptions for each of the SCCs are "Mobile Sources" and "Marine Vessels, Commercial", respectively.

Table 2-19. SCCs for cmv_c3 sector

SCC	Level 3 Description	Level 4 Description
2280201313	Diesel Barge	C3 Port Emissions: Main Engine
2280202313	Diesel Offshore support	C3 Port Emissions: Main Engine
2280203313	Diesel Bulk Carrier	C3 Port Emissions: Main Engine
2280204313	Diesel Commercial Fishing	C3 Port Emissions: Main Engine
2280205313	Diesel Container Ship	C3 Port Emissions: Main Engine
2280206313	Diesel Ferry	C3 Port Emissions: Main Engine
2280207313	Diesel General Cargo	C3 Port Emissions: Main Engine

⁶ USEPA. EPA and Port Everglades Partnership: Emission Inventories and Reduction Strategies. US Environmental Protection Agency, Office of Transportation and Air Quality, June 2018. https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100UKV8.pdf.

62

⁷ https://www.epa.gov/regulations-emissions-vehicles-and-engines/regulations-emissions-marine-vessels.

SCC	Level 3 Description	Level 4 Description
2280208313	Diesel Government	C3 Port Emissions: Main Engine
2280209313	Diesel Miscellaneous	C3 Port Emissions: Main Engine
2280210313	Diesel RollOn RollOff	C3 Port Emissions: Main Engine
2280211313	Diesel Tanker	C3 Port Emissions: Main Engine
2280212313	Diesel Tour Boat	C3 Port Emissions: Main Engine
2280213313	Diesel Tug	C3 Port Emissions: Main Engine
2280214313	Diesel Refrigerated	C3 Port Emissions: Main Engine
2280215313	Diesel Cruise	C3 Port Emissions: Main Engine
2280216313	Diesel Passenger Other	C3 Port Emissions: Main Engine
2280201314	Diesel Barge	C3 Port Emissions: Auxiliary Engine
2280202314	Diesel Offshore support	C3 Port Emissions: Auxiliary Engine
2280203314	Diesel Bulk Carrier	C3 Port Emissions: Auxiliary Engine
2280204314	Diesel Commercial Fishing	C3 Port Emissions: Auxiliary Engine
2280205314	Diesel Container Ship	C3 Port Emissions: Auxiliary Engine
2280206314	Diesel Ferry	C3 Port Emissions: Auxiliary Engine
2280207314	Diesel General Cargo	C3 Port Emissions: Auxiliary Engine
2280208314	Diesel Government	C3 Port Emissions: Auxiliary Engine
2280209314	Diesel Miscellaneous	C3 Port Emissions: Auxiliary Engine
2280210314	Diesel RollOn RollOff	C3 Port Emissions: Auxiliary Engine
2280211314	Diesel Tanker	C3 Port Emissions: Auxiliary Engine
2280212314	Diesel Tour Boat	C3 Port Emissions: Auxiliary Engine
2280213314	Diesel Tug	C3 Port Emissions: Auxiliary Engine
2280214314	Diesel Refrigerated	C3 Port Emissions: Auxiliary Engine
2280215314	Diesel Cruise	C3 Port Emissions: Auxiliary Engine
2280216314	Diesel Passenger Other	C3 Port Emissions: Auxiliary Engine
2280201323	Diesel Barge	C3 Underway emissions: Main Engine
2280202323	Diesel Offshore support	C3 Underway emissions: Main Engine
2280203323	Diesel Bulk Carrier	C3 Underway emissions: Main Engine
2280204323	Diesel Commercial Fishing	C3 Underway emissions: Main Engine
2280205323	Diesel Container Ship	C3 Underway emissions: Main Engine
2280206323	Diesel Ferry	C3 Underway emissions: Main Engine
2280207323	Diesel General Cargo	C3 Underway emissions: Main Engine
2280208323	Diesel Government	C3 Underway emissions: Main Engine
2280209323	Diesel Miscellaneous	C3 Underway emissions: Main Engine
2280210323	Diesel RollOn RollOff	C3 Underway emissions: Main Engine
2280211323	Diesel Tanker	C3 Underway emissions: Main Engine
2280212323	Diesel Tour Boat	C3 Underway emissions: Main Engine
2280213323	Diesel Tug	C3 Underway emissions: Main Engine
2280214323	Diesel Refrigerated	C3 Underway emissions: Main Engine

SCC	Level 3 Description	Level 4 Description
2280215323	Diesel Cruise	C3 Underway emissions: Main Engine
2280216323	Diesel Passenger Other	C3 Underway emissions: Main Engine
2280201324	Diesel Barge	C3 Underway emissions: Auxiliary Engine
2280202324	Diesel Offshore support	C3 Underway emissions: Auxiliary Engine
2280203324	Diesel Bulk Carrier	C3 Underway emissions: Auxiliary Engine
2280204324	Diesel Commercial Fishing	C3 Underway emissions: Auxiliary Engine
2280205324	Diesel Container Ship	C3 Underway emissions: Auxiliary Engine
2280206324	Diesel Ferry	C3 Underway emissions: Auxiliary Engine
2280207324	Diesel General Cargo	C3 Underway emissions: Auxiliary Engine
2280208324	Diesel Government	C3 Underway emissions: Auxiliary Engine
2280209324	Diesel Miscellaneous	C3 Underway emissions: Auxiliary Engine
2280210324	Diesel RollOn RollOff	C3 Underway emissions: Auxiliary Engine
2280211324	Diesel Tanker	C3 Underway emissions: Auxiliary Engine
2280212324	Diesel Tour Boat	C3 Underway emissions: Auxiliary Engine
2280213324	Diesel Tug	C3 Underway emissions: Auxiliary Engine
2280214324	Diesel Refrigerated	C3 Underway emissions: Auxiliary Engine
2280215324	Diesel Cruise	C3 Underway emissions: Auxiliary Engine
2280216324	Diesel Passenger Other	C3 Underway emissions: Auxiliary Engine
2280301313	Residual Barge	C3 Port Emissions: Main Engine
2280302313	Residual Offshore support	C3 Port Emissions: Main Engine
2280303313	Residual Bulk Carrier	C3 Port Emissions: Main Engine
2280304313	Residual Commercial Fishing	C3 Port Emissions: Main Engine
2280305313	Residual Container Ship	C3 Port Emissions: Main Engine
2280306313	Residual Ferry	C3 Port Emissions: Main Engine
2280307313	Residual General Cargo	C3 Port Emissions: Main Engine
2280308313	Residual Government	C3 Port Emissions: Main Engine
2280309313	Residual Miscellaneous	C3 Port Emissions: Main Engine
2280310313	Residual RollOn RollOff	C3 Port Emissions: Main Engine
2280311313	Residual Tanker	C3 Port Emissions: Main Engine
2280312313	Residual Tour Boat	C3 Port Emissions: Main Engine
2280313313	Residual Tug	C3 Port Emissions: Main Engine
2280314313	Residual Refrigerated	C3 Port Emissions: Main Engine
2280315313	Residual Cruise	C3 Port Emissions: Main Engine
2280316313	Residual Passenger Other	C3 Port Emissions: Main Engine
2280301314	Residual Barge	C3 Port Emissions: Auxiliary Engine
2280302314	Residual Offshore support	C3 Port Emissions: Auxiliary Engine
2280303314	Residual Bulk Carrier	C3 Port Emissions: Auxiliary Engine
2280304314	Residual Commercial Fishing	C3 Port Emissions: Auxiliary Engine
2280305314	Residual Container Ship	C3 Port Emissions: Auxiliary Engine

SCC	Level 3 Description	Level 4 Description
2280306314	Residual Ferry	C3 Port Emissions: Auxiliary Engine
2280307314	Residual General Cargo	C3 Port Emissions: Auxiliary Engine
2280308314	Residual Government	C3 Port Emissions: Auxiliary Engine
2280309314	Residual Miscellaneous	C3 Port Emissions: Auxiliary Engine
2280310314	Residual RollOn RollOff	C3 Port Emissions: Auxiliary Engine
2280311314	Residual Tanker	C3 Port Emissions: Auxiliary Engine
2280312314	Residual Tour Boat	C3 Port Emissions: Auxiliary Engine
2280313314	Residual Tug	C3 Port Emissions: Auxiliary Engine
2280314314	Residual Refrigerated	C3 Port Emissions: Auxiliary Engine
2280315314	Residual Cruise	C3 Port Emissions: Auxiliary Engine
2280316314	Residual Passenger Other	C3 Port Emissions: Auxiliary Engine
2280301323	Residual Barge	C3 Underway emissions: Main Engine
2280302323	Residual Offshore support	C3 Underway emissions: Main Engine
2280303323	Residual Bulk Carrier	C3 Underway emissions: Main Engine
2280304323	Residual Commercial Fishing	C3 Underway emissions: Main Engine
2280305323	Residual Container Ship	C3 Underway emissions: Main Engine
2280306323	Residual Ferry	C3 Underway emissions: Main Engine
2280307323	Residual General Cargo	C3 Underway emissions: Main Engine
2280308323	Residual Government	C3 Underway emissions: Main Engine
2280309323	Residual Miscellaneous	C3 Underway emissions: Main Engine
2280310323	Residual RollOn RollOff	C3 Underway emissions: Main Engine
2280311323	Residual Tanker	C3 Underway emissions: Main Engine
2280312323	Residual Tour Boat	C3 Underway emissions: Main Engine
2280313323	Residual Tug	C3 Underway emissions: Main Engine
2280314323	Residual Refrigerated	C3 Underway emissions: Main Engine
2280315323	Residual Cruise	C3 Underway emissions: Main Engine
2280316323	Residual Passenger Other	C3 Underway emissions: Main Engine
2280301324	Residual Barge	C3 Underway emissions: Auxiliary Engine
2280302324	Residual Offshore support	C3 Underway emissions: Auxiliary Engine
2280303324	Residual Bulk Carrier	C3 Underway emissions: Auxiliary Engine
2280304324	Residual Commercial Fishing	C3 Underway emissions: Auxiliary Engine
2280305324	Residual Container Ship	C3 Underway emissions: Auxiliary Engine
2280306324	Residual Ferry	C3 Underway emissions: Auxiliary Engine
2280307324	Residual General Cargo	C3 Underway emissions: Auxiliary Engine
2280308324	Residual Government	C3 Underway emissions: Auxiliary Engine
2280309324	Residual Miscellaneous	C3 Underway emissions: Auxiliary Engine
2280310324	Residual RollOn RollOff	C3 Underway emissions: Auxiliary Engine
2280311324	Residual Tanker	C3 Underway emissions: Auxiliary Engine
2280312324	Residual Tour Boat	C3 Underway emissions: Auxiliary Engine

SCC	Level 3 Description	Level 4 Description
2280313324	Residual Tug	C3 Underway emissions: Auxiliary Engine
2280314324	Residual Refrigerated	C3 Underway emissions: Auxiliary Engine
2280315324	Residual Cruise	C3 Underway emissions: Auxiliary Engine
2280316324	Residual Passenger Other	C3 Underway emissions: Auxiliary Engine

The EPA received Automated Identification System (AIS) data from United States Coast Guard (USCG) to quantify all ship activity which occurred between January 1 and December 31, 2022. The International Maritime Organization's (IMO's) International Convention for the Safety of Life at Sea (SOLAS) requires AIS to be fitted aboard all international voyaging ships with gross tonnage of 300 or more, and all passenger ships regardless of size. In addition, the USCG has mandated that all commercial marine vessels continuously transmit AIS signals while transiting U.S. navigable waters. As the vast majority of C3 vessels meet these requirements, any omitted from the inventory due to lack of AIS adoption are deemed to have a negligible impact on national C3 emissions estimates. The activity data incorporated into this inventory reflect ship operations within 200 nautical miles of the official U.S. baseline and beyond. Activity data within the border of the U.S Exclusive Economic Zone and the North American ECA are included as well as some activity data outside of the ECA.

The 2022 CMV emissions modeling platform data were computed based on the AIS data from the USGS for the year of 2022. This process is described in more detail in the Category 3 Commercial Marine Vessel 2022 Emissions Inventory (EPA, 2024a). During the acquisition of the 2022 AIS data from the U.S. Coast Guard, EPA was made aware of a data quality issue that started in late March and continued through late June of 2022. To address this, emissions were substituted in from the 2021 CMV C3 inventory for this period. The AIS data were coupled with ship registry data that contained engine parameters, vessel power parameters, and other factors such as tonnage and year of manufacture which helped to separate the C3 vessels from the C1C2 vessels. Where specific ship parameters were not available, they were gap-filled. The types of vessels that remain in the C3 data set include bulk carrier, chemical tanker, liquified gas tanker, oil tanker, other tanker, container ship, cruise, ferry, general cargo, fishing, refrigerated vessel, roll-on/roll-off, tug, and yacht.

Prior to use, the AIS data were reviewed - data deemed to be erroneous were removed, and data found to be at intervals greater than 5 minutes were interpolated to ensure that each ship had data every five minutes. The five-minute average data provide a reasonably refined assessment of a vessel's movement. For example, using a five-minute average, a vessel traveling at 25 knots would be captured every two nautical miles that the vessel travels. For slower moving vessels, the distance between transmissions would be less. An additional enhancement for the 2022 C3 CMV inventory was the development and application of a mask that was applied to remove any emissions over land due to stray AIS signals and interpolated values.

66

⁸ International Maritime Organization (IMO) Resolution MSC.99(73) adopted December 12th. 2000 and entered into force July 1st, 2002; as amended by SOLAS Resolution CONF.5/32 adopted December 13th, 2002.

-

The emissions were calculated for each C3 vessel in the dataset for each 5-minute time range and allocated to the location of the message following to the interval. Emissions were calculated according to Equation 2-2.

$$Emissions_{interval} = Time \ (hr)_{interval} \times Power(kW) \times EF(\frac{g}{kWh}) \times LLAF$$
 Equation 2-2

Power is calculated for the propulsive (main), auxiliary, and auxiliary boiler engines for each interval and emission factor (EF) reflects the assigned emission factors for each engine, as described below. LLAF represents the low load adjustment factor, a unitless factor which reflects increasing propulsive emissions during low load operations. Time indicates the activity duration time between consecutive intervals.

Emissions were computed according to a computed power need (kW) multiplied by the time (hr) and by an engine-specific emission factor (g/kWh) and finally by a low load adjustment factor that reflects increasing propulsive emissions during low load operations.

The resulting emissions were available at 5-minute intervals. Code was developed to aggregate these emissions to modeling grid cells and up to hourly levels so that the emissions data could be input to SMOKE for emissions modeling with SMOKE. Within SMOKE, the data were speciated into the pollutants needed by the air quality model, but since the data were already in the form of point sources at the center of each grid cell, and they were already hourly, no other processing was needed within SMOKE. SMOKE requires an annual inventory file to go along with the hourly data, so this annual file was generated for 2022.

On January 1st, 2015, the ECA initiated a fuel sulfur standard which regulated large marine vessels to use fuel with 1,000 ppm sulfur or less. These standards are reflected in the cmv c3 inventories.

The resulting point emissions centered on each grid cell were converted to an annual point 2010 flat file format (FF10). A set of standard stack parameters were assigned to each release point in the cmv_c3 inventory. The assigned stack height was 65.62 ft, the stack diameter was 2.625 ft, the stack temperature was 539.6 °F, and the velocity was 82.02 ft/s. Emissions were computed for each grid cell needed for modeling.

2.4.3 Railway Locomotives (rail)

The rail sector includes all locomotives in the NEI nonpoint data category including line haul locomotives on Class 1, 2, and 3 railroads along with emissions from commuter rail lines and Amtrak. The rail sector excludes railway maintenance locomotives and point source yard locomotives. Railway maintenance emissions are included in the nonroad sector. The point source yard locomotives are included in the ptnonipm sector. The development of the 2022 rail inventory is summarized here but is described in more detail in the 2022 National Emissions Inventory Locomotive Methodology documentation (ERG, 2024c).

67

International Maritime Organization (IMO) Resolution MSC.99(73).

The rail sector emissions for the 2022 emissions modeling platform are based on the 2020 NEI. Projection factors were applied based on fuel use data for Class I locomotives and rail yards. For Class II/III locomotives, activity data for the years 2012, 2017, 2020, and 2022 from the U.S. Energy Information Administration's Annual Energy Outlook was examined. Based on these data, the fuel data used in 2020 was increased across the rail system by 11.6% for the 2022 effort. The 2020 NEI is based on methods developed during the development of the 2017 NEI rail inventory by the Lake Michigan Air Directors Consortium (LADCO) and the State of Illinois with support from various other states. Class I railroad emissions are based on confidential link-level line-haul activity GIS data layer maintained by the Federal Railroad Administration (FRA). In addition, the Association of American Railroads (AAR) provided preliminary 2023 national emission tier fleet mix information for Class I railroads. Class II and III railroad emissions are based on a comprehensive nationwide GIS database of locations where short line and regional railroads operate. Passenger rail (Amtrak) emissions follow a similar procedure as Class II and III, except using a database of Amtrak rail lines. Yard locomotive emissions are based on a combination of yard data provided by individual rail companies, and by using Google Earth and other tools to identify rail yard locations for rail companies which did not provide yard data. Information on specific yards were combined with fuel use data and emission factors to create an emissions inventory for rail yards. Pollutant-specific factors were applied on top of the activity-based changes for the Class I rail. The inventory SCCs are shown in Table 2-20. More detailed information on the development of the 2022 emission modeling platform rail inventory is available in the 2020 NEI TSD and in the Rail 2020 National Emissions Inventory Supplementary Document on the 2020 NEI supporting data FTP site.

Table 2-20. SCCs for the Rail Sector

SCC	Sector	Description: Mobile Sources prefix for all
2285002006	Rail	Railroad Equipment; Diesel; Line Haul Locomotives: Class I Operations
2285002007	Rail	Railroad Equipment; Diesel; Line Haul Locomotives: Class II / III Operations
2285002008	Rail	Railroad Equipment; Diesel; Line Haul Locomotives: Passenger Trains (Amtrak)
2285002009	Rail	Railroad Equipment; Diesel; Line Haul Locomotives: Commuter Lines
2285002010	Rail	Railroad Equipment; Diesel; Yard Locomotives (nonpoint)
28500201	Rail	Railroad Equipment; Diesel; Yard Locomotives (point)

Class I Line-haul Methodology

For the 2020 inventory, the Class I railroads granted EPA permission to use the confidential link-level line haul activity geographic information system (GIS) data layer maintained and updated annually by the Federal Railroad Administration (FRA). At the time of inventory development, 2019 million gross ton (MGT) data was the most recent and complete data available. A map of the Class I railroad lines is shown in Figure 2-5. The dataset contains three columns indicating railroad ownership and nine columns indicating trackage rights for each rail segment. While most rail links have a single owner, some links have up to six different Class 1 railroad companies operating on it. To prepare the FRA data for use in the Class I line haul calculations, all segments associated with a railroad company were extracted to identify the full network for each company. This involved iterating through each of those twelve columns to identify all segments within each railroad company's network. This process was conducted seven

times, one for each Class I railroad company. This resulted in a complete inventory of rail links trafficked by each Class I railroads with a record for each link/railroad company combination.

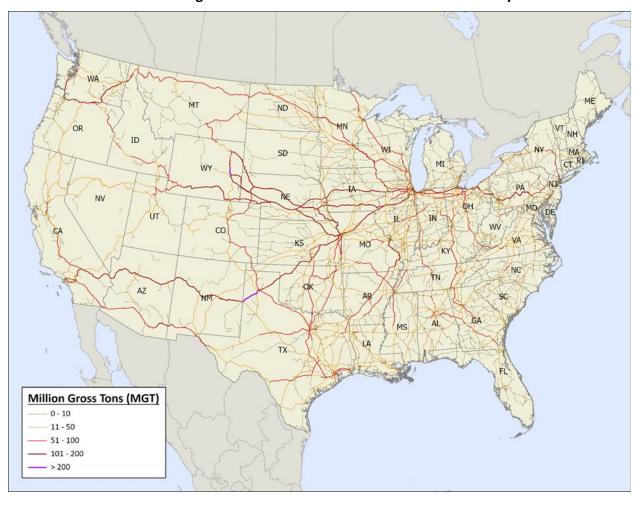


Figure 2-5. 2019 Class I Railroad Line Haul Activity

EPA collected 2020 and 2022 Class I line haul fuel use data from the most recent R-1 submittals from the Surface Transportation Board. Consistent with previous inventory efforts, EPA summed line haul and work train fuel usage, Table 2-21. Projection factors were developed based on the increased fuel use in 2022 and applied to the 2020 emissions.

Table 2-21. 2020 and 2022 R-1 Reported Locomotive Fuel Use for Class I Railroads

Class I Railroad	2020 Line Haul Fuel Use (gal)*	2022 Line Haul Fuel Use (gal)*
BNSF	1,137,598,007	1,175,184,806
Canadian National (CN)	96,337,392	107,012,486
Canadian Pacific (CPRS)	57,664,407	64,138,533
CSX Transportation (CSXT)	327,917,859	356,002,171
Kansas City Southern (KCS)	55,763,748	64,185,774
Norfolk Southern (NS)	342,470,779	354,139,306

¹⁰

¹⁰ Surface Transportation Board. Available at https://www.stb.gov/reports-data/economic-data/annual-report-financial-data/Retrieved 22 June 2021.

Class I Railroad	2020 Line Haul Fuel Use (gal)*	2022 Line Haul Fuel Use (gal)*
Union Pacific (UP)	773,476,896	839,457,293

^{*} Includes work train fuel usage

The Association of American Railroads (AAR) provided national Class I locomotive tier fleet mix information that reflects engine turnover in the nation. Given the impact of the pandemic in 2020, AAR provided a fleet mix that reflected active locomotives and excluded those that were held in storage. A locomotive's Tier level determines its allowable emission rates based on the year when it was built and/or re-manufactured. More accurate emission factors for each pollutant were calculated based on the percentage of the operating Class I line haul locomotives for each USEPA Tier-level category.

Class II and III Methodology

There are approximately 630 Class II and III Railroads operating in the United States, most of which are members of the American Short Line and Regional Railroad Association (ASLRRA). Data on Class II and III locomotive operations is publicly available from Bureau of Transportation Statistics' National Transportation Atlas Database (NTAD), along with related data including reporting mark, railroad name, route miles owned or operated, and total route miles of links.

Class II and III railroads are widely dispersed across the country (see Figure 2-6), often utilizing older, higher emitting locomotives than their Class I counterparts. AAR provided a national line-haul tier fleet mix profile for 2020 which reflects the trend toward older engines in this sector as shown in Table 2-22. These data continue to be used for the 2022 platform. The national fleet mix data was then used to calculate weighted average in-use emissions factors for the locomotives operated by the Class II and III railroads. Note that to be consistent with the 2020 inventory, the unweighted emission factors were the same as the Class I line haul due to the conservative use of the EPA's large locomotive conversion factor of 20.8 bhp-hr/gal. Emission factors for PM2.5, SO2, NH3, VOC, and GHGs were calculated in the same manner as those used for Class I line-haul inventory described above.

Table 2-22. 2020 Class II/III Line Haul Fleet by Tier Level

Tier	2020 Class II/III Locomotive Count	Percent of Total Fleet
0	1,664	48%
1	31	1%
2	169	5%
3	160	5%
4	64	2%
Not Classified	1,359	39%
Total	3,447	100%

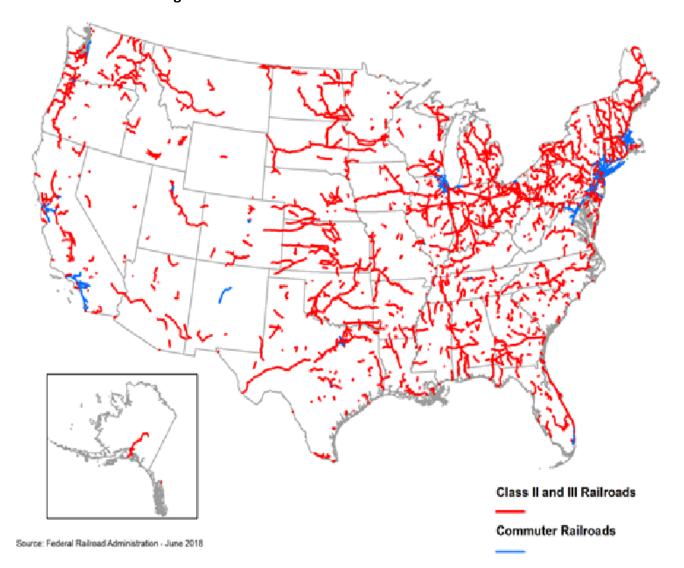


Figure 2-6. Class II and III Railroads in the United States

For the 2022 inventory, EPA considered activity data for the years 2012, 2017, 2020, and 2022 from the U.S. Energy Information Administration's Annual Energy Outlook, shown in Table 2-23 below. ¹¹ Based on these data, the fuel data used in 2020 was increased across the rail system by 11.6% for the 2022 effort.

Table 2-23. Rail Freight Values by year (quadrillion BTU)

2012	2017	2020	2022
0.43	0.52	0.44	0.48

Commuter Rail Methodology

¹¹ USEIA, Annual Energy Outlook 2021. Accessed 3 Apr 2024. Available at https://www.eia.gov/outlooks/aeo/data/browser/#/?id=7-AEO2021&cases=ref2021&sourcekey=0

Commuter rail emissions were calculated in the same way as the Class II and III railroads. The primary difference is that the fuel use estimates for 2020 and 2022 were based on data collected by the Federal Transit Administration (FTA) for the National Transit Database and projection factors calculated. These fuel use estimates were replaced with reported fuel use statistics for MBTA (Massachusetts) and Metra (Illinois). The commuter railroads were separated from the Class II and III railroads so that the appropriate SCC codes could be entered into the emissions calculation sheet.

Intercity Passenger Methodology (Amtrak)

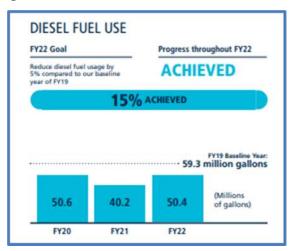

The calculation methodology mimics that used for the Class II and III and commuter railroads with a few modifications. Since link-level activity data for Amtrak was unavailable, the default assumption was made to evenly distribute Amtrak's 2020 reported fuel use across all of it diesel-powered route-miles shown in Figure 2-7.

Figure 2-7. Amtrak National Rail Network

For 2022 platform, the 2020 fuel use and emissions were adjusted down based on the fuel use reported in Amtrak's FY22 AMTRAK Sustainability Report as shown in Figure 2-8. The adjustment was applied uniformly, so the spatial representation of the emissions did not change.

Figure 2-8 Amtrak Diesel Fuel Use 2020-2022

Upon receipt of state-provided comments, two adjustments were made to Amtrak emissions. First, Delaware verified that all Amtrak passenger service in/through the state utilize electric locomotives only, so fuel usage and emissions for Delaware SCC 2285002008 were removed. Second, Connecticut confirmed that AMTRAK trains operating on electrified lines do not have diesel emissions. The state provided emissions estimates which were used to replace the previously calculated emissions.

Other Data Sources

The 2020 NEI locomotives sector includes data from SLT agency-provided emissions data, and an EPA dataset of locomotive emissions. The following agencies also submitted emissions to locomotive SCCs: Alaska Department of Environmental Conservation; California; Connecticut; District of Columbia; Maricopa County, AZ; Minnesota; North Carolina; Texas; Virginia; Washington; and Washoe County, NV.

2.4.4 Nonroad Mobile Equipment (nonroad)

The mobile nonroad equipment sector includes all mobile source emissions that do not operate on roads, excluding commercial marine vehicles, railways, and aircraft. Types of nonroad equipment include recreational vehicles, pleasure craft, and construction, agricultural, mining, and lawn and garden equipment. Nonroad equipment emissions for 2022 were computed by running MOVES4 which incorporates the NONROAD model. MOVES3 incorporated updated nonroad engine population growth rates, nonroad Tier 4 engine emission rates, and sulfur levels of nonroad diesel fuels. The only change made for nonroad from MOVES3 to MOVES4 was a change to fuel properties. Additionally, MOVES4 was run using 2022 meteorological data. MOVES provides a complete set of HAPs and incorporates updated nonroad emission factors for HAPs. MOVES4 was used for all states other than California, which uses their own model. California nonroad emissions were provided by the California Air Resources Board (CARB) for the 2020 NEI, as well as 2023. For the 2022 emissions modeling platform CARB nonroad emissions were interpolated between 2020 and 2023. CARB emissions were used in California for all pollutants except PAHs and CO2, which were taken from MOVES.

MOVES creates a monthly emissions inventory for criteria air pollutants (CAPs) and a full set of HAPs, plus additional pollutants such as NONHAPTOG and ETHANOL, which are not included in the NEI but are

used for speciation. MOVES provides estimates of NONHAPTOG along with the speciation profile code for the NONHAPTOG emission source. This was accomplished by using NHTOG#### as the pollutant code in the flat file 2010 (FF10) inventory file that can be read into SMOKE, where #### is a speciation profile code. For California, NHTOG####-VOC and HAP-VOC ratios from MOVES-based emissions were applied to VOC emissions so that VOC emissions can be speciated consistently with other states.

MOVES also provides estimates of PM2.5 by speciation profile code for the PM2.5 emission source, using PM25_#### as the pollutant code in the FF10 inventory file, where #### is a speciation profile code. To facilitate calculation of PMC within SMOKE, and to help create emissions summaries, an additional pollutant representing total PM2.5 called PM25TOTAL was added to the inventory. As with VOC, PM25_####-PM25TOTAL ratios were calculated and applied to PM2.5 emissions in California so that PM2.5 emissions in California can be speciated consistently with other states.

MOVES4 outputs emissions data in county-specific databases, and a post-processing script converts the data into FF10 format. Additional post-processing steps were performed as follows:

- County-specific FF10s were combined into a single FF10 file.
- Emissions were aggregated from the more detailed SCCs modeled in MOVES to the SCCs modeled in SMOKE. A list of the aggregated SMOKE SCCs is in Appendix A of the 2016v1 platform nonroad specification sheet (NEIC, 2019).
- To reduce the size of the inventory, HAPs not needed for air quality modeling, such as dioxins and furans, were removed from the inventory.
- To reduce the size of the inventory further, all emissions for sources (identified by county/SCC) for which CAP emissions totaling less than 1*10⁻¹⁰ were removed from the inventory. The MOVES model attributes a very tiny amount of emissions to sources that are actually zero, for example, snowmobile emissions in Florida. Removing these sources from the inventory reduces the total size of the inventory by about 7%.
- Gas and particulate components of HAPs that come out of MOVES separately, such as naphthalene, were combined.
- VOC was renamed VOC_INV so that SMOKE does not speciate both VOC and NONHAPTOG, which
 would result in a double count.
- PM25TOTAL, referenced above, was also created at this stage of the process.
- Emissions for airport ground support vehicles (SCCs ending in -8005), and oil field equipment (SCCs ending in -10010), were removed from the inventory at this stage, to prevent a double count with the airports and np_oilgas sectors, respectively.
- California emissions from MOVES were deleted and replaced with the CARB-supplied emissions.

National Updates: Agricultural and Construction Equipment Allocation

The modified MOVES default database for that included the refinements made to construction and agricultural sectors in the 2016 platform process (movesdb20220105_nrupdates) and state-submitted inputs in CDBs from the most recent NEI were used to run MOVES-Nonroad to produce emissions for all states other than California. California-submitted emissions were used. Updated *nrsurrogate*, *nrstatesurrogate*, and *nrbaseyearequippopulation* tables, along with instructions for utilizing these tables in MOVES runs, are available for download from EPA's ftp site: https://gaftp.epa.gov/air/emismod/2016/v1/reports/nonroad/).

Emissions Inside California

California nonroad emissions were provided by CARB for the 2020 NEI and 2023. The 2022 emissions were interpolated between 2020 and 2023 where pollutants were available in both data sets. All California nonroad inventories are annual, with monthly temporalization applied in SMOKE. Emissions for oil field equipment (SCCs ending in -10010) were removed from the California inventory in order to prevent a double count with the np_oilgas sector. VOC HAPs from California were incorporated into speciation similarly to VOC HAPs from MOVES elsewhere, e.g., model species BENZ is equal to HAP emissions for benzene as submitted by CARB. VOC and PM_{2.5} emissions were allocated to speciation profiles. Ratios of VOC (PM_{2.5}) by speciation profile to total VOC (PM_{2.5}) were calculated by county and SCC from the MOVES run in California, and then applied CARB-provided VOC (PM_{2.5}) in the inventory so that California nonroad emissions could be speciated consistently with the rest of the country.

State Submitted Data

The CDBs used to run MOVES-Nonroad to produce emissions for all states other than California were consistent with those used to develop the 2020 NEI. The following states submitted CDBs for the 2020 NEI: Arizona - Maricopa Co.; Connecticut; Georgia; Illinois; Indiana; Michigan; Minnesota; Ohio; Oregon; Texas; Utah; Washington; and Wisconsin.

Following the completion of the MOVES runs, railway maintenance emissions were removed from specific counties / census areas in Alaska because Alaska DEC specified that this type of activity does not happen in those areas. Specifically, emissions from SCCs 2285002015, 2285004015, and 2285006015 were removed from the following counties / census areas: 02013, 02016, 02050, 02060, 02063, 02066, 02070, 02100, 02105, 02110, 02130, 02150, 02158, 02164, 02180, 02185, 02188, 02195, 02198, 02220, 02240, 02275, and 02282. Alaska DEC also specified some counties / census areas in which logging and agricultural emissions do not happen, but the emissions for the specified SCCs were already zero in the specified areas.

For more information on the development of the nonroad emissions inputs for the 2020 NEI see <u>Section</u> 4 of the 2020 NEI TSD.

2.5 Fires (ptfire-rx, ptfire-wild, ptagfire)

Multiple types of fires are represented in the modeling platform. These include wild and prescribed fires that are grouped into the ptfire-wild and ptfire-rx sectors, respectively, and agricultural fires that comprise the ptagfire sector. All ptfire and ptagfire fires are in the United States. Fires outside of the United States are described in the ptfire_othna sector later in this document.

2.5.1 Wild and Prescribed Fires (ptfire-rx, ptfire-wild)

Wildfire and prescribed burning emissions are contained in the ptfire-wild and ptfire-rx sectors, respectively. The ptfire sector has emissions provided at geographic coordinates (point locations) and has daily emissions values. The ptfire-rx sector excludes agricultural burning and other open burning sources that are included in the ptagfire and nonpt sectors. The ptfire-rx sector includes a new methodology for calculating pile burn emissions with this year 2022 emissions modeling platform. Emissions are day-specific and include satellite-derived latitude/longitude of the fire's origin and other parameters associated with the emissions such as acres burned and fuel load, which allow estimation of plume rise. The SCCs used for the ptfire-rx and ptfire-wild sources are shown in Table 2-24. The ptfire-rx and ptfire-wild inventories include separate SCCs for the flaming and smoldering combustion phases for wildfire and prescribed burns. Note that prescribed grassland fires or Flint Hills, Kansas has their own SCC (2801500171) in the inventory. Any wild grassland fires were assigned the standard wildfire SCCs shown in Table 2-24. A new source was added to wildland fires for the 2022 platform. This new source was Pile Burns with a SCC = 2810005001. Pile burns has been a burn method used for prescribed burns for many years, but no methodology for estimating the emissions from these burns had been used in previous NEIs or Emissions Modeling Platforms.

SCC Description Agricultural Field Burning - whole field set on fire; Fallow 2801500171 Forest Wildfires; Smoldering; Residual smoldering only (includes grassland 2810001001 wildfires) Forest Wildfires; Flaming (includes grassland wildfires) 2810001002 Prescribed burning; pile burns 2810005001 2811015001 Prescribed Forest Burning; Smoldering; Residual smoldering only 2811015002 Prescribed Forest Burning; Flaming 2811020002 Prescribed Rangeland Burning

Table 2-24. SCCs included in the ptfire sector for the 2022 platform

Fire Information Data

Inputs to SMARTFIRE2 for 2022 include:

- The National Oceanic and Atmospheric Administration's (NOAA's) Hazard Mapping System (HMS) fire location information
- Wildland Fire Interagency Geospatial Services (WFIGS) wildland fire perimeter polygons
- The Incident Status Summary, also known as the "ICS-209", used for reporting specific information on fire incidents of significance
- Hazardous fuel treatment reduction polygons for prescribed burns from the Forest Service Activity Tracking System (FACTS)
- Fire activity on federal lands from the United States Department of Interior agencies

The Hazard Mapping System (HMS) was developed in 2001 by the National Oceanic and Atmospheric Administration's (NOAA) National Environmental Satellite and Data Information

Service (NESDIS) as a tool to identify fires over North America in an operational environment. The system utilizes geostationary and polar orbiting environmental satellites. Automated fire detection algorithms are employed for each of the sensors. When possible, HMS data analysts apply quality control procedures for the automated fire detections by eliminating those that are deemed to be false and adding hotspots that the algorithms have not detected via a thorough examination of the satellite imagery.

The HMS product used for the 2022 inventory consisted of daily comma-delimited files containing fire detect information including latitude-longitude, satellite used, time detected, and other information. These detects were processed through a modified, python-based, Satellite Mapping Automated Reanalysis Tool for Fire Incident Reconciliation version 2 SmartFire2/BlueSky Pipeline (SF2/BSP).

Wildland Fire Interagency Geospatial Services (WFIGS) is an online wildfire mapping application designed for fire managers to access maps of current U.S. fire locations and perimeters. The wildfire perimeter data are based upon input data from incident intelligence sources from multiple agencies, GPS data, and infrared (IR) imagery from fixed wing and satellite platforms.

The Incident Status Summary, also known as the "ICS-209" is used for reporting specific information on significant fire incidents. The ICS-209 report is a critical interagency incident reporting tool giving daily 'snapshots' of the wildland fire management situation and individual incident information which include fire behavior, size, location, cost, and other information. Data from two tables in the ICS-209 database were merged and used for the 2022 ptfire inventory: the SIT209_HISTORY_INCIDENT_209_REPORTS table contained daily 209 data records for large fires, and the SIT209_HISTORY_INCIDENTS table contained summary data for additional smaller fires.

The US Forest Service (USFS) compiles a variety of fire information every year. Year 2022 data from the USFS Natural Resource Manager (NRM) Forest Activity Tracking System (FACTS) were acquired and used for emissions inventory development. This database includes information about activities related to fire/fuels, silviculture, and invasive species. The FACTS database consists of shapefiles for prescribed burns that provide acres burned and start and ending time information.

The Department of Interior (DOI) also compiles wildfire and prescribed burn activity on their federal lands every year. Year 2022 DOI data were acquired from National Fire Plan Operations and Reporting System (NFPORS) and through direct communication with DOI staff and were used for 2022 platform development. The DOI fire information provided fire type, acres burned, latitude-longitude, and start and ending times.

About 30 different states provided fire activity that was used in developing the wildland fire inventory. Table 2-25 below gives a listing of the type of fire activity data provided by each state that participated.

SLT	Wildfire	Prescribed	RX includes pile	Ag burns
		burns	burns	
Arizona	No	Yes	Yes	No
Arkansas	Yes	Yes	Yes	Yes
California	Yes	Yes	Yes	No
Colorado	No	Yes	Yes	No
Connecticut	Yes	Yes	No	No

Table 2-25. Types of State-provided Fire Activity Data

SLT	Wildfire	Prescribed	RX includes pile	Ag burns
		burns	burns	
Delaware	No	Yes	No	Few
Florida	Yes	Yes	Yes	Yes
Georgia	Yes	Yes	No	Yes
Idaho	No	No	No	Yes
Iowa	Yes	Yes	Yes	No
Kansas	No	Yes	No	No
Maine	Yes	Few	No	No
Maryland	Yes	Yes	Yes	No
Minnesota	No	Yes	No	No
Missouri	No	Yes	No	Yes
Montana	No	Yes	Yes	No
Nevada	No	Yes	Yes	No
New Jersey	Yes	Yes	No	No
New Mexico	Yes	Yes	No	No
Nez Perce Tribe	No	Yes	Yes	Yes
North Carolina	Yes	Yes	No	No
North Dakota	No	Yes	No	No
Oklahoma	No	Yes	No	No
Oregon	Yes	Yes	Yes	No
Pennsylvania	Yes	Yes	No	No
South Carolina	Yes	Yes	Yes	Yes
Texas	Yes	Yes	No	No
Utah	No	Yes	Yes	No
Virginia	Yes	Yes	No	No
Washington	No	Yes	Yes	Yes
Wyoming	Yes	Yes	Yes	No

Fire Emissions Estimation Methodology

The national and S/L/T data mentioned earlier were used to estimate daily wildfire and prescribed burn emissions from flaming combustion and smoldering combustion phases for the 2022 inventory. Flaming combustion is more complete combustion than smoldering and is more prevalent with fuels that have a high surface-to-volume ratio, a low bulk density, and low moisture content. Smoldering combustion occurs without a flame, is a less complete burn, and produces some pollutants, such as PM2.5, VOCs, and CO, at higher rates than flaming combustion. Smoldering combustion is more prevalent with fuels that have low surface-to-volume ratios, high bulk density, and high moisture content. Models sometimes differentiate between smoldering emissions that are lofted with a smoke plume and those that remain near the ground (residual emissions), but for the purposes of the inventory the residual smoldering emissions were allocated to the smoldering SCCs listed in Table 2-24. The lofted smoldering emissions were assigned to the flaming emissions SCCs in Table 2-24.

Figure 2-9 is a schematic of the data processing stream for the inventory of wildfire and prescribed burn sources. The ptfire-rx and ptfire-wild inventory sources were estimated using Satellite Mapping Automated Reanalysis Tool for Fire Incident Reconciliation version 2 (SMARTFIRE2) and BlueSky Pipeline.

SMARTFIRE2 is an algorithm and database system that is within a geographic information system (GIS). SMARTFIRE2 combines multiple sources of fire information and reconciles them into a unified GIS database. It reconciles fire data from space-borne sensors and ground-based reports, thus drawing on the strengths of both data types while avoiding double-counting of fire events. At its core, SMARTFIRE2 is an association engine that links reports covering the same fire in any number of multiple databases. In this process, all input information is preserved, and no attempt is made to reconcile conflicting or potentially contradictory information (for example, the existence of a fire in one database but not another).

For the 2022 platform, the national and S/L/T fire information was input into SMARTFIRE2 and then merged and associated based on user-defined weights for each fire information dataset. The output from SMARTFIRE2 was daily acres burned by fire type, and latitude-longitude coordinates for each fire. The fire type assignments were made using the fire information datasets. If the only information for a fire was a satellite detect for fire activity, then the flow described in Figure 2-9 was used to make fire type assignment by state and by month in conjunction with the default fire type assignments shown in Figure 2-10.

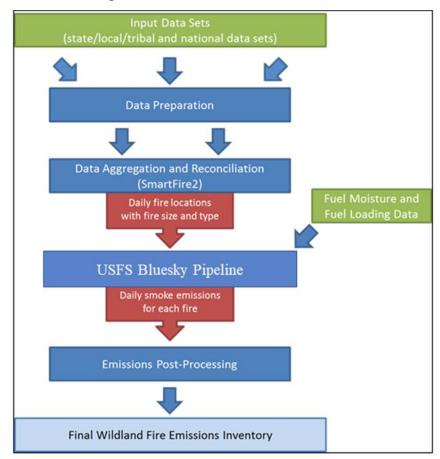
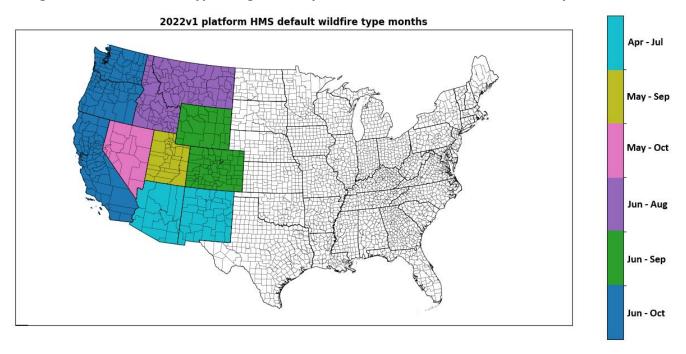
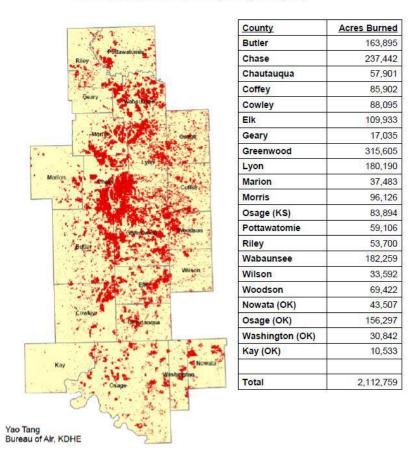



Figure 2-9. Processing flow for fire emission estimates in the 2022 inventory

Figure 2-10. Default fire type assignment by state and month where data are only from satellites

The second system used to estimate emissions is the BlueSky Modeling Pipeline (BSP). The framework supports the calculation of fuel loading and consumption, and emissions using various models depending on the available inputs as well as the desired results. The contiguous United States and Alaska, where Fuel Characteristic Classification System (FCCS) fuel loading data are available, were processed using the modeling chain described in Figure 2-11. The Smoke Emissions Reference Application (SERA) in the BSP generates all the CAP emission factors for wildland fires used in the 2022 study. SERA factors can vary by phase, fire type, region, fuel type and more pollutants. SERA emission factors are available here: https://depts.washington.edu/nwfire/sera/index.php. SERA consists of existing peer-reviewed emission factors (EFs) of 276 known air pollutants. The SERA database enables the analysis and summaries of existing EFs, and creation of average EFs to be used in decision support tools for smoke management, including BSP. HAP emission factors were obtained from Urbanski's (2014) work and applied by region and by fire type.

Fuels (FCCSv4: Landfire v2.2.0) Fire Location **Proportional Fuels** (lat-lon and geoJSON) Consumption (Consume v5) **Dates Emissions Factors (SERA)** Fire Type Fire Size **Day-Specific Emissions** SmartFire2 **Bluesky Pipeline** Output


Figure 2-11. Blue Sky Modeling Pipeline

The FCCSv4 cross-reference was implemented along with the LANDFIREv2 (at 120 meter resolution) to provide better fuel bed information for the BlueSky Pipeline (BSP). The LANDFIREv2 was aggregated from the native resolution and projection to 120 meter using a nearest-neighbor methodology. Aggregation and reprojection were required for the proper function on BSP.

The Flint Hills grasslands typically have 1 to 2 million acres of prescribed burns each year usually between late February to early May. Kansas provided county acres burned information for these prescribed burns for 2022 that cover most of eastern Kansas and 4 additional counties in eastern Oklahoma. As shown in Figure 2-12. Flint Hills Acreage Burned in 2022below, between February 15-April 30 about 2.1M acres were burned in the Flint Hills. The HMS detects for this time period and for these counties (about 21000 detects) were used to temporally and spatially allocate these prescribed burns and the associated estimated emissions. The emissions estimation process is done outside of BSP using SERA emissions factors except for PM2.5 where a factor of 12.68 g/kg was used based on EPA ORD test results. The Flint Hills emissions are assigned the SCC 2801500171.

Figure 2-12. Flint Hills Acreage Burned in 2022

Flint Hills Acreage Burned (February 14 - April 30, 2022)

In 2022v1 and in the 2020NEI, HMS detects on or near corn and soybean fields in the Midwest were assumed to be nearby irrigation ditch or other type of ditch burns. These emissions were also estimated outside of BSP using the assumption of fuels being similar to grasses. These ditch burns were put into the prescribed burn sector (ptfire-rx) and assigned a Rangeland burning SCC 2811020002.

The final products from this process were annual and daily FF10-formatted emissions inventories. These SMOKE-ready inventory files contain both CAPs and HAPs. The BAFM HAP emissions from the inventory were used directly in modeling and were not overwritten with VOC speciation profiles (i.e., an "integrate HAP" use case).

For the 2022 platform, pile burn (PB) emissions were estimated using a combination of federal, state, local, and tribal activity data. This activity data was supplied in the form of daily estimates of area treated, pile volume, pile dimensions, or mass piled by location, varying by data source. As with the RX and WF S/L/T data, the pile burn data was imported into SF2 so that it could be reconciled with other data sources to avoid duplication of activity and emissions. HMS satellite detects that reconciled only with the location of the PB activity were removed from the BSP workflow as pile burns. The PB activity data was then directly imported into a calculator script that estimates the amount of biomass consumed at each location and the resulting emissions. The consumption calculations made are consistent with

those used in the University of Washington pile burn calculator (https://depts.washington.edu/nwfire/piles/). For activity data where only a treated area is provided a default fuel loading of 4.5 tons per acre is used based on an analysis of California and Washington historical pile burn permits. A consumption efficiency of 90% is assumed unless otherwise specified in the activity data. Emissions factors averaged over pile burn studies in the SERA database were applied to estimate CAPs from the consumed piled biomass.

The 2022 wildfire season was slightly below average with about 4.6M acres burned in the CONUS. The 2022v1 EMP includes emissions from the 4.6M acres of wildfires plus an estimated 13.5M acres in prescribed burns. The prescribed burns include the 829K acres estimated for the Midwest ditch burns. It is important to note that using the activity data available mentioned early from federal and state agencies about 8M prescribed burn acres were reconciled with or without HMS detects. The remaining 5.5M prescribed burn acres were estimated using a default acre burn assumption were not reconciled with any federal or state agency fire activity data. The default acre burn assumption was applied to any HMS detects that did not reconcile with any federal or state agency activity data.

2.5.2 Point source Agriculture Fires (ptagfire)

In the NEI, agricultural fires are stored as county-annual emissions and are part of the nonpoint data category. For this 2022 platform, agricultural fires are modeled as day specific fires derived from satellite data for the year 2022 in a similar way to the emissions in ptfire.

Daily year-specific agricultural burning emissions are derived from HMS fire activity data, which contains the date and location of remote-sensed anomalies. The activity is filtered using the 2022 USDA cropland data layer (CDL). Satellite fire detects over agricultural lands are assumed to be agricultural burns and assigned a crop type. Detects that are not over agricultural lands are output to a separate file for use in the ptfire sector. Each detect is assigned an average size of between 40 and 120 acres varying by state. Grassland/pasture fires were moved to the ptfire sectors for this 2022 modeling platform. Depending on their origin, grassland fires are in both ptfire-rx and ptfire-wild sectors because both fire types do involve grassy fuels.

The point source agricultural fire (ptagfire) inventory sector contains daily agricultural burning emissions. Daily fire activity was derived from the NOAA Hazard Mapping System (HMS) fire activity data. The agricultural fires sector includes SCCs starting with '28015'. The first three levels of descriptions for these SCCs are: 1) Fires - Agricultural Field Burning; Miscellaneous Area Sources; 2) Agriculture Production - Crops - as nonpoint; and 3) Agricultural Field Burning - whole field set on fire. The SCC 2801500000 does not specify the crop type or burn method, while the more specific SCCs specify field or orchard crops and, in some cases, the specific crop being grown. The SCCs for this sector listed are in Table 2-26.

Table 2-26. SCCs included in the ptagfire sector

scc	Description
2801500000	Miscellaneous Area Sources; Agriculture Production - Crops - as nonpoint; Agricultural Field Burning - whole field set on fire; Unspecified crop type and Burn Method
2801500141	Miscellaneous Area Sources; Agriculture Production - Crops - as nonpoint; Agricultural Field Burning - whole field set on fire; Field Crop is Bean (red): Headfire Burning

scc	Description
2801500150	Miscellaneous Area Sources; Agriculture Production - Crops - as nonpoint; Agricultural Field Burning - whole field set on fire; Field Crop is Corn: Burning Techniques Not Important
2801500160	Miscellaneous Area Sources; Agriculture Production - Crops - as nonpoint; Agricultural Field Burning - whole field set on fire; Field Crop is Cotton: Burning Techniques Not Important
2801500220	Miscellaneous Area Sources; Agriculture Production - Crops - as nonpoint; Agricultural Field Burning - whole field set on fire; Field Crop is Rice: Burning Techniques Not Significant
2801500250	Miscellaneous Area Sources; Agriculture Production - Crops - as nonpoint; Agricultural Field Burning - whole field set on fire; Field Crop is Sugar Cane: Burning Techniques Not Significant
2801500262	Miscellaneous Area Sources; Agriculture Production - Crops - as nonpoint; Agricultural Field Burning - whole field set on fire; Field Crop is Wheat: Backfire Burning
2801500264	Miscellaneous Area Sources; Agriculture Production - Crops - as nonpoint; Agricultural Field Burning - whole field set on fire; DoubleCrop Winter Wheat and Soybeans
2811020002	Miscellaneous Area Sources; Other Combustion - as Event; Prescribed Rangeland Burning; Flaming

Another feature of the ptagfire database is that the satellite detections for 2022 were filtered out to exclude areas covered by snow during the winter months. To do this, the daily snow cover fraction per grid cell was extracted from a 2022 meteorological Weather Research Forecast (WRF) model simulation. The locations of fire detections were then compared with this daily snow cover file. For any day in which a grid cell had snow cover, the fire detections in that grid cell on that day were excluded from the inventory. Due to the inconsistent reporting of fire detections from the Visible Infrared Imaging Radiometer Suite (VIIRS) platform, any fire detections in the HMS dataset that were flagged as VIIRS or Suomi National Polar-orbiting Partnership satellite were excluded. In addition, certain crop types (corn and soybeans) have been excluded from these specific midwestern states: Iowa, Kansas, Indiana, Illinois, Michigan, Missouri, Minnesota, Wisconsin, and Ohio. The reason for these crop types being excluded is because states have indicated that these crop types are not burned.

Heat flux for plume rise was calculated using the size and assumed fuel loading of each daily agricultural fire. This information is needed for a plume rise calculation within a chemical transport modeling system.

The daily agricultural emissions were converted from a tabular format into the SMOKE-ready daily point flat file format. The daily emissions were also aggregated into annual values by location and converted into the annual point flat file format.

For this modeling platform, a SMOKE update allows the use of HAP integration for speciation for PTDAY inventories. The 2022 agricultural fire inventories include emissions for HAPs, so HAP integration was used for this study.

2.6 Biogenic Sources (beis)

Biogenic emissions were computed based on the 2022 meteorology data used for the 2022 platform and were developed using the Biogenic Emission Inventory System version 4 (BEIS4) within CMAQ. BEIS4 creates gridded, hourly, model-species emissions from vegetation and soils. It estimates CO, VOC (most

notably isoprene, terpene, and sesquiterpene), and NO emissions for the contiguous U.S. and for portions of Mexico and Canada. In the BEIS4 two-layer canopy model, the layer structure varies with light intensity and solar zenith angle (Pouliot and Bash, 2015). Both layers include estimates of sunlit and shaded leaf area based on solar zenith angle and light intensity, direct and diffuse solar radiation, and leaf temperature (Bash et al., 2015). BEIS4 computes the seasonality of emissions using the 1-meter soil temperature (SOIT2) instead of the BIOSEASON file, and canopy temperature and radiation environments are now modeled using the driving meteorological model's (WRF) representation of leafarea index (LAI) rather than the estimated LAI values from BELD data alone. See these CMAQ Release Notes for technical information on BEIS4: https://github.com/USEPA/CMAQ/wiki/CMAQ-Release-Notes:-Emissions-Updates:-BEIS-Biogenic-Emissions. The variables output from the Meteorology-Chemistry Interface Processor (MCIP) that are used to convert WRF outputs to CMAQ inputs are shown in Table 2-27.

Table 2-27. Meteorological variables required by BEIS4

Variable	Description
LAI	leaf-area index
PRSFC	surface pressure
Q2	mixing ratio at 2 m
RC	convective precipitation per met TSTEP
RGRND	solar rad reaching surface
RN	nonconvective precipitation per met TSTEP
RSTOMI	inverse of bulk stomatal resistance
SLYTP	soil texture type by USDA category
SOIM1	volumetric soil moisture in top cm
SOIT1	soil temperature in top cm
TEMPG	skin temperature at ground
USTAR	cell averaged friction velocity
RADYNI	inverse of aerodynamic resistance
TEMP2	temperature at 2 m
WSAT_PX	soil saturation from (Pleim-Xiu Land Surface Model) PX-LSM

The Biogenic Emissions Landcover Database version 6 (BELD6) was used as the input gridded land use information in generating the biogenic emissions estimates. There are now two different BELD6 datasets that are input into BEIS4. The gridded landuse and the other is the gridded dry leaf biomass (grams/m²) values for various vegetation types. The BELD6 includes the following datasets:

- High resolution tree species and biomass data from Wilson et al. 2013a, and Wilson et al.
 2013b for which species names were changed from non-specific common names to scientific names
- Tree species biogenic volatile organic carbon (BVOC) emission factors for tree species were taken from the NCAR Enclosure database (Wiedinmyer, 2001)
 - o https://www.sciencedirect.com/science/article/pii/S1352231001004290
- Agricultural land use from <u>US Department of Agriculture (USDA) crop data layer</u>

- Global Moderate Resolution Imaging Spectroradiometer (MODIS) 20 category data with enhanced lakes and Fraction of Photosynthetically Active Radiation (FPAR) for vegetation coverage from <u>National Center for Atmospheric Research (NCAR)</u>
- Canadian BELD land use, updates to Version 4 of the Biogenic Emissions Landuse Database (BELD4) for Canada and Impacts on Biogenic VOC Emissions (https://www.epa.gov/sites/default/files/2019-08/documents/800am_zhang_2_0.pdf).

Bug fixes included in BEIS4 included the following:

- Solar radiation attenuation in the shaded portion of the canopy was using the direct beam photosynthetically active radiation (PAR) when the diffuse beam PAR attenuation coefficient should have been used.
 - This update had little impact on the total emissions but did result in slightly higher emissions in the morning and evening transition periods for isoprene, methanol and Methylbutenol (MBO).
- The fraction of solar radiation in the sunlit and shaded canopy layers, SOLSUN and SOLSHADE respectively were estimated using a planar surface. These should have been estimated based on the PAR intercepted by a hemispheric surface rather than a plane.
 - This update can result in an earlier peak in leaf temperature, approximately up to an hour.
- The quantum yield for isoprene emissions (ALPHA) was updated to the mean value in <u>Niinemets et al. 2010a</u> and the integration coefficient (CL) was updated to yield 1 when PAR = 1000 following <u>Niinemets et al 2010b</u>.
 - This updated resulted in a slight reduction in isoprene, methanol, and MBO emissions.

Biogenic emissions computed with BEIS were used to review and prepare summaries but were left out of the CMAQ-ready merged emissions in favor of inline biogenic emissions produced during the CMAQ model run itself using the same algorithm described above but with finer time steps within the air quality model. Figure 2-13 provides an annual estimate of the biogenic VOC emissions in year 2022 from BEIS4.

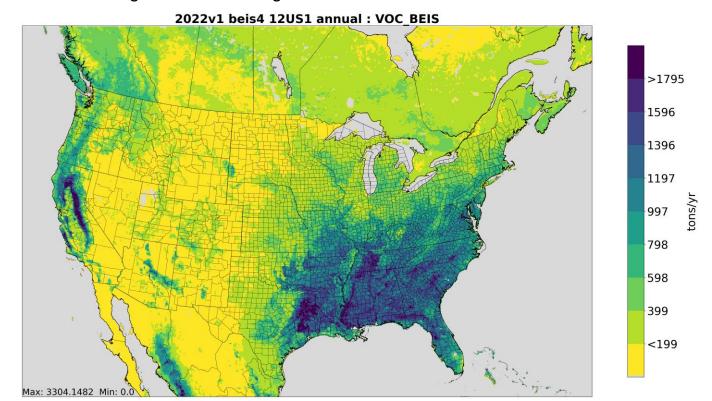


Figure 2-13. Annual biogenic VOC BEIS4 emissions for the 12US1 domain

2.7 Sources Outside of the United States

The emissions from Canada and Mexico are included as part of the emissions modeling sectors: canmex_point, canmex_area, canada_afdust, canada_ptdust, canada_onroad, mexico_onroad, canmex_ag, and canada_og2D. The canmex_ag sector is processed as a separate sector for reporting and tracking purposes, and unlike in other recent emissions platforms, the Canada ag sources are area sources in this platform rather than pre-gridded point sources. As in prior platforms, Fugitive dust emissions in Canada are represented as both area sources (canada_afdust sector, formerly "othafdust") and point sources (canada_ptdust sector, formerly "othptdust"). Due to the large number of individual points, low-level oil and gas emissions in Canada are processed separately from the canmex_point sector to reduce the number of individual points to track within CMAQ, and also to reduce the size of the model-ready emissions files.

Canadian emissions in these sectors were generally taken from 2020 and 2023 inventories provided by Environment and Climate Change Canada (ECCC), interpolated to 2022. ECCC provided the following inventories, the sectors in which they were incorporated are listed and the inventories are described in more detail below:

- Agricultural livestock and fertilizer, area source format (canmex ag sector)
- Surface-level oil and gas emissions in Canada (canada og2D sector)
- Agricultural fugitive dust, point source format (canada_ptdust sector)
- Other area source dust (canada_afdust sector)
- Onroad (canada onroad sector)
- Nonroad and rail (canmex area sector)

- Airports (canmex point sector)
- Other area sources (canmex area sector)
- Other point sources (canmex point sector)

The 2022 CMV data included coastal waters of Canada and Mexico with emissions derived from AIS data. These emissions were used for all areas of Canada and Mexico and are included in the cmv_c1c2 and cmv_c3 sectors. Both the C1C2 and C3 emissions were developed in a point source format with point locations at the center of the 12km grid cells.

Other than the CB6 species present in the speciated point source data, there are no explicit HAP emissions in these Canadian inventories. In addition to emissions inventories, the ECCC 2020 dataset also included shapefiles for creating spatial surrogates. These surrogates were used for this study.

While emissions in the 2020 platform were adjusted at the monthly level to reflect COVID pandemic effects, no such adjustments were made for 2022 modeling.

2.7.1 Point Sources in Canada and Mexico (canmex_point)

Canadian point source inventories provided by ECCC include emissions for airports and other point sources. The Canadian industrial point source inventory is pre-speciated for the CB6 chemical mechanism. All Canada point source emissions were interpolated from 2020 and 2023 inventories to 2022 except for the point EGU inventory, for which the 2023 inventory was used directly. This is because for point EGUs, the ECCC inventories contain different facilities in different years, making an interpolation difficult.

Point sources in Mexico were compiled in two parts. New emissions inventories representing 2018 developed through a collaboration between EPA and SEMARNAT were used for the six Mexico border states: Baja California, Sonora, Chihuahua, Coahuila, Nuevo Leon, and Tamaulipas. Mexico inventories for other states were based on inventories projected from the Inventario Nacional de Emisiones de Mexico, 2016 (Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT)), projected to 2019 as part of the 2019 emissions modeling platform. For the emissions carried forward from the 2019 platform, the point source emissions were converted to English units and into the FF10 format that could be read by SMOKE, missing stack parameters were gapfilled using SCC-based defaults, latitude and longitude coordinates were verified and adjusted if they were not consistent with the reported municipality. Only CAPs are covered in the Mexico point source inventory.

2.7.2 Fugitive Dust Sources in Canada (canada_afdust, canada_ptdust)

Fugitive dust sources of particulate matter emissions excluding land tilling from agricultural activities, were provided by Environment and Climate Change Canada (ECCC) for 2020 and 2023, and were interpolated to 2022 for this study. Dust emissions resulting from land tilling due to agricultural activities and livestock were provided as part of the ECCC area source dust inventory. The provided wind erosion emissions were removed. The ECCC point source dust inventory includes emissions from road dust. A transport fraction adjustment that reduces dust emissions based on land cover types was applied to both point and nonpoint dust emissions, along with a meteorology-based (precipitation and snow/ice cover) zero-out of emissions when the ground is snow covered or wet.

2.7.3 Agricultural Sources in Canada and Mexico (canmex_ag)

Agricultural emissions from Canada and Mexico, excluding fugitive dust, are included in the canmex_ag sector. Canadian agricultural emissions were provided by Environment and Climate Change Canada (ECCC) as part of their 2020 and 2023 emission inventories (interpolated to 2022). Unlike in recent platforms, Canadian agricultural were not represented as point sources, instead they were represented as area sources and gridded using spatial surrogates. In Mexico, agricultural sources were based on new emissions inventories representing 2018 for the six Mexico border states (Baja California, Sonora, Chihuahua, Coahuila, Nuevo Leon, and Tamaulipas), and emissions from the 2019 emissions platform (SEMARNAT-provided 2016, projected to 2019) were carried forward for all other states.

2.7.4 Surface-level Oil and Gas Sources in Canada (canada_og2D)

Canadian point source inventories provided by ECCC included oil and gas emissions, and were interpolated from 2020 and 2023 to 2022. A very large number of these oil and gas point sources are surface level emissions, appropriate to be modeled in layer 1. Reducing the size of the canmex_point sector improves air quality model run time because plume rise calculations are needed for fewer sources, so these surface level oil and gas sources were placed into the canada_og2D sector for layer 1 modeling.

2.7.5 Nonpoint and Nonroad Sources in Canada and Mexico (canmex_area)

ECCC provided year 2020 and 2023 at the Canada province, and in some cases sub-province, resolution emissions from for nonpoint and nonroad sources (canmex_area). 2022 was interpolated from the 2020 and 2023 emissions. The nonroad sources were monthly while the nonpoint and rail emissions were annual.

In Mexico, nonroad and nonpoint sources were based on new emissions inventories representing 2018 for the six Mexico border states (Baja California, Sonora, Chihuahua, Coahuila, Nuevo Leon, and Tamaulipas), and emissions from the 2019 emissions platform (SEMARNAT-provided 2016, projected to 2019) were carried forward for all other states.

2.7.6 Onroad Sources in Canada and Mexico (canada_onroad, mexico_onroad)

The onroad emissions for Canada and Mexico are in the canada_onroad and mexico_onroad sectors, respectively. ECCC provided year 2020 and 2023 at the Canada province, and in some cases sub-province resolution. 2022 was interpolated from the 2020 and 2023 emissions.

For Mexico onroad emissions, a version of the MOVES model for Mexico was run for 2020 and 2023. 2022 was then interpolated. This provided the same VOC HAPs and speciated VOCs as for the U.S. MOVES model (ERG, 2016a). This includes NBAFM plus several other VOC HAPs such as toluene, xylene, ethylbenzene and others. Except for VOC HAPs that are part of the speciation, no other HAPs are included in the Mexico onroad inventory (such as particulate HAPs nor diesel particulate matter).

2.7.7 Fires in Canada and Mexico (ptfire_othna)

Annual 2022 wildland fire emissions for Mexico, Canada, Central America, and Caribbean nations are included in the ptfire_othna sector. Canadian fire activity was developed by processing the Canadian Wildland Fire Information System's National Burned Area Composite (NBAC) and NOAA's Hazard

Mapping System (HMS) through SMARTFIRE 2.¹² Emissions were estimated from the wildland fire activity using BlueSky pipeline with Canadian Fire Behavior Prediction (FBP) fuel beds mapped to Fuel Characteristic Classification System (FCCS) fuel beds. Fires in Mexico, Central America, and the Caribbean, were developed from the Fire Inventory from NCAR (FINN) v2.5 daily fire emissions for 2022 (Wiedenmyer, 2023). For FINN fires, listed vegetation type codes of 1 and 9 are defined as agricultural burning, all other fire detections and assumed to be wildfires. All wildland fires that are not defined as agricultural are assumed to be wildfires rather than prescribed. FINN fire detects of less than 50 square meters (0.012 acres) are removed from the inventory. The locations of FINN fires are geocoded from latitude and longitude to FIPS code.

2.7.8 Ocean Chlorine, Ocean Sea Salt, and Volcanic Mercury

The ocean chlorine gas emission estimates are based on the build-up of molecular chlorine (Cl₂) concentrations in oceanic air masses (Bullock and Brehme, 2002). Data at 36 km and 12 km resolution were available and were not modified other than the model-species name "CHLORINE" was changed to "CL2" to support CMAQ modeling.

For mercury, the volcanic mercury emissions that were used in the recent modeling platforms were not included in this 2022v1 platform because no HAP+CAP modeling was performed. The emissions were originally developed for a 2002 multipollutant modeling platform with coordination and data from Christian Seigneur and Jerry Lin for 2001 (Seigneur et. al, 2004 and Seigneur et. al, 2001). The volcanic emissions from the most recent eruption were not included in the because they have diminished by the year 2019. Thus, no volcanic emissions were included.

Because of mercury bidirectional flux within the latest version of CMAQ, no natural mercury emissions are included in the emissions merge step for HAP+CAP platforms.

_

¹² See https://www.cmascenter.org/conference/2023/slides/2023-10-18-1350-2021-Canada-WF-Updates-CMAS.pptx.

3 Emissions Modeling

The CMAQ and CAMx air quality models require hourly emissions of specific gas and particle species for the horizontal and vertical grid cells contained within the modeled region (i.e., modeling domain). To provide emissions in the form and format required by the model, it is necessary to "pre-process" the "raw" emissions (i.e., emissions input to SMOKE) for the sectors described above in Section 2. In brief, the process of emissions modeling transforms the emissions inventories from their original temporal resolution, pollutant resolution, and spatial resolution into the hourly, speciated, gridded and vertical resolution required by the air quality model. Emissions modeling includes temporal allocation, spatial allocation, and pollutant speciation. Emissions modeling sometimes includes the vertical allocation (i.e., plume rise) of point sources, but many air quality models also perform this task because it greatly reduces the size of the input emissions files if the vertical layers of the sources are not included.

As seen in Section 2, the temporal resolutions of the emissions inventories input to SMOKE vary across sectors and may be hourly, daily, monthly, or annual total emissions. The spatial resolution may be individual point sources; totals by county (U.S.), province (Canada), or municipio (Mexico); or gridded emissions. This section provides some basic information about the tools and data files used for emissions modeling as part of the modeling platform.

3.1 Emissions Modeling Overview

SMOKE version 5.1 was used to process the raw emissions inventories into emissions inputs for each modeling sector into a format compatible with CMAQ. SMOKE executables and source code are available from the Community Multiscale Analysis System (CMAS) Center at http://www.cmascenter.org. Additional information about SMOKE is available from http://www.smoke-model.org. For sectors that have plume rise, the in-line plume rise capability allows for the use of emissions files that are much smaller than full three-dimensional gridded emissions files. For quality assurance of the emissions modeling steps, emissions totals by specie for the entire model domain are output as reports that are then compared to reports generated by SMOKE on the input inventories to ensure that mass is not lost or gained during the emissions modeling process.

When preparing emissions for the air quality model, emissions for each sector are processed separately through SMOKE, and then the final merge program (Mrggrid) is run to combine the model-ready, sector-specific 2-D gridded emissions across sectors. The SMOKE settings in the run scripts and the data in the SMOKE ancillary files control the approaches used by the individual SMOKE programs for each sector. Table 3-1 summarizes the major processing steps of each platform sector with the columns as follows.

The "Spatial" column shows the spatial approach used: "point" indicates that SMOKE maps the source from a point location (i.e., latitude and longitude) to a grid cell; "surrogates" indicates that some or all of the sources use spatial surrogates to allocate county emissions to grid cells; and "area-to-point" indicates that some of the sources use the SMOKE area-to-point feature to grid the emissions (further described in Section 3.4.2). The "Speciation" column indicates that all sectors use the SMOKE speciation step, though biogenics speciation is done within the Tmpbeis3 program and not as a separate SMOKE step. The "Inventory resolution" column shows the inventory temporal resolution from which SMOKE needs to calculate hourly emissions. Note that for some sectors (e.g., onroad, beis), there is no input

inventory; instead, activity data and emission factors are used in combination with meteorological data to compute hourly emissions.

Table 3-1. Key emissions modeling steps by sector.

			Inventory	
Platform sector	Spatial	Speciation	resolution	Plume rise
afdust_adj	Surrogates	Yes	Annual	
airports	Point	Yes	Annual	None
hoic	Pre-gridded	in DEIC4	computed	
beis	land use	in BEIS4	hourly in CMAQ	
fertilizer	EPIC	No	computed	
Tertilizer	EPIC	NO	hourly in CMAQ	
livestock	Surrogates	Yes	Daily	
cmv_c1c2	Point	Yes	hourly	in-line
cmv_c3	Point	Yes	hourly	in-line
nonnt	Surrogates &	Yes	Annual	
nonpt	area-to-point	163	Allilual	
nonroad	Surrogates	Yes	monthly	
np_oilgas	Surrogates	Yes	Annual	
			monthly activity,	
onroad	Surrogates	Yes	computed	
			hourly	
	Surrogates	Yes	monthly activity,	
onroad_ca_adj			computed	
			hourly	
canada_onroad	Surrogates	Yes	monthly	
mexico_onroad	Surrogates	Yes	monthly	
canada afdust	Surrogates	Yes	annual &	
Callaua_aluust	Surrogates		monthly	
canmex_area	Surrogates	Yes	monthly	
canmex_point	Point	Yes	monthly	in-line
canada_ptdust	Point	Yes	annual	None
canada_og2D	Point	Yes	monthly	None
canmex_ag	Surrogates	Yes	annual	
ptagfire	Point	Yes	daily	in-line
pt_oilgas	Point	Yes	annual	in-line
ptegu	Point	Yes	daily & hourly	in-line
ptfire-rx	Point	Yes	daily	in-line
ptfire-wild	Point	Yes	daily	in-line
ptfire_othna	Point	Yes	daily	in-line
ptnonipm	Point	Yes	annual	in-line
rail	Surrogates	Yes	annual	
rwc	Surrogates	Yes	annual	
np_solvents	Surrogates	Yes	annual	

The "plume rise" column in indicates the sectors for which the "in-line" approach is used. These sectors are the only ones with emissions in aloft layers based on plume rise. The term "in-line" means that the plume rise calculations are done inside of the air quality model instead of being computed by SMOKE. In all of the "in-line" sectors, all sources are output by SMOKE into point source files which are subject to plume rise calculations in the air quality model. In other words, no emissions are output to layer 1 gridded emissions files from those sectors as has been done in past platforms. The air quality model computes the plume rise using stack parameters, the Briggs algorithm, and the hourly emissions in the SMOKE output files for each emissions sector. The height of the plume rise determines the model layers into which the emissions are placed. The plume top and bottom are computed, along with the plumes' distributions into the vertical layers that the plumes intersect. The pressure difference across each layer divided by the pressure difference across the entire plume is used as a weighting factor to assign the emissions to layers. This approach gives plume fractions by layer and source. Day-specific point fire emissions are treated differently in CMAQ. After plume rise is applied, there are emissions in every layer from the ground up to the top of the plume.

Note that SMOKE has the option of grouping sources so that they are treated as a single stack when computing plume rise. For the modeling cases discussed in this document, no grouping was performed because grouping combined with "in-line" processing will not give identical results as "offline" processing (i.e., when SMOKE creates 3-dimensional files). This occurs when stacks with different stack parameters or latitude and longitudes are grouped, thereby changing the parameters of one or more sources. The most straightforward way to get the same results between in-line and offline is to avoid the use of stack grouping.

Biogenic emissions can be modeled two different ways in the CMAQ model. The BEIS model in SMOKE can produce gridded biogenic emissions that are then included in the gridded CMAQ-ready emissions inputs, or alternatively, CMAQ can be configured to create "in-line" biogenic emissions within CMAQ itself. For this study, the in-line biogenic emissions option was used, and so biogenic emissions from BEIS were not included in the gridded CMAQ-ready emissions.

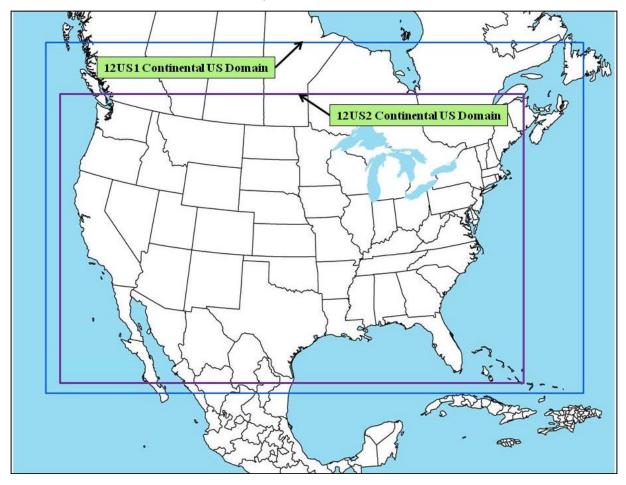

For this study, SMOKE was run for the larger 12-km <u>CON</u>tinental <u>U</u>nited <u>S</u>tates "CONUS" modeling domain (12US1) shown in Figure 3-1, but the air quality model was run on the smaller 12-km domain (12US2). More specifically, SMOKE was run on the 12US1 domain and emissions were extracted from 12US1 data files to create 12US2 emissions. The grids used a Lambert-Conformal projection, with Alpha = 33, Beta = 45 and Gamma = -97, with a center of X = -97 and Y = 40. In addition, SMOKE was run for grids over Alaska, Hawaii, and Puerto Rico plus the Virgin Islands. Later sections provide details on the spatial surrogates and area-to-point data used to accomplish spatial allocation with SMOKE. Table 3-2 describes the grids. WRF, SMOKE, and CMAQ all presume the Earth is a sphere with a radius of 6370000 m.

Table 3-2. Descriptions of the platform grids

	Grid Cell			Parameters listed in SMOKE grid description (GRIDDESC) file: projection name, xorig,
Common Name	Size	Description	Grid name	yorig, xcell, ycell, ncols, nrows, nthik
Continental 12km grid	12 km	Entire conterminous US plus some of Mexico/Canada	12US1_459X299	'LAM_40N97W', -2556000, -1728000, 12.D3, 12.D3, 459, 299, 1
US 12 km or "smaller" CONUS-12	12 km	Smaller 12km CONUS plus some of Mexico/Canada	12US2	'LAM_40N97W', -2412000, -1620000, 12.D3, 12.D3, 396, 246, 1
Alaska 9km	9 km	Small 9 km Alaska with parts of Canada	19AK1	LAM_36N_155W', -1107000, -1134000, 9000, 9000, 312, 252, 1
Hawaii 3km	3 km	Small 3 km Hawaii	3HI1	LAM_21N_157W', -391500, -346500, 3000, 3000, 225, 201, 1
Puerto Rico & Virgin Islands 3km	3 km	Small 3 km covering Puerto Rico and the Virgin Islands	3PR1	LAM_18N_66W', -274500, -202500, 3000, 3000, 150, 150, 1

Figure 3-1. Air quality modeling domains

a) 12US1 and 12US2

3.2 Chemical Speciation

Chemical speciation involves the process of translating emissions from the inventory into the chemical mechanism-specific "model species" needed by an air quality model. Using the CB6R5_AE7 chemical mechanism as an example, these model species either represent explicit chemical compounds (e.g., acetone, benzene, ethanol) or groups of species (i.e., "lumped species;" e.g., PAR, OLE, KET). Table 3-3 lists the model species generated by SMOKE for this mechanism. Table 3-4 and Table 3-5 list additional model species that are generated when performing toxics modeling, and Table 3-6 lists the mapping between individual polycyclic aromatic hydrocarbons (PAHs) to the PAH groups used in toxics modeling.

Table 3-3. Emission model species produced for CB6R5_AE7 for CMAQ

Inventory Pollutant	Model Species	Model species description
Cl ₂	CL2	Atomic gas-phase chlorine
HCI	HCL	Hydrogen Chloride (hydrochloric acid) gas
СО	СО	Carbon monoxide
NO _X	NO	Nitrogen oxide
NO _X	NO2	Nitrogen dioxide
NO _X	HONO	Nitrous acid
SO ₂	SO2	Sulfur dioxide
SO ₂	SULF	Sulfuric acid vapor
NH ₃	NH3	Ammonia
NH ₃	NH3_FERT	Ammonia from fertilizer
VOC	AACD	Acetic acid
VOC	ACET	Acetone
VOC	ALD2	Acetaldehyde
VOC	ALDX	Propionaldehyde and higher aldehydes
VOC	APIN	Alpha pinene
VOC	BENZ	Benzene
VOC	CAT1	Methyl-catechols
VOC	CH4	Methane
VOC	CRES	Cresols
VOC	CRON	Nitro-cresols
VOC	ETH	Ethene
VOC	ETHA	Ethane
VOC	ETHY	Ethyne
VOC	ETOH	Ethanol
VOC	FACD	Formic acid
VOC	FORM	Formaldehyde
VOC	GLY	Glyoxal
VOC	GLYD	Glycolaldehyde
VOC	IOLE	Internal olefin carbon bond (R-C=C-R)
VOC	ISOP	Isoprene
VOC	ISPD	Isoprene Product
VOC	IVOC	Intermediate volatility organic compounds
VOC	KET	Ketone Groups
VOC	MEOH	Methanol

Inventory Pollutant	Model Species	Model species description
VOC	MGLY	Methylglyoxal
VOC	NAPH	Naphthalene
VOC	NVOL	Non-volatile compounds
VOC	OLE	Terminal olefin carbon bond (R-C=C)
VOC	PACD	Peroxyacetic and higher peroxycarboxylic acids
VOC	PAR	Paraffin carbon bond
VOC	PRPA	Propane
VOC	SESQ	Sesquiterpenes (from biogenics only)
VOC	SOAALK	Secondary Organic Aerosol (SOA) tracer
VOC	TERP	Terpenes (from biogenics only)
VOC	TOL	Toluene and other monoalkyl aromatics
VOC	UNR	Unreactive
VOC	XYLMN	Xylene and other polyalkyl aromatics, minus naphthalene
Naphthalene	NAPH	Naphthalene from inventory
Benzene	BENZ	Benzene from the inventory
Acetaldehyde	ALD2	Acetaldehyde from inventory
Formaldehyde	FORM	Formaldehyde from inventory
Methanol	MEOH	Methanol from inventory
PM ₁₀	PMC	Coarse PM > 2.5 microns and 2 10 microns
PM _{2.5}	PEC	Particulate elemental carbon 2 2.5 microns
PM _{2.5}	PNO3	Particulate nitrate 2 2.5 microns
PM _{2.5}	POC	Particulate organic carbon (carbon only) 2.5 microns
PM _{2.5}	PSO4	Particulate Sulfate 2 2.5 microns
PM _{2.5}	PAL	Aluminum
PM _{2.5}	PCA	Calcium
PM _{2.5}	PCL	Chloride
PM _{2.5}	PFE	Iron
PM _{2.5}	PK	Potassium
PM _{2.5}	PH2O	Water
PM _{2.5}	PMG	Magnesium
PM _{2.5}	PMN	Manganese
PM _{2.5}	PMOTHR	PM _{2.5} not in other AE6 species
PM _{2.5}	PNA	Sodium
PM _{2.5}	PNCOM	Non-carbon organic matter
PM _{2.5}	PNH4	Ammonium
PM _{2.5}	PSI	Silica
PM _{2.5}	PTI	Titanium

Table 3-4. Additional HAP gaseous model species generated for toxics modeling

Inventory Pollutant	Model Species
Acetaldehyde	ALD2 PRIMARY
Formaldehyde	FORM_PRIMARY
Acetonitrile	ACETONITRILE
Acrolein	ACROLEIN
Acrylic acid	ACRYLICACID
Acrylonitrile	ACRYLONITRILE
Benzo[a]Pyrene	BENZOAPYRNE
1,3-Butadiene	BUTADIENE13
Carbon tetrachloride	CARBONTET
Carbonyl Sulfide	CARBSULFIDE
Chloroform	CHCL3
Chloroprene	CHLOROPRENE
1,4-Dichlorobenzene(p)	DICHLOROBENZENE
1,3-Dichloropropene	DICHLOROPROPENE
Ethylbenzene	ETHYLBENZ
Ethylene dibromide (Dibromoethane)	BR2_C2_12
Ethylene dichloride (1,2-Dichloroethane)	CL2_C2_12
Ethylene oxide	ETOX
Hexamethylene-1,6-diisocyanate	HEXAMETH_DIIS
Hexane	HEXANE
Hydrazine	HYDRAZINE
Maleic Anyhydride	MAL_ANYHYDRIDE
Methyl Chloride	METHCLORIDE
Methylene chloride (Dichloromethane)	CL2_ME
Specific PAHs assigned with URE =0	PAH_000E0
Specific PAHs assigned with URE =9.6E-06 (previously 1.76E-5)	PAH_176E5
Specific PAHs assigned with URE =4.8E-05 (previously 8.8E-5)	PAH_880E5
Specific PAHs assigned with URE =9.6E-05 (previously 1.76E-4)	PAH_176E4
Specific PAHs assigned with URE =9.6E-04 (previously 1.76E-3)	PAH_176E3
Specific PAHs assigned with URE =9.6E-03 (previously 1.76E-2)	PAH_176E2
Specific PAHs assigned with URE =0.01 (previously 1.01E-2)	PAH_101E2
Specific PAHs assigned with URE =1.14E-1	PAH_114E1
Specific PAHs assigned with URE =9.9E-04 (previously 1.92E-3)	PAH_192E3
Propylene dichloride (1,2-Dichloropropane)	PROPDICHLORIDE
Quinoline	QUINOLINE
Styrene	STYRENE
1,1,2,2-Tetrachloroethane	CL4_ETHANE1122
Tetrachloroethylene (Perchloroethylene)	CL4_ETHE
Toluene	TOLU
2,4-Toluene diisocyanate	TOL_DIIS
Trichloroethylene	CL3_ETHE
Triethylamine	TRIETHYLAMINE
m-xylene, o-xylene, p-xylene, xylenes (mixed isomers)	XYLENES
Vinyl chloride	CL_ETHE

Table 3-5. Additional HAP particulate model species generated for toxics modeling

Inventory Pollutant	Model Species
Arsenic	ARSENIC_C, ARSENIC_F
Beryllium	BERYLLIUM_C, BERYLLIUM_F
Cadmium	CADMIUM_C, CADMIUM_F
Chromium VI, Chromic Acid (VI), Chromium Trioxide	CHROMHEX_C, CHROMHEX_F
Chromium III	CHROMTRI_C, CHROMTRI_F
Lead	LEAD_C, LEAD_F
Manganese	MANGANESE_C, MANGANESE_F
Mercury ¹	HGIIGAS, HGNRVA, PHGI
Nickel, Nickel Oxide, Nickel Refinery Dust	NICKEL_C, NICKEL_F
Diesel-PM10, Diesel-PM25	DIESEL_PMC , DIESEL_PMFINE,
	DIESEL_PMEC, DIESEL_PMOC,
	DIESEL_PMNO3, DIESEL_PMSO4

¹Mercury is multi-phase

Table 3-6. PAH/POM pollutant groups

PAH Group	NEI Pollutant Code	NEI Pollutant Description	URE 1/(μg/m³)
PAH_000E0	120127	Anthracene	0
PAH_000E0	129000	Pyrene	0
PAH_000E0	85018	Phenanthrene	0
PAH_101E2	56495	3-Methylcholanthrene	0.01
PAH_114E1	57976	7,12-Dimethylbenz[a]Anthracene	0.114
PAH_176E2	189559	Dibenzo[a,i]Pyrene	9.6E-03
PAH_176E2	189640	Dibenzo[a,h]Pyrene	9.6E-03
PAH_176E2	191300	Dibenzo[a,l]Pyrene	9.6E-03
PAH_176E2	7496028	6-Nitrochrysene	9.6E-03
PAH_176E3	192654	Dibenzo[a,e]Pyrene	9.6E-04
PAH_176E3	194592	7H-Dibenzo[c,g]carbazole	9.6E-04
PAH_176E3	3697243	5-Methylchrysene	9.6E-04
PAH_176E3	41637905	Methylchrysene	9.6E-04
PAH_176E3	53703	Dibenzo[a,h]Anthracene	9.6E-04
PAH_176E4	193395	Indeno[1,2,3-c,d]Pyrene	9.6E-05
PAH_176E4	205823	Benzo[j]Fluoranthene	9.6E-05
PAH_176E4	205992	Benzo[b]Fluoranthene	9.6E-05
PAH_176E4	224420	Dibenzo[a,j]Acridine	9.6E-05
PAH_176E4	226368	Dibenz[a,h]acridine	9.6E-05
PAH_176E4	5522430	1-Nitropyrene	9.6E-05
PAH_176E4	56553	Benz[a]Anthracene	9.6E-05
PAH_176E5	207089	Benzo[k]Fluoranthene	9.6E-06
PAH_176E5	218019	Chrysene	9.6E-06
PAH_176E5	86748	Carbazole	9.6E-06
PAH_192E3	8007452	Coal Tar	9.9E-04
PAH_880E5	130498292	PAH, total	4.8E-05
PAH_880E5	191242	Benzo[g,h,i,]Perylene	4.8E-05
PAH_880E5	192972	Benzo[e]Pyrene	4.8E-05

PAH Group	NEI Pollutant Code	NEI Pollutant Description	URE 1/(μg/m³)
PAH_880E5	195197	Benzo(c)phenanthrene	4.8E-05
PAH_880E5	198550	Perylene	4.8E-05
PAH_880E5	203123	Benzo(g,h,i)Fluoranthene	4.8E-05
PAH_880E5	203338	Benzo(a)fluoranthene	4.8E-05
PAH_880E5	206440	Fluoranthene	4.8E-05
PAH_880E5	208968	Acenaphthylene	4.8E-05
PAH_880E5	2381217	1-Methylpyrene	4.8E-05
PAH_880E5	2422799	12-Methylbenz(a)Anthracene	4.8E-05
PAH_880E5	250	PAH/POM - Unspecified	4.8E-05
PAH_880E5	2531842	2-Methylphenanthrene	4.8E-05
PAH_880E5	26914181	Methylanthracene	4.8E-05
PAH_880E5	284	Extractable Organic Matter (EOM)	4.8E-05
PAH_880E5	56832736	Benzofluoranthenes	4.8E-05
PAH_880E5	65357699	Methylbenzopyrene	4.8E-05
PAH_880E5	779022	9-Methyl Anthracene	4.8E-05
PAH_880E5	832699	1-Methylphenanthrene	4.8E-05
PAH_880E5	83329	Acenaphthene	4.8E-05
PAH_880E5	86737	Fluorene	4.8E-05
PAH_880E5	90120	1-Methylnaphthalene	4.8E-05
PAH_880E5	91576	2-Methylnaphthalene	4.8E-05
PAH_880E5	91587	2-Chloronaphthalene	4.8E-05
PAH_880E5	N590	Polycyclic aromatic compounds (includes PAH/POM)	4.8E-05

The TOG and PM_{2.5} profiles used to speciate emissions are part of the SPECIATE v5.2 database (https://www.epa.gov/air-emissions-modeling/speciate). The SPECIATE database is developed and maintained by the EPA's Office of Research and Development (ORD), Office of Transportation and Air Quality (OTAQ), and the Office of Air Quality Planning and Standards (OAQPS), in cooperation with Environment Canada (EPA, 2016). These profiles are processed using the EPA's S2S-Tool (https://github.com/USEPA/S2S-Tool) to generate the GSPRO and GSCNV files needed by SMOKE. As with previous platforms, some Canadian point source inventories are provided from Environment Canada as pre-speciated emissions.

Speciation profiles (GSPRO files) and cross-references (GSREF files) for this platform are available in the SMOKE input files for the platform. Emissions of VOC and PM_{2.5} emissions by county, sector, and profile for all sectors other than onroad mobile can be found in the sector summaries. Total emissions for each model species by state and sector can be found in the state-sector totals workbook.

The following updates to profile assignments were made to this modeling platform and vary from prior years:

• For PM2.5:

- All GSPRO files were generated by the S2S-Tool, dated 09-11-2023, and utilized SPECIATE v5.3.
- Update of the CMV speciation cross-reference files to utilize the SCC updates for this sector and use the new CROC profiles introduced in SPECIATE v5.3.

 Update onroad and nonroad mobile cross-reference files to utilize the CROC profiles introduced in SPECIATE v5.3.

For VOC:

- All GSPRO and GSCNV files were generated by the S2S-Tool, dated 09-11-2023, and utilized SPECIATE v5.3.
- All oil and gas well completion and abandoned wells emissions were updated (or added in the case of abandoned wells) from 1101 and 8949, respectively, to 95404 and 95403, respectively. However, this update was not performed for basin-specific profiles that were output by the O&G Tool.
- Update of the CMV speciation cross-reference files to utilize the SCC updates for this sector and use the new GROC profiles introduced in SPECIATE v5.3.
- o Update usage of 95120a to 95120c.
- Update onroad and nonroad mobile cross-reference files to utilize the GROC profiles introduced in SPECIATE v5.3.

3.2.1 VOC speciation

The base emissions inventory for this modeling platform includes total VOC and individual HAP emissions. Often, individual HAPs are components of VOC (HAP-VOC), and these HAP-VOCs are included ("integrated") in the speciation process. This HAP integration is performed in a way to ensure double counting of emitted mass does not occur and requires specific data processing by the S2S-Tool and user input in SMOKE.

To incorporate HAP emissions from the base inventory into the modeling platform, one of two methods are performed. (1) Integrate, HAP-use is a method where the mass of integrated HAP-VOCs is summed and subtracted from VOC, and the residual mass (NONHAPVOC) is speciated using a renormalized speciation profile that does not include the integrated HAP-VOCs (they are subtracted from the profile and then the profile is renormalized to 100%). (2) No-Integrate, HAP-use is a method where the mass of VOC is speciated using a speciation profile that does not include the integrated HAP-VOCs (they are subtracted from the profile and the profile is not renormalized to 100%). In this scenario, the HAP-VOC and VOC portions of the inventory are difficult to harmonize, and it is assumed that the proportions of HAPs from these sources are adequately captured in the speciation profile used to speciate the VOC emissions (which is why there is no renormalization). In addition, HAPs can be introduced into a modeling platform using speciation profiles. In this scenario, HAP-VOC emissions are "generated" through VOC speciation and are not incorporated from the base inventory. This method is called "Criteria" speciation. An illustration of these methods is shown in Figure 3-2 and the integration methods used for this platform for each sector are shown in Table 3-7.

Figure 3-2. Process of integrating HAPs and speciating VOC in a modeling platform

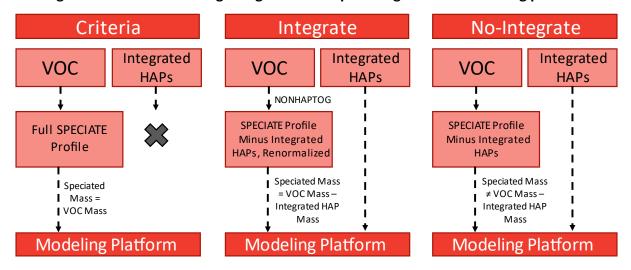


Table 3-7. Integration status for each platform sector

Platform	Approach for Integrating NEI emissions of Naphthalene (N), Benzene (B), Acetaldehyde
Sector	(A), Formaldehyde (F) and Methanol (M)
afdust	N/A – sector contains no VOC
airports	No integration, use NBAFM in inventory
beis	N/A – sector contains no inventory pollutant "VOC"; but rather specific VOC species
cmv_c1c2	No integration, no NBAFM in inventory, create NBAFM from VOC speciation
cmv_c3	No integration, no NBAFM in inventory, create NBAFM from VOC speciation
fertilizer	N/A – sector contains no VOC
livestock	Full integration (NBAFM)
nonpt	Partial integration (NBAFM)
nonroad	Full integration (internal to MOVES)
np_oilgas	Partial integration (NBAFM)
onroad	Full integration (internal to MOVES)
canada_onroad	No integration, no NBAFM in inventory, create NBAFM from VOC speciation
mexico_onroad	Full integration (internal to MOVES-Mexico); however, MOVES-MEXICO speciation was
mexico_omoau	older CB6, so post-SMOKE emissions were converted to CB6R3AE6
canada_afdust	N/A – sector contains no VOC
canmex_area	No integration, no NBAFM in inventory, create NBAFM from VOC speciation
canmex_point	No integration, no NBAFM in inventory, create NBAFM from VOC speciation
canada_ptdust	N/A – sector contains no VOC
canada_og2D	No integration, no NBAFM in inventory, create NBAFM from VOC speciation
canmex_ag	No integration, no NBAFM in inventory, create NBAFM from VOC speciation
pt_oilgas	No integration, use NBAFM in inventory
ptagfire	Full integration (NBAFM)
ptegu	No integration, use NBAFM in inventory
ptfire-rx	Full integration (NBAFM)
ptfire-wild	Partial integration (NBAFM)
ptfire_othna	No integration, no NBAFM in inventory, create NBAFM from VOC speciation
ptnonipm	No integration, use NBAFM in inventory
rail	Full integration (NBAFM)

Platform Sector	Approach for Integrating NEI emissions of Naphthalene (N), Benzene (B), Acetaldehyde (A), Formaldehyde (F) and Methanol (M)
rwc	Full integration (NBAFM)
np_solvents	Partial integration (NBAFM)

The HAPs integrated from the base inventory into the modeling platform are sector and chemical mechanism specific. In recent years, CB6R3_AE7 has been the primary chemical mechanism used at the EPA. Within that mechanism, naphthalene (NAPH), benzene (BENZ), acetaldehyde (ALD2), formaldehyde (FORM), and methanol (MEOH) are explicit HAP-VOCs, and these compounds are collectively referred to as NBAFM. Since NBAFM are explicitly modeled in CB6R3_AE7, these species have become the default collection of integrated HAP species at the EPA. MOVES, the EPA's mobile emissions model, features additional species that are explicitly modeled (e.g., ethanol). These species (Table 3-8) are also incorporated directly into modeling platforms. To incorporate these species, additional files from the S2S-Tool are required. For California, speciation of NONHAPTOG is performed on CARB's VOC submissions using the county-specific speciation profile assignments generated by MOVES in California.

Table 3-8. Integrated species from MOVES sources

MOVES ID	Pollutant Name
5	Methane (CH4)
20	Benzene
21	Ethanol
22	MTBE
24	1,3-Butadiene
25	Formaldehyde
26	Acetaldehyde
27	Acrolein
40	2,2,4-Trimethylpentane
41	Ethyl Benzene
42	Hexane
43	Propionaldehyde
44	Styrene
45	Toluene
46	Xylene
185	Naphthalene gas

Several sectors require VOC speciation to occur at the county-level and consistent speciation profiles cannot be applied across the nation. To accomplish this, the GSREF is setup to provide profiles that are "blended" at the county/SCC-level using proportions included in the input file. These variable VOC speciation methods are year-specific and applied in the oil and gas sector and for various mobile emissions sources. In both the np_oilgas and pt_oilgas sector, VOC speciation profiles are weighted to reflect region-specific application of controls, differences in gas composition, and variable sources of emissions (e.g., varying proportions of emissions from associated gas, condensate tanks, crude oil tanks, dehydrators, liquids unloading and well completions). The Nonpoint Oil and Gas Emissions Estimation

Tool generates an intermediate file that provides SCC and county-specific emissions proportions, which are subsequently incorporated into the modeling platform.

For onroad and nonroad mobile sources, the speciation of total organic gas and particulate matter emissions has historically been performed within MOVES. However, this is now performed outside of MOVES as a post-processing step. This has the advantages of making MOVES simpler, faster to run, and making it easier to change or update chemical mechanisms and speciation profiles used in the emissions modeling process. Some speciation is still performed inside MOVES (i.e., for "integrated species"). In many cases, these integrated species have effects like temperature or fuel effects which are not always well captured by external speciation profiles. For total organic gases, MOVES calculates 15 integrated species, such as methane and benzene, and the remainder is called NONHAPTOG and speciated outside MOVES.

In MOVES, speciation profiles are assigned by emission process, fuel subtype, regulatory class, and model year. Each of these dimensions are available in MOVES output except for fuel subtype, which is aggregated as part of each fuel type. To apply speciation outside of MOVES and make it compatible with the needs of SMOKE, we need to determine the speciation profile mapping by SMOKE process (aggregation of MOVES emission processes) and SMOKE Source Classification Code (SCC), which are defined by fuel type, source type, and road type. To support use of new ROC-based speciation profiles for mobile sources, during nonroad inventory post-MOVES processing, speciation profile assignments were updated to both NONHAPTOG and PM2.5 in a one-to-one manner. As well, to support use of these new profiles, PM2.5 was split into four parts: PEC and PSO4 (based on the new speciation profiles); total organic matter, or TOM (PNCOM plus PEC); and residual_PM, is RESID_PM (all other PM species). These profile updates are included in the tables below.

Table 3-9. Mobile Speciation Profile Updates

Pollutant	Old profile	New profile
PM2.5	8992	100CROC
PM2.5	8993	101CROC
PM2.5	8994	103CROC (starts)
PIVIZ.3	8994	102CROC (other)
PM2.5	8995	103CROC
PM2.5	8996	104CROC
PM2.5	95219a	105CROC
PM2.5	95220a	106CROC
NONHAPTOG	1001	107GROC
NONHARTOC	9757	101GROC (starts)
NONHAPTOG	8757	103GROC (other)
NONHAPTOG	8774	104GROC
NONHAPTOG	8775	105GROC
NONHAPTOG	9955	108GROC (starts)
NONHAPTOG	8855	109GROC (other)
NONHARTOC	8751a	100GROC (starts)
NONHAPTOG	6/51d	102GROC (other)
NONHAPTOG	95335a	106GROC

NONHAPTOG	95335a	106GROC
NONHAPTOG	95327	110GROC
NONHAPTOG	95328	111GROC
NONHAPTOG	95329	112GROC
NONHAPTOG	95330	113GROC
NONHAPTOG	95331	114GROC
NONHAPTOG	95332	115GROC
NONHAPTOG	95333	116GROC
NONHAPTOG	8775	105GROC
NONHAPTOG	1001	107GROC
NONHAPTOG	8860	117GROC
PM2_5	8996	109CROC
PM2_5	91106	108CROC
PM2_5	91113	107CROC
PM2_5	95219	105CROC

For this platform, MOVES runs were performed in inventory mode¹³ for each representative county and season (i.e., winter and summer) to compute NONHAPTOG output by emission process, fuel type, regulatory class, and model year. Emissions were then disaggregated by fuel subtype using the market share of each fuel blend in each county. Then, emissions were normalized and aggregated to calculate the percentage of total NONHAPTOG emissions that should be speciated by each profile for each SMOKE SCC and process. Finally, these percentages were applied in SMOKE-MOVES to all counties based on their representative county. A MOVES post-processing tool was used to generate the speciation cross-references (GSREFs) for SMOKE from the outputs of the inventory mode runs.

To generate onroad emissions and to perform the subsequent speciation, SMOKE-MOVES was first run to estimate emissions and both the MEPROC and INVTABLE files were used to control which pollutants are processed and eventually integrated. From there, the NONHAPTOG emission factor tables produced by MOVES were speciated within SMOKE using the GSREF files and the NONHAPTOG GSPRO files generated by the S2S-Tool. Further details on speciation methods involving MOVES can be found in Table 3-10 and in the <u>associated technical reports</u> (EPA-420-R-22-017, EPA-420-R-23-006).

Table 3-10. Mobile NOx and HONO fractions

Fuel	Model Years	Process	NO	NOx	HONO
Gasoline	1960-1980	Running Exhaust	0.975	0.017	0.008
Gasoline	1981-1990	Running Exhaust	0.932	0.06	0.008
Gasoline	1991-1995	Running Exhaust	0.954	0.038	0.008
Gasoline	1996-2050	Running Exhaust	0.836	0.156	0.008
Gasoline	1960-1980	Start Exhaust	0.975	0.017	0.008

1

¹³ Inventory mode was run rather than rates mode because: 1) MOVES inventory mode is faster than rates mode, 2) there are several dimensions of rates mode output which are not relevant to the assigning of speciation profiles, such as speed bin and temperature profile and 3) weighting speciation profiles by their emissions inventory is both easier and more accurate than by MOVES output activity or emission rates.

Fuel	Model Years	Process	NO	NOx	HONO
Gasoline	1981-1990	Start Exhaust	0.961	0.031	0.008
Gasoline	1991-1995	Start Exhaust	0.987	0.005	0.008
Gasoline	1996-2050	Start Exhaust	0.951	0.041	0.008
Diesel	1960-2003	Exhaust	0.9622	0.0298	0.008
Diesel	2004-2006	Exhaust	0.9325	0.0595	0.008
Diesel	2007-2009	Exhaust	0.7529	0.2381	0.008
Diesel	2010-2060	Exhaust	0.8035	0.1885	0.008

In Canada, a GSPRO_COMBO file is used to generate speciated gasoline emissions that account for various ethanol mixes. In Mexico, onroad emissions are pre-speciated from the MOVES-Mexico model, thus eliminating the need for a GSPRO_COMBO file. For both Canada and Mexico, nonroad VOC emissions are not defined by mode (e.g., exhaust versus evaporative), which necessitates the need for a GSPRO_COMBO file that splits total VOC into exhaust and evaporative components. In addition, MOVES-Mexico uses an older version of MOVES that is hardcoded for an older version of the CB6 chemical mechanism ("CB6-CAMx"). This version does not generate the model species XYLMN or SOAALK, so additional post-processing is performed to generate those emissions:

- XYLMN = XYL[1]-0.966*NAPHTHALENE[1]
- PAR = PAR[1]-0.00001*NAPHTHALENE[1]
- SOAALK = 0.108*PAR[1]

3.2.2 PM speciation

Like VOC speciation, $PM_{2.5}$ speciation does feature integrated species from the base inventory, though there are far fewer (only BC and SO₄). The remaining mass is either TOM (total organic matter) or RESID_PM (residual PM = $PM_{2.5} - BC - SO_4 - TOM$), which is speciated using SPECIATE profiles that were post-processed using the S2S-Tool. Small adjustments to the methods were needed to accommodate the reporting by California. Since California does not provide speciated $PM_{2.5}$ emissions, total $PM_{2.5}$ emissions for onroad and nonroad sources in California were speciated using the profile proportions estimated by MOVES in California. Finally, onroad brake and tire wear $PM_{2.5}$ emissions were speciated in the *moves2smk* postprocessor using the SPECIATE profiles 95462 and 95460, respectively.

3.2.2.1 **Diesel PM**

Diesel PM emissions are explicitly included in the NEI using the pollutant names DIESEL-PM10 and DIESEL-PM25 for select mobile sources whose engines burn diesel or residual oil fuels. This includes sources in onroad, nonroad, point airport ground support equipment, point locomotives, nonpoint locomotives, and all PM from diesel or residual oil fueled nonpoint CMV. These emissions are equal to their primary PM10-PRI and PM25-PRI counterparts, are exclusively from exhaust (i.e., do not include brake/tire wear), and are exclusively used in toxics modeling. Diesel PM is then speciated in SMOKE using the same speciation profiles and methods as primary PM, except that diesel PM is mapped to model species that feature "DIESEL PM" in their species name.

3.2.3 NO_X speciation

In the NEI, NO_x emissions are inventoried on a NO_2 weighted basis, but must be speciated into NO, NO_2 , and HONO. Table 3-11 provides the NO_x speciation profiles used in EPA's modeling platforms. The only difference between the two profiles is the allocation of some NO_2 mass to HONO in the "HONO" profile.

HONO emissions from mobile sources have been identified in tunnel studies and its inclusion in emissions inventories is important for urban chemistry. Here, a HONO to NO_x ratio of 0.008 was selected (Sarwar, 2008). In this modeling platform, all non-mobile sources use the "NHONO" profile, all non-onroad mobile sources (including nonroad, cmv, and rail) use the "HONO" profile, and all onroad NO_x speciation occurs within MOVES. For further details on NO_x speciation within MOVES, please see the <u>associated technical report</u>.

Profile Pollutant **Species Mass Split Factor** HONO NOX NO₂ 0.092 **HONO** NOX NO 0.9 **HONO** NOX **HONO** 800.0 **NHONO** NOX NO2 0.1 NHONO NOX NO 0.9

Table 3-11. NO_X speciation profiles

3.2.4 Sulfuric Acid Vapor (SULF)

Sulfuric acid vapor (SULF) is added for coal and distillate oil fuel combustion sources to the emissions files using SO₂ emissions from the base inventory. This process utilizes profiles assignments in the GSREF file and the profiles were derived using data from AP-42 (EPA, 1998). The weight fraction of added sulfuric acid vapor is fuel specific, assumes that gaseous sulfate is primarily H₂SO₄, and is calculated as follows:

$$SULF\ emissions\ = SO_2\ emissions\ \times \frac{fraction\ of\ S\ emitted\ as\ sulfate}{fraction\ of\ S\ emitted\ as\ SO_2} \times \frac{MW\ H_2SO_4}{MW\ SO_2}$$

In the above, the molecular weight (MW) of sulfate and sulfur dioxide are 98 g/mol and 64 g/mol, respectively. The fractions of sulfur emissions emitted as sulfate and sulfur dioxide, as well as the resulting sulfuric acid vapor split factors, by fuel, are summarized in Table 3-12 and Table 3-13 below.

Fuel	SCCs	Profile Code	Fraction as SO2	Fraction as Sulfate	Split Factor (Mass Fraction)
Bituminous	1-0X-002-YY	95014	0.95	0.014	.014/.95 * 98/64 =
	X is 1, 2, or 3 YY is 01-19				0.0226
	21-0Z-002-000				
	Z is 2, 3, or 4				
Subbituminous	1-0X-002-YY	87514	0.875	0.014	.014/.875 * 98/64
	X is 1, 2, or 3				= 0.0245
	YY is 21-38				
Lignite	1-0X-003-YY	75014	0.75	0.014	.014/.75 * 98/64 =
	X is 1, 2, or 3				0.0286
	YY is 01-18				

Table 3-12. Sulfate Split Factor Computation

Fuel	SCCs	Profile	Fraction	Fraction	Split Factor (Mass
		Code	as SO2	as Sulfate	Fraction)
Residual oil	1-0X-004-YY	99010	0.99	0.01	.01/.99 * 98/64 =
	X is 1, 2, or 3				0.0155
	YY is 01-06				
	21-0Z-005-000				
	Z is 2, 3, or 4				
Distillate oil	1-0X-005-YY	99010	0.99	0.01	Same as residual
	X is 1, 2, or 3				oil
	YY is 01-06				
	21-0Z-004-000				
	Z is 2, 3, or 4				

Table 3-13. SO₂ speciation profiles

Profile	pollutant	species	split factor
95014	SO2	SULF	0.0226
95014	SO2	SO2	1
87514	SO2	SULF	0.0245
87514	SO2	SO2	1
75014	SO2	SULF	0.0286
75014	SO2	SO2	1
99010	SO2	SULF	0.0155
99010	SO2	SO2	1

3.2.5 Speciation of Metals and Mercury

Metals and mercury emissions from the base inventory require speciation for use in modeling. Non-mercury metals must be speciated into coarse and fine size ranges for use in CMAQ, and Table 3-14, summarizes the particle size profiles used for each data category.

Table 3-14. Particle Size Speciation of Metals

Source Type	Profile	Pollutant	Fine	Coarse
Onroad	OARS	Arsenic	0.95	0.05
Onroad	ONMN	Manganese	0.4375	0.5625
Onroad	ONNI	Nickel	0.83	0.17
Onroad	CRON	Chromhex	0.86	0.14
Nonroad	NOARS	Arsenic	0.83	0.17
Nonroad	NONMN	Manganese	0.67	0.33
Nonroad	NONNI	Nickel	0.49	0.51
Nonroad	CRNR	Chromhex	0.80	0.20
Stationary	STANI	Nickel	0.59	0.41
Stationary	STACD	Cadmium	0.76	0.24
Stationary	STAMN	Manganese	0.67	0.33
Stationary	STAPB	Lead	0.74	0.26
Stationary	STABE	Beryllium	0.68	0.32

Source Type	Profile	Pollutant	Fine	Coarse
Stationary	CRSTA	Chromhex	0.71	0.29
Stationary	STARS	Arsenic	0.59	0.41

Mercury is speciated into one of the three forms used by CMAQ; elemental, divalent gaseous, and divalent particulate. Table 3-15 provides the mercury speciation profiles used in the modeling platform. All relevant SCCs were mapped to these profiles within the GSREF. A caveat is the onroad and nonroad sectors, where mercury emissions are pre-speciated in MOVES, nonroad emissions from California, which use the appropriate profiles below, and onroad emissions from California, where MOVES-based speciation is applied.

Table 3-15. Mercury Speciation Profiles

Profile Code	Description	Elemental	Divalent Gas	Particulate
HGCEM	Cement kiln exhaust	0.66	0.34	0
HGCLI	Cement clinker cooler	0	0	1
НВСМВ	Fuel combustion	0.5	0.4	0.1
HGCRE	Human cremation	0.8	0.15	0.05
HGELE	Elemental only (used?)	1	0	0
HGGEO	Geothermal power plants	0.87	0.13	0
HGGLD	Gold mining	0.8	0.15	0.05
HGHCL	Chlor-Alkali plants	0.972	0.028	0
HGINC	Waste incineration	0.2	0.6	0.2
HGIND	Industrial average	0.73	0.22	0.05
HGMD	Mobile diesel	0.56	0.29	0.15
HGMG	Mobile gas	0.915	0.082	0.003
HGMET	Metal production	0.8	0.15	0.005
HGMWI	Medical waste incineration	0.2	0.6	0.2
HGPETCOKE	Petroleum coke	0.6	0.3	0.1

3.3 Temporal Allocation

Temporal allocation is the process of distributing aggregated emissions to a finer temporal resolution, thereby converting annual emissions to hourly emissions as is required by CMAQ. While the total emissions are important, the timing of the occurrence of emissions is also essential for accurately simulating ozone, PM, and other pollutant concentrations in the atmosphere. Many emissions inventories are annual or monthly in nature. Temporal allocation takes these aggregated emissions and distributes the emissions to the hours of each day. This process is typically done by applying temporal profiles to the inventories in this order: monthly, day of the week, and diurnal, with monthly and day-of-week profiles applied only if the inventory is not already at that level of detail.

The temporal factors applied to the inventory were selected using some combination of country, state, county, SCC, and pollutant. Table 3-16 summarizes the temporal aspects of emissions modeling by comparing the key approaches used for temporal processing across the sectors. In the table, "Daily temporal approach" refers to the temporal approach for getting daily emissions from the inventory

using the SMOKE Temporal program. The values given are the values of the SMOKE L_TYPE setting. The "Merge processing approach" refers to the days used to represent other days in the month for the merge step. If this is not "all," then the SMOKE merge step runs only for representative days, which could include holidays as indicated by the right-most column. The values given are those used for the SMOKE M TYPE setting (see below for more information).

Table 3-16. Temporal settings used for the platform sectors in SMOKE

Platform sector short name	Inventory resolutions	Monthly profiles used?	Daily temporal approach	Merge processing approach	Process holidays as separate days
afdust_adj	Annual	Yes	week	all	Yes
airports	Annual	Yes	all	all	No
beis	Hourly		n/a	all	No
cmv_c1c2	Annual & hourly		All	all	No
cmv_c3	Annual & hourly		All	all	No
fertilizer	Monthly		met-based	All	Yes
livestock	Daily	No	met-based	All	No
nonpt	Annual	Yes	week	week	Yes
nonroad	Monthly		mwdss	mwdss	Yes
np_oilgas	Annual	Yes	aveday	aveday	No
onroad	Annual & monthly ¹		all	all	Yes
onroad_ca_adj	Annual & monthly ¹		all	all	Yes
canada_afdust	Annual & monthly	Yes	week	all	No
canmex_area	Monthly		week	week	No
canada_onroad	Monthly		week	week	No
mexico_onroad	Monthly		week	week	No
canmex_point	Monthly	Yes	mwdss	mwdss	No
canada_ptdust	Annual	Yes	week	all	No
canmex_ag	Annual	Yes	mwdss	mwdss	No
canada_og2D	Monthly		mwdss	mwdss	No
pt_oilgas	Annual	Yes	mwdss	mwdss	Yes
Ptegu	Annual & hourly	Yes ²	all	All	No
ptnonipm	Annual	Yes	mwdss	mwdss	Yes
ptagfire	Daily		all	all	No
ptfire-rx	Daily		all	all	No
ptfire-wild	Daily		all	all	No
ptfire_othna	Daily		all	all	No
rail	Annual	Yes	aveday	aveday	No
rwc	Annual	No ³	met-based ³	all	No ³
np_solvents	Annual	Yes	aveday	aveday	No

¹Note the annual and monthly "inventory" actually refers to the activity data (VMT, hoteling, and VPOP) for onroad. VMT and hoteling is monthly and VPOP is annual. The actual emissions are computed on an hourly basis.

The following values are used in the table. The value "all" means that hourly emissions were computed for every day of the year and that emissions potentially have day-of-year variation. The value "week" means that hourly emissions were computed for all days in one "representative" week, representing all weeks for each month. This means emissions have day-of-week variation, but not week-to-week variation within the month. The value "mwdss" means hourly emissions for one representative Monday, representative weekday (Tuesday through Friday), representative Saturday, and representative Sunday for each month. This means emissions have variation between Mondays, other weekdays, Saturdays and Sundays within the month, but not week-to-week variation within the month. The value "aveday" means hourly emissions computed for one representative day of each month, meaning emissions for all days within a month are the same. Special situations with respect to temporal allocation are described in the following subsections.

In addition to the resolution, temporal processing includes a ramp-up period for several days prior to January 1, 2022, which is intended to mitigate the effects of initial condition concentrations. The ramp-up period was 10 days (December 22-31, 2021). For all anthropogenic sectors, emissions from December 2022 were used to fill in surrogate emissions for the end of December 2021. For biogenic emissions, December 2021 emissions were computed using year meteorology.

3.3.1 Use of FF10 format for finer than annual emissions

The FF10 inventory format for SMOKE provides a consolidated format for monthly, daily, and hourly emissions inventories. With the FF10 format, a single inventory file can contain emissions for all 12 months and the annual emissions in a single record. This helps simplify the management of numerous inventories. Similarly, daily and hourly FF10 inventories contain individual records with data for all days in a month and all hours in a day, respectively.

SMOKE prevents the application of temporal profiles on top of the "native" resolution of the inventory. For example, a monthly inventory should not have annual-to-month temporal allocation applied to it; rather, it should only have month-to-day and diurnal temporal allocation. This becomes particularly important when specific sectors have a mix of annual, monthly, daily, and/or hourly inventories. The flags that control temporal allocation for a mixed set of inventories are discussed in the SMOKE documentation. The modeling platform sectors that make use of monthly values in the FF10 files are nonroad, onroad (for activity data), and all Canada and Mexico inventories except for agriculture. Commercial marine vessels in cmv_c3 and cmv_c1c2 use hourly data in the FF10 files.

3.3.2 Temporal allocation for non-EGU sources (ptnonipm)

Most temporal profiles in ptnonipm result in primarily constant emissions for each day of the year, although some have lower emissions on Sundays. An update in the 2018 platform was an analysis of monthly temporal profiles for non-EGU point sources in the ptnonipm sector. A number of profiles were found to be not quite flat over the months but were so close to flat that the difference was not meaningful. These profiles were replaced in the cross reference to point instead to the flat monthly profile. The codes for the profiles that were replaced were: 202, 214, 220, 221, 222, 223, 227, 257, 263, 264, 265, 266, 267, 269, 271, 272, 279, 280, 295, 302, 303, 304, 305, 306, 309, 310, 327, 329, 332, and 333. For the 2022v1 platform, temporal profiles for SCC 40202501 emissions for which are related to

²Only units that do not have matching hourly CEMS data use monthly temporal profiles.

³Except for 3 SCCs that do not use met-based speciation.

surface coating for metals were changed to use hourly profiles number 11 that reflects operations from 7AM to 5PM local time.

3.3.3 Electric Generating Utility temporal allocation (ptegu)

Electric generating unit (EGU) sources matched to ORIS units were temporally allocated to hourly emissions needed for modeling using the hourly CEMS data for units that could be matched to the CEMS emissions. Those hourly data were processed through v2.1 of the CEMCorrect tool to mitigate the impact of unmeasured values in the data.

The temporal allocation procedure for EGUs in the base year is differentiated by whether or not the unit could be directly matched to a unit with CEMS data via its ORIS facility code and boiler ID. Note that for units matched to CEMS data, annual totals of their emissions input to CMAQ may be different than the values in the annual inventory because the CEMS data replace the NO_x and SO_2 annual inventory data for the seasons in which the CEMS are operating. If a CEMS-matched unit is determined to be a partial year reporter, as can happen for sources that run CEMS only in the summer, emissions totaling the difference between the annual emissions and the total CEMS emissions are allocated to the non-summer months. Prior to use of the CEMS data in SMOKE it is processed through the CEMCorrect tool. The CEMCorrect tool identifies hours for which the data were not measured as indicated by the data quality flags in the CEMS data files. Unmeasured data can be filled in with maximum values and thereby cause erroneously high values in the CEMS data. When data were flagged as unmeasured and the values were found to be more than three times the annual mean for that unit, the data for those hours were replaced with annual mean values (Adelman et al., 2012). These adjusted CEMS data were then used for the remainder of the temporal allocation process described below (see Figure 3-3 for an example).

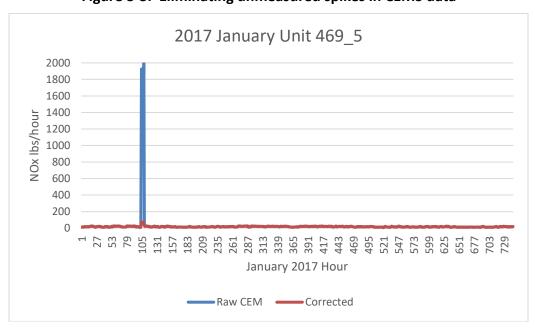
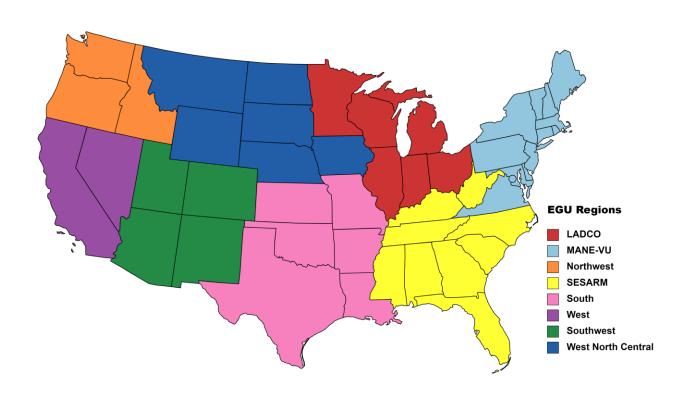


Figure 3-3. Eliminating unmeasured spikes in CEMS data

The region, fuel, and type (peaking or non-peaking) must be identified for each input EGU with CEMS data so the data can be used to generate profiles. The identification of peaking units was done using

hourly heat input data from 2022 and the two previous years (2020 and 2021). The heat input was summed for each year. Equation 1 shows how the annual heat input value is converted from heat units (BTU/year) to power units (MW) using the NEEDS v6 derived unit-level heat rate (BTU/kWh). In equation 2 a capacity factor is calculated by dividing the annual unit MW value by the NEEDS v6 unit capacity value (MW) multiplied by the hours in the year. A peaking unit was defined as any unit that had a maximum capacity factor of less than 0.2 for every year (2020, 2021, and 2022) and a 3-year average capacity factor of less than 0.1.

Equation 1. Annual unit power output


$$Annual\ Unit\ Output\ (MW) = \frac{\sum_{i=0}^{8760} {}^{Hourly\ HI}_{}*1000\left(\frac{MW}{kW}\right)}{NEEDS\ Heat\ Rate\left(\frac{BTU}{kWh}\right)}$$

Equation 2. Unit capacity factor

$$Capacity\ Factor = \frac{Annual\ Unit\ Output\ (MW)}{NEEDS\ Unit\ Capacity\ \left(\frac{MW}{h}\right)*8760\ (h)}$$

Input regions were determined from one of the eight EGU modeling regions based on MJO and climate regions. Regions were used to group units with similar climate-based load demands. Region assignment is made on a state level, where all units within a state were assigned to the appropriate region. Unit fuel assignments were made using the primary NEEDS v6 fuel. Units fueled by bituminous, subbituminous, or lignite were assigned to the coal fuel type. Natural gas units were assigned to the gas fuel type. Distillate and residual fuel oil were assigned to the oil fuel type. Units with any other primary fuel were assigned the "other" fuel type. Figure 3-4 shows the regions used to generate the profiles. Currently there are 64 unique profiles available based on 8 regions, 4 fuels, and 2 for peaking unit status (peaking and non-peaking).

Figure 3-4. Regions used to Compute Temporal non-CEMS EGU Temporal Profiles

The daily and diurnal profiles were calculated for each region, fuel, and peaking type group from the year 2022 CEMS heat input values. The heat input values were summed for each input group to the annual level at each level of temporal resolution: monthly, month-of-day, and diurnal. The sum by temporal resolution value was then divided by the sum of annual heat input in that group to get a set of temporalization factors. Diurnal factors were created for both the summer and winter seasons to account for the variation in hourly load demands between the seasons. For example, the sum of all hour 1 heat input values in the group was divided by the sum of all heat inputs over all hours to get the hour 1 factor. Each grouping contained 12 monthly factors, up to 31 daily factors per month, and two sets of 24 hourly factors. The profiles were weighted by unit size where the units with more heat input have more influence on the shape of the profile. Composite profiles were created for each region and type across all fuels as a way to provide profiles for a fuel type that does not have hourly CEMS data in that region. Figure 3-5 shows peaking and non-peaking daily temporal profiles for the gas fuel type in the LADCO region. Figure 3-6 shows the diurnal profiles for the coal fuel type in the Mid-Atlantic Northeast Visibility Union (MANE-VU) region.

Figure 3-5. Example Daily Temporal Profiles for the LADCO Region and the Gas Fuel Type

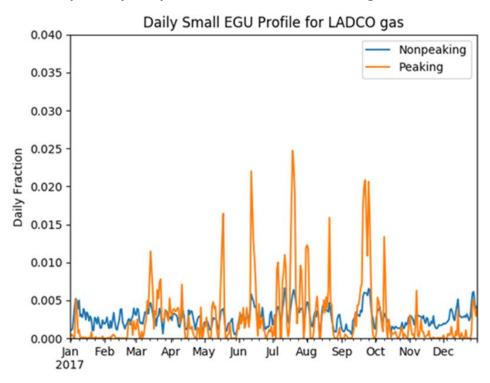
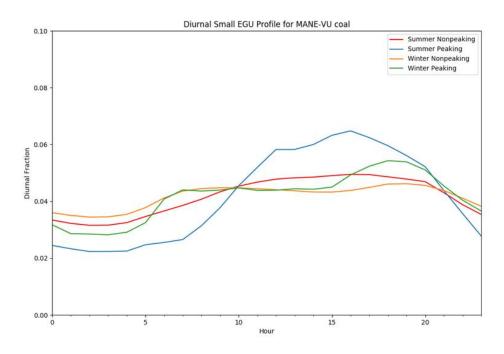



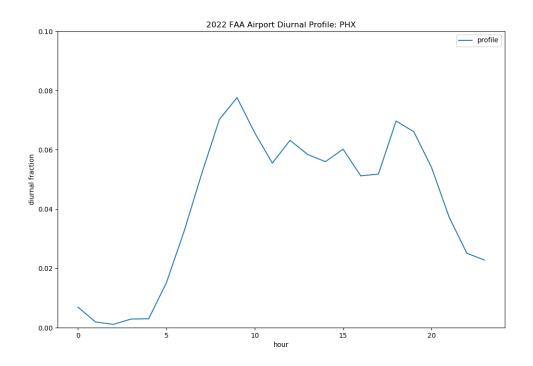
Figure 3-6. Example Diurnal Temporal Profiles for the MANE-VU Region and the Coal Fuel Type

SMOKE uses a cross-reference file to select a monthly, daily, and diurnal profile for each source. For the 2022 platform, the temporal profiles were assigned in the cross-reference at the unit level to EGU sources without hourly CEMS data. An inventory of all EGU sources without CEMS data was used to identify the region, fuel type, and type (peaking/non-peaking) of each source. The region used to select the temporal profile is assigned based on the state from the unit FIPS. The fuel was assigned by SCC to

one of the four fuel types: coal, gas, oil, and other. A fuel type unit assignment is made by summing the VOC, NOX, PM2.5, and SO2 for all SCCs in the unit. The SCC that contributed the highest total emissions to the unit for selected pollutants was used to assign the unit fuel type. Peaking units were identified as any unit with an oil, gas, or oil fuel type with a NAICS of 22111 or 221112. Some units may be assigned to a fuel type within a region that does not have an available input unit with a matching fuel type in that region. These units without an available profile for their group were assigned to use the regional composite profile. Municipal waste combustor and cogeneration units were identified using the NEEDS primary fuel type and cogeneration flag, respectively, from the NEEDS v6 database. Assignments for each unit needed a profile were made using the regions shown in Figure 3-4.

3.3.4 Airport Temporal allocation (airports)

Airport temporal profiles were updated to 2022-specific temporal profiles for all airports other than Alaska seaplanes. Hourly airport operations data were obtained from the Aviation System Performance Metrics (ASPM) Airport Analysis website (https://aspm.faa.gov/apm/sys/AnalysisAP.asp). A report of 2022 hourly Departures and Arrivals for Metric Computation by airport was generated. An overview of the ASPM metrics is at


https://aspmhelp.faa.gov/index/Aviation System Performance Metrics (ASPM).html. Figure 3-7 shows examples of diurnal airport profiles for the Phoenix airport (PHX) and the default profile for Texas.

Month-to-day and Annual-to month temporal profiles were developed based on a separate query of the 2022 Aviation System Performance Metrics (ASPM) Airport Analysis (https://aspm.faa.gov/apm/sys/AnalysisAP.asp). A report of all airport operations (takeoffs and landings) by day for 2022 was generated. Annual-to-month profiles were derived directly from the daily airport operations report and examples are shown for Wisconsin and Atlanta in Figure 3-8.

For 2022, all airport SCCs (i.e., 2275*, 2265008005, 2267008005, 2268008005 and 2270008005) were assigned to individual commercial airports where a match could be made between the inventory facility and the FAA identifier in the ASPM derived data. State average profiles were calculated as the average of the temporal fractions for all airports within a state. The state average profiles were assigned by state to all airports in the inventory that did not have an airport specific match in the ASPM data. Package processing hubs at the Memphis (MEM), Indianapolis (IND), Louisville (SDF), and Chicago Rockford (RFD) airports produced peaks in the average state profiles at times not typical for activity in smaller commercial airports. These packaging hubs were removed from the state averages. Airports that required state-defaults in states lacking ASPM data use national average profiles calculated from the average of the state temporal profiles.

Alaska seaplanes, which are outside the CONUS domain use the monthly profile in Figure 3-9. These were assigned based on the facility ID.

Figure 3-7. 2022 Airport Diurnal Profiles for PHX and state of Texas

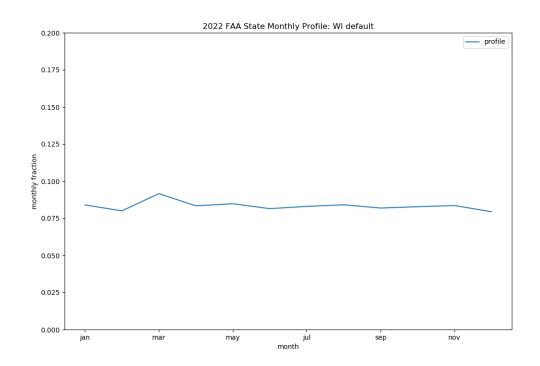
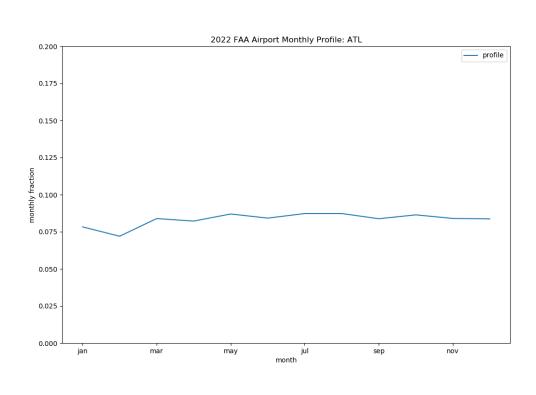




Figure 3-8. 2022 Wisconsin and Atlanta annual-to-month profile for airport emissions

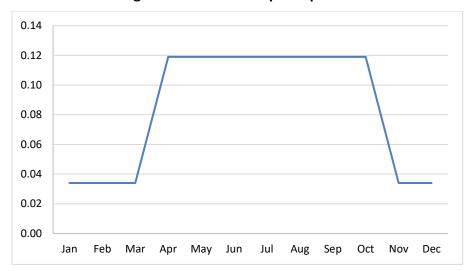


Figure 3-9. Alaska seaplane profile

3.3.5 Residential Wood Combustion Temporal allocation (rwc)

There are many factors that impact the timing of when emissions occur, and for some sectors this includes meteorology. The benefits of utilizing meteorology as a method for temporal allocation are: (1) a meteorological dataset consistent with that used by the AQ model is available (e.g., outputs from WRF); (2) the meteorological model data are highly resolved in terms of spatial resolution; and (3) the meteorological variables vary at hourly resolution and can, therefore, be translated into hour-specific temporal allocation.

The SMOKE program Gentpro provides a method for developing meteorology-based temporal allocation. Currently, the program can utilize three types of temporal algorithms: annual-to-day temporal allocation for residential wood combustion (RWC); month-to-hour temporal allocation for agricultural livestock NH₃; and a generic meteorology-based algorithm for other situations. Meteorological-based temporal allocation was used for portions of the rwc sector and for the entire ag sector.

Gentpro reads in gridded meteorological data (output from MCIP) along with spatial surrogates and uses the specified algorithm to produce a new temporal profile that can be input into SMOKE. The meteorological variables and the resolution of the generated temporal profile (hourly, daily, etc.) depend on the selected algorithm and the run parameters. For more details on the development of these algorithms and running Gentpro, see the Gentpro documentation and the SMOKE documentation at

http://www.cmascenter.org/smoke/documentation/3.1/GenTPRO TechnicalSummary Aug2012 Final.p df and https://www.cmascenter.org/smoke/documentation/4.5/html/ch05s03s05.html, respectively.

For the RWC sector, two different algorithms for calculating temporal allocation are used. For most SCCs in the sector, in which wood burning is more prominent on colder days, Gentpro was used to compute annual to day-of-year temporal profiles based on the daily minimum temperature. These profiles distribute annual RWC emissions to the coldest days of the year. On days where the minimum temperature does not drop below a user-defined threshold, RWC emissions for most sources in the sector are zero. Conversely, the program temporally allocates the largest percentage of emissions to the

coldest days. Similar to other temporal allocation profiles, the total annual emissions do not change, only the distribution of the emissions within the year is affected. The temperature threshold for RWC emissions was 50 °F for most of the country, and 60 °F for the following states: Alabama, Arizona, California, Florida, Georgia, Louisiana, Mississippi, South Carolina, and Texas. The algorithm is as follows:

If Td >= Tt: no emissions that day

If Td < Tt: daily factor = 0.79*(Tt -Td)

where (Td = minimum daily temperature; Tt = threshold temperature, which is 60 degrees F in southern states and 50 degrees F elsewhere).

Once computed, the factors were normalized to sum to 1 to ensure that the total annual emissions are unchanged (or minimally changed) during the temporal allocation process.

Figure 3-10 illustrates the impact of changing the temperature threshold for a warm climate county. The plot shows the temporal fraction by day for Duval County, Florida, for the first four months of 2007. The default 50 °F threshold creates large spikes on a few days, while the 60 °F threshold dampens these spikes and distributes a small amount of emissions to the days that have a minimum temperature between 50 and 60 °F.

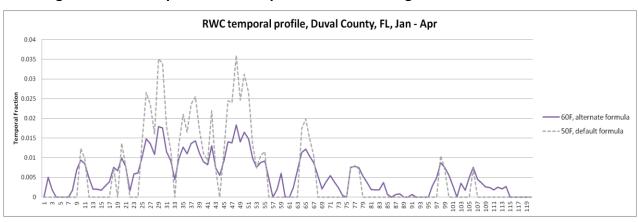
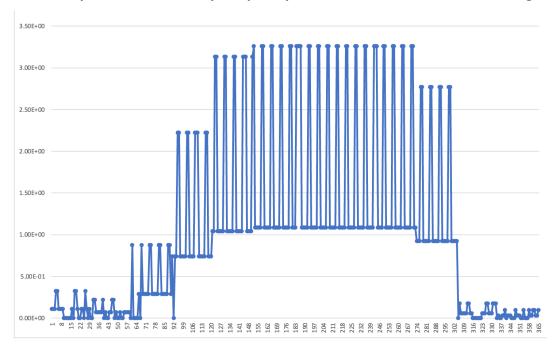



Figure 3-10. Example of RWC temporal allocation using a 50 versus 60 °F threshold

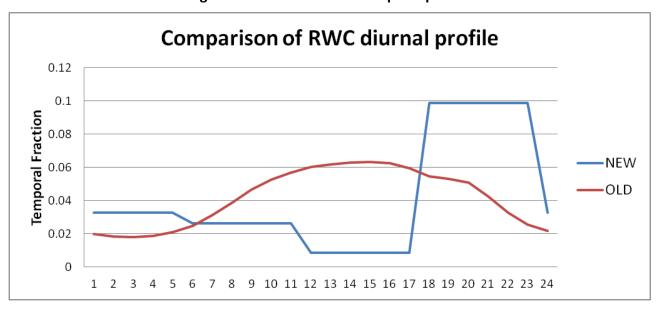

For the 2022 emissions modeling platform, a separate algorithm is used to determine temporal allocation of recreational wood burning, e.g., fire pits (SCC 2104008700) and is applied by Gentpro. Recreational wood burning depends on both minimum and maximum daily temperatures by county, and also uses a day-of-week temporal profile (61500) in which emissions are much higher on weekends than on weekdays. According to the recreational wood burning algorithm, only days in which the temperature falls within a range of 50°F and 80°F at some point during the day receive emissions. On days when the maximum temperature is less than 50°F or the minimum temperature is above 80°F, the daily temporal factor is zero. For all other days, the day-of-week profile 61500 is applied, which has 33% of the emissions on each weekend day and lower emissions on weekdays. An example is shown in Figure 3-11. As a result of applying this algorithm, northern states have more recreational wood burning in summer months while southern states show a flatter pattern with emissions distributed more evenly throughout the months.

Figure 3-11. Example of Annual-to-day temporal pattern of recreational wood burning emissions

The diurnal profile used for most RWC sources (see Figure 3-12) places more of the RWC emissions in the morning and the evening when people are typically using these sources. This profile is based on a 2004 MANE-VU survey (MANE-VU, 2004). This profile was created by averaging three indoor and three RWC outdoor temporal profiles from counties in Delaware and aggregating them into a single RWC diurnal profile. This new profile was compared to a concentration-based analysis of aethalometer measurements in Rochester, New York (Wang *et al.* 2011) for various seasons and days of the week and was found that the new RWC profile generally tracked the concentration based temporal patterns.

Figure 3-12. RWC diurnal temporal profile

The temporal profiles for hydronic heaters" (i.e., SCCs=2104008610 [outdoor], 2104008620 [indoor], and 2104008620 [pellet-fired]) are not based on temperature data, because the meteorologically based temporal allocation used for the rest of the rwc sector did not agree with observations for how these appliances are used.

For hydronic heaters, the annual-to-month, day-of-week and diurnal profiles were modified based on information in the New York State Energy Research and Development Authority's (NYSERDA) "Environmental, Energy Market, and Health Characterization of Wood-Fired Hydronic Heater Technologies, Final Report" (NYSERDA, 2012), as well as a Northeast States for Coordinated Air Use Management (NESCAUM) report "Assessment of Outdoor Wood-fired Boilers" (NESCAUM, 2006). A Minnesota 2008 Residential Fuelwood Assessment Survey of individual household responses (MDNR, 2008) provided additional annual-to-month, day-of-week, and diurnal activity information for OHH as well as recreational RWC usage.

Data used to create the diurnal profile for hydronic heaters, shown in Figure 3-13, are based on a conventional single-stage heat load unit burning red oak in Syracuse, New York.

Annual-to-month temporal allocation for OHH was computed from the MDNR 2008 survey and is illustrated in Figure 3-14. The hydronic heater emissions still exhibit strong seasonal variability, but do not drop to zero because many units operate year-round for water and pool heating.

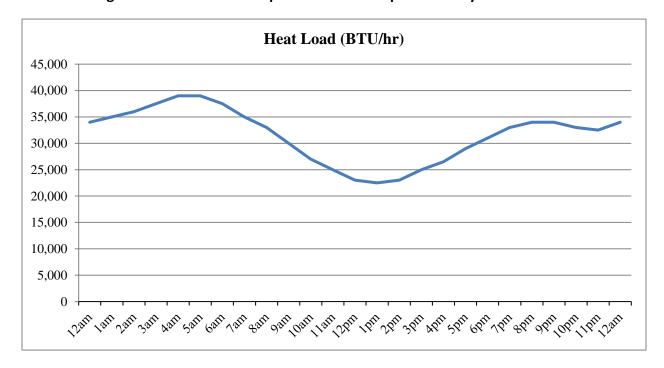


Figure 3-13. Data used to produce a diurnal profile for hydronic heaters

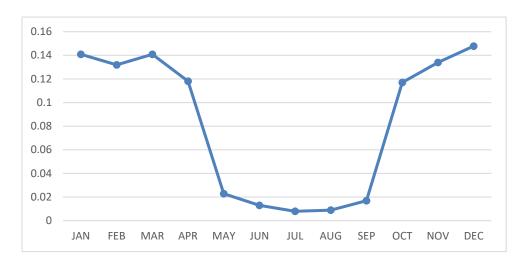


Figure 3-14. Monthly temporal profile for hydronic heaters

3.3.6 Agricultural Ammonia Temporal Profiles (livestock)

For the ag sector, agricultural GenTPRO temporal allocation was applied to livestock emissions and to all pollutants within the sector, not just NH₃. The GenTPRO algorithm is based on an equation derived by Jesse Bash of EPA ORD based on the Zhu, Henze, et al. (2014) empirical equation. This equation is based on observations from the TES satellite instrument with the GEOS-Chem model and its adjoint to estimate diurnal NH₃ emission variations from livestock as a function of ambient temperature, aerodynamic resistance, and wind speed. The equations are:

$$E_{i,h} = [161500/T_{i,h} \times e^{(-1380/T_{i,h})}] \times AR_{i,h}$$

$$PE_{i,h} = E_{i,h} / Sum(E_{i,h})$$
Equation 3-2

where

- PE_{i,h} = Percentage of emissions in county i on hour h
- E_{i,h} = Emission rate in county i on hour h
- T_{i,h} = Ambient temperature (Kelvin) in county i on hour h
- AR_{i,h} = Aerodynamic resistance in county i

Some examples plots of the profiles by animal type in different parts of the country are shown in Figure 3-15.

To develop month-to-hour temporal profiles of livestock emissions, GenTPRO was run using the "BASH_NH3" profile method to create for these sources. Because these profiles distribute to the hour based on monthly emissions, the monthly emissions were obtained from a monthly inventory, or from an annual inventory that has been temporalized to the month. Figure 3-16 compares the daily emissions for Minnesota from the "old" approach (uniform monthly profile) with the "new" approach (GenTPRO generated month-to-hour profiles) for 2014. Although the GenTPRO profiles show daily (and hourly) variability, the monthly total emissions are the same between the two approaches.

Figure 3-15. Examples of livestock temporal profiles in several parts of the country

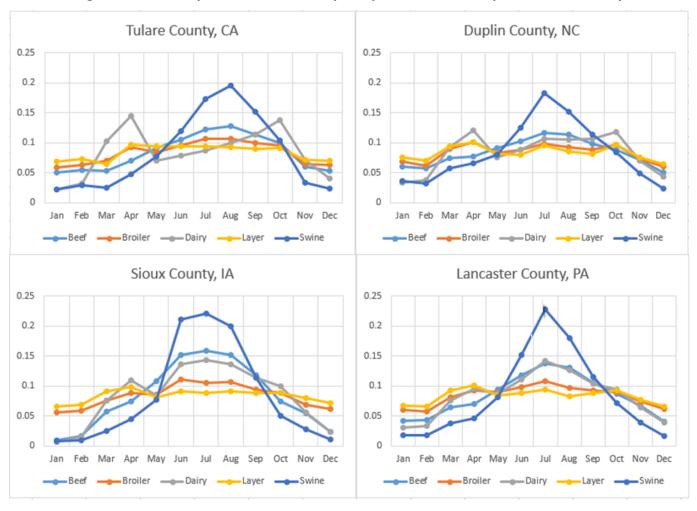
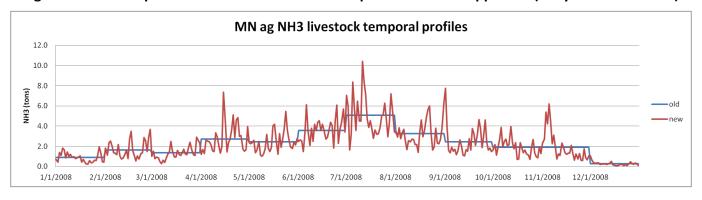
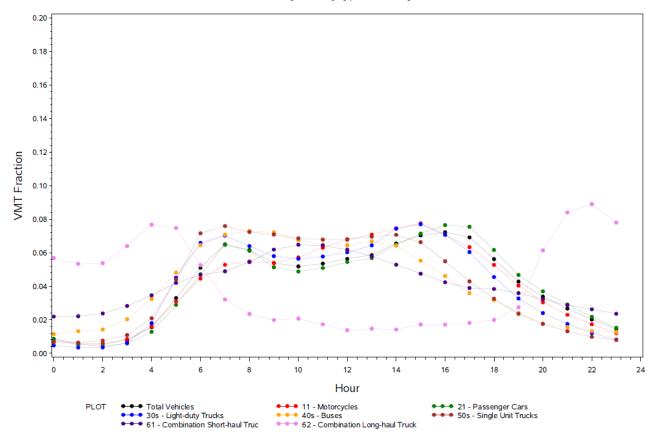



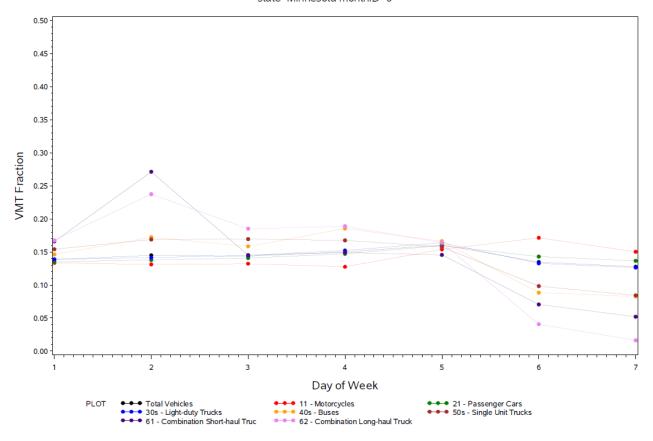
Figure 3-16. Example of animal NH₃ emissions temporal allocation approach (daily total emissions)

3.3.7 Oil and gas temporal allocation (np_oilgas)

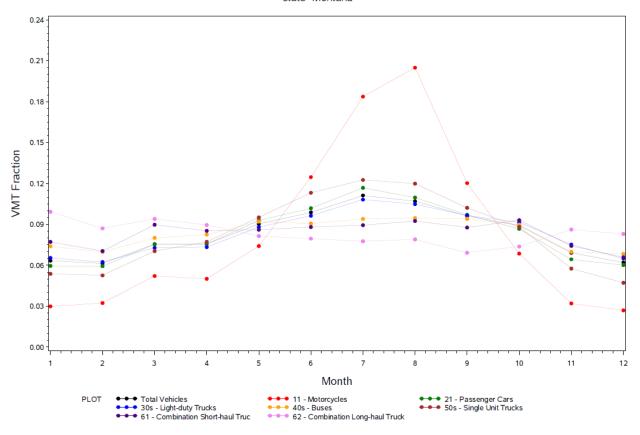

Monthly temporalization of np_oilgas emissions is based primarily on year-specific monthly factors from the Oil and Gas Tool (OGT). Factors were specific to each county and SCC. For use in SMOKE, each unique set of factors was assigned a label (OG20M_0001 through OG20M_6306), and then a SMOKE-formatted ATPRO_MONTHLY and an ATREF were developed. This dataset of monthly temporal factors included profiles for all counties and SCCs in the Oil and Gas Tool inventory. Because we are using non-tool datasets in some states, this monthly temporalization dataset did not cover all counties and SCCs in the entire inventory used for this study. To fill in the gaps in those states, state average monthly profiles for oil, natural gas, and combination sources were calculated from Energy Information Administration (EIA) data and assigned to each county/SCC combination not already covered by the OGT monthly temporal profile dataset. Coal bed methane (CBM) and natural gas liquid sources were assigned flat monthly profiles where there was not already a profile assignment in the dataset.

3.3.8 Onroad mobile temporal allocation (onroad)

For the onroad sector, the temporal distribution of emissions is a combination of traditional temporal profiles and the influence of meteorology. For the 2022 platform EPA utilized the FHWA's Travel Monitoring and Analysis System (TMAS). This system measures monthly traffic volume, by class and weight. The primary purpose for using TMAS in 2022 platform was to replace the month VMT distribution from 2020, which were marked by the COVID pandemic shutdowns in mid-March/April. The 2022 TMAS month VMT distribution looks more like a typical nonpandemic year. We also used day/hour distributions from the same dataset because they were available and for the correct year (2022). TMAS data was processed for each state, for each month, and vehicle class. Figure 3-17 shows TMAS data. The first plot shows hour of the day for the state of Maryland. Note that you can see the rush hour in the morning and the evening. The second plot shows the state of Minnesota for the month of June. Notice that motorcycles come out in the spring (winter months show less VMT for motorcycles) and are driven more on Saturday. The third plot shows an annual, by month plot of Montana. Note that there is an increase in passenger cars and light duty trucks during the month of July. This may be due to an increase in tourism during the warmer months.


Figure 3-17. TMAS Data: VMT Fraction by Hour of Day and Day of Week

TMAS Data: VMT Fraction v. Hour by State state=Maryland dayType=Weekday


/proj1/EPA_2022_Platform/TMAS_2022/plot_TMAS_hour.sas 30JAN24 17:32

TMAS Data: VMT Fraction v. Day of Week by State state=Minnesota monthID=6

 $/proj\,1/EPA_2022_Platform/TMAS_2022/plot_TMAS_day.sas~30\,JAN24~17:32$

TMAS Data: VMT Fraction v. Month by State state=Montana

/proj1/EPA_2022_Platform/TMAS_2022/plot_TMAS.sas 09FEB24 12:53

The "inventories" referred to in Table 3-16 consist of activity data for the onroad sector, not emissions. VMT is the activity data used for on-network rate-per-distance (RPD) processes. The off-network emissions from the rate-per-profile (RPP) and rate-per-vehicle (RPV) processes use the VPOP activity data, which are annual and do not need temporal allocation. For rate-per-hour (RPH) processes that result from hoteling of combination trucks, the HOTELING inventory is annual and was temporalized to month, day of the week, and hour of the day through temporal profiles. Day-of-week and hour-of-day temporal profiles are also used to temporalize the starts activity used for rate-per-start (RPS) processes, and the off-network idling (ONI) hours activity used for rate-per-hour-ONI (RPHO) processes. The inventories for starts and ONI activity contain monthly activity so that monthly temporal profiles are not needed.

For on-roadway RPD processes, the VMT activity data are annual for some sources and monthly for other sources, depending on the source of the data. Sources without monthly VMT were temporalized from annual to month through temporal profiles. VMT was also temporalized from month to day of the week, and then to hourly through temporal profiles. The RPD processes also use hourly speed distributions (SPDIST) as discussed in Section 2.3. For onroad, the temporal profiles and SPDIST will impact not only the distribution of emissions through time but also the total emissions. SMOKE-MOVES calculates emissions for RPD processed based on the VMT, speed and meteorology. Thus, if the VMT or

speed data were shifted to different hours, it would align with different temperatures and hence different emission factors. In other words, two SMOKE-MOVES runs with identical annual VMT, meteorology, and MOVES emission factors, will have different total emissions if the temporal allocation of VMT changes. Figure 3-18 (from 2021) illustrates the temporal allocation of the onroad activity data (i.e., VMT) and the pattern of the emissions that result after running SMOKE-MOVES. In this figure, it can be seen that the meteorologically varying emission factors add variation on top of the temporal allocation of the activity data.

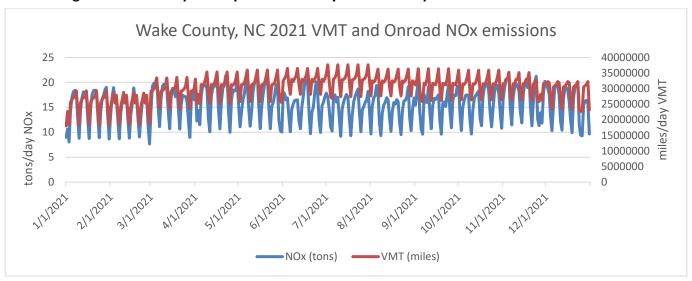


Figure 3-18. Example temporal variability of VMT compared to onroad NO_X emissions

Meteorology is not used in the development of the temporal profiles, but rather it impacts the calculation of the hourly emissions through the program Movesmrg. The result is that the emissions vary at the hourly level by grid cell. More specifically, the on-network (RPD) and the off-network parked and stationary vehicle (RPV, RPH, RPHO, RPS, and RPP) processes use the gridded meteorology (MCIP) either directly or indirectly. For RPD, RPV, RPH, RPHO, and RPS, Movesmrg determines the temperature for each hour and grid cell and uses that information to select the appropriate emission factor for the specified SCC/pollutant/mode combination. For RPP, instead of reading gridded hourly meteorology, Movesmrg reads gridded daily minimum and maximum temperatures. The total of the emissions from the combination of these six processes (RPD, RPV, RPH, RPHO, RPS, and RPP) comprise the onroad sector emissions. In summary, the temporal patterns of emissions in the onroad sector are influenced by meteorology.

Day-of-week, hour-of-day, and month-of-year temporal profiles for VMT were developed from TMAS data. Data were provided for motorcycles (11), passenger vehicles (21), light duty trucks (30s), buses (40s), single unit trucks (50s), and combination short-haul trucks (61), and combination long-haul trucks (62). The dataset includes temporal profiles for individual states.

The StreetLight temporal profiles were used in areas of the contiguous United States that did not submit temporal profiles of sufficient detail for the 2020 NEI. For this platform, the data selection hierarchy favored local input data over EPA-developed information, with the exception of the three MOVES tables 'hourVMTFraction', dayVMTFraction', and 'avgSpeedDistribution' where county-level, telematics-based EPA Defaults were adopted for the NEI universally. For hoteling, day-of-week profiles are the same as

non-hoteling for combination trucks, while hour-of-day non-hoteling profiles for combination trucks were inverted to create new hoteling profiles that peak overnight instead of during the day.

Temporal profiles for RPHO are based on the same temporal profiles as the on-network processes in RPD, but since the on-network profiles are road-type-specific and ONI is not road-type-specific, the RPHO profiles were assigned to use rural unrestricted profiles for counties considered "rural" and urban unrestricted profiles for counties considered "urban." RPS uses the same day-of-week profiles as on-network processes in RPD, but uses a separate set of diurnal temporal profiles specifically for starts activity. For starts, there are two hour-of-day temporal profiles for each source type, one for weekdays and one for weekends. The starts diurnal temporal profiles are applied nationally and are based on the default starts-hour-fraction tables from MOVES.

3.3.9 Nonroad mobile temporal allocation (nonroad)

For nonroad mobile sources, temporal allocation is performed differently for different SCCs. Beginning with the final 2011 platform, improvements to temporal allocation of nonroad mobile sources were made to make the temporal profiles more realistically reflect real-world practices. The specific updates were made for agricultural sources (e.g., tractors), construction, and commercial residential lawn and garden sources. In the 2022v1 platform, temporal profiles for residential and commercial snowblowers were changed to be flat for each day of the week since snowfall is not influenced by the day of the week.

Figure 3-19 shows two previously existing temporal profiles (9 and 18) and a newer temporal profile (19) which has lower emissions on weekends. In this platform, construction and commercial lawn and garden sources use the new profile 19 which has lower emissions on weekends. Residental lawn and garden sources continue to use profile 9 and agricultural sources continue to use profile 19.

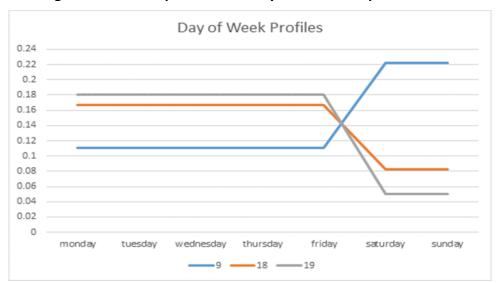


Figure 3-19. Example Nonroad Day-of-week Temporal Profiles

Figure 3-20 shows the previously existing temporal profiles 26 and 27 along with newer temporal profiles (25a and 26a) which have lower emissions overnight. In this platform, construction sources use profile 26a. Commercial lawn and garden and agriculture sources use the profiles 26a and 25a, respectively. Residental lawn and garden sources use profile 27.

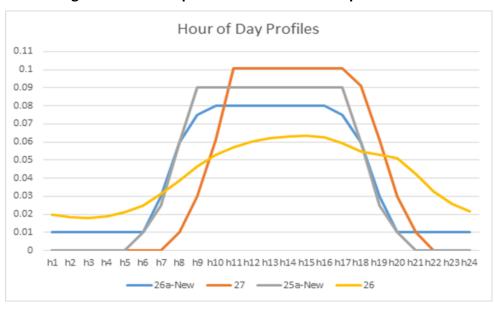


Figure 3-20. Example Nonroad Diurnal Temporal Profiles

Additionally, the temporal profile for residential and commercial snowblowers were changed to flat day-of-week, since snow falls when it falls regardless of weekday/weekend. For the nonroad sector, while the NEI only stores the annual totals, the modeling platform uses monthly inventories from output from MOVES. For California, CARB's annual inventory was temporalized to monthly using monthly temporal profiles applied in SMOKE by SCC.

3.3.10 Fugitive dust temporal profiles (afdust)

For the afdust sector, meteorology is not used in the development of the temporal profiles, but it is used to reduce the total emissions based on meteorological conditions. These adjustments are applied through sector-specific scripts, beginning with the application of land use-based gridded transport fractions and then subsequent zero-outs for hours during which precipitation occurs or there is snow cover on the ground. The land use data used to reduce the NEI emissions explain the amount of emissions that are subject to transport. This methodology is discussed in (Pouliot et al., 2010), and in "Fugitive Dust Modeling for the 2008 Emissions Modeling Platform" (Adelman, 2012). The precipitation adjustment is applied to remove all emissions for hours where measurable rain occurs, or where there is snow cover. Therefore, the afdust emissions vary day-to-day based on the precipitation and/or snow cover for each grid cell and hour. Both the transport fraction and meteorological adjustments are based on the gridded resolution of the platform; therefore, somewhat different emissions will result from different grid resolutions. Application of the transport fraction and meteorological adjustments prevents the overestimation of fugitive dust impacts in the grid modeling as compared to ambient samples.

In the 2022v1 platform, some changes were made to temporal profiles in the afdust sector as follows:

- New temporal profiles (monthly, weekly, hourly) were created for paved and unpaved road dust. The monthly profile is based on monthly emissions from the 2022hc onroad PM2.5 brake and tire wear, since that has less temperature dependence than other pollutants and process. Weekly and hourly profiles are based on averages of the TMAS profiles used in SMOKE-MOVES. Unpaved road dust profiles use averages of passenger trucks only; paved road dust profiles use weighted averages of 3/4 light-duty vehicle emissions excluding motorcycles, and 1/4 heavy duty emissions excluding buses. There are separate hourly profiles for weekdays vs weekends.
- For agricultural tilling, flat day-of-week profiles are now being used along with new monthly
 profiles mostly based on nonroad ag emissions. The monthly nonroad ag profiles are based on
 LADCO-provided MOVES data and more accurately reflect tilling activities, peaking in spring and
 fall.
- For dust from livestock, the monthly profiles for 2805100010 and 2805100050 (beef cattle and swine) were updated to the 2022 data from https://u.osu.edu/beef/2023/10/25/more-heifers-supporting-feedlot-inventory/. Profiles for other livestock dust are not changed from the 2020 platform.

3.3.11 Additional sector specific details (beis, cmv, rail, nonpt, np_solvents, ptfire-rx, ptfire-wild)

In the 2022v1 platform, some changes were made to temporal profiles in the nonpt sector:

- Evaporative SCCs starting with 250105 and 250106 were updated to use monthly temporal
 profiles based on monthly total VOC emissions computed from the 2022hc onroad evaporative
 off-network processes in the RPP and RPV subsectors contained in the final 2022 onroad
 emissions.
- Residential natural gas (SCC 2104006000) monthly temporal profiles were derived for each state based on Energy Information Administration (EIA) data for 2022.

In the 2022v1 platform, some changes were made to temporal profiles in the np solvents sector:

- All asphalt SCCs (paving and roofing) are using new EIA-based monthly profiles for "asphalt and road oil" by PADD region. The data source is
 https://www.eia.gov/dnav/pet/PET_CONS_PSUP_A_EPPA_VPP_MBBL_A.htm.
- For interior painting, a.k.a. architectural coating (2401001000): created a new monthly profile PAINT22 based on 2022 data from https://fred.stlouisfed.org/series/MRTSSM44412USN/.
- For pesticides (SCCs 2461850000, 2461800001, and 2460800000), monthly profiles were changed as follows: AZ/CA/FL/HI/TX (the warmest states) are flat annual. Other moderately warm southeast states from North Carolina south and west to Oklahoma are flat from March through October, and zero in other months. All other states are flat from April through September and zero in other months.

Biogenic emissions from the BEIS model vary each day of the year because they are developed using meteorological data including temperature, surface pressure, and radiation/cloud data. The emissions are computed using appropriate emission factors according to the vegetation in each model grid cell, while taking the meteorological data into account.

For the cmv sectors, most areas use hourly emission inventories derived from the 5-minute AIS data. For the rail sector, monthly profiles from the 2016 platform were used. Monthly temporal allocation for rail freight emissions is based on AAR Rail Traffic Data, Total Carloads and Intermodal, for 2016. For passenger trains, monthly temporal allocation is flat for all months. Rail passenger miles data is available by month but it is not known how closely rail emissions track with passenger activity since passenger trains run on a fixed schedule regardless of how many passengers are aboard, and so a flat profile is chosen for passenger trains. Rail emissions are allocated with flat day of week profiles, and most emissions are allocated with flat hourly profiles.

For the ptagfire sector, the inventories are in the daily point fire format FF10 PTDAY. The diurnal temporal profile for ag fires reflects the fact that burning occurs during the daylight hours - see Figure 3-21 (McCarty et al., 2009). This puts most of the emissions during the work-day and suppresses the emissions during the middle of the night.

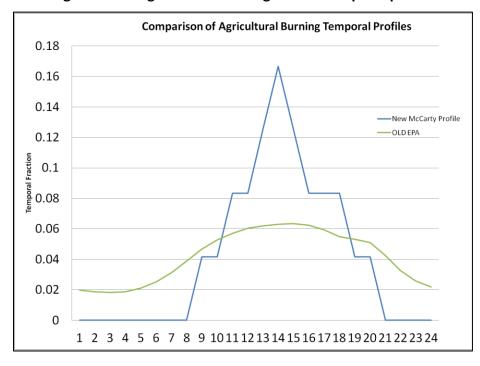


Figure 3-21. Agricultural burning diurnal temporal profile

Industrial processes that are not likely to shut down on Sundays, such as those at cement plants, use profiles that include emissions on Sundays, while those that would shut down on Sundays use profiles that reflect Sunday shutdowns.

For the ptfire sectors, the inventories are in the daily point fire format FF10 PTDAY, so temporal profiles are only used to go from day-specific to hourly emissions. Separate hourly profiles for prescribed and wildfires were used. For ptfire, state-specific hourly profiles were used, with distinct profiles for

prescribed fires and wildfires. Figure 3-22 below shows the profiles used for each state for the platform. The wildfire diurnal profiles are similar but vary according to the average meteorological conditions in each state. For all agricultural burning, the diurnal temporal profile used reflects the fact that burning occurs during the daylight. This puts most of the emissions during the workday and suppresses the emissions during the middle of the night. This diurnal profile was used for each day of the week for all agricultural burning emissions in all states.

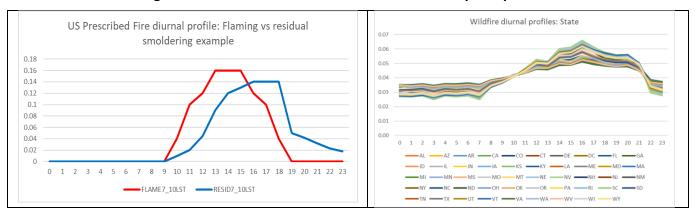


Figure 3-22. Prescribed and Wildfire diurnal temporal profiles

3.4 Spatial Allocation

The methods used to perform spatial allocation are summarized in this section. For the modeling platform, spatial factors are typically applied by county and SCC. Spatial allocation was performed for each of the modeling grids shown in Section 3.1. To accomplish this, SMOKE used national 12-km spatial surrogates and a SMOKE area-to-point data file. For the U.S., the EPA updated surrogates to use circa 2020 data. The U.S., Mexican, and Canadian 12-km surrogates cover the entire CONUS domain 12US1 shown in Figure 3-1. While highlights of information are provided below, the file <code>Surrogate_specifications_2022_platform_US_Can_Mex.xlsx</code> documents the complete configuration for generating the surrogates and can be referenced for more details.

3.4.1 Spatial Surrogates for U.S. emissions

There are more than 90 spatial surrogates available for spatially allocating U.S. county-level emissions to the 12-km grid cells used by the air quality model. As described in Section 3.4.2, an area-to-point approach overrides the use of surrogates for airport refueling sources.

The surrogates for the platform are based on a variety of geospatial data sources, including the American Community Survey (ACS) for census-related data, the National Land Cover Database (NLCD) Onroad surrogates are based on average annual daily traffic counts (AADT) from the highway monitoring performance system (HPMS).

U.S. Surrogate datasets used for this platform include:

- County boundaries used for all surrogates use the 2020 TIGER boundaries.
- Oil and gas surrogates represent activity from the year 2022.
- ACS-based surrogates use the 2020 ACS.
- NLCD-based surrogates use NLCD 2019.

- Animal specific livestock waste surrogates were derived from National Pollutant Discharge Elimination System (NPDES) animal operation water permits and Food and Agriculture Organization (FAO) gridded livestock count data.
- Surrogates for fuel stations, asphalt surfaces, and unpaved roads are based on data from the OpenStreetMap database.
- Gravel and lead mines use separate surrogates based on the more general United States Geological Survey (USGS) mining surrogate.
- Residential wood combustion surrogates are based on ACS data.

When developing modeling platforms, EPA routinely updates surrogates to utilize updated versions of the underlying surrogate databases or to use a different source of data when it is deemed more representative for a particular source category. In the 2020 platform, NLCD-based surrogates were updated from using the 2011 National Land Cover Database (NLCD) to use the 2019 National Land Cover Database. During these updates, EPA also examined the Residential Wood Combustion (RWC) surrogates that were based on the NLCD. This was done to see if there are other sources of spatial data that could improve the geographic representation of the RWC sector when disaggregating the county-level emissions provided by the emissions inventory to grid cells. For the RWC sector prior to the 2020 platform, the spatial surrogate used was #300 computed from "NLCD Low Intensity development" (i.e., land areas with 20-49% impervious surface). This surrogate was initially selected for RWC to capture geographic areas where there may be houses but generally in less developed spaces. However, this surrogate does not differentiate by development or structure type. The result is that RWC emissions can end up concentrated around roads, commercial, and other low to moderately developed grid cells.

In the 2020 platform, housing data provided by the American Community Survey (ACS) were used. The particular attributes used are: single family detached, single family attached, dual family and mobile home and combinations of these, depending on the particular RWC specific source category. Using types of housing seemed more reflective of where RWC emissions would be located. However, a downside of using the ACS housing data is that the census shapes are broad (particularly in rural areas), so the emissions can appear more spread out in some areas than when using the NLCD-based surrogates. When comparing the two approaches for RWC surrogates (NLCD vs ACS), the ACS-based surrogates looked reasonable, and in fact better than the NLCD Low intensity development surrogate. A comparison of the PM_{2.5} emissions gridded with each of these approaches is shown in Figure 3-23 and Figure 3-24. In the future, a goal is to further improve the resolution surrogates, as such, the use of building structure data weighted by the ACS will be examined for future platform updates.

Figure 3-23. 2020 Residential Wood Combustion Emissions using NLCD Low Intensity Surrogate

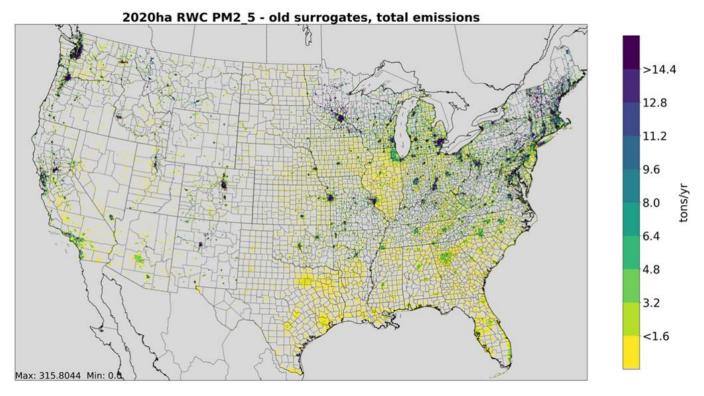
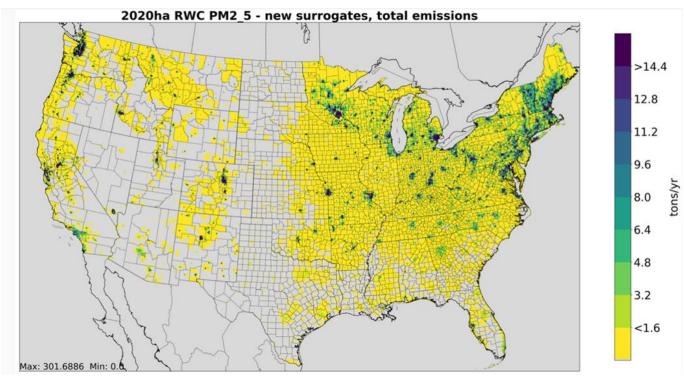



Figure 3-24. 2020 Residential Wood Combustion Emissions using ACS-based Surrogate

Surrogates for the U.S. were generated using the Surrogate Tools DB with the Java-based Surrogate tools used to perform gapfilling and normalization where needed. The tool and documentation for the original Surrogate Tool are available at https://www.cmascenter.org/sa-

tools/documentation/4.2/SurrogateToolUserGuide 4 2.pdf, and the tool and documentation for the Surrogate Tools DB is available from https://www.cmascenter.org/surrogate tools db/. Table 3-17 lists the codes and descriptions of the surrogates. Surrogate names and codes listed in *italics* are not directly assigned to any sources in the platform, but they are sometimes used to gapfill other surrogates. When the source data for a surrogate have no values for a particular county, gap filling is used to provide values for the spatial surrogate in those counties to ensure that no emissions are dropped when the spatial surrogates are applied to the emission inventories. The Shapefiles used to develop the US surrogates along with the attributes and filters used are shown in Table 3-18.

Table 3-17. U.S. Surrogates available for the 2022 modeling platforms

Code	Surrogate Description	Code	Surrogate Description
N/A	Area-to-point approach (see 3.6.2)	650	Refineries and Tank Farms
100	Population	669	All Abandoned Wells
110	Housing	6691	All Abandoned Oil Wells
135	Detached Housing	6692	All Abandoned Gas Wells
136	Single and Dual Unit Housing	6693	All Abandoned CBM Wells
137	Single + Dual Unit + Manufactured Housing	6694	All Abandoned Oil Wells - Plugged
150	Residential Heating - Natural Gas	6695	All Abandoned Gas Wells - Plugged
170	Residential Heating - Distillate Oil	6696	All Abandoned CBM Wells - Plugged
180	Residential Heating - Coal	6697	All Abandoned Oil Wells - Unplugged
190	Residential Heating - LP Gas	6698	All Abandoned Gas Wells - Unplugged
205	Extended Idle Locations	670	Spud Count - CBM Wells
239	Total Road AADT	671	Spud Count - Gas Wells
240	Total Road Miles	672	Gas Production at Oil Wells
242	All Restricted AADT	673	Oil Production at CBM Wells
244	All Unrestricted AADT	674	Unconventional Well Completion Counts
258	Intercity Bus Terminals	676	Well Count - All Producing
259	Transit Bus Terminals	677	Well Count - All Exploratory
260	Total Railroad Miles	678	Completions at Gas Wells
261	NTAD Total Railroad Density	679	Completions at CBM Wells
271	NTAD Class 1 2 3 Railroad Density	681	Spud Count - Oil Wells
300	NLCD Low Intensity Development	683	Produced Water at All Wells
304	NLCD Open + Low	6831	Produced Water at CBM Wells
305	NLCD Low + Med	6832	Produced Water at Gas Wells
306	NLCD Med + High	6833	Produced Water at Oil Wells
307	NLCD All Development	685	Completions at Oil Wells
308	NLCD Low + Med + High	686	Completions at All Wells
309	NLCD Open + Low + Med	687	Feet Drilled at All Wells
310	NLCD Total Agriculture	689	Gas Produced - Total
318	NLCD Pasture Land	691	Well Counts - CBM Wells
319	NLCD Crop Land	692	Spud Count - All Wells
320	NLCD Forest Land	693	Well Count - All Wells

321	NLCD Recreational Land	694	Oil Production at Oil Wells
340	NLCD Land	695	Well Count - Oil Wells
350	NLCD Water	696	Gas Production at Gas Wells
401	FAO 2010 Cattle	697	Oil Production at Gas Wells
4011	FAO 2010 Large Cattle Operations	698	Well Count - Gas Wells
4012	NPDES 2020 Beef Cattle	699	Gas Production at CBM Wells
4013	NPDES 2020 Dairy Cattle	711	Airport Areas
402	FAO 2010 Pig	801	Port Areas
4021	NPDES 2020 Swine	850	Golf Courses
403	FAO 2010 Chicken	860	Mines
4031	NPDES 2020 Chicken	861	Sand and Gravel Mines
404	FAO 2010 Goat	862	Lead Mines
4041	NPDES 2020 Goat	863	Crushed Stone Mines
405	FAO 2010 Horse	900	OSM Fuel
406	FAO 2010 Sheep	901	OSM Asphalt Surfaces
4071	NPDES 2020 Turkey	902	OSM Unpaved Roads
508	Public Schools		

Table 3-18. Shapefiles used to develop U.S. Surrogates

			Weight	
Code	Surrogate	Weight Shapefile	Attribute	Filter Function
100	Population	ACS_2020_5YR_BG_pop_hu	POP2020	
110	Housing	ACS_2020_5YR_BG_pop_hu	HU2020	
135	Detached Housing	ACS_2020_5YR_BG_pop_hu	detachedh	
136	Single and Dual Unit Housing	ACS_2020_5YR_BG_pop_hu	lttriunit	
137	Single + Dual Unit + Manufactured Housing	ACS_2020_5YR_BG_pop_hu_mobile	sngdlmobl	
150	Residential Heating - Natural Gas	ACS_2020_5YR_BG_pop_hu	UTIL_GAS	
170	Residential Heating - Distillate Oil	ACS_2020_5YR_BG_pop_hu	FUEL_OIL	
180	Residential Heating - Coal	ACS_2020_5YR_BG_pop_hu	COAL	
190	Residential Heating - LP Gas	ACS_2020_5YR_BG_pop_hu	LP_GAS	
205	Extended Idle Locations	pil_2019_06_24	rev_truck	rev_truck>0
239	Total Road AADT	hpms2017_v3_04052020	aadt	moves2014 IN ('02','03','04','05')
240	Total Road Miles	hpms2017_v3_04052020	NONE	moves2014 IN ('02','03','04','05')
242	All Restricted AADT	hpms2017_v3_04052020	aadt	moves2014 IN ('02','04')
Code	Surrogate	Weight Shapefile	Weight Attribute	Filter Function

244	All Unrestricted AADT	hpms2017_v3_04052020	aadt	moves2014 IN ('03','05')
259	Transit Bus Terminals	ntad_2016_ipcd	NONE	bus_t=1
260	Total Railroad Miles	tiger_2014_rail	NONE	_
	Total Named Wiles	e.ge	110112	RAILTYPE IN
261	NTAD Total Railroad Density	ntad_2014_rail_fixed	dens	(1,2,3)
	NTAD Class 1 2 3 Railroad			
271	Density	ntad_2014_rail_fixed	dens	RAILTYPE=1
	NLCD Low Intensity	nlcd_2019_land_cover_l48_20210604_5		GRIDCODE=22
300	Development	00m_II	NONE	GRIDCODE-22
		nlcd_2019_land_cover_l48_20210604_5		GRIDCODE IN
304	NLCD Open + Low	00m_II	NONE	(21,22)
205		nlcd_2019_land_cover_l48_20210604_5	NONE	GRIDCODE IN
305	NLCD Low + Med	00m_II	NONE	(22,23)
306	NI CD Mod I High	nlcd_2019_land_cover_l48_20210604_5	NONE	GRIDCODE IN
300	NLCD Med + High	00m_II nlcd_2019_land_cover_I48_20210604_5	INOINE	(23,24) GRIDCODE IN
307	NLCD All Development	00m II	NONE	(21,22,23,24)
307	NECD All Development	nlcd 2019 land cover l48 20210604 5	INOINE	GRIDCODE IN
308	NLCD Low + Med + High	00m II	NONE	(22,23,24)
		nlcd_2019_land_cover_l48_20210604_5		GRIDCODE IN
309	NLCD Open + Low + Med	00m_II	NONE	(21,22,23)
		nlcd_2019_land_cover_l48_20210604_5		GRIDCODE IN
310	NLCD Total Agriculture	00m_II	NONE	(81,82)
		nlcd_2019_land_cover_l48_20210604_5		
318	NLCD Pasture Land	00m_II	NONE	GRIDCODE=81
		nlcd_2019_land_cover_l48_20210604_5		
319	NLCD Crop Land	00m_II	NONE	GRIDCODE=82
222		nlcd_2019_land_cover_l48_20210604_5	NONE	GRIDCODE IN
320	NLCD Forest Land	00m_II	NONE	(41,42,43)
		nlcd 2019 land cover l48 20210604 5		GRIDCODE IN
321	NLCD Recreational Land	00m II	NONE	(21,31,41,42,43,5 2,71)
321	NECD Necreational Land	nlcd 2019 land cover l48 20210604 5	IVOIVE	2,711
340	NLCD Land	00m_II	NONE	GRIDCODE != 11
3.0	Trees Land	nlcd_2019_land_cover_l48_20210604_5	110112	0.000021 22
350	NLCD Water	00m II	NONE	GRIDCODE=11
401	FAO 2010 Cattle	fao Cattle 2010 Da nlcdproj masked	DN	
	FAO 2010 Large Cattle	fao_LargeCattle_2010_Da_nlcdproj_mas		
4011	Operations	ked	DN	
4012	NPDES 2020 Beef Cattle	livestock npdes state permits subset	Population	Animal = 'Beef'
4013	NPDES 2020 Dairy Cattle	livestock npdes state permits subset	Population	Animal = 'Dairy'
402	FAO 2010 Pig	fao_Pig_2010_Da_nlcdproj_masked	DN	20
4021	NPDES 2020 Swine	livestock npdes state permits subset	Population	Animal = 'Swine'
7021	IN DES 2020 SWITE	investock_libraes_state_bellilits_subset	Weight	Allinai – Swille
Code	Surrogate	Weight Shapefile	Attribute	Filter Function
403	FAO 2010 Chicken	fao_Chicken_2010_Da_nlcdproj_masked		

4031	NPDES 2020 Chicken	livestock_npdes_state_permits_subset	Population	Animal = 'Chicken'
404	FAO 2010 Goat		DN	CHICKETI
4041	NPDES 2020 Goat		Population	Animal = 'Goat'
4041 405		'' -	DN	Allillai – Goat
	FAO 2010 Horse			
406	FAO 2010 Sheep		DN	
4071	NPDES 2020 Turkey		Population	Animal = 'Turkey'
508	Public Schools	public_schools_2018_2019	TOTAL	
650	Refineries and Tank Farms	eia_2015_us_oil	NONE	
669	All Abandoned Wells	AW_ALL_COUNTS_669_2022	ACTIVITY	
6696	All Abandoned CBM Wells – Plugged	AW_CBM_PLUGGED_6696_2022	ACTIVITY	
6693	All Abandoned CBM Wells	AW_CBM_PLUGGED_UNPLUGGED_6693_202 2	ACTIVITY	
6695	All Abandoned Gas Wells – Plugged	AW_GAS_PLUGGED_6695_2022	ACTIVITY	
6692	All Abandoned Gas Wells	AW_GAS_PLUGGED_UNPLUGGED_6692_202 2	ACTIVITY	
6698	All Abandoned Gas Wells – Unplugged	AW_GAS_UNPLUGGED_6698_2022	ACTIVITY	
6694	All Abandoned Oil Wells – Plugged	AW_OIL_PLUGGED_6694_2022	ACTIVITY	
6691	All Abandoned Oil Wells	AW_OIL_PLUGGED_UNPLUGGED_6691_2022	ACTIVITY	
6697	All Abandoned Oil Wells – Unplugged	AW_OIL_UNPLUGGED_6697_2022	ACTIVITY	
670	Spud Count - CBM Wells	SPUD_CBM_670_2022	ACTIVITY	
671	Spud Count - Gas Wells		ACTIVITY	
672	Gas Production at Oil Wells		ACTIVITY	
673	Oil Production at CBM Wells		ACTIVITY	
674	Unconventional Well Completion Counts	COMPLETIONS_UNCONVENTIONAL_674_ 2022	ACTIVITY	
676	Well Count - All Producing	TOTAL_PROD_WELL_676_2022	ACTIVITY	
677	Well Count - All Exploratory	TOTAL_EXPL_WELL_677_2022	ACTIVITY	
678	Completions at Gas Wells	COMPLETIONS_GAS_678_2022	ACTIVITY	
679	Completions at CBM Wells	COMPLETIONS_CBM_679_2022	ACTIVITY	
681	Spud Count - Oil Wells	SPUD_OIL_681_2022	ACTIVITY	
683	Produced Water at All Wells	PRODUCED_WATER_ALL_683_2022	ACTIVITY	
Code	Surrogate	Weight Shapefile	Weight Attribute	Filter Function
6831	Produced Water at CBM Wells	PRODUCED_WATER_CBM_6831_2022	ACTIVITY	
6832	Produced Water at Gas Wells	PRODUCED_WATER_GAS_6832_2022	ACTIVITY	

6833	Produced Water at Oil Wells	PRODUCED_WATER_OIL_6833_2022	ACTIVITY	
685	Completions at Oil Wells	COMPLETIONS_OIL_685_2022	ACTIVITY	
686	Completions at All Wells	COMPLETIONS_ALL_686_2022	ACTIVITY	
687	Feet Drilled at All Wells	FEET_DRILLED_687_2022	ACTIVITY	
689	Gas Produced - Total	TOTAL_GAS_PRODUCTION_689_2022	ACTIVITY	
691	Well Counts - CBM Wells	CBM_WELLS_691_2022	ACTIVITY	
692	Spud Count - All Wells	SPUD_ALL_692_2022	ACTIVITY	
693	Well Count - All Wells	TOTAL_WELL_693_2022	ACTIVITY	
694	Oil Production at Oil Wells	OIL_PRODUCTION_694_2022	ACTIVITY	
695	Well Count - Oil Wells	OIL_WELLS_695_2022	ACTIVITY	
696	Gas Production at Gas Wells	GAS_PRODUCTION_696_2022	ACTIVITY	
697	Oil Production at Gas Wells	CONDENSATE_GAS_PRODUCTION_697_2 022	ACTIVITY	
698	Well Count - Gas Wells	GAS_WELLS_698_2022	ACTIVITY	
699	Gas Production at CBM Wells	CBM_PRODUCTION_699_2022	ACTIVITY	
711	Airport Areas	airport_area	area	
801	Port Areas	Ports_2014NEI	area_sqmi	
850	Golf Courses	usa_golf_courses_2019_10	NONE	
860	Mines	usgs_mrds_active_mines	NONE	
861	Sand and Gravel Mines	usgs_mrds_active_mines	NONE	CAT='Gravel'
862	Lead Mines	usgs_mrds_active_mines	NONE	CAT='Lead'
863	Crushed Stone Mines	usgs_mrds_active_mines	NONE	CAT='Stone'
900	OSM Fuel	osm_fuel_points_us_mar2023	NONE	
901	OSM Asphalt Surfaces	osm_asphalt_surfaces_us_mar2023	NONE	
902	OSM Unpaved Roads	osm_unpaved_roads_us_mar2023	NONE	

The 'Data Shapefile' used for all of the U.S. surrogates except for those based on HPMS data is cb_2020_us_county_500k, while the HPMS-based surrogates use hpms2017_v3_04052020. Similarly, most surrogates use the GEOID as the Data attribute while the HPMS surrogates use FIPS. The gapfilling configuration for the surrogates is shown in Table 3-19. If there are no entries for a county for the primary surrogate, the values for the county from the secondary surrogate are used. If there are also no entries for the secondary surrogate, the values for the tertiary surrogate are used, with the quarternary surrogate being the final fallback. Typically, only surrogates that should have values for all counties are selected as the quarternary surrogate. This process is used to limit any emissions that could be dropped if there are emissions in the inventory in a county for which the primary surrogate does not have values. It is important to note that once gapfilling is performed, SMOKE does not know that emissions for that county were from a secondary, tertiary or quarternary surrogate and any reports will assign the emissions in gapfilled counties to the primary surrogate.

Table 3-19. Surrogates used to gapfill U.S. Surrogates

SURROGATE CODE	SURROGATE	SECONDARY SURROGATE	TERTIARY SURROGATE	QUARTERNARY SURROGATE
100	Population			
110	Housing	Population		
		NLCD Low Intensity		
135	Detached Housing	Development		
		NLCD Low Intensity		
136	Single and Dual Unit Housing	Development		
127	Single + Dual Unit +	NLCD Low Intensity	AU CD I	
137	Manufactured Housing Residential Heating - Natural	Development	NLCD Land	
150	Gas	Population		
130	Residential Heating -	1 opaidtion		
170	Distillate Oil	Housing		
180	Residential Heating – Coal	Housing		
190	Residential Heating - LP Gas	Housing		
205	Extended Idle Locations	Total Road Miles		
239	Total Road AADT	Total Road Miles		
240	Total Road Miles			
242	All Restricted AADT	Total Road Miles		
244	All Unrestricted AADT	Total Road Miles		
259	Transit Bus Terminals	Population	NLCD Land	
260	Total Railroad Miles	Total Road Miles	Population	
261	NTAD Total Railroad Density	Total Railroad Miles	Total Road Miles	Population
	NTAD Class 1 2 3 Railroad	NTAD Total Railroad		
271	Density	Density	Total Railroad Miles	Total Road Miles
200	NLCD Low Intensity	Havein a	Danielatian	NI CD I and
300	Development NI CD Open I I avv	Housing	Population	NLCD Land
304 305	NLCD Open + Low NLCD Low + Med	Housing	Population	NLCD Land NLCD Land
		Housing	Population	
306	NLCD Med + High	Housing	Population	NLCD Land
307	NLCD All Development	Housing	Population	NLCD Land
308	NLCD Low + Med + High	Housing	Population	NLCD Land
309	NLCD Open + Low + Med	Housing	Population	NLCD Land
310	NLCD Total Agriculture	NLCD Open + Low	NLCD Land	
318	NLCD Pasture Land	Housing	NLCD Land	
319	NLCD Crop Land	Housing	NLCD Land	
320	NLCD Forest Land	Housing	NLCD Land	
321	NLCD Recreational Land	Housing	NLCD Land	
340	NLCD Land			
350	NLCD Water			
401	FAO 2010 Cattle	NLCD Total Agriculture	NLCD Open + Low	
	FAO 2010 Large Cattle		NLCD Total	
4011	Operations	FAO 2010 Cattle	Agriculture	NLCD Open + Low
4012	NPDES 2020 Beef Cattle	FAO 2010 Cattle	NLCD Total Agriculture	NLCD Open + Low

SURROGATE		SECONDARY	TERTIARY	QUARTERNARY
CODE	SURROGATE	SURROGATE	SURROGATE	SURROGATE
4013	NPDES 2020 Dairy Cattle	FAO 2010 Large Cattle Operations	NLCD Total Agriculture	NLCD Open + Low
		<u> </u>	_	NLCD OPEN + LOW
402	FAO 2010 Pig	NLCD Total Agriculture	NLCD Open + Low NLCD Total	
4021	NPDES 2020 Swine	FAO 2010 Pig	Agriculture	NLCD Open + Low
403	FAO 2010 Chicken	NLCD Total Agriculture	NLCD Open + Low	
			NLCD Total	
4031	NPDES 2020 Chicken	FAO 2010 Chicken	Agriculture	NLCD Open + Low
404	FAO 2010 Goat	NLCD Total Agriculture	NLCD Open + Low	
4041	NPDES 2020 Goat	FAO 2010 Goat	NLCD Total Agriculture	NLCD Open + Low
405	FAO 2010 Horse	NLCD Total Agriculture	NLCD Open + Low	
406	FAO 2010 Sheep	NLCD Total Agriculture	NLCD Open + Low	
4071	NPDES 2020 Turkey	NLCD Total Agriculture	NLCD Open + Low	
508	Public Schools	Population	NLCD Land	
	Refineries and Tank Farms	NLCD Low + Med		NLCD Land
650			Population	NLCD Land
669	All Abandoned Wells All Abandoned CBM Wells -	Well Count - All Wells All Abandoned CBM	NLCD Open + Low Well Count - All	
6696	Plugged	Wells	Wells	NLCD Open + Low
6693	All Abandoned CBM Wells	Well Count - All Wells	NLCD Open + Low	THE OPEN YEAR
0033	All Abandoned Gas Wells -	All Abandoned Gas	Well Count - All	
6695	Plugged	Wells	Wells	NLCD Open + Low
6692	All Abandoned Gas Wells	Well Count - All Wells	NLCD Open + Low	
	All Abandoned Gas Wells -	All Abandoned Gas	Well Count - All	
6698	Unplugged	Wells	Wells	NLCD Open + Low
6694	All Abandoned Oil Wells - Plugged	All Abandoned Oil Wells	Well Count - All Wells	NLCD Open + Low
6691	All Abandoned Oil Wells	Well Count - All Wells	NLCD Open + Low	
0031	All Abandoned Oil Wells -	All Abandoned Oil	Well Count - All	
6697	Unplugged	Wells	Wells	NLCD Open + Low
			Well Count - All	
670	Spud Count - CBM Wells	Spud Count - All Wells	Wells	
671	Spud Count - Gas Wells	Well Count - Gas Wells	Well Count - All Wells	
071	Spaa Count - das Wens	Well Court - Gas Wells	Well Count - Oil	Well Count - All
672	Gas Production at Oil Wells	NLCD Open + Low	Wells	Wells
		Well Count - CBM	Well Count - All	
673	Oil Production at CBM Wells	Wells	Wells	NLCD Open + Low
674	Unconventional Well	Completions at All	Well Count - All	NII CD Out and a large
674	Completion Counts	Wells	Wells	NLCD Open + Low
676	Well Count - All Producing	Well Count - All Wells	NLCD Open + Low	
677	Well Count - All Exploratory	Well Count - All Wells	NLCD Open + Low Well Count - All	
678	Completions at Gas Wells	Spud Count - All Wells	Wells	NLCD Open + Low
			Well Count - All	
679	Completions at CBM Wells	Spud Count - All Wells	Wells	NLCD Open + Low
691	Count Count Cil Walls	Well Count Oil Well-	Well Count - All	NI CD Ones at Law
681	Spud Count - Oil Wells	Well Count - Oil Wells	Wells	NLCD Open + Low

SURROGATE		SECONDARY	TERTIARY	QUARTERNARY
CODE	SURROGATE	SURROGATE	SURROGATE	SURROGATE
		Completions at All	Well Count - All	
683	Produced Water at All Wells	Wells	Wells	NLCD Open + Low
	Produced Water at CBM	Well Counts - CBM	Well Count - All	
6831	Wells	Wells	Wells	NLCD Open + Low
6832	Draduced Mater at Cas Malls	Well Count - Gas Wells	Well Count - All Wells	NI CD Open I Low
0832	Produced Water at Gas Wells	Well Count - Gas Wells	Well Count - All	NLCD Open + Low
6833	Produced Water at Oil Wells	Well Count - Oil Wells	Wells	NLCD Open + Low
0033	Troduced Water at on Wens	Well coult on Wells	Well Count - All	142CD OPEN 1 LOW
685	Completions at Oil Wells	Spud Count - All Wells	Wells	NLCD Open + Low
		Well Count - All	Well Count - All	
686	Completions at All Wells	Exploratory	Wells	NLCD Open + Low
		Well Count - All	Well Count - All	
687	Feet Drilled at All Wells	Exploratory	Wells	NLCD Open + Low
689	Gas Produced - Total	Well Count - All Wells	NLCD Open + Low	
		Completions at CBM	Well Count - All	
691	Well Counts - CBM Wells	Wells	Wells	NLCD Open + Low
		Completions at All	Well Count - All	
692	Spud Count - All Wells	Wells	Wells	NLCD Open + Low
693	Well Count - All Wells	NLCD Open + Low		
		Completions at Oil	Well Count - All	
694	Oil Production at Oil Wells	Wells	Wells	NLCD Open + Low
505		Completions at Oil	Well Count - All	
695	Well Count - Oil Wells	Wells	Wells	NLCD Open + Low
696	Gas Production at Gas Wells	Completions at Gas Wells	Well Count - All Wells	NLCD Open + Low
090	Gas Froduction at Gas Wells	vvens	Well Count - All	NLCD Open + Low
697	Oil Production at Gas Wells	Well Count - Gas Wells	Wells	NLCD Open + Low
037	On Froduction at Gas Wens	Completions at Gas	Well Count - All	14265 Open : 20W
698	Well Count - Gas Wells	Wells	Wells	NLCD Open + Low
		Well Counts - CBM	Well Count - All	·
699	Gas Production at CBM Wells	Wells	Wells	NLCD Open + Low
711	Airport Areas	Population	NLCD Land	
801	Port Areas	NLCD Water		
850	Golf Courses	Housing	Population	NLCD Land
		NLCD Open + Low	NLCD Land	TIECD LUTTU
860	Mines	·		NI CD I
861	Sand and Gravel Mines	Mines	NLCD Open + Low	NLCD Land
862	Lead Mines	Mines	NLCD Open + Low	NLCD Land
863	Crushed Stone Mines	Mines	NLCD Open + Low	NLCD Land
900	OSM Fuel	Total Road AADT	Total Road Miles	
901	OSM Asphalt Surfaces	NLCD All Development		
902	OSM Unpaved Roads	NLCD Open + Low		

For the onroad sector, the on-network (RPD) emissions were spatially allocated differently from other off-network processes (i.e., RPV, RPP, RPHO, RPS, RPH). Surrogates for on-network processes are based on AADT data and off network processes (including the off-network idling included in RPHO) are based on land use surrogates as shown in Table 3-20. Emissions from the extended (i.e., overnight) idling of trucks were assigned to surrogate 205, which is based on locations of overnight truck parking spaces.

The underlying data for this surrogate were updated during the development of the various 2016 platforms to include additional data sources and corrections based on comments received and these updates were carried into this platform.

Table 3-20. Off-Network Mobile Source Surrogates

Source type	Source Type name	Surrogate ID	Description
11	Motorcycle	307	NLCD All Development
21	Passenger Car	307	NLCD All Development
31	Passenger Truck	307	NLCD All Development
32	Light Commercial Truck	308	NLCD Low + Med + High
41	Other Bus	306	NLCD Med + High
42	Transit Bus	259	Transit Bus Terminals
43	School Bus	508	Public Schools
51	Refuse Truck	306	NLCD Med + High
52	Single Unit Short-haul Truck	306	NLCD Med + High
53	Single Unit Long-haul Truck	306	NLCD Med + High
54	Motor Home	304	NLCD Open + Low
61	Combination Short-haul Truck	306	NLCD Med + High
62	Combination Long-haul Truck	306	NLCD Med + High

For the oil and gas sources in the np_oilgas sector, the spatial surrogates were updated to those shown in Table 3-21 using 2022 data consistent with what was used to develop the nonpoint oil and gas emissions. The exploration and production of oil and gas have generally increased in terms of quantities and locations over recent years, primarily due to the use of new technologies, such as hydraulic fracturing. Census-tract, 2-km, and 4-km sub-county Shapefiles were developed, from which the 2020 oil and gas surrogates were generated. All spatial surrogates for np_oilgas are developed based on known locations of oil and gas activity for year 2022.

The primary activity data source used for the development of the oil and gas spatial surrogates was data from ENVERUS [formerly Drilling Info (DI) Desktop's HPDI] database (ENVERUS, 2023). This database contains well-level location, production, and exploration statistics at the monthly level. Due to a proprietary agreement with ENVERUS, individual well locations and ancillary production cannot be made publicly available, but aggregated statistics are allowed. These data were supplemented with data from state Oil and Gas Commission (OGC) websites (Alaska, Arizona, Idaho, Illinois, Indiana, Kentucky, Louisiana, Michigan, Mississippi, Missouri, Nevada, Oregon, Pennsylvania, and Tennessee). In cases when the desired surrogate parameter was not available (e.g., feet drilled), data for an alternative surrogate parameter (e.g., number of spudded wells) were downloaded and used. Under that methodology, both completion date and date of first production from HPDI were used to identify wells completed during 2022. The spatial surrogates were gapfilled using fallback surrogates as shown in Table 3-19. All gapfilling was performed with the Surrogate Tool.

Table 3-21. Spatial Surrogates for Oil and Gas Sources

Surrogate Code	Surrogate Description
669	All Abandoned Wells

Surrogate Code	Surrogate Description
6691	All Abandoned Oil Wells
6692	All Abandoned Gas Wells
6693	All Abandoned CBM Wells
6694	All Abandoned Oil Wells – Plugged
6695	All Abandoned Gas Wells – Plugged
6696	All Abandoned CBM Wells – Plugged
6697	All Abandoned Oil Wells – Unplugged
6698	All Abandoned Gas Wells – Unplugged
670	Spud Count - CBM Wells
671	Spud Count - Gas Wells
672	Gas Production at Oil Wells
673	Oil Production at CBM Wells
674	Unconventional Well Completion Counts
676	Well Count - All Producing
677	Well Count - All Exploratory
678	Completions at Gas Wells
679	Completions at CBM Wells
681	Spud Count - Oil Wells
683	Produced Water at All Wells
685	Completions at Oil Wells
686	Completions at All Wells
687	Feet Drilled at All Wells
689	Gas Produced – Total
691	Well Counts - CBM Wells
692	Spud Count - All Wells
693	Well Count - All Wells
694	Oil Production at Oil Wells
695	Well Count - Oil Wells
696	Gas Production at Gas Wells
697	Oil Production at Gas Wells
698	Well Count - Gas Wells
699	Gas Production at CBM Wells
6831	Produced water at CBM wells
6832	Produced water at gas wells
6833	Produced water at oil wells

Table 3-22 shows the CAP emissions (i.e., NH_3 , NOx, $PM_{2.5}$, SO_2 , and VOC) by sector assigned to each spatial surrogate.

Table 3-22. Selected 2022 CAP emissions by sector for U.S. Surrogates (short tons in 12US1)

Sector	ID	Description	NH3	NOX	PM2_5	SO2	voc
afdust	240	Total Road Miles	0	0	305,537	0	0
afdust	306	NLCD Med + High	0	0	41,167	0	0
afdust	308	NLCD Low + Med + High	0	0	122,726	0	0
afdust	310	NLCD Total Agriculture	0	0	502,702	0	0
afdust	861	Sand and Gravel Mines	0	0	271	0	0
afdust	863	Crushed Stone Mines	0	0	291	0	0
afdust	902	OSM Unpaved Roads	0	0	852,397	0	0
afdust	4012	NPDES 2020 Beef Cattle	0	0	185,956	0	0
afdust	4013	NPDES 2020 Dairy Cattle	0	0	12,408	0	0
afdust	4021	NPDES 2020 Swine	0	0	630	0	0
afdust	4031	NPDES 2020 Chicken	0	0	4,948	0	0
afdust	4071	NPDES 2020 Turkey	0	0	1,948	0	0
fertilizer	310	NLCD Total Agriculture	1,671,401	0	0	0	0
livestock	405	FAO 2010 Horse	31,973	0	0	0	2,558
livestock	406	FAO 2010 Sheep	18,425	0	0	0	1,474
livestock	4012	NPDES 2020 Beef Cattle	775,290	0	0	0	62,023
livestock	4013	NPDES 2020 Dairy Cattle	350,829	0	0	0	28,066
livestock	4021	NPDES 2020 Swine	839,869	0	0	0	67,190
livestock	4031	NPDES 2020 Chicken	473,844	0	0	0	37,908
livestock	4041	NPDES 2020 Goat	17,609	0	0	0	1,409
livestock	4071	NPDES 2020 Turkey	82,538	0	0	0	6,603
nonpt	100	Population	454	0	0	0	36
nonpt	150	Residential Heating - Natural Gas	47,317	228,596	2,638	1,522	13,491
nonpt	170	Residential Heating - Distillate Oil	1,718	29,360	3,626	738	1,246
nonpt	180	Residential Heating - Coal	0	2	1	7	2
nonpt	190	Residential Heating - LP Gas	136	39,187	156	175	1,539
nonpt	239	Total Road AADT	0	0	0	0	6,536
nonpt	244	All Unrestricted AADT	0	0	0	0	98,151
nonpt	271	NTAD Class 1 2 3 Railroad Density	0	0	0	0	2,074
nonpt	300	NLCD Low Intensity Development	155	2,315	12,856	180	21,920
nonpt	306	NLCD Med + High	17,744	245,613	372,811	66,676	131,535
nonpt	307	NLCD All Development	0	0	0	0	19
nonpt	308	NLCD Low + Med + High	1,066	176,213	18,723	5,179	10,910
nonpt	310	NLCD Total Agriculture	517	311	504	31	440
nonpt	319	NLCD Crop Land	0	0	95	70	292
nonpt	320	NLCD Forest Land	0	11	31	0	44
nonpt	650	Refineries and Tank Farms	0	0	0	0	98,366
nonpt	711	Airport Areas	0	0	0	0	414
nonpt	801	Port Areas	0	0	0	0	2,351
nonpt	900	OSM Fuel	0	0	0	0	221,575
nonpt	4011	FAO 2010 Large Cattle Operations	0	0	0	0	295,993
nonroad	136	Single and Dual Unit Housing	100	14,634	2,946	38	90,886

Sector	ID	Description	NH3	NOX	PM2_5	SO2	VOC
nonroad	261	NTAD Total Railroad Density	3	1,484	146	1	314
nonroad	304	NLCD Open + Low	6	1,580	140	4	5,554
nonroad	305	NLCD Low + Med	5	869	1,028	2	21,946
nonroad	306	NLCD Med + High	387	155,659	8,689	256	99,729
nonroad	307	NLCD All Development	113	28,711	16,198	44	185,409
nonroad	308	NLCD Low + Med + High	597	202,020	16,431	231	41,323
nonroad	309	NLCD Open + Low + Med	134	21,959	1,310	51	50,916
nonroad	310	NLCD Total Agriculture	355	214,932	14,943	158	23,324
nonroad	320	NLCD Forest Land	15	1,614	379	7	3,423
nonroad	321	NLCD Recreational Land	79	13,629	4,747	28	173,733
nonroad	350	NLCD Water	203	111,936	3,865	95	220,708
nonroad	850	Golf Courses	13	2,143	123	5	6,017
nonroad	860	Mines	2	2,316	210	1	423
np_oilgas	670	Spud Count - CBM Wells	0	0	0	0	43
np_oilgas	671	Spud Count - Gas Wells	0	0	0	0	2,275
		Unconventional Well Completion					
np_oilgas	674	Counts	51	41,657	742	19	1,877
np_oilgas	678	Completions at Gas Wells	0	6,122	130	1,773	14,674
np_oilgas	679	Completions at CBM Wells	0	5	0	750	694
np_oilgas	681	Spud Count - Oil Wells	0	0	0	0	28,651
np_oilgas	683	Produced Water at All Wells	0	0	0	0	48
np_oilgas	685	Completions at Oil Wells	0	384	0	2,218	33,301
np_oilgas	687	Feet Drilled at All Wells	0	79,175	1,823	47	2,881
np_oilgas	689	Gas Produced - Total	0	232	26	2	58,012
np_oilgas	691	Well Counts - CBM Wells	0	19,717	469	10	15,442
np_oilgas	692	Spud Count - All Wells	0	15	1	1	1
np_oilgas	694	Oil Production at Oil Wells	0	3,428	0	31,148	801,395
np_oilgas	695	Well Count - Oil Wells	0	170,141	4,207	243,928	
np_oilgas	696	Gas Production at Gas Wells	0	2,738			422,743
np_oilgas	698	Well Count - Gas Wells	3,771	352,214	4,846	142	471,083
np_oilgas	699	Gas Production at CBM Wells	0	32	4	0	3,816
np_oilgas	6694	All Abandoned Oil Wells - Plugged	0	0	0	0	115
np_oilgas	6695	All Abandoned Gas Wells - Plugged	0	0	0		64
np_oilgas	6697	All Abandoned Oil Wells - Unplugged	0	0	0		166,197
np_oilgas	6698	All Abandoned Gas Wells - Unplugged	0	0	0		14,255
np_oilgas	6831	Produced water at CBM wells	0	0	0	0	1,024
np_oilgas	6832	Produced water at gas wells	0	340	0	0	10,113
np_oilgas	6833	Produced water at oil wells	0	0	0	0	68,474
np_solvents	100	Population	0	0	0	0	1,376,197
np_solvents	240	Total Road Miles	0	0	0	0	43,466
np_solvents	306	NLCD Med + High	0	0	0	0	391,245
np_solvents	307	NLCD All Development	0	0	0	0	235,011
np_solvents	308	NLCD Low + Med + High	0	0	0	0	31,056
np_solvents	310	NLCD Total Agriculture	0	0	0	0	173,739

Sector	ID	Description	NH3	NOX	PM2_5	SO2	voc
np_solvents	901	OSM Asphalt Surface	0	0	0	0	339,778
onroad	205	Extended Idle Locations	0	33,669	265	17	2,724
onroad	242	All Restricted AADT	58,506	724,836	18,562	2,918	110,498
onroad	244	All Unrestricted AADT	119,030	1,031,723	41,897	5,264	301,493
onroad	259	Transit Bus Terminals	20	1,458	30	1	468
onroad	304	NLCD Open + Low	0	467	13	0	2,532
onroad	306	NLCD Med + High	1,217	97,909	2,136	75	22,427
onroad	307	NLCD All Development	5,938	157,433	6,858	444	515,072
onroad	308	NLCD Low + Med + High	292	16,565	482	27	26,500
onroad	508	Public Schools	19	1,984	59	1	392
openburn	135	Detached Housing	0	16,359	81,108	2,724	18,946
openburn	300	NLCD Low Intensity Development	2,704	1,113	4,159	226	4,514
openburn	307	NLCD All Development	76,463	28,172	126,918	10,917	81,324
rail	261	NTAD Total Railroad Density	16	26,427	763	18	1,249
rail	271	NTAD Class 1 2 3 Railroad Density	287	430,178	10,685	324	17,539
rwc	135	Detached Housing	6,875	9,428	135,997	3,348	126,771
		Single + Dual Unit + Manufactured					
rwc	137	Housing	15,722	35,166	312,817	8,545	324,110

3.4.2 Allocation method for airport-related sources in the U.S.

There are numerous airport-related emission sources in the NEI, such as aircraft, airport ground support equipment, and jet refueling. The modeling platform includes the aircraft and airport ground support equipment emissions as point sources. For the modeling platform, the EPA used the SMOKE "area-to-point" approach for only jet refueling in the nonpt sector. The following SCCs use this approach: 2501080050 and 2501080100 (petroleum storage at airports), and 2810040000 (aircraft/rocket engine firing and testing). The ARTOPNT file that lists the nonpoint sources to locate using point data was unchanged from the 2005-based platform.

3.4.3 Surrogates for Canada and Mexico emission inventories

The surrogates for Canada to spatially allocate the Canadian emissions are based on the 2020 Canadian inventories and associated data. The spatial surrogate data came from ECCC, along with cross references. The shapefiles they provided were used in the Surrogate Tool (previously referenced) to create spatial surrogates. The Canadian surrogates used for this platform are listed in Table 3-23. The Shapefiles used to compute these surrogates and some configuration information are shown in Table 3-24. Note that the name of most Data Shapefiles have been abbreviated to shorten the table. The complete names and additional details on surrogate computation for Canada and Mexico are available in the file <code>Surrogate_specifications_2022_platform_US_Can_Mex.xlsx</code> that is posted in the reports folder for this platform.

Mexico surrogates were updated for the 2021 EMP. The data source for the Mexico population surrogate is the INEGI National Geostatistical Framework's Censo de Población y Vivienda 2020 based on the 2020 GPW v4 (see https://en.www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463807469). Other data sources used are Sistema Nacional de Informacion Estadistic y Geografica (SNIEG), US Department of Transportation's (DOT) North American Rail Network Lines, and US DOT's Bureau of

Transportation Statistics Border Crossing Data. The Shapefiles and some configuration information used to develop the Mexico surrogates are shown in Table 3-25. The Data Shapefile for all Mexico surrogates is areas_geoestadisticas_municipales_II and the Data Attribute is FIPS. Most of the CAP emissions allocated to the Mexico and Canada surrogates are shown in Table 3-26.

Table 3-23. Canadian Spatial Surrogates

101 1 102 1 103 1 104 1 105 1 106 1 113 1	Population total dwelling urban dwelling rural dwelling capped total dwelling capped meat cooking dwelling ALL_INDUST Forestry and logging	925 926 927 933 934 935	Manufacturing and Assembly Distribution and Retail (no petroleum) Commercial Services Rail-Passenger Rail-Freight
102 103 104 105 106 113 113	urban dwelling rural dwelling capped total dwelling capped meat cooking dwelling ALL_INDUST	927 933 934 935	Commercial Services Rail-Passenger Rail-Freight
103 1 104 (105 (106 1 113	rural dwelling capped total dwelling capped meat cooking dwelling ALL_INDUST	933 934 935	Rail-Passenger Rail-Freight
104 (105 (106 (113 (113 (113 (113 (113 (113 (113 (11	capped total dwelling capped meat cooking dwelling ALL_INDUST	934 935	Rail-Freight
105 (106) 106)	capped meat cooking dwelling ALL_INDUST	935	
106 A	ALL_INDUST		
113	_		Rail-Yard
	Forestry and logging	940	PAVED ROADS NEW
116	rolestly and logging	945	Commercial Marine Vessels
	Total Resources	946	Construction and mining
200	Urban Primary Road Miles	948	Forest
210	Rural Primary Road Miles	949	Combination of Dwelling
211	Oil and Gas Extraction	951	Wood Consumption Percentage
212	Mining except oil and gas	952	Residential Fuel Wood Combustion (PIRD)
220	Urban Secondary Road Miles	955	UNPAVED_ROADS_AND_TRAILS
221	Total Mining	960	TOTBEEF
222	Utilities	961	80110_Broilers
230	Rural Secondary Road Miles	962	80111_Cattle_dairy_and_Heifer
233	Total Land Development	963	80112_Cattle_non-Dairy
240	capped population	964	80113_Laying_hens_and_Pullets
308	Food manufacturing	965	80114_Horses
321	Wood product manufacturing	966	80115_Sheep_and_Lamb
323	Printing and related support activities	967	80116_Swine
	Petroleum and coal products		
	manufacturing	968	80117_Turkeys
	Plastics and rubber products		
	manufacturing	969	80118_Goat
	Non-metallic mineral product	970	TOTPOUL
+	manufacturing	970	80119_Buffalo
	Primary Metal Manufacturing Construction - Oil and Gas	971	
+			80120_Llama_and_Alpacas
	Water Petroleum product wholesaler-	973	80121_Deer
	distributors	974	80122_Elk
	clothing and clothing accessories stores	975	80123_Wild boars
	Waste management and remediation	3,3	
	services	976	80124_Rabbit
	SCL:12003 Petroleum Liquids		_
	Transportation (PIRD)	977	80125_Mink

Code	Canadian Surrogate Description	Code	Description
	SCL:12007 Oil Sands In-Situ Extraction		
602	and Processing (PIRD)	978	80126_Fox
	SCL:12010 Light Medium Crude Oil		
603	Production (PIRD)	980	TOTSWIN
604	SCL:12011 Well Drilling (PIRD)	981	Harvest_Annual
605	SCL:12012 Well Servicing (PIRD)	982	Harvest_Perennial
606	SCL:12013 Well Testing (PIRD)	983	Synthfert_Annual
607	SCL:12014 Natural Gas Production (PIRD)	984	Synthfert_Perennial
608	SCL:12015 Natural Gas Processing (PIRD)	985	Tillage_Annual
	SCL:12016 Heavy Crude Oil Cold		
609	Production (PIRD)	990	TOTFERT
	SCL:12018 Disposal and Waste Treatment		
610	(PIRD)	996	urban_area
644	SCL:12019 Accidents and Equipment	4054	0550 7075507
611	Failures (PIRD) SCL:12020 Natural Gas Transmission and	1251	OFFR_TOTFERT
612	Storage (PIRD)	1252	OFFR_MINES
651	MEIT C1C2 Anchored	1253	OFFR Other Construction not Urban
652	MEIT C1C2 Underway	1254	OFFR Commercial Services
653	MEIT C1C2 Berthed	1255	OFFR Oil Sands Mines
661	MEIT C3 Anchored	1256	OFFR Wood industries CANVEC
662	MEIT C3 Underway	1257	OFFR UNPAVED ROADS RURAL
663	MEIT C3 Berthed	1258	OFFR Utilities
901	AIRPORT	1259	OFFR total dwelling
902	Military LTO	1260	OFFR water
903	Commercial LTO	1261	OFFR ALL INDUST
904	General Aviation LTO	1262	OFFR Oil and Gas Extraction
905	Air Taxi LTO	1263	OFFR ALLROADS
921	Commercial Fuel Combustion	1264	OFFR AIRPORT
321	TOTAL INSTITUTIONAL AND	1204	OTT N_AINFONT
923	GOVERNEMNT	1265	OFFR RAILWAY
924	Primary Industry	1200	O
フレサ	i i i i i i i i i i i i i i i i i i i		

Table 3-24. Shapefiles and Attributes used to Compute Canadian Spatial Surrogates

			Data		Weight
Code	Surrogate	Data Shapefile	Attribute	Weight Shapefile	Attribute
				da_popdwell_100m_nolakes	
100	Population	gpr_gda	pruid	_1nov17	Pop
				da_popdwell_100m_nolakes	
101	total dwelling	gpr_gda	pruid	_1nov17	Urdwell
				da_popdwell_100m_nolakes	
102	urban dwelling	gpr_gda	pruid	_1nov17	Uadwell
				da_popdwell_100m_nolakes	
103	rural dwelling	gpr_gda	pruid	_1nov17	Radwell
				da_popdwell_100m_nolakes	
104	capped total dwelling	gpr_gda	pruid	_1nov17	CAP_URDWEL

Code	Surrogate	Data Shapefile	Data Attribute	Weight Shapefile	Weight Attribute
			710011000	da SimP 100m pop dwell j	7100110000
105	capped meat cooking dwelling	gpr	pruid	ul2014	Cap_Dwell
				da2006_pop_labour_SimP_	
106	ALL_INDUST	prov2006	pruid	MaxOff_100m_noLake	ALL_INDUST
				da2006_pop_labour_SimP_	
111	Farms	prov2006	pruid	MaxOff_100m_noLake	FARMS
113	Forestry and logging	prov2006	pruid	da2006_pop_labour_SimP_ MaxOff_100m_noLake	FORLOG
113	Torestry and logging	provzood	pruiu	da2006_pop_labour_SimP_	TORLOG
116	Total Resources	prov2006	pruid	MaxOff 100m noLake	TOTRESOURC
1251	OFFR_TOTFERT	gcd	CDID	naesi_fert	TOTFERT
1252	OFFR MINES	gcd	CDID	mine	MINES
1232	OFFR Other Construction not	Вса	CDID	Timic	WIIIVES
1253	Urban	gcd	CDID	construction other	TOTAL
				da2006_pop_labour_SimP_	
1254	OFFR Commercial Services	gcd	CDID	MaxOff_100m_noLake	COMSER
1255	OFFR Oil Sands Mines	gcd	CDID	OS_MinePit_D_v2	
1256	OFFR Wood industries CANVEC	gcd	CDID	wood_industries	WOOD
1257	OFFR UNPAVED ROADS RURAL	gcd	CDID	unpaved ur	
				da2006_pop_labour_SimP_	
1258	OFFR_Utilities	gcd	CDID	MaxOff_100m_noLake	UTILITIES
				da2006_pop_labour_SimP_	
1259	OFFR total dwelling	gcd	CDID	MaxOff_100m_noLake	DATDWELL20
1260	OFFR_water	gcd	CDID	lu100_valid	
				da2006_pop_labour_SimP_	
1261	OFFR_ALL_INDUST	gcd	CDID	MaxOff_100m_noLake	ALL_INDUST
1262	OFFR Oil and Gas Extraction	gcd	CDID	da2006_pop_labour_SimP_ MaxOff_100m_noLake	OILGASEXTR
					OILGASLATIA
1263	OFFR_ALLROADS	gcd	CDID	allroads offroad_osm_airport_locs_s	
1264	OFFR_AIRPORT	gcd	CDID	pring2017	Movements
		Bon	02.2	shp_railway_canvec_jul17_v	
1265	OFFR_RAILWAY	gcd	CDID	2	LENGTH
				NRN_CA_Simp2_16Apr2016_	
200	Urban Primary Road Miles	gcd_ON4	CDID	sphere	Class1
212	Powel Prime B. 1557		CDID	NRN_CA_Simp2_16Apr2016_	Clara 2
210	Rural Primary Road Miles	gcd_ON4	CDID	sphere da2006 pop labour SimP	Class2
211	Oil and Gas Extraction	prov2006	pruid	MaxOff 100m noLake	OILGASEXTR
	On and Gas Extraction	p1042000	praid	da2006_pop_labour_SimP_	JIEGAJEK III
212	Mining except oil and gas	prov2006	pruid	MaxOff_100m_noLake	MINING2
215	Oil Sands Mines	prov2006	pruid	OS_MinePit_D_v2	
216	Oil Sands Tailing Ponds	prov2006	pruid	OS_WetTailing_D_2015	
217	Oil Sands Plants	prov2006	Pruid	OS_PlantSite_D_2015	
	On Janus Frants	ριονζούο	Truiu	NRN_CA_Simp2_16Apr2016_	
220	Urban Secondary Road Miles	gcd_ON4	CDID	sphere	Class3
				da2006_pop_labour_SimP_	
221	Total Mining	prov2006	Pruid	MaxOff_100m_noLake	TOTALMI3
				da2006_pop_labour_SimP_	
222	Utilities	prov2006	Pruid	MaxOff_100m_noLake	UTILITIES

			Data		Weight
Code	Surrogate	Data Shapefile	Attribute	Weight Shapefile	Attribute
				NRN_CA_Simp2_16Apr2016_	
230	Rural Secondary Road Miles	gcd_ON4	CDID	sphere	Class4
				da2006_pop_labour_SimP_	
233	Total Land Development	prov2006	Pruid	MaxOff_100m_noLake	TOTLND
				da_popdwell_100m_nolakes	
240	capped population	gcd_ON4	CDID	_1nov17	CAPURPOP
				da2006_pop_labour_SimP_	
308	Food manufacturing	prov2006	Pruid	MaxOff_100m_noLake	FOODMANU
				da2006_SimplifyP_250m_sp	
321	Wood product manufacturing	prov2006	Pruid	here_treesa_Clip	WOODMANU
	Printing and related support			da2006_pop_labour_SimP_	
323	activities	prov2006	pruid	MaxOff_100m_noLake	PRINTSUPRT
	Petroleum and coal products			da2006_pop_labour_SimP_	
324	manufacturing	prov2006	pruid	MaxOff_100m_noLake	PETCOLMANU
	Plastics and rubber products			da2006_pop_labour_SimP_	
326	manufacturing	prov2006	pruid	MaxOff_100m_noLake	PLASTCMANU
	Non-metallic mineral product			da2006_pop_labour_SimP_	
327	manufacturing	prov2006	pruid	MaxOff_100m_noLake	MINERLMANU
				da2006_pop_labour_SimP_	
331	Primary Metal Manufacturing	prov2006	pruid	MaxOff_100m_noLake	METALMANU
				loc_land_UOG2015_CO_v3_	
340	Construction - Oil and Gas	gpr_gda	pruid	Que_NB_NS	
350	Water	coast	pruid	CONT42_pop_water_Clip_b	Рор
	Petroleum product wholesaler-		p. s. s.	da2006_pop_labour_SimP_	
412	distributors	prov2006	pruid	MaxOff_100m_noLake	PETPRWSL
	Building material and supplies	provide the second	p. s. s.	da2006_pop_labour_SimP_	
416	wholesaler-distributors	prov2006	pruid	MaxOff_100m_noLake	BUILDPRWSL
		les es e	p · s · · ·	da2006_pop_labour_SimP_	
447	Gasoline stations	prov2006	pruid	MaxOff 100m noLake	GASSTOR
	clothing and clothing			da2006_pop_labour_SimP_	
448	accessories stores	prov2006	pruid	MaxOff 100m noLake	CLOTHSTOR
		1		da2006 pop labour SimP	
482	Rail transportation	prov2006	pruid	MaxOff_100m_noLake	RAILTRANS
	Waste management and			da2006_pop_labour_SimP_	
562	remediation services	prov2006	pruid	MaxOff_100m_noLake	WASTEMGMT
			i ·	offroad_osm_airport_locs_s	
901	AIRPORT	gcd	CDID	pring2017	Movements
				aviation runways spring201	
902	Military LTO	surg_2017	FAKEFIPS	7	Military
				aviation runways spring201	·
903	Commercial LTO	surg_2017	FAKEFIPS	7	Commercial
		<u> </u>		aviation runways spring201	
904	General Aviation LTO	surg_2017	FAKEFIPS	7	General_Av
				Airport_movements_2006_	_
905	Air Taxi LTO	prov2006	pruid	MultiRingBuffer	SCC2275060
				da2006_pop_labour_SimP_	
921	Commercial Fuel Combustion	prov2006	pruid	MaxOff_100m_noLake	COMFUEL
	TOTAL INSTITUTIONAL AND			da2006_pop_labour_SimP_	
923	GOVERNEMNT	prov2006	pruid	MaxOff_100m_noLake	TOTINSTGOV
				da2006_pop_labour_SimP_	
924	Primary Industry	prov2006	pruid	MaxOff_100m_noLake	PRIM1
		1 -			1

			Data		Weight
Code	Surrogate	Data Shapefile	Attribute	Weight Shapefile	Attribute
925	Manufacturing and Assembly	prov2006	pruid	da2006_pop_labour_SimP_ MaxOff_100m_noLake	MANASSEM
	Distribution and Retail (no			da2006_pop_labour_SimP_	
926	petroleum)	prov2006	pruid	MaxOff_100m_noLake	DISRET
				da2006_pop_labour_SimP_	
927	Commercial Services	prov2006	pruid	MaxOff_100m_noLake	COMSER
933	Rail-Passenger	gpr_gda	pruid	shp_railway_canvec_jul17_v 2	Passenger
				shp_railway_canvec_jul17_v	
934	Rail-Freight	gpr_gda	pruid	2	Fret
025	Doil Yord	ans ada	projet	shp_railway_canvec_jul17_v	Vard
935	Rail-Yard	gpr_gda	pruid	NRN CA Simp2 16Apr2016	Yard
940	PAVED ROADS NEW	gpr	fips	sphere	PAVEDRD
942	UNPAVED ROADS	prov2006	pruid	unpaved4	171125115
				·	502
945	Commercial Marine Vessels	lowmedjet_ll	CLASS	marine MERGE: 0.5*Mining except	SO2
				oil and gas+0.5*Total Land	
946	Construction and mining			Development	
3.0				MERGE 0.34*Total Resources	
	Agriculture Construction and			+ 0.66 * Construction and	
947	mining			mining	
948	Forest	prov2006	pruid	treesa_valid	
				MERGE: 0.20*urban	
				dwelling+0.80* rural	
949	Combination of Dwelling			dwelling	
951	Wood Consumption Percentage	gnr	fips	da2006_SimP_100m_WoodC on_1Aug14	WoodComp
931	UNPAVED_ROADS_AND_TRAIL	gpr	прз	OII_IAUgI4	woodcomp
955	S	prov2006	pruid	unpaved5	
960	TOTBEEF	prov2006	pruid	naesi livestk	TOTBEEF
970	TOTPOUL	prov2006	pruid	naesi livestk	TOTPOULT
980	TOTSWIN	prov2006	pruid	naesi livestk	TOTSWINE
		prov2006		naesi fert	
990	TOTFERT	•	pruid	_	TOTFERT
996	urban_area	prov2006	pruid	ua2001	
961	80110 Broilers	anr ada	pruid	animal_nh3_to_agri_slc_801 10 valid	QUANTITY
301	80111_Cattle_dairy_and_Heife	gpr_gda	pruiu	animal_nh3_to_agri_slc_801	QUANTIT
962	r	gpr_gda	pruid	11_valid	QUANTITY
		OFO ~	1	animal_nh3_to_agri_slc_801	
963	80112_Cattle_non-Dairy	gpr_gda	pruid	12_valid	QUANTITY
	80113_Laying_hens_and_Pulle			animal_nh3_to_agri_slc_801	
964	ts	gpr_gda	pruid	13_valid	QUANTITY
				animal_nh3_to_agri_slc_801	
965	80114_Horses	gpr_gda	pruid	14_valid	QUANTITY
0.55	00445 Sha			animal_nh3_to_agri_slc_801	OLIANITITY.
966	80115_Sheep_and_Lamb	gpr_gda	pruid	15_valid	QUANTITY
967	80116_Swine	anr ada	pruid	animal_nh3_to_agri_slc_801 16_valid	QUANTITY
907	OOTTO SMILLE	gpr_gda	pruiu	TO_valiu	QUANTITI

			Data		Weight
Code	Surrogate	Data Shapefile	Attribute	Weight Shapefile	Attribute
				animal_nh3_to_agri_slc_801	
968	80117_Turkeys	gpr_gda	pruid	17_valid	QUANTITY
				animal_nh3_to_agri_slc_801	
969	80118_Goat	gpr_gda	pruid	18_valid	QUANTITY
				animal_nh3_to_agri_slc_801	
971	80119_Buffalo	gpr_gda	pruid	19_valid	QUANTITY
				animal_nh3_to_agri_slc_801	
972	80120_Llama_and_Alpacas	gpr_gda	pruid	20_valid	QUANTITY
070	00434 5			animal_nh3_to_agri_slc_801	OLIANITITY
973	80121_Deer	gpr_gda	pruid	21_valid	QUANTITY
074	90122 FIL	ans ada	neuid	animal_nh3_to_agri_slc_801	OLIANITITY
974	80122_Elk	gpr_gda	pruid	22_valid	QUANTITY
975	80123 Wild boars	anr ada	pruid	animal_nh3_to_agri_slc_801 23 valid	QUANTITY
3/3	80123_Wild boars	gpr_gda	pruiu	animal_nh3_to_agri_slc_801	QUANTITI
976	80124 Rabbit	gpr_gda	pruid	24_valid	QUANTITY
370	00124_N05511	gpi_guu	pruid	animal_nh3_to_agri_slc_801	QUANTITI
977	80125 Mink	gpr_gda	pruid	25 valid	QUANTITY
		96.79	prone	animal_nh3_to_agri_slc_801	Q07
978	80126 Fox	gpr_gda	pruid	26 valid	QUANTITY
	_	01 _0		animal nh3 to agri slc 801	
979	80127_Mules_and_Asses	gpr_gda	pruid	27_valid	QUANTITY
				harvest_pm10_Annual_to_a	
981	Harvest_Annual	gpr_gda	pruid	gri_slc_valid	QUANTITY
				harvest_pm10_Perennial_to	
982	Harvest_Perennial	gpr_gda	pruid	_agri_slc_valid	QUANTITY
				synth_fert_nh3_Annual_to_a	
983	Synthfert_Annual	gpr_gda	pruid	gri_slc_valid	QUANTITY
				synth_fert_nh3_Perennial_t	
984	Synthfert_Perennial	gpr_gda	pruid	o_agri_slc_valid	QUANTITY
				tillage_pm10_Annual_to_agr	
985	Tillage_Annual	gpr_gda	pruid	i_slc_valid	QUANTITY
604	SCL:12003 Petroleum Liquids		.,	142002 1: 1	
601	Transportation (PIRD)	gpr_gda	pruid	scl12003_valid	
	SCL:12007 Oil Sands In-Situ				
602	Extraction and Processing (PIRD)	anr ada	pruid	scl12007 valid	NONE
002	SCL:12010 Light Medium Crude	gpr_gda	prulu	Joint 2007_vallu	INOINE
603	Oil Production (PIRD)	gpr_gda	pruid	scl12010_valid	NONE
				scl12011 valid	NONE
604	SCL:12011 Well Drilling (PIRD) SCL:12012 Well Servicing	gpr_gda	pruid	2CITZOTT_Valla	NONE
605	(PIRD)	gpr_gda	pruid	scl12012_valid	NONE
				_	
606	SCL:12013 Well Testing (PIRD)	gpr_gda	pruid	scl12013_valid	NONE
607	SCL:12014 Natural Gas	anr ada	nruid	scl12014_valid	NONE
607	Production (PIRD) SCL:12015 Natural Gas	gpr_gda	pruid	2CITZOT#_Nqlin	NONE
608	Processing (PIRD)	gpr_gda	pruid	scl12015 valid	NONE
000	SCL:12016 Heavy Crude Oil	6P1_6U0	praid	JOI 12013_Valid	IVOIVE
609	Cold Production (PIRD)	gpr_gda	pruid	scl12016_valid	NONE
303	SCL:12018 Disposal and Waste	05.72~4	praia		
610	Treatment (PIRD)	gpr_gda	pruid	scl12018 valid	NONE
	, , , , , , , , , , , , , , , , , , ,	OFO~~	1 12 . 2	1	

			Data		Weight
Code	Surrogate	Data Shapefile	Attribute	Weight Shapefile	Attribute
	SCL:12019 Accidents and				
611	Equipment Failures (PIRD)	gpr_gda	pruid	scl12019_valid	NONE
	SCL:12020 Natural Gas				
	Transmission and Storage				
612	(PIRD)	gpr_gda	pruid	scl12020	NONE
	Residential Fuel Wood				
952	Combustion (PIRD)	gpr_gda	pruid	scl20401_valid	NONE
651	MEIT C1C2 Anchored	lowmedjet_ll	CLASS	MEIT_2280002101_2018	Fuel
652	MEIT C1C2 Underway	lowmedjet_ll	CLASS	MEIT_2280002202_2018	Fuel
653	MEIT C1C2 Berthed	lowmedjet_ll	CLASS	MEIT_2280002301_2018	Fuel
661	MEIT C3 Anchored	lowmedjet_ll	CLASS	MEIT_2280003101_2018	Fuel
662	MEIT C3 Underway	lowmedjet_ll	CLASS	MEIT_2280003200_2018	Fuel
663	MEIT C3 Berthed	lowmedjet_ll	CLASS	MEIT_2280003301_2018	Fuel

Table 3-25. Shapefiles and Attributes used to Compute Mexican Spatial Surrogates

Code	SURROGATE	WEIGHT SHAPEFILE	WEIGHT ATTRIBUTE
10	MEX Population	mex_population_2020	gridcode_Y
22	MEX Total Road Miles	mex_roads	NONE
24	MEX Total Railroads Miles	mex_railroads	NONE
26	MEX Total Agriculture	mex_agriculture	NONE
36	MEX Commercial plus Industrial Land	mex_com_ind_land	NONE
44	MEX Airports Area	mex_airports_area	NONE
45	MEX Airports Point	mex_airports_point	NONE
48	MEX Brick Kilns	mex_brick_kilns	NONE
50	MEX Border Crossings	mex_border_crossings	SUM_Value

Table 3-26. 2022 CAP Emissions Allocated to Mexican and Canadian Spatial Surrogates for 12US1 (short tons)

	Mexican or Canadian Surrogate					
Code	Description	NH₃	NOx	PM _{2.5}	SO ₂	voc
11	MEX Population	26,149	93,951	8,245	7,833	178,980
22	MEX Total Road Miles	2,887	310,214	14,588	6,483	76,211
24	MEX Total Railroads Miles	0	22,455	498	198	900
26	MEX Total Agriculture	137,457	11,648	13,703	13,570	2,370
36	MEX Commercial plus Industrial Land	44	5,532	2,531	26	295,777
44	MEX Airports Area	0	2,955	61	315	1,832
48	MEX Brick Kilns	0	227	3,692	151	182
50	MEX Mobile sources - Border Crossing	4	86	3	0	65
100	CAN Population	710	57	225	17	4,025
101	CAN total dwelling	0	0	0	0	109,016
104	CAN Capped Total Dwelling	305	31,578	2,383	1,928	1,620
106	CAN ALL_INDUST			596		

	Mexican or Canadian Surrogate					
Code	Description	NH₃	NOx	PM _{2.5}	SO ₂	VOC
113	CAN Forestry and logging	83	627	2,934	15	2,715
200	CAN Urban Primary Road Miles	1,590	75,668	2,697	209	7,406
210	CAN Rural Primary Road Miles	608	40,578	1,422	89	2,995
212	CAN Mining except oil and gas	0	0	1,785	0	0
220	CAN Urban Secondary Road Miles	2,985	120,376	5,476	406	19,742
221	CAN Total Mining	0	0	13,564	0	0
222	CAN Utilities	0	1,998	2,751	32	89
230	CAN Rural Secondary Road Miles	1,613	75,161	2,728	211	7,997
240	CAN Total Road Miles	345	45,969	1,175	41	82,324
308	CAN Food manufacturing	0	, 0	17,199	0	5,233
321	CAN Wood product manufacturing	513	1,677	591	213	8,464
323	CAN Printing and related support	0	0	0	0	20,852
323	activities					20,032
324	CAN Petroleum and coal products	0	1,056	1,481	439	6,751
	manufacturing		,	•		•
326	CAN Plastics and rubber products	0	0	0	0	21,858
	manufacturing					
327	CAN Non-metallic mineral product	0	0	7,206	0	0
	manufacturing					
331	CAN Primary Metal Manufacturing	0	148	5,247	28	62
412	CAN Petroleum product wholesaler-	0	0	0	0	37,775
4.40	distributors	0	0	0		470
448	CAN clothing and clothing accessories stores	0	0	0	0	178
562	CAN Waste management and	2,707	1,230	2,300	2,159	16,100
302	remediation services	2,707	1,230	2,300	2,133	10,100
601	CAN SCL:12003 Petroleum Liquids	0	0	12	154	6,042
	Transportation (PIRD)					,
602	CAN SCL:12007 Oil Sands In-Situ	0	0	0	0	110
	Extraction and Processing (PIRD)					
603	CAN SCL:12010 Light Medium Crude	0	0	0	0	2
	Oil Production (PIRD)					
604	CAN SCL:12011 Well Drilling (PIRD)	0	0	0	607	658
605	CAN SCL:12012 Well Servicing (PIRD)	0	0	0	68	73
606	CAN SCL:12013 Well Testing (PIRD)	0	0	0	0	0
607	CAN SCL:12014 Natural Gas	0	28	1	0	191
007	Production (PIRD)		20	-		-51
608	CAN SCL:12015 Natural Gas	0	0	0	0	0
	Processing (PIRD)					
611	CAN SCL:12019 Accidents and	0	0	0	0	90,229
	Equipment Failures (PIRD)					
612	CAN SCL:12020 Natural Gas	1	671	54	11	396
	Transmission and Storage (PIRD)	_		_	_	
901	CAN Airport	0	98	9	0	0

	Mexican or Canadian Surrogate					
Code	Description	NH₃	NOx	PM _{2.5}	SO ₂	VOC
921	CAN Commercial Fuel Combustion	190	21,587	2,373	435	940
923	CAN TOTAL INSTITUTIONAL AND	0	0	0	0	14,522
	GOVERNEMNT	_	_	_	_	
924	' '	0	0	0	0	33,308
925	CAN Manufacturing and Assembly	0	0	0	0	70,606
926	CAN Distribution and Retail (no	0	0	0	0	6,666
927	petroleum) CAN Commercial Services	0	0	0	0	30,828
933	CAN Rail-Passenger	1	3,089	63	1	115
934	CAN Rail-Freight	48	76,567	1,530	43	3,389
935	CAN Rail-Yard	1	4,536	95	1	276
940	CAN Paved Roads New	0	4,330	26,017	0	0
		44			281	
946	CAN Wood Consumption Persontage		2,842	163		41
951	CAN UNDAYED DOADS AND TRAILS	1,061	11,794	71,798	1,685	100,154
955	CAN UNPAVED_ROADS_AND_TRAILS	0	0	433,847	0	12.702
961	CAN 80110_Broilers	13,453	0	115	0	12,782
962	CAN 80111_Cattle_dairy_and_Heifer	61,989	0	276	0	40,501
963	CAN 80112_Cattle_non-Dairy	177,740	0	884	0	42,860
964	CAN 80113_Laying_hens_and_Pullets	10,085	0	40	0	10,592
965	CAN 80114_Horses	3,155	0	19	0	1,320
966	CAN 80115_Sheep_and_Lamb	2,278	0	6	0	170
967	CAN 80116_Swine	64,225	0	824	0	9,945
968	CAN 80117_Turkeys	5,215	0	41	0	4,507
969	CAN 80118_Goat	1,806	0	2	0	135
971	CAN 80119_Buffalo	2,258	0	6	0	517
972	CAN 80120_Llama_and_Alpacas	118	0	0	0	0
973	CAN 80121_Deer	20	0	0	0	0
974	CAN 80122_Elk	19	0	0	0	0
975	CAN 80123_Wild boars	37	0	0	0	0
976	CAN 80124_Rabbit	78	0	0	0	1
977	CAN 80125_Mink	287	0	0	0	951
978	CAN 80126_Fox	4	0	0	0	3
981	CAN Harvest_Annual	0	0	24,824	0	0
983	CAN Synthfert_Annual	164,425	3,513	2,111	5,807	127
985	CAN Tillage_Annual	0	0	106,806	0	0
996	CAN urban_area	0	0	3,716	0	0
1251	CAN OFFR_TOTFERT	84	59,946	4,056	57	113
1252	CAN OFFR_MINES	1	573	40	1	0
1253	CAN OFFR Other Construction not Urban	68	37,617	4,378	46	231
1254	CAN OFFR Commercial Services	47	16,663	2,499	40	11,046
1255	CAN OFFR Oil Sands Mines	0	0	0	0	0

	Mexican or Canadian Surrogate					
Code	Description	NH ₃	NOx	PM _{2.5}	SO ₂	voc
1256	CAN OFFR Wood industries CANVEC	9	3,245	257	7	86
1257	CAN OFFR Unpaved Roads Rural	24	10,275	642	21	934

4 Analytic Year Emissions Inventories and Approaches

The emission inventories for the analytic year 2026 have been developed using projection methods that are specific to the type of emissions source. Analytic year emissions are projected from the base year either by running models to estimate analytic year emissions from specific types of emission sources (e.g., EGUs, and onroad and nonroad mobile sources), or for other types of sources by adjusting the base year emissions according to the best estimate of changes expected to occur in the intervening years (e.g., non-EGU point and nonpoint sources). The types of changes accounted for in the analytic year inventories include changes in expected activity data for the sector (e.g, VMT for onroadway sources) and changes in emission rates per unit of activity between the years. Emission rates can be predicted to change due to the adoption of improved processes, changes in the fuels used, market-driven impacts, or on-the-books regulations. In this platform, on-the-books federal and some state regulations that impacted CAPs that were on-the-books as of April 2024 are reflected.

For some sectors, the same emissions are used in the base and analytic years, such as biogenic, all fire sectors, and fertilizer. Emissions for these sectors are held constant in future years because the base year meteorological data are also used for the future year air quality model runs, and emissions for these sectors are highly correlated with meteorological conditions. For the remaining sectors, rules and specific legal obligations that go into effect in the intervening years, along with changes in activity for the sector, are considered when possible. For sectors that were projected, the methods used to project those sectors to the analytic year(s) for this platform are summarized in Table 4-1.

Table 4-1. Overview of projection methods by sector for the analytic years

Platform Sector: abbreviation	Description of Projection Methods for Analytic Year Inventories
EGU units: ptegu	For 2026, an engineering analysis approach was used to develop emissions based on the most recently available measured emissions. More information on this sector including a list of included rules is provided in Section 4.1 .
Point source oil and gas: pt_oilgas	The production-related sources were grown from 2022 to 2026 based on growth factors derived from the Annual Energy Outlook (AEO) 2023 data for oil, natural gas, or a combination thereof. The grown emissions were then controlled to account for the impacts of New Source Performance Standards (NSPS) for oil and gas sources, process heaters, natural gas turbines, and reciprocating internal combustion engines (RICE). Known closures were also applied to the 2022 pt_oilgas sources. See Section 4.2.3.8 and several subsections of Section 4.2.4 for more details.
Airports: airports	Point source airport emissions were grown from 2022 to 2026 using factors derived from the 2023 Terminal Area Forecast (TAF) released in January 2024 (see https://www.faa.gov/data_research/aviation/taf/). Factors outside of a specific range were set to state average factors. Analytic year emissions for the ATL airport were provided by the state of Georgia. See Section 4.2.3.2 for more details.

Platform Sector: abbreviation	Description of Projection Methods for Analytic Year Inventories
Remaining non-EGU point: ptnonipm	2022 emissions were projected to 2026 using factors derived from AEO2023. Controls were applied to account for relevant NSPS for RICE, gas turbines, and process heaters. Emissions were reduced to account for NESHAP rules related to Hazardous Organic Compounds, Organic Liquids Distribution, and Taconite. Known closures were applied to the 2022 ptnonipm sources. Railyards are grown using the projection factors from the rail sector. Additional state-specific controls were applied. See Section 4.2.3.9 and several subsections of Section 4.2.4 for more details.
Category 1, 2 CMV: cmv_c1c2	Category 1 and category 2 (C1C2) CMV emissions sources outside of California were projected to 2026 based on factors derived from the Freight Analysis Framework version 5. See the Category 3 CMV documentation (EPA, 2024a) for more details on the development of the projection factors for both C1C2 and C3 CMV vessels. See Section 4.2.3.3 for more details.
Category 3 CMV: cmv_c3	Category 3 (C3) CMV emissions were projected to 2026 based on factors derived from the Freight Analysis Framework version 5. An additional adjustment to NOx was made to account for the penetration of cleaner engines over time based on an extrapolation of trends from recent ship registry data sets. See the Category 3 CMV documentation (EPA, 2024a) for more details on the development of the factors. See Section 4.2.3.4 for more details.
Locomotives: rail	Rail emissions were projected based on factors derived for categories of locomotives based on AEO (fuel use) growth rates including some adjustments. See Section 4.2.3.10 for more details.
Area fugitive dust: afdust	Paved road dust was grown to 2026 levels based on the growth in VMT from 2022. Emissions for the remainder of the sector were based on a combination of employment projections and livestock projection data. See Section 4.2.3.1 for more details.
Livestock: livestock	Livestock were projected from 2022 to 2026 using factors derived from projections of animal counts from the Greenhouse Gas Inventory Tool versus the base year animal counts. See Section 4.2.3.5 for more details.
Nonpoint source oil and gas: np_oilgas	Exploration-related sources were based on a multi-year average of 2017 through 2019 exploration data with NSPS controls applied, where applicable. Production-related emissions were projected from 2022 to 2026 based on factors generated from AEO2023 reference case. Based on the SCC, factors related to oil, gas, or combined growth were used. Coalbed methane SCCs were projected independently. Controls were then applied to account for NSPS for oil and gas and RICE. See Section 4.2.3.9, Section 4.2.4.1and Section 4.2.4.2 for more details.
Residential Wood Combustion: rwc	RWC emissions were held constant at 2022 levels for 2026. See Section 4.2.3.11 for more details.
Solvents: np_solvents	Emissions were projected from 2022 to 2026 by multiplying base year emissions by factors based on the ratio of the 'growth surrogate' for the analytic year divided by the value for the base year. Growth surrogates were based on human population, employment projections, and VMT projections. Controls were applied to reflect various national rules. State-specific controls were applied. See Section 4.2.3.7 and Section 4.2.4.6 for more details.

Platform Sector: abbreviation	Description of Projection Methods for Analytic Year Inventories
Remaining nonpoint: nonpt	Projected base year to 2026 by multiplying base year emissions by factors derived from AEO 2023, human population projections, and employment projections. Controls were applied to reflect NSPS rules for reciprocating internal combustion engines (RICE). State-specific controls were also applied. See Section 4.2.3.6 and Section 4.2.4.2 for more details.
Nonroad: nonroad	Outside of California, MOVES4 was run for 2026. The fuels used are specific to the analytic year, but the meteorological data represented the year 2022. Adjusted growth factors were used for North Carolina nonroad industrial based on information from NC. For CA 2016 platform inventories were used for 2026. See Section 4.3.1 for more details.
Onroad: onroad	VMT was projected from 2022 to 2026 using projection factors based on AEO2023 projections and applied nationally by fuel type and broad vehicle type (light duty, medium duty for buses and single unit trucks, and heavy duty for combination trucks). Diesel light duty cars were held flat in projections, but diesel light duty trucks were projected using the AEO. Light duty VMT projections also incorporated a county-level adjustment based on projected human population trends, so that counties expected to grow more than the national average in population receive a corresponding increase in VMT for those counties, and vice versa. Four states (NJ, NY, NC, and WI) provided VMT for each analytic year. Additionally, projection factors were developed and applied to estimate the impact of federal rules that are on the books but were not included in MOVES4 for all states. See Section 4.3.2 for more details.
Onroad California: onroad_ca_adj	For California, emissions were provided by CARB for 2026. Additionally, projection factors were developed and applied to estimate the impact of federal rules that are on the books. See Section 4.3.2 for more details.
Canada Area Fugitive dust: canada_afdust	Area fugitive dust emissions were provided by ECCC for 2026. Mexico emissions are not included in this sector. See Section 4.3.3.1 for more details.
Canada Point Fugitive dust: canada_ptdust	Point source fugitive dust emissions were provided by ECCC for 2026. Mexico emissions are not included in this sector. See Section 4.3.3.1 for more details.
Canada and Mexico point sources: canmex_point	Canada point source emissions were provided by ECCC for 2026. Mexico point sources are held constant from the base year 2022 inventories. See Section 4.3.3.2 for more details.
Canada and Mexico ag: canmex_ag	Canada agricultural emissions were provided by ECCC for 2026. Mexico agricultural sources are held constant from the base year 2022 inventories. See Section 4.3.3.2 for more details.
Canada oil and gas 2D: canada_og2D	Low-level point oil and gas sources from the ECCC 2026 point source inventories. See Section 4.3.3.2 for more details.
Canada and Mexico nonpoint (except ag) and nonroad: canmex_area	Canada nonpoint and nonroad emissions were provided by ECCC for 2026. Mexico nonpoint and nonroad sources are held constant from the base year 2022 inventories. See Section 4.3.3.3 for more details.
Other non-NEI onroad sources: canada_onroad	For Canadian mobile onroad sources, analytic year inventories used Environment and Climate Change Canada (ECCC) provided emissions for 2026. See Section 4.3.3.4 for more details.

Platform Sector: abbreviation	Description of Projection Methods for Analytic Year Inventories
Other non-NEI	Monthly onroad mobile inventories were developed at municipio resolution
onroad sources:	based on an interpolation of runs of MOVES-Mexico done for the 2016 platform
mexico_onroad	for 2026. See Section 4.3.3.4 for more details.

4.1 EGU Point Source Projections (ptegu)

The analytic year EGU emissions inventories relied on Engineering Analysis for 2026.

Details on the development of the analytic year EGU emissions are as follows:

- EPA's 2026 Engineering Analysis emissions developed with the most recent data available as of summer 2024:
 - The starting point was 2023 NOx, SO2, and Hg emissions reported to Clean Air and Power Division (CAPD): https://campd.epa.gov/
 - Known unit retirements, coal to gas conversions, control retrofits, unit specific rate adjustments due to BART or state RACT rules, and new unit construction from the January 2024 NEEDS (which is equivalent to the data in the June 2024 NEEDS database).
 - PM, VOC, NH3, and CO emissions were calculated using NEI 2022 and Energy Information Administration (EIA) 860/923 emissions factors and CAPD generation data.
 - No additional <u>Good Neighbor Plan (GNP)</u> related changes reflected in 2026 inventory. All but two states were under their respective state budgets in 2023; these two states were under their assurance levels in 2023.
 - The 2026 engineering analysis data included emissions according to ORIS and CAPD IDs. The Engineering Analysis units were matched to EIS facility and unit IDs using existing CAPD-EIS matches from the 2022 base year point inventory and NEEDS database. For units with a CAPD -EIS match, units from 2022 were retained, with emissions adjusted to match the engineering analysis. All units from 2022 which were not matched in the engineering analysis were carried forward to 2026 with the same emissions, except for units listed as retired in the 2026 analysis. For all units in the 2026 analysis which were not matched to a unit in the 2022 base year inventory, new units were created with new point source IDs, SCCs for natural gas EGUs, and default stack parameters.

Data files and summaries related to the analytic year EGU emissions are posted in <u>the point reports</u> <u>section</u> of the FTP site.

IPM is a linear programming model that accounts for variables and information such as energy demand, planned unit retirements, and planned rules to forecast unit-level energy production and configurations. EPA's 2023 Reference case using IPM reflects current and existing state regulations, Renewable Portfolio Standards and Clean Energy Standards as of end of 2023.

Some of the key parameters used in the IPM run are:

- Demand: AEO 2023 non-EV demand + on-the-books OTAQ GHG LMDV and HDV Rules
- Gas and Coal Market assumptions: Gas market assumptions as of end of 2021 (with LNG export assumptions from AEO 2023) and coal market assumptions as of end of 2021 with adjustments for historic consumption
- Cost and performance of fossil generation technologies: AEO 2023

- Cost and performance of renewable energy generation technologies: NREL ATB 2023 (mid-case)
- Fleet: <u>NEEDS rev 06-06-2024 (xlsx)</u>

To maintain a temporal pattern consistent with the base year, the NOX and SO2 values in the base year hourly CEMS inventories are projected to match the total seasonal emissions values in analytic years as described in Section 3.3.3.

The EGU sector NO_x emissions by state are listed in Table 4-2 for the cases that comprise this platform. The state total emissions in this table may not exactly match the sum of the emissions for each state in the flat files for each season due to the process of apportioning seasonal total emissions to hours for input to SMOKE followed by summing the daily emissions back up to annual. However, any difference should be well within one percent of the state total emissions.

Table 4-2. EGU sector NOx emissions by State for the 2022v1 cases

State	2022hc	2026hc
Alabama	16,510	13,773
Arizona	15,668	9,637
Arkansas	17,015	14,550
California	5,816	5,757
Colorado	17,778	12,496
Connecticut	3,076	2,654
Delaware	911	462
District of Columbia	NA	NA
Florida	38,816	33,010
Georgia	20,636	19,122
Idaho	1,420	1,680
Illinois	20,575	10,239
Indiana	41,679	25,883
Iowa	16,966	14,182
Kansas	13,554	9,477
Kentucky	31,989	28,366
Louisiana	31,107	21,147
Maine	3,594	3,406
Maryland	4,405	3,584
Massachusetts	5,584	5,309
Michigan	29,158	18,484
Minnesota	14,491	11,131
Mississippi	16,333	12,262
Missouri	48,204	34,976
Montana	10,459	10,382
Nebraska	20,178	18,453
Nevada	4,488	2,101
New Hampshire	1,504	1,167
New Jersey	4,835	4,332

State	2022hc	2026hc
New Mexico	6,604	2,913
New York	13,762	11,768
North Carolina	26,865	24,036
North Dakota	28,897	28,549
Ohio	31,933	22,299
Oklahoma	18,700	18,150
Oregon	2,775	2,207
Pennsylvania	27,252	16,826
Rhode Island	302	619
South Carolina	14,016	13,900
South Dakota	1,144	1,085
Tennessee	8,262	6,834
Texas	93,611	86,224
Tribal Areas	8,412	7,616
Utah	23,396	9,442
Vermont	194	109
Virginia	12,598	10,898
Washington	7,659	3,201
West Virginia	30,156	22,916
Wisconsin	10,985	8,468
Wyoming	26,411	19,591

4.2 Sectors with Projections Computed using CoST

To project U.S. emissions for sectors other than EGUs, facility/unit closures information, growth (projection) factors and/or controls were applied to certain categories within those sectors. Some facility or sub-facility-level closure information was applied to the point sources. There are also a handful of situations where new inventories were generated for sources that did not exist in the NEI (e.g., biodiesel and cellulosic plants, yet-to-be constructed cement kilns). This subsection provides details on the data and projection methods used to develop analytic year emissions for sectors other than EGUs that were developed using the Control Strategy Tool.

Because the projection and control data are developed mostly independently from how the emissions modeling sectors are defined, this section is organized primarily by the type of projections data, with secondary consideration given to the emissions modeling sector (e.g., industrial source growth factors are applicable to multiple emissions modeling sectors). The rest of this section is organized in the order that the EPA uses the Control Strategy Tool (CoST) in combination with other methods to produce analytic year inventories: 1) for point sources, apply facility or sub-facility-level closure information via CoST; 2) apply all PROJECTION packets via CoST (these contain multiplicative factors that could cause increases or decreases); 3) apply all percent reduction-based CONTROL packets via CoST; and 4) append any other analytic-year inventories not generated via CoST. This organization allows consolidation of the discussion of the emissions categories that are contained in multiple sectors, because the data and

approaches used across the sectors are consistent and do not need to be repeated. Sector names associated with the CoST packets are provided in parentheses following the subsection titles.

The impacts of the projection and control factors on the emissions for each sector are shown in tables in this section. In addition, the actual projection and control factors used to develop the analytic year emissions are shown when they are general enough to fit into a table of reasonable length, although in some cases, there are hundreds or thousands of factors used and the tables would be too large. To see these factors, visit the spreadsheets under <u>projection controls</u> on the FTP site for this platform.

4.2.1 Background on the Control Strategy Tool (CoST)

CoST is used to apply most non-EGU projection/growth factors, controls and facility/unit/stack-level closures to the base year emissions modeling inventories to create analytic year inventories for the following sectors: afdust, airports, cmv, livestock, nonpt, np_oilgas, np_solvents, pt_oilgas, ptnonipm, rail, and rwc. Information about CoST and related data sets is available from https://www.epa.gov/economic-and-cost-analysis-air-pollution-regulations/cost-analysis-modelstools-air-pollution.

CoST allows the user to apply projection (growth) factors, controls and closures at various geographic and inventory key field resolutions. Using these CoST datasets, also called "packets" or "programs," supports the process of developing and quality assuring control assessments as well as creating SMOKE-ready analytic year (i.e., projected) inventories. Analytic year inventories are created for each emissions modeling sector by applying a CoST control strategy type called "Project future year inventory" and each strategy includes all base year inventories and applicable CoST packets. For reasons to be discussed later, some emissions modeling sectors may require multiple CoST strategies to account for the compounding of control programs that impact the same type of sources. There are also available linkages to existing and user-defined control measure databases and it is up to the user to determine how control strategies are developed and applied. The EPA typically creates individual CoST packets that represent specific intended purposes (e.g., aircraft projections for airports are in a separate PROJECTION packet from residential wood combustion sales/appliance turnover-based projections). CoST uses three packet types:

- CLOSURE: Closure packets are applied first in CoST. This packet can be used to zero-out (close)
 point source emissions at resolutions as broad as a facility to as specific as a release point. The
 EPA uses these types of packets for known post-base year controls as well as information on
 closures provided by states on specific facilities, units or release points. This packet type is only
 used for the ptnonipm and pt_oilgas sectors.
- PROJECTION: Projection packets support the increase or decrease in emissions for virtually any
 geographic and/or inventory source level. Projection factors are applied as multiplicative factors
 to the base year emissions inventories prior to the application of any possible subsequent
 CONTROLS. A PROJECTION packet is necessary whenever emissions increase from the base year
 and is also desirable when information is based more on activity assumptions rather than on
 known control measures. The EPA uses PROJECTION packet(s) for many modeling sectors.
- CONTROL: Control packets are applied after any/all CLOSURE and PROJECTION packet entries.

 They support of similar level of specificity of geographic and/or inventory source level application

as PROJECTION packets. Control factors are expressed as a percent reduction (0 – meaning no reduction, to 100 – meaning full reduction) and can be applied in addition to any pre-existing inventory control, or as a replacement control. For replacement controls, any controls specified in the inventory are first backed out prior to the application of a more-stringent replacement control).

These packets use comma-delimited formats and are stored as data sets within the Emissions Modeling Framework. As mentioned above, CoST first applies any/all CLOSURE information for point sources, then applies PROJECTION packet information, followed by CONTROL packets. A hierarchy is used by CoST to separately apply PROJECTION and CONTROL packets. In short, in a separate process for PROJECTION and CONTROL packets, more specific information is applied in lieu of less-specific information in ANY other packets. For example, a facility-level PROJECTION factor will be replaced by a unit-level, or facility and pollutant-level PROJECTION factor. It is important to note that this hierarchy does not apply between packet types (e.g., CONTROL packet entries are applied irrespective of PROJECTION packet hierarchies). A more specific example: a state/SCC-level PROJECTION factor will be applied before a stack/pollutant-level CONTROL factor that impacts the same inventory record. However, an inventory source that is subject to a CLOSURE packet record is removed from consideration of subsequent PROJECTION and CONTROL packets.

The implication for this hierarchy and intra-packet independence is important to understand and quality assure when creating future year strategies. For example, with consent decrees, settlements and state comments, the goal is typically to achieve a targeted reduction (from the base year inventory) or a targeted analytic-year emissions value. Therefore, controls due to consent decrees and state comments for specific cement kilns (expressed as CONTROL packet entries) need to be applied *instead of* (not in addition to) the more general approach of the PROJECTION packet entries for cement manufacturing. By processing CoST control strategies with PROJECTION and CONTROL packets separated by the type of broad measure/program, it is possible to show actual changes from the base year inventory to the future (i.e., analytic) year inventory as a result of applying each packet.

Ultimately, CoST concatenates all PROJECTION packets into one PROJECTION dataset and uses a hierarchal matching approach to assign PROJECTION factors to the inventory. For example, a packet entry with Ranking=1 will supersede all other potential inventory matches from other packets. CoST then computes the projected emissions from all PROJECTION packet matches and then performs a similar routine for all CONTROL packets. Therefore, when summarizing "emissions reduced" from CONTROL packets, it is important to note that these reductions are not relative to the base year inventory, but rather to the intermediate inventory *after* application of any/all PROJECTION packet matches (and CLOSURES). A subset of the more than 70 hierarchy options is shown in Table 4-3, where the fields in the table are similar to those used in the SMOKE FF10 inventories. For example, "REGION_CD" is the county-state-county FIPS code (e.g., Harris County Texas is 48201) and "STATE" would be the 2-digit state FIPS code with three trailing zeroes (e.g., Texas is 48000).

Table 4-3. Subset of CoST Packet Matching Hierarchy

Rank	Matching Hierarchy	Inventory Type
1	REGION_CD, FACILITY_ID, UNIT_ID, REL_POINT_ID, PROCESS_ID, SCC, POLL	point
2	REGION_CD, FACILITY_ID, UNIT_ID, REL_POINT_ID, PROCESS_ID, POLL	point
3	REGION_CD, FACILITY_ID, UNIT_ID, REL_POINT_ID, POLL	point

Rank	Matching Hierarchy	Inventory Type
4	REGION_CD, FACILITY_ID, UNIT_ID, POLL	point
5	REGION_CD, FACILITY_ID, SCC, POLL	point
6	REGION_CD, FACILITY_ID, POLL	point
7	REGION_CD, FACILITY_ID, UNIT_ID, REL_POINT_ID, PROCESS_ID, SCC	point
8	REGION_CD, FACILITY_ID, UNIT_ID, REL_POINT_ID, PROCESS_ID	point
9	REGION_CD, FACILITY_ID, UNIT_ID, REL_POINT_ID	point
10	REGION_CD, FACILITY_ID, UNIT_ID	point
11	REGION_CD, FACILITY_ID, SCC	point
12	REGION_CD, FACILITY_ID	point
13	REGION_CD, NAICS, SCC, POLL	point, nonpoint
14	REGION_CD, NAICS, POLL	point, nonpoint
15	STATE, NAICS, SCC, POLL	point, nonpoint
16	STATE, NAICS, POLL	point, nonpoint
17	NAICS, SCC, POLL	point, nonpoint
18	NAICS, POLL	point, nonpoint
19	REGION_CD, NAICS, SCC	point, nonpoint
20	REGION_CD, NAICS	point, nonpoint
21	STATE, NAICS, SCC	point, nonpoint
22	STATE, NAICS	point, nonpoint
23	NAICS, SCC	point, nonpoint
24	NAICS	point, nonpoint
25	REGION_CD, SCC, POLL	point, nonpoint
26	STATE, SCC, POLL	point, nonpoint
27	SCC, POLL	point, nonpoint
28	REGION_CD, SCC	point, nonpoint
29	STATE, SCC	point, nonpoint
30	SCC	point, nonpoint
31	REGION_CD, POLL	point, nonpoint
32	REGION_CD	point, nonpoint
33	STATE, POLL	point, nonpoint
34	STATE	point, nonpoint
35	POLL	point, nonpoint

The contents of the controls, local adjustments and closures for the analytic year cases are described in the following subsections. Year-specific projection factors (PROJECTION packets) for each analytic year were used to create the analytic year cases, unless noted otherwise in the specific subsections. The contents of a few of these projection packets (and control reductions) are provided in the following subsections where feasible. However, most sectors used growth or control factors that varied geographically, and their contents could not be provided in the following sections (e.g., facilities and units subject to the Boiler MACT reconsideration has thousands of records). The remainder of Section 4.2 is divided into subsections that are summarized in Table 4-4. Note that independent analytic year inventories were used rather than projection or control packets for some sources.

Table 4-4. Summary of non-EGU projections subsections

Subsection	Title	Sector(s)	Brief Description
4.2.2	CoST Plant CLOSURE packet	ptnonipm, pt_oilgas	All facility/unit/stack closures information, primarily from Emissions Inventory System (EIS), also includes information from states and other organizations.
4.2.3	CoST PROJECTION packets	All	Introduces and summarizes national impacts of all CoST PROJECTION packets to the analytic year.
4.2.3.1	Fugitive dust growth	afdust	PROJECTION packet: county-level resolution, based on VMT growth plus some other surrogates such as livestock counts.
4.2.3.2	Airport sources	airports	PROJECTION packet: by-airport for all direct matches to FAA Terminal Area Forecast data, with state-level factors for non-matching airports.
4.2.3.3	Category 1 and 2 commercial marine vessels	cmv_c1c2	PROJECTION packet: Category 1 & 2 growth and control by pollutant, vessel type, and region.
4.2.3.4	Category 3 commercial marine vessels	cmv_c3	PROJECTION packet: Category 3 growth and control impacts by pollutant, vessel type, and region.
4.2.3.5	Livestock population growth	livestock	PROJECTION packet: national, by-animal type resolution, based on animal population projections.
4.2.3.6	Nonpoint sources	nonpt	PROJECTION packet: States projected with AEO- based factors for many sources. Human population used as growth for applicable sources.
4.2.3.7	Solvents	np_solvents	PROJECTION packet: including population-based, state factors and some other surrogtes.
4.2.3.8	Oil and gas and industrial source growth	nonpt, np_oilgas, ptnonipm, pt_oilgas	Several PROJECTION packets: varying geographic resolutions from state, county, and byprocess/fuel-type applications. Data derived from AEO were used for nonpt, ptnonipm, np_oilgas, and pt_oilgas sectors.
4.2.3.9	Non-EGU Point Sources	ptnonipm	PROJECTION packet: AEO-based projection factors for industrial sources.
4.2.3.10	Railroads	rail	PROJECTION packet: Based on AEO and extrapolation from recent inventories.
4.2.3.11	Residential wood combustion	rwc	Held Constant. No growth or control in this platform
4.2.4	CoST CONTROL packets	ptnonipm, nonpt, np_oilgas, pt_oilgas, np_solvents	Introduces and summarizes national impacts of all CoST CONTROL packets to the analytic year.

Subsection	Title	Sector(s)	Brief Description
4.2.4.1	Oil and Gas NSPS	np_oilgas,	CONTROL packets: reflect the impacts of the NSPS
		pt_oilgas	for oil and gas sources.
4.2.4.2	RICE NSPS	ptnonipm,	CONTROL packets apply reductions for lean burn,
		nonpt,	rich burn, and combined engines for identified
		np_oilgas,	SCCs.
		pt_oilgas	
4.2.4.3	Organic Liquids	ptnonipm	CONTROL packet: applies VOC reductions based
	Distribution NESHAP		on the NESHAP for organic liquids distribution.
4.2.4.4	Natural Gas Turbines	ptnonipm	CONTROL packets apply NOx emission reductions
	NOx NSPS		established by the NSPS for turbines.
4.2.4.5	Process Heaters NOx	ptnonipm	CONTROL packet: applies NOx emission limits
	NSPS		established by the NSPS for process heaters.
4.2.4.6	State-specific controls	nonpt,	CONTROL packet: applies controls specific to
		np_solvents,	certain states
		ptnonipm	

4.2.2 CoST CLOSURE Packet (ptnonipm, pt_oilgas)

Packets:

closures_2022v1_platform_fromEIS_16sep2024_v1 closures_2022v1_platform_fromSLT_21feb2025_v1

The CLOSURES packets contain facility, unit and stack-level closure information. The "fromEIS" closures packet is derived from an Emissions Inventory System (EIS) unit-level report from July 2024, with closure status equal to "PS" (permanent shutdown; i.e., post-2022 permanent facility/unit shutdowns known in EIS as of the date of the report). The "fromSLT" closures packet consists of any data provided by commenters for closures, updated to match the SMOKE FF10 inventory key fields, with all duplicates removed. These changes impact sources in the ptnonipm and pt_oilgas sectors. The cumulative reduction in emissions for ptnonipm and pt_oilgas from closures are shown in Table 4-5.

Table 4-5. Tons reduced from all facility/unit/stack-level closures in 2026 from 2022 emissions levels

Year	Pollutant	ptnonipm	pt_oilgas
2026	СО	10,059	961
2026	NH3	363	0
2026	NOX	11,082	1,984
2026	PM10	3,297	57
2026	PM2.5	2,691	57
2026	SO2	8,755	3
2026	VOC	8,299	239

4.2.3 CoST PROJECTION Packets (afdust, airports, cmv, livestock, nonpt, np_oilgas, np_solvents, ptnonipm, pt_oilgas, rail)

For point inventories, after the application of any/all CLOSURE packet information, the next step CoST performs when running a control strategy is to apply all of the PROJECTION packets. Regardless of inventory type (point or nonpoint), the PROJECTION packets are applied prior to the CONTROL packets. For several emissions modeling sectors (e.g., airports, np_oilgas, pt_oilgas), there is only one PROJECTION packet applied for each analytic year. For other sectors, there may be several different sources of projection data and as a result there are multiple PROJECTION packets that are concatenated by CoST during a control strategy run. The outputs are then quality-assured regarding duplicates and applicability to the inventories in the CoST strategy. Similarly, CONTROL packets are kept in distinct datasets for different control programs. Having the PROJECTION (and CONTROL) packets separated into "key" projection and control programs allows for quick summaries of the impacts of these distinct control programs on emissions.

Quantitative impacts of the projections on the emissions by sector nationally and by state are available in the reports folder on the FTP site. Some excerpts from this workbook are included in the subsections that follow.

4.2.3.1 Fugitive dust growth (afdust)

Packets:

nonpoint_projection_packet_2022_platform_2022hc_to_2026_updates_24dec2024_csv_24dec2024_v0

For paved roads (SCC 2294000000), the afdust emissions were projected to based on differences in county total VMT as follows:

Analytic year afdust paved roads = 2022 afdust paved roads * (Analytic year county total VMT) / (2022 county total VMT)

The VMT projections are described in the onroad section. Unpaved road dust emissions were held constant.

Other SCCs were projected based on the average of AEO2023 U.S. Census region specific employment and value of shipments (VOS) data to derive growth surrogates.

$$\frac{1}{2} \left(\frac{EMP_{analytic \, year}}{EMP_{base \, year}} + \frac{VOS_{analytic \, year}}{VOS_{base \, year}} \right) = GF$$

Where EMP is regional and industrial sector specific employment in millions of people and VOS is regional and industrial sector specific value of shipments (or revenue) in billion 2012 dollars. The average of analytic year over base year specific EMP and VOS factors were used as a growth factor, GF.

SCCs in the afdust sector used surrogates to derive projection factors in similar ways as shown above for the paved roads. Table 4-6 shows the growth indicators used to grow SCCs in the afdust sector. Table 4-7 shows the impact of the projections on the afdust sector emissions.

Table 4-6. Growth Indicators used to grow SCCs in the afdust sector

SCC	Sector	Growth Indicator	Source	Geography
2294000000	Dust - Paved Road Dust	Total VMT	2022v1 VMT	County
2296000000	Dust - Unpaved Road Dust	No Growth		
2311010000	Dust - Construction Dust	EMPIND25-27 (Construction: Building, Heavy/ Civil Engineering, Specialty Trade); REVIND48	AEO2023	Regional (Census Division)
2311020000	Dust - Construction Dust	EMPIND25-27 (Construction: Building, Heavy/Civil Engineering, Specialty Trade); REVIND48	AEO2023	Regional (Census Division)
2311030000	Dust - Construction Dust	Total VMT	2022v1 VMT	County
2325000000	Industrial Processes – Mining	EMPIND24 (Other Mining and Quarrying); REVIND47	AEO2023	Regional (Census Division)
2325020000	Industrial Processes – Mining	EMPIND24 (Other Mining and Quarrying); REVIND47	AEO2023	Regional (Census Division)
2325030000	Industrial Processes – Mining	EMPIND24 (Other Mining and Quarrying); REVIND47	AEO2023	Regional (Census Division)
2325060000	Industrial Processes - Mining	EMPIND24 (Other Mining and Quarrying); REVIND47	AEO2023	Regional (Census Division)
2801000000	Agriculture - Crops & Livestock Dust	EMPIND20 (Crop Production); REVIND42	AEO2023	Regional (Census Division)
2801000003	Agriculture - Crops & Livestock Dust	EMPIND20 (Crop Production); REVIND42	AEO2023	Regional (Census Division)
2801000005	Agriculture - Crops & Livestock Dust	EMPIND20 (Crop Production); REVIND42	AEO2023	Regional (Census Division)
2801000008	Agriculture - Crops & Livestock Dust	EMPIND20 (Crop Production); REVIND42	AEO2023	Regional (Census Division)
2801530000	Agriculture - Crops & Livestock Dust	EMPIND21 (Other Agriculture); REVIND44	AEO2023	Regional (Census Division)
2805100010	Agriculture - Crops & Livestock Dust	Beef Cattle surrogate	EPA State GHG Projections Tool	State
2805100020	Agriculture - Crops & Livestock Dust	Dairy Cattle surrogate	EPA State GHG Projections Tool	State
2805100030	Agriculture - Crops & Livestock Dust	Young Chickens surrogate	EPA State GHG Projections Tool	State
2805100040	Agriculture - Crops & Livestock Dust	Young Chickens surrogate	EPA State GHG Projections Tool	State

SCC	Sector	Growth Indicator	Source	Geography
2805100050	Agriculture - Crops & Livestock Dust	Hog surrogate	EPA State GHG Projections Tool	State
2805100060	Agriculture - Crops & Livestock Dust	Turkey surrogate	EPA State GHG Projections Tool	State

Table 4-7. Increase in afdust PM_{2.5} emissions from projections

Sector	Year	PM _{2.5} Emissions	Percent Increase vs 2022
Paved Roads	2022	308,622	N/A
All afdust	2022	2,048,850	N/A
Paved Roads	2026	321,732	4.2%
All afdust	2026	2,073,013	1.2%

4.2.3.2 Airport sources (airports)

Packets:

airport_projections_itn_taf2023_2022_2026_for_2022v1_platform_09aug2024_v0

Airport emissions were projected based on factors derived from the 2023 Terminal Area Forecast (TAF) data available from the Federal Aviation Administration (see https://www.faa.gov/data research/aviation/taf/).

Projection factors were computed using the ratio of the itinerant (ITN) data from the Airport Operations table between the base and projection year. Where possible, airport-specific projection factors were used. For airports that could not be matched to a unit in the TAF data, state default growth factors by itinerant class (i.e., commercial, air taxi, and general) were created from the set of unmatched airports. Emission growth factors for facilities from 2022 to each analytic year were limited to a range of 0.2 (80% reduction) to 5.0 (400% growth), and the state default projection factors were limited to a range of 0.5 (50% reduction) to 2.0 (100% growth). Military state default projection values were kept flat (i.e., equal to 1.0) to reflect uncertainly in the data regarding these sources.

Table 4-8 shows the growth factors used for major airports from 2022 to 2026, respectively. Table 4-9 shows the impacts of the projections on the emissions at airports.

Table 4-8. TAF 2023 growth factors for major airports, 2022 to 2026

			Commercial	General	
Facility ID	State	Airport	Aviation	Aviation	Air Taxi
10583311	Arizona	Phoenix (PHX)	1.2128	0.9948	1.1883
2255111	California	Los Angeles (LAX)	1.2852	1.1855	0.5950
9997011	California	San Francisco (SFO)	1.5693	1.0780	0.4138
9816811	Colorado	Denver (DEN)	1.3866	1.1823	0.2922
9762111	Florida	Orlando (MCO)	1.3437	0.9609	1.3465
9791511	Florida	Fort Lauderdale (FLL)	1.2919	0.9084	1.0146
9806211	Florida	Miami (MIA)	1.1722	0.9639	0.9336

			Commercial	General	
Facility ID	State	Airport	Aviation	Aviation	Air Taxi
9748811	Georgia	Atlanta (ATL)	1.3163	1.1589	n/a
2681611	Illinois	Chicago O'Hare (ORD)	1.3371	1.1628	0.2221
9562811	Massachusetts	Boston (BOS)	1.1995	1.1036	1.0157
9535411	Michigan	Detroit (DTW)	1.3157	1.2204	n/a
6151711	Minnesota	Minneapolis (MSP)	1.3491	1.2410	0.3224
9392311	Nevada	Las Vegas (LAS)	1.2692	0.9862	0.8545
9376211	New Jersey	Newark (EWR)	1.1204	1.3308	0.9782
9333211	New York	La Guardia (LGA)	1.0985	1.1385	1.0505
9333311	New York	John F Kennedy (JFK)	1.2094	1.5024	0.5801
9279611	North Carolina	Charlotte (CLT)	1.2281	0.9295	0.6935
9246511	Oregon	Portland (PDX)	1.3413	1.0948	1.0077
9185011	Pennsylvania	Philadelphia (PHL)	1.2649	0.9929	0.6014
9171111	Tennessee	Memphis (MEM)	1.1364	1.0512	0.7085
9076711	Texas	Dallas/Fort Worth (DFW)	1.3230	1.0249	n/a
9128911	Texas	Houston Intercontinental (IAH)	1.2908	1.2748	0.2224
9076611	Utah	Salt Lake City (SLC)	1.1806	1.0166	0.7177
9063811	Virginia	Washington Dulles (IAD)	1.4615	1.0917	0.5722
9093911	Washington	Seattle (SEA)	1.166	1.7739	1.1613

Table 4-9. Impact of growth factors on 2022 airport emissions for 2026

Pollutant	2022 Emissions	2026 Emissions	2026 Emissions % Change
СО	385,527	420,226	9%
NOX	121,944	140,528	15%
PM10-PRI	9,528	10,079	6%
PM25-PRI	8,475	8,979	6%
SO2	12,502	14,357	15%
VOC	46,989	51,293	9%

4.2.3.3 Category 1, Category 2 Commercial Marine Vessels (cmv_c1c2)

Packets:

projection packet CMV C1C2 2022 2026 csv 19aug2024 v0

Category 1 and category 2 (C1C2) CMV emissions were projected based on factors derived from the Freight Analysis Framework version 5. An additional adjustment was applied to NOx emissions. The adjustment factors are intended to account for fleet turnover to newer vessels that meet stricter Tier-2 and Tier-3 emissions standards. See the Category 3 CMV documentation for more details on the development of the projection factors for both C1C2 and C3 CMV vessels. Table 4-10 shows the CMV C1C2 emissions by broad region in the base year and 2026.

Table 4-10. Resulting C1C2 Emissions for 2026 Compared to 2022 (tons/yr)

Region	Pollutant	2022	2026
Alaska	СО	928	1,035
Alaska	CO2	427,960	476,873
Alaska	NH3	3	3
Alaska	NOX	5,972	6,660
Alaska	PM10	154	172
Alaska	PM2_5	150	167
Alaska	SO2	15	16
Alaska	VOC	196	219
Atlantic	СО	6,606	6,675
Atlantic	CO2	3,064,688	3,105,114
Atlantic	NH3	21	22
Atlantic	NOX	43,265	43,718
Atlantic	PM10	1,146	1,159
Atlantic	PM2_5	1,111	1,123
Atlantic	SO2	131	138
Atlantic	VOC	1,523	1,538
Gulf	СО	10,250	10,865
Gulf	CO2	5,203,728	5,517,554
Gulf	NH3	35	37
Gulf	NOX	68,743	72,870
Gulf	PM10	1,884	1,998
Gulf	PM2_5	1,826	1,935
Gulf	SO2	373	397
Gulf	VOC	2,697	2,859
Hawaii	СО	239	257
Hawaii	CO2	106,808	114,778
Hawaii	NH3	1	1
Hawaii	NOX	1,564	1,680
Hawaii	PM10	41	44
Hawaii	PM2_5	39	42
Hawaii	SO2	3	3
Hawaii	VOC	52	56
Inland	СО	4,211	4,177
Inland	CO2	1,960,291	1,950,915
Inland	NH3	16	16
Inland	NOX	29,997	29,734
Inland	PM10	843	836
Inland	PM2_5	817	810
Inland	SO2	133	136
Inland	VOC	1,289	1,275
Pacific	СО	3,490	3,706
Pacific	CO2	1,652,962	1,758,788
Pacific	NH3	11	12
Pacific	NOX	22,571	23,974
Pacific	PM10	595	633
Pacific	PM2_5	577	613

Region	Pollutant	2022	2026
Pacific	SO2	78	85
Pacific	VOC	777	825

4.2.3.4 Category 3 Commercial Marine Vessels (cmv_c3)

Packets:

projection_packet_CMV_C3_2022_2026_csv_19aug2024_v0

Category 3 (C3) CMV emissions were projected based on factors derived from the Freight Analysis Framework version 5. An additional adjustment was applied to NOx emissions. The adjustment factors are intended to account for fleet turnover to newer vessels that meet stricter Tier-2 and Tier-3 emissions standards. See the Category 3 CMV documentation for more details on the development of the factors. Table 4-11 shows the CMV C3 emissions by broad region in the base year and 2026.

Table 4-11. Resulting C3 Emissions for 2026 Compared to 2022 (tons/yr)

Region	Pollutant	2022	2026
Alaska	СО	1,043	1,156
Alaska	CO2	638,087	706,095
Alaska	NH3	4	4
Alaska	NOX	7,977	8,352
Alaska	PM10	212	231
Alaska	PM2_5	195	213
Alaska	SO2	512	555
Alaska	VOC	485	538
Atlantic	СО	19,235	20,215
Atlantic	CO2	9,427,314	9,864,041
Atlantic	NH3	71	74
Atlantic	NOX	156,984	155,296
Atlantic	PM10	3,992	4,163
Atlantic	PM2_5	3,673	3,830
Atlantic	SO2	9,225	9,599
Atlantic	VOC	9,447	9,952
Gulf	CO	13,441	14,287
Gulf	CO2	7,419,752	7,886,079
Gulf	NH3	45	47
Gulf	NOX	113,761	114,163
Gulf	PM10	2,513	2,671
Gulf	PM2_5	2,312	2,457
Gulf	SO2	5,705	6,063
Gulf	VOC	6,268	6,666
Hawaii	СО	170	182
Hawaii	CO2	118,423	127,172
Hawaii	NH3	1	1
Hawaii	NOX	1,617	1,643
Hawaii	PM10	32	34
Hawaii	PM2_5	29	31

Region	Pollutant	2022	2026
Hawaii	SO2	72	78
Hawaii	VOC	73	78
Inland	СО	820	801
Inland	CO2	441,645	431,914
Inland	NH3	2	2
Inland	NOX	8,121	7,488
Inland	PM10	128	125
Inland	PM2_5	118	115
Inland	SO2	269	263
Inland	VOC	387	378
Pacific	СО	13,797	15,039
Pacific	CO2	6,586,834	7,165,481
Pacific	NH3	62	67
Pacific	NOX	114,530	117,870
Pacific	PM10	3,474	3,790
Pacific	PM2_5	3,196	3,486
Pacific	SO2	8,282	9,035
Pacific	VOC	6,956	7,589

4.2.3.5 Livestock population growth (livestock)

Packets:

nonpoint_projection_packet_2022_platform_2022hc_to_2026_updates_24dec2024_csv_24dec2024_v0

The 2022v1 livestock emissions were projected to year 2026 using projection factors created from the Greenhouse Gas Inventory tool (EPA, 2024b) For each analytic year, projection factors were created based on ratios between animal inventory counts between 2026 as compared to 2022. This process was completed for the animal categories of beef, dairy, chickens, turkeys, and swine. National factors were used to project emissions from beef and dairy cows, and state-specific factors were used to project emissions from swine although North Carolina requested state swine emissions to be held constant. Other livestock categories were held flat.

The projection factors were then applied to the base year emissions for the specific animal type to estimate the NH₃ and VOC emissions for 2026 are shown in Table 4-12.

Table 4-12. Impact of 2026 projection factors on livestock

Animal	Pollutant	Inventory	Final	Emissions	Emissions %
		Emissions	Emissions	Change	Change
Beef	NH3	775,290	753,970	-21,320	-2.75%
Beef	VOC	62,023	60,249	-1,774	-2.86%
Chickens	NH3	473,844	473,844	0	0.00%
Chickens	VOC	37,908	37,908	0	0.00%
Dairy	NH3	350,829	349,496	-1,333	-0.38%
Dairy	VOC	28,066	28,201	134	0.48%
Swine	NH3	839,869	867,285	27,416	3.26%
Swine	VOC	67,190	69,383	2,193	3.26%

Animal	Pollutant	Inventory Emissions	Final Emissions	Emissions Change	Emissions % Change
Turkeys	NH3	82,538	82,538	0	0.00%
Turkeys	VOC	6,603	6,603	0	0.00%

4.2.3.6 Nonpoint Sources (nonpt)

Packets:

nonpoint projection packet 2022 platform 2022hc to 2026 updates 24dec2024 csv 24dec2024 v0

In 2022v1, SCCs in the sector for nonpoint emissions not covered in other sectors were projected based on factors derived from specific surrogates for each SCC as identified by the Collaborative Nonpoint task force. One of the surrogates used was population. The county-specific population dataset used to derive changes between the base and analytic years was the Woods and Poole dataset used by BenMAP. The AEO energy consumption projections and economic projections used for many growth surrogates was AEO 2023. VMT-based projections are based on the final county-level VMT data developed for each of the years of the 2022v1 platform. For a complete list of nonpoint growth surrogates by SCC, see the NP_AnalyticYr_Crosswalk spreadsheet in the reports / nonpoint folder on the FTP site. Table 4-13 shows the impacts of the projection factors on the nonpt sector for 2026. The task force recommended no growth for the SCCs shown in Table 4-14.

Table 4-13. Impact of 2022-2026 projection factors on nonpt emissions

	Inventory	Final	Emissions	Emissions %
Pollutant	Emissions	Emissions	Change	Change
СО	842,395	845,504	3,110	0.4%
NH3	69,594	68,102	-1,492	-2.1%
NOX	741,248	715,965	-25,283	-3.4%
PM10-PRI	489,860	500,617	10,757	2.2%
PM25-PRI	421,788	433,078	11,289	2.7%
SO2	75,760	63,123	-12,637	-16.7%
VOC	949,760	973,450	23,690	2.5%

Table 4-14. SCCs in nonpt that were held constant

SCC	Description
	Miscellaneous Area Sources; Agriculture Production – Crops; Agricultural Field Burning – Pile
2801600300	Burning; Orchard Crop Other Not Elsewhere Classified
	Miscellaneous Area Sources; Agriculture Production – Crops; Agricultural Field Burning – Pile
2801600320	Burning; Orchard Crop is Apple
	Miscellaneous Area Sources; Agriculture Production – Crops; Agricultural Field Burning – Pile
2801600330	Burning; Orchard Crop is Apricot
	Miscellaneous Area Sources; Agriculture Production – Crops; Agricultural Field Burning – Pile
2801600350	Burning; Orchard Crop is Cherry
	Miscellaneous Area Sources; Agriculture Production – Crops; Agricultural Field Burning – Pile
2801600410	Burning; Orchard Crop is Peach
	Miscellaneous Area Sources; Agriculture Production – Crops; Agricultural Field Burning – Pile
2801600420	Burning; Orchard Crop is Pear

SCC	Description
	Miscellaneous Area Sources; Agriculture Production – Crops; Agricultural Field Burning – Pile
2801600430	Burning; Orchard Crop is Prune
	Miscellaneous Area Sources; Agriculture Production – Crops; Agricultural Field Burning – Pile
2801600500	Burning; Vine Crop Other Not Elsewhere Classified
2104008100	Stationary Source Fuel Combustion; Residential; Wood; Fireplace: general
	Stationary Source Fuel Combustion; Residential; Wood; Woodstove: fireplace inserts; non-EPA
2104008210	certified
	Stationary Source Fuel Combustion; Residential; Wood; Woodstove: fireplace inserts; EPA
2104008220	certified; non-catalytic
2404000220	Stationary Source Fuel Combustion; Residential; Wood; Woodstove: fireplace inserts; EPA
2104008230	certified; catalytic
2104008300	Stationary Source Fuel Combustion; Residential; Wood; Woodstove: freestanding, general
2404000240	Stationary Source Fuel Combustion; Residential; Wood; Woodstove: freestanding, non-EPA
2104008310	certified Stationary Source Fuel Combustiany Residentials Woods Woodstover freestanding FRA certified
2104008320	Stationary Source Fuel Combustion; Residential; Wood; Woodstove: freestanding, EPA certified, non-catalytic
2104006320	Stationary Source Fuel Combustion; Residential; Wood; Woodstove: freestanding, EPA certified,
2104008330	catalytic
210-000550	Stationary Source Fuel Combustion; Residential; Wood; Woodstove: pellet-fired, general
2104008400	(freestanding or FP insert)
	Stationary Source Fuel Combustion; Residential; Wood; Furnace: Indoor, cordwood-fired, non-
2104008510	EPA certified
2104008530	Stationary Source Fuel Combustion; Residential; Wood; Furnace: Indoor, pellet-fired, general
2104008610	Stationary Source Fuel Combustion; Residential; Wood; Hydronic heater: outdoor
2104008620	Stationary Source Fuel Combustion; Residential; Wood; Hydronic heater: indoor
2104008630	Stationary Source Fuel Combustion; Residential; Wood; Hydronic heater: pellet-fired
210 100000	Stationary Source Fuel Combustion; Residential; Wood; Outdoor wood burning device, NEC
2104008700	(fire-pits, chimeas, etc)
2104009000	Stationary Source Fuel Combustion; Residential; Firelog; Total: All Combustor Types
2296000000	Mobile Sources; Unpaved Roads; All Unpaved Roads; Total: Fugitives
223000000	Solvent Utilization; Miscellaneous Non-industrial: Commercial; Cutback Asphalt; Total: All
2461021000	Solvent Types
	Storage and Transport; Petroleum and Petroleum Product Storage; Residential Portable Gas
2501011011	Cans; Permeation
	Storage and Transport; Petroleum and Petroleum Product Storage; Residential Portable Gas
2501011012	Cans; Evaporation (includes Diurnal losses)
	Storage and Transport; Petroleum and Petroleum Product Storage; Residential Portable Gas
2501011014	Cans; Refilling at the Pump - Vapor Displacement
	Storage and Transport; Petroleum and Petroleum Product Storage; Commercial Portable Gas
2501012011	Cans; Permeation
2504040045	Storage and Transport; Petroleum and Petroleum Product Storage; Commercial Portable Gas
2501012012	Cans; Evaporation (includes Diurnal losses)
2504042044	Storage and Transport; Petroleum and Petroleum Product Storage; Commercial Portable Gas
2501012014	Cans; Refilling at the Pump - Vapor Displacement
2501013010	Storage and Transport; Petroleum and Petroleum Product Storage; Residential/Commercial Portable Gas Cans; Total: All Types
2535000000	Storage and Transport; Bulk Materials Transport; All Transport Types; Total: All Products

SCC	Description
2601010000	Waste Disposal, Treatment, and Recovery; On-site Incineration; Industrial; Total
	Waste Disposal, Treatment, and Recovery; Open Burning; All Categories; Yard Waste - Leaf
2610000100	Species Unspecified
	Waste Disposal, Treatment, and Recovery; Open Burning; All Categories; Yard Waste - Weed
2610000300	Species Unspecified (incl Grass)
	Waste Disposal, Treatment, and Recovery; Open Burning; All Categories; Yard Waste - Brush
2610000400	Species Unspecified
	Waste Disposal, Treatment, and Recovery; Open Burning; All Categories; Land Clearing Debris
2610000500	(use 28-10-005-000 for Logging Debris Burning)
	Waste Disposal, Treatment, and Recovery; Open Burning; Residential; Household Waste (use
2610030000	26-10-000-xxx for Yard Wastes)
	Waste Disposal, Treatment, and Recovery; Soil and Groundwater Remediation; All Categories;
2635000000	Total
266000000	Waste Disposal, Treatment, and Recovery; Leaking Underground Storage Tanks; Leaking
2660000000	Underground Storage Tanks; Total: All Storage Types
2701200000	Natural Sources; Biogenic; Vegetation; Total
2701220000	Natural Sources; Biogenic; Vegetation/Agriculture; Total
	Miscellaneous Area Sources; Agriculture Production - Livestock; Horses and Ponies Waste
2805035000	Emissions; Not Elsewhere Classified
	Miscellaneous Area Sources; Agriculture Production - Livestock; Sheep and Lambs Waste
2805040000	Emissions; Total
2005045000	Miscellaneous Area Sources; Agriculture Production - Livestock; Goats Waste Emissions; Not
2805045000	Elsewhere Classified
2806010000	Miscellaneous Area Sources; Domestic Animals Waste Emissions; Cats; Total
2806015000	Miscellaneous Area Sources; Domestic Animals Waste Emissions; Dogs; Total
	Miscellaneous Area Sources; Other Combustion; Managed Burning, Slash (Logging Debris);
2810005000	Unspecified Burn Method (use 2610000500 for non-logging debris)
2810035000	Miscellaneous Area Sources; Other Combustion; Firefighting Training; Total
	Miscellaneous Area Sources; Other Combustion; Aircraft/Rocket Engine Firing and Testing;
2810040000	Total

Human Population Growth

For SCCs that were projected based on human population growth, population projection data were available from the Benefits Mapping and Analysis Program (BenMAP) model by county for several years, including 2022 and 2026. Population data for Populations for DE, NJ, and NC were state-provided. These human population data were used to create modified county-specific projection factors. The impacted SCCs are shown in Table 4-15. Growth factors were limited to 10% cumulative annual growth (e.g., four times 10% growth compounded over four years), but none of the factors fell outside that range. The state totals used for human population are shown in Table 4-16.

Table 4-15. SCCs in nonpt that use Human Population Growth for Projections

SCC	Description
	Industrial Processes; Food and Kindred Products: SIC 20; Commercial Cooking -
2302002000	Charbroiling;Charbroiling Total

SCC	Description
	Industrial Processes; Food and Kindred Products: SIC 20; Commercial Cooking -
2302002100	Charbroiling;Conveyorized Charbroiling
	Industrial Processes; Food and Kindred Products: SIC 20; Commercial Cooking -
2302002200	Charbroiling;Under-fired Charbroiling
	Industrial Processes; Food and Kindred Products: SIC 20; Commercial Cooking - Frying; Deep Fat
2302003000	Frying
2302003100	Industrial Processes;Food and Kindred Products: SIC 20;Commercial Cooking - Frying;Flat Griddle Frying
	Industrial Processes; Food and Kindred Products: SIC 20; Commercial Cooking - Frying; Clamshell
2302003200	Griddle Frying
2601020000	Waste Disposal, Treatment, and Recovery; On-site Incineration; Commercial/Institutional; Total
2620000000	Waste Disposal, Treatment, and Recovery; Landfills; All Categories; Total
2620010000	Waste Disposal, Treatment, and Recovery; Landfills; Industrial; Total
2620020000	Waste Disposal, Treatment, and Recovery;Landfills;Commercial/Institutional;Total
2620030000	Waste Disposal, Treatment, and Recovery;Landfills;Municipal;Total
	Waste Disposal, Treatment, and Recovery; Landfills; Municipal; Dumping/Crushing/Spreading of
2620030001	New Materials (working face)
2630010000	Waste Disposal, Treatment, and Recovery; Wastewater Treatment; Industrial; Total Processed
	Waste Disposal, Treatment, and Recovery; Wastewater Treatment; Public Owned; Total
2630020000	Processed
2630020010	Waste Disposal, Treatment, and Recovery; Wastewater Treatment; Public Owned; Wastewater Treatment Processes Total
2640000000	Waste Disposal, Treatment, and Recovery;TSDFs;All TSDF Types;Total: All Processes
	Waste Disposal, Treatment, and Recovery; Scrap and Waste Materials; Scrap and Waste
2650000000	Materials;Total: All Processes
	Waste Disposal, Treatment, and Recovery; Scrap and Waste Materials; Scrap and Waste
2650000002	Materials;Shredding
252222422	Waste Disposal, Treatment, and Recovery; Composting; 100% Biosolids (e.g., sewage sludge,
2680001000	manure, mixtures of these matls);All Processes
2680002000	Waste Disposal, Treatment, and Recovery; Composting; Mixed Waste (e.g., a 50:50 mixture of biosolids and green wastes); All Processes
2080002000	Waste Disposal, Treatment, and Recovery; Composting; 100% Green Waste (e.g., residential or
2680003000	municipal yard wastes);All Processes
	Miscellaneous Area Sources;Other Combustion;Residential Grilling (see 23-02-002-xxx for
2810025000	Commercial);Total
2810060100	Miscellaneous Area Sources;Other Combustion;Cremation;Humans
2810060200	Miscellaneous Area Sources;Other Combustion;Cremation;Animals
2850000000	Miscellaneous Area Sources;Health Services;Hospitals;Total: All Operations
2850001000	Miscellaneous Area Sources;Health Services;Dental Alloy Production;Overall Process
2851001000	Miscellaneous Area Sources;Laboratories;Bench Scale Reagents;Total
	Miscellaneous Area Sources; Fluorescent Lamp Breakage; Fluorescent Lamp Breakage; Non-
2861000000	recycling Related Emissions: Total
	Miscellaneous Area Sources; Fluorescent Lamp Breakage; Fluorescent Lamp Breakage; Recycling
2861000010	Related Emissions: Total

Table 4-16. Human population projections by state

State	2022	2026
Alabama	5,092,444	5,224,148
Arizona	7,622,773	8,128,142
Arkansas	3,172,493	3,287,089
California	41,761,812	43,390,150
Colorado	5,912,984	6,230,097
Connecticut	3,721,597	3,790,209
Delaware	1,015,140	1,055,460
District of		
Columbia	691,095	709,826
Florida	22,123,665	23,374,209
Georgia	11,100,196	11,665,279
Idaho	1,803,013	1,897,210
Illinois	13,312,931	13,546,464
Indiana	6,897,517	7,059,224
Iowa	3,193,365	3,242,193
Kansas	3,041,479	3,119,802
Kentucky	4,654,934	4,788,804
Louisiana	4,890,790	5,025,848
Maine	1,397,624	1,432,823
Maryland	6,434,564	6,685,708
Massachusetts	6,982,317	7,116,327
Michigan	10,119,130	10,228,231
Minnesota	5,834,058	6,040,297
Mississippi	3,149,156	3,235,500
Missouri	6,358,501	6,519,480
Montana	1,095,591	1,136,131
Nebraska	1,977,983	2,032,652
Nevada	3,201,664	3,403,943
New Hampshire	1,406,100	1,448,565
New Jersey	9,135,956	9,244,588
New Mexico	2,296,905	2,415,541
New York	20,274,542	20,567,411
North Carolina	10,705,403	11,241,251
North Dakota	802,775	839,955
Ohio	11,879,937	12,036,028
Oklahoma	4,134,219	4,274,562
Oregon	4,296,405	4,475,608
Pennsylvania	13,127,695	13,315,053
Rhode Island	1,082,808	1,097,899
South Carolina	5,278,020	5,525,359
South Dakota	904,319	934,348
Tennessee	7,091,037	7,387,966

State	2022	2026
Texas	30,436,322	32,427,324
Utah	3,291,357	3,489,464
Vermont	663,235	682,819
Virginia	9,095,464	9,532,252
Washington	7,761,429	8,154,313
West Virginia	1,898,285	1,926,027
Wisconsin	6,043,228	6,195,531
Wyoming	636,149	665,384

EIA's Annual Energy Outlook (AEO) Reference Case Projections

Many of the nonpoint emissions were projected using the 2023 EIA's AEO (U.S. Energy Information Administration, 2023). The AEO is an assessment of the outlook for energy markets through 2050. These economic projections and energy consumption projections were mapped based on emissions processes. For economic based projections, an average of the projected change in employment and the project change in revenue was used for the growth indicator. These SCCs are shown in Table 4-17. For more indepth details on the indicators see the NP_AnalyticYr_Crosswalk spreadsheet in the reports / nonpoint folder on the FTP site

Table 4-17. Cs in nonpt that use EIA's AE for Projections

SCC	SCC description	Growth Indicator
2102001000	Stationary Source Fuel Combustion; Industrial; Anthracite Coal; Total: All Boiler Types	Industrial/Other Industrial Coal
2102002000	Stationary Source Fuel Combustion; Industrial; Bituminous/Subbituminous Coal; Total: All Boiler Types	Industrial/Other Industrial Coal
2102004000	Stationary Source Fuel Combustion; Industrial; Distillate Oil; Total: Boilers and IC Engines	Industrial/Distillate Fuel Oil
2102004001	Stationary Source Fuel Combustion; Industrial; Distillate Oil; All Boiler Types	Industrial/Distillate Fuel Oil
2102004002	Stationary Source Fuel Combustion; Industrial; Distillate Oil; All IC Engine Types	Industrial/Distillate Fuel Oil
2102005000	Stationary Source Fuel Combustion; Industrial; Residual Oil; Total: All Boiler Types	Industrial/Residual Fuel Oil
2102006000	Stationary Source Fuel Combustion; Industrial; Natural Gas; Total: Boilers and IC Engines	Industrial/Natural Gas
2102007000	Stationary Source Fuel Combustion; Industrial; Liquified Petroleum Gas (LPG); Total: All Boiler Types	Industrial/Hydrocarbon Gas Liquids
2102008000	Stationary Source Fuel Combustion; Industrial; Wood; Total: All Boiler Types	Industrial/Renewable Energy
2102010000	Stationary Source Fuel Combustion; Industrial; Process Gas; Total: All Boiler Types	Industrial/Total Energy
2102011000	Stationary Source Fuel Combustion; Industrial; Kerosene; Total: All Boiler Types	Industrial/Other Petroleum

SCC	SCC description	Growth Indicator
2103001000	Stationary Source Fuel Combustion; Commercial/Institutional; Anthracite Coal; Total: All Boiler Types	Commercial/Coal
2103002000	Stationary Source Fuel Combustion; Commercial/Institutional; Bituminous/Subbituminous Coal; Total: All Boiler Types	Commercial/Coal
2103004000	Stationary Source Fuel Combustion; Commercial/Institutional; Distillate Oil; Total: Boilers and IC Engines	Commercial/Distillate Fuel Oil
2103004001	Stationary Source Fuel Combustion; Commercial/Institutional; Distillate Oil; Boilers	Commercial/Distillate Fuel Oil
2103004002	Stationary Source Fuel Combustion; Commercial/Institutional; Distillate Oil; IC Engines	Commercial/Distillate Fuel Oil
2103005000	Stationary Source Fuel Combustion; Commercial/Institutional; Residual Oil; Total: All Boiler Types	Commercial/Residual Fuel Oil
2103006000	Stationary Source Fuel Combustion; Commercial/Institutional; Natural Gas; Total: Boilers and IC Engines	Commercial/Natural Gas
2103007000	Stationary Source Fuel Combustion; Commercial/Institutional; Liquified Petroleum Gas (LPG); Total: All Combustor Types	Commercial/Propane
2103008000	Stationary Source Fuel Combustion; Commercial/Institutional; Wood; Total: All Boiler Types	Commercial/Renewable Energy
2103010000	Stationary Source Fuel Combustion; Commercial/Institutional; Process Gas; POTW Digester Gas-fired Boilers	Commercial/Total Energy
2103011000	Stationary Source Fuel Combustion; Commercial/Institutional; Kerosene; Total: All Combustor Types	Commercial/Kerosene
2104001000	Stationary Source Fuel Combustion; Residential; Anthracite Coal; Total: All Combustor Types	Residential/Coal
2104002000	Stationary Source Fuel Combustion; Residential; Bituminous/Subbituminous Coal; Total: All Combustor Types	Residential/Coal
2104004000	Stationary Source Fuel Combustion; Residential; Distillate Oil; Total: All Combustor Types	Residential/Distillate Fuel Oil
2104006000	Stationary Source Fuel Combustion; Residential; Natural Gas; Total: All Combustor Types	Residential/Natural Gas
2104007000	Stationary Source Fuel Combustion; Residential; Liquified Petroleum Gas (LPG); Total: All Combustor Types	Residential/Propane
2104011000	Stationary Source Fuel Combustion; Residential; Kerosene; Total: All Heater Types	Residential/Distillate Fuel Oil
2301000000	Industrial Processes; Chemical Manufacturing: SIC 28; All Processes; Total	EMPIND8-9 (Bulk Chemicals; Other Chemical Products); REVIND 15-24
2301010000	Industrial Processes; Chemical Manufacturing: SIC 28; Industrial Inorganic Chemical Manufacturing; Total	EMPIND8 (Bulk Chemicals); REVIND15
2301020000	Industrial Processes; Chemical Manufacturing: SIC 28; Process Emissions from Synthetic Fibers Manuf (NAPAP cat. 107); Total	EMPIND8 (Bulk Chemicals); REVIND18

SCC	SCC description	Growth Indicator
2302000000	Industrial Processes; Food and Kindred Products: SIC 20; All Processes; Total	EMPIND1-2 (Food Products; Beverage & Tobacco Products); REVIND2-6
2302010000	Industrial Processes; Food and Kindred Products: SIC 20; Meat Products; Total	EMPIND1 (Food Products); REVIND4
2302040000	Industrial Processes; Food and Kindred Products: SIC 20; Grain Mill Products; Total	EMPIND1 (Food Products); REVIND2
2302050000	Industrial Processes; Food and Kindred Products: SIC 20; Bakery Products; Total	EMPIND1 (Food Products); REVIND5
2302070000	Industrial Processes; Food and Kindred Products: SIC 20; Fermentation/Beverages; Total	EMPIND2 (Beverage & Tobacco Products); REVIND6
2302070001	Industrial Processes; Food and Kindred Products: SIC 20; Fermentation/Beverages; Breweries	EMPIND2 (Beverage & Tobacco Products); REVIND6
2302070005	Industrial Processes; Food and Kindred Products: SIC 20; Fermentation/Beverages; Wineries	EMPIND2 (Beverage & Tobacco Products); REVIND6
2302070010	Industrial Processes; Food and Kindred Products: SIC 20; Fermentation/Beverages; Distilleries	EMPIND2 (Beverage & Tobacco Products); REVIND6
2302080000	Industrial Processes; Food and Kindred Products: SIC 20; Miscellaneous Food and Kindred Products; Total	EMPIND1 (Food Products); REVIND5
2302080002	Industrial Processes; Food and Kindred Products: SIC 20; Miscellaneous Food and Kindred Products; Refrigeration	EMPIND1 (Food Products); REVIND5
2304000000	Industrial Processes; Secondary Metal Production: SIC 33; All Processes; Total	EMPIND13 (Primary Metals); REVIND33-35
2305000000	Industrial Processes; Mineral Processes: SIC 32; All Processes; Total	EMPIND12 (Nonmetallic Minerals); REVIND28-32
2306000000	Industrial Processes; Petroleum Refining: SIC 29; All Processes; Total	EMPIND10 (Petroleum and Coal Products); REVIND25-26
2306010000	Industrial Processes; Petroleum Refining: SIC 29; Asphalt Mixing Plants and Paving/Roofing Materials; Asphalt Paving/Roofing Materials: Total	EMPIND10 (Petroleum and Coal Products); REVIND25-26
2306010100	Industrial Processes; Petroleum Refining: SIC 29; Asphalt Mixing Plants and Paving/Roofing Materials; Asphalt Mixing Plants: Total	EMPIND10 (Petroleum and Coal Products); REVIND25-26
2307000000	Industrial Processes; Wood Products: SIC 24; All Processes; Total	EMPIND4 (Wood Products); REVIND8
2307020000	Industrial Processes; Wood Products: SIC 24; Sawmills/Planing Mills; Total	EMPIND4 (Wood Products); REVIND8
2308000000	Industrial Processes; Rubber/Plastics: SIC 30; All Processes; Total	EMPIND11 (Plastics and Rubber Products); REVIND27
2309000000	Industrial Processes; Fabricated Metals: SIC 34; All Processes; Total	EMPIND14 (Fabricated Metal Products); REVIND36

SCC	SCC description	Growth Indicator
2311010000	Industrial Processes; Construction: SIC 15 - 17; Residential; Total	EMPIND25-27 (Construction: Building, Heavy/Civil Engineering, Speciality Trade); REVIND48
2311020000	Industrial Processes; Construction: SIC 15 - 17; Industrial/Commercial/Institutional; Total	EMPIND25-27 (Construction: Building, Heavy/Civil Engineering, Speciality Trade); REVIND48
2312000000	Industrial Processes; Machinery: SIC 35; All Processes; Total	EMPIND15 (Machinery); REVIND37
2325000000	Industrial Processes; Mining and Quarrying: SIC 10 and SIC 14; All Processes; Total	EMPIND24 (Other Mining and Quarrying); REVIND47
2325020000	Industrial Processes; Mining and Quarrying: SIC 10 and SIC 14; Crushed and Broken Stone; Total	EMPIND24 (Other Mining and Quarrying); REVIND47
2325030000	Industrial Processes; Mining and Quarrying: SIC 10 and SIC 14; Sand and Gravel; Total	EMPIND24 (Other Mining and Quarrying); REVIND47
2325060000	Industrial Processes; Mining and Quarrying: SIC 10 and SIC 14; Lead Ore Mining and Milling; Total	EMPIND24 (Other Mining and Quarrying); REVIND47
2399000000	Industrial Processes; Industrial Processes: NEC; Industrial Processes: NEC; Total	EMPIND19 (Miscellaneous Manufacturing); REVIND41
2401010000	Solvent Utilization; Surface Coating; Textile Products: SIC 22; Total: All Solvent Types	EMPIND3 (Textiles, Apparel, and Leather); REVIND7
2401015000	Solvent Utilization; Surface Coating; Factory Finished Wood: SIC 2426 thru 242; Total: All Solvent Types	EMPIND4 (Wood Products); REVIND8
2401020000	Solvent Utilization; Surface Coating; Wood Furniture: SIC 25; Total: All Solvent Types	EMPIND5 (Furniture and Related Products); REVIND9
2401025000	Solvent Utilization; Surface Coating; Metal Furniture: SIC 25; Total: All Solvent Types	EMPIND5 (Furniture and Related Products); REVIND9
2401030000	Solvent Utilization; Surface Coating; Paper: SIC 26; Total: All Solvent Types	EMPIND6 (Paper Products); REVIND10
2401035000	Solvent Utilization; Surface Coating; Plastic Products: SIC 308; Total: All Solvent Types	EMPIND11 (Plastics and Rubber Products); REVIND27
2401040000	Solvent Utilization; Surface Coating; Metal Cans: SIC 341; Total: All Solvent Types	EMPIND14 (Fabricated Metal Products); REVIND36
2401045000	Solvent Utilization; Surface Coating; Metal Coils: SIC 3498; Total: All Solvent Types	EMPIND14 (Fabricated Metal Products); REVIND36
2401050000	Solvent Utilization; Surface Coating; Miscellaneous Finished Metals: SIC 34 - (341 + 3498); Total: All Solvent Types	EMPIND14 (Fabricated Metal Products); REVIND36
2401055000	Solvent Utilization; Surface Coating; Machinery and Equipment: SIC 35; Total: All Solvent Types	EMPIND15 (Machinery); REVIND37
2401060000	Solvent Utilization; Surface Coating; Large Appliances: SIC 363; Total: All Solvent Types	EMPIND18 (Appliance and Electrical Equipment); REVIND40

SCC	SCC description	Growth Indicator
2401065000	Solvent Utilization; Surface Coating; Electronic and Other Electrical: SIC 36 - 363; Total: All Solvent Types	EMPIND18 (Appliance and Electrical Equipment); REVIND40
2401070000	Solvent Utilization; Surface Coating; Motor Vehicles: SIC 371; Total: All Solvent Types	EMPIND17 (Transportation Equipment); REVIND39
2401075000	Solvent Utilization; Surface Coating; Aircraft: SIC 372; Total: All Solvent Types	EMPIND17 (Transportation Equipment); REVIND39
2401080000	Solvent Utilization; Surface Coating; Marine: SIC 373; Total: All Solvent Types	EMPIND17 (Transportation Equipment); REVIND39
2401085000	Solvent Utilization; Surface Coating; Railroad: SIC 374; Total: All Solvent Types	EMPIND17 (Transportation Equipment); REVIND39
2401090000	Solvent Utilization; Surface Coating; Miscellaneous Manufacturing; Total: All Solvent Types	EMPIND19 (Miscellaneous Manufacturing); REVIND41
2415000000	Solvent Utilization; Degreasing; All Processes/All Industries; Total: All Solvent Types	EMPIND19 (Miscellaneous Manufacturing); REVIND41
2440000000	Solvent Utilization; Miscellaneous Industrial; All Processes; Total: All Solvent Types	EMPIND19 (Miscellaneous Manufacturing); REVIND41
2461850000	Solvent Utilization; Miscellaneous Non-industrial: Commercial; Pesticide Application: Agricultural; All Processes	EMPIND20 (Crop Production); REVIND42
2501000000	Storage and Transport; Petroleum and Petroleum Product Storage; All Storage Types: Breathing Loss; Total: All Products	Total Energy/Petroleum and Other Liquids Subtotal
2501000120	Storage and Transport; Petroleum and Petroleum Product Storage; All Storage Types: Breathing Loss; Gasoline	Total Energy/Motor Gasoline
2501050000	Storage and Transport; Petroleum and Petroleum Product Storage; Bulk Terminals: All Evaporative Losses; Total: All Products	Total Energy/Petroleum and Other Liquids Subtotal
2501050120	Storage and Transport; Petroleum and Petroleum Product Storage; Bulk Terminals: All Evaporative Losses; Gasoline	Total Energy/Motor Gasoline
2501055120	Storage and Transport; Petroleum and Petroleum Product Storage; Bulk Plants: All Evaporative Losses; Gasoline	Total Energy/Motor Gasoline
2501060051	Storage and Transport; Petroleum and Petroleum Product Storage; Gasoline Service Stations; Stage 1: Submerged Filling	Total Energy/Motor Gasoline
2501060052	Storage and Transport; Petroleum and Petroleum Product Storage; Gasoline Service Stations; Stage 1: Splash Filling	Total Energy/Motor Gasoline
2501060053	Storage and Transport; Petroleum and Petroleum Product Storage; Gasoline Service Stations; Stage 1: Balanced Submerged Filling	Total Energy/Motor Gasoline
2501060201	Storage and Transport; Petroleum and Petroleum Product Storage; Gasoline Service Stations; Underground Tank: Breathing and Emptying	Total Energy/Motor Gasoline
2501070053	Storage and Transport; Petroleum and Petroleum Product Storage; Diesel Service Stations; Stage 1: Balanced Submerged Filling	Transportation/Distillate Fuel Oil

SCC	SCC description	Growth Indicator
2501080050	Storage and Transport; Petroleum and Petroleum Product Storage; Airports : Aviation Gasoline; Stage 1: Total	Transportation/Other Petroleum
2501080100	Storage and Transport; Petroleum and Petroleum Product Storage; Airports : Aviation Gasoline; Stage 2: Total	Transportation/Other Petroleum
2501080201	Storage and Transport; Petroleum and Petroleum Product Storage; Airports : Aviation Gasoline; Underground Tank: Breathing and Emptying	Transportation/Other Petroleum
2501995120	Storage and Transport; Petroleum and Petroleum Product Storage; All Storage Types: Working Loss; Gasoline	Total Energy/Motor Gasoline
2505000030	Storage and Transport; Petroleum and Petroleum Product Transport; All Transport Types; Crude Oil	Total Energy/Petroleum and Other Liquids Subtotal
2505010000	Storage and Transport; Petroleum and Petroleum Product Transport; Rail Tank Car; Total: All Products	Total Energy/Petroleum and Other Liquids Subtotal
2505020000	Storage and Transport; Petroleum and Petroleum Product Transport; Marine Vessel; Total: All Products	Total Energy/Petroleum and Other Liquids Subtotal
2505020030	Storage and Transport; Petroleum and Petroleum Product Transport; Marine Vessel; Crude Oil	Total Energy/Petroleum and Other Liquids Subtotal
2505020060	Storage and Transport; Petroleum and Petroleum Product Transport; Marine Vessel; Residual Oil	Total Energy/Residual Fuel Oil
2505020090	Storage and Transport; Petroleum and Petroleum Product Transport; Marine Vessel; Distillate Oil	Total Energy/Distillate Fuel Oil
2505020120	Storage and Transport; Petroleum and Petroleum Product Transport; Marine Vessel; Gasoline	Total Energy/Motor Gasoline
2505020150	Storage and Transport; Petroleum and Petroleum Product Transport; Marine Vessel; Jet Naphtha	Total Energy/Jet Fuel
2505020180	Storage and Transport; Petroleum and Petroleum Product Transport; Marine Vessel; Kerosene	Total Energy/Kerosene
2505030120	Storage and Transport; Petroleum and Petroleum Product Transport; Truck; Gasoline	Transportation/Motor Gasoline
2505040000	Storage and Transport; Petroleum and Petroleum Product Transport; Pipeline; Total: All Products	Total Energy/Petroleum and Other Liquids Subtotal
2505040120	Storage and Transport; Petroleum and Petroleum Product Transport; Pipeline; Gasoline	Total Energy/Motor Gasoline
2510000000	Storage and Transport; Organic Chemical Storage; All Storage Types: Breathing Loss; Total: All Products	EMPIND8 (Bulk Chemicals); REVIND16
2510050000	Storage and Transport; Organic Chemical Storage; Bulk Stations/Terminals: Breathing Loss; Total: All Products	EMPIND8 (Bulk Chemicals); REVIND16
2515040000	Storage and Transport; Organic Chemical Transport; Pipeline; Total: All Products	EMPIND8 (Bulk Chemicals); REVIND16
2520010000	Storage and Transport; Inorganic Chemical Storage; Commercial/Industrial: Breathing Loss; Total: All Products	EMPIND8 (Bulk Chemicals); REVIND15
2801000000	Miscellaneous Area Sources; Agriculture Production - Crops; Agriculture - Crops; Total	EMPIND20 (Crop Production); REVIND42

SCC	SCC description	Growth Indicator
2801000003	Miscellaneous Area Sources; Agriculture Production - Crops; Agriculture - Crops; Tilling	EMPIND20 (Crop Production); REVIND42
2801000005	Miscellaneous Area Sources; Agriculture Production - Crops; Agriculture - Crops; Harvesting	EMPIND20 (Crop Production); REVIND42
2801000008	Miscellaneous Area Sources; Agriculture Production - Crops; Agriculture - Crops; Transport	EMPIND20 (Crop Production); REVIND42
2801520000	Miscellaneous Area Sources; Agriculture Production - Crops; Orchard Heaters; Total, all fuels	EMPIND21 (Other Agriculture); REVIND44
2801530000	Miscellaneous Area Sources; Agriculture Production - Crops; Country Grain Elevators; Total	EMPIND21 (Other Agriculture); REVIND44
2802004001	Miscellaneous Area Sources; Agricultural Crop Usage; Agriculture Silage; Storage	EMPIND21 (Other Agriculture); REVIND44
2802004002	Miscellaneous Area Sources; Agricultural Crop Usage; Agriculture Silage; Mixing	EMPIND21 (Other Agriculture); REVIND44
2802004003	Miscellaneous Area Sources; Agricultural Crop Usage; Agriculture Silage; Feeding	EMPIND21 (Other Agriculture); REVIND44

4.2.3.7 Solvents (np_solvents)

Packets:

nonpoint_projection_packet_2022_platform_2022hc_to_2026_updates_24dec2024_csv_24dec2024_v0

Solvent emissions were projected in a way similar to how the nonpt sector was projected. Many SCCs in np_solvents that are projected using human population growth are shown in Table 4-18. For a complete list of solvent growth surrogates by SCC, see the NP_AnalyticYr_Crosswalk spreadsheet in the reports/ nonpoint folder on the FTP site.

Table 4-18. SCCs in np_solvents that use Human Population Growth for Projections

SCC	SCC Descriptions
2401001000	Solvent Utilization;Surface Coating;Architectural Coatings;Total: All Solvent Types
2401005000	Solvent Utilization;Surface Coating;Auto Refinishing: SIC 7532;Total: All Solvent Types
2401005700	Solvent Utilization;Surface Coating;Auto Refinishing: SIC 7532;Top Coats
2401005800	Solvent Utilization;Surface Coating;Auto Refinishing: SIC 7532;Clean-up Solvents
	Solvent Utilization;Surface Coating;Industrial Maintenance Coatings;Total: All Solvent
2401100000	Types
	Solvent Utilization;Surface Coating;Other Special Purpose Coatings;Total: All Solvent
2401200000	Types
2420000000	Solvent Utilization;Dry Cleaning;All Processes;Total: All Solvent Types
2420000055	Solvent Utilization;Dry Cleaning;All Processes;Perchloroethylene
2420000999	Solvent Utilization;Dry Cleaning;All Processes;Solvents: NEC
2425000000	Solvent Utilization;Graphic Arts;All Processes;Total: All Solvent Types
2440000000	Solvent Utilization; Miscellaneous Industrial; All Processes; Total: All Solvent Types
	Solvent Utilization; Miscellaneous Non-industrial: Consumer and Commercial; Lighter
2460030999	Fluid, Fire Starter, Other Fuels;Total: All Volatile Chemical Product Types

SCC	SCC Descriptions
	Solvent Utilization; Miscellaneous Non-industrial: Consumer and Commercial; All
2460100000	Personal Care Products; Total: All Solvent Types
	Solvent Utilization; Miscellaneous Non-industrial: Consumer and Commercial; All
2460200000	Household Products;Total: All Solvent Types
	Solvent Utilization; Miscellaneous Non-industrial: Consumer and Commercial; All
2460400000	Automotive Aftermarket Products; Total: All Solvent Types
	Solvent Utilization; Miscellaneous Non-industrial: Consumer and Commercial; All
2460500000	Coatings and Related Products; Total: All Solvent Types
	Solvent Utilization; Miscellaneous Non-industrial: Consumer and Commercial; All
2460600000	Adhesives and Sealants;Total: All Solvent Types
	Solvent Utilization; Miscellaneous Non-industrial: Consumer and Commercial; All FIFRA
2460800000	Related Products; Total: All Solvent Types
	Solvent Utilization; Miscellaneous Non-industrial: Consumer and
2460900000	Commercial; Miscellaneous Products (Not Otherwise Covered); Total: All Solvent Types
	Solvent Utilization; Miscellaneous Non-industrial: Commercial; Asphalt Roofing; Total: All
2461023000	Solvent Types
	Solvent Utilization; Miscellaneous Non-industrial: Commercial; Solvent Reclamation: All
2461100000	Processes;Total: All Solvent Types
	Solvent Utilization; Miscellaneous Non-industrial: Commercial; Pesticide Application: All
2461800001	Processes;Surface Application

Table 4-19. Impact of projection factors on np_solvents emissions

		Inventory	Final	Emissions	Emissions %
Year	Pollutant	Emissions	Emissions	Change	Change
2026	VOC	2,634,832	2,712,204	77,371	2.9%

4.2.3.8 Oil and Gas Sources (np_oilgas, pt_oilgas)

Packets:

np_oilgas_projection_packet_2026hc_KSappend_csv_11sep2024_v0 pt_oilgas_projection_packet_2026hc_KSappend_csv_21feb2025_v1

Analytic year projections for the 2022v1 platform were generated for point and nonpoint oil and gas sources for 2026. This projection consisted of three components: (1) applying facility closures to the pt_oilgas sector using the CoST CLOSURE packet (see Section 4.2.4); (2) using historical and/or forecast activity data to generate analytic-year emissions before applicable control technologies are applied using the CoST PROJECTION packet; and (3) estimating impacts of applicable control technologies on analytic-year emissions using the CoST CONTROL packet. Applying the CLOSURE packet to the pt_oilgas sector resulted in small emissions changes to the national summary shown in Table 4-5.

For pt_oilgas growth, the oil and gas sources were separated into production-related and pipeline-related sources by NAICS and SCC. These sources were further subdivided by fuel-type and by NAICS and SCC into either OIL, natural gas (NGAS), or BOTH (where oil or natural gas fuels are possible). The next two subsections describe the growth component of the process.

For np_oilgas growth oil and gas sources were separated into production-related and exploration-related sources. These sources were further separated into oil, natural gas or coal bed methane production related.

Production-related Sources (pt_oilgas, np_oilgas)

The growth factors for the production-related NAICS-SCC combinations were generated in a two-step process. The first step used historical production data at the state-level to get state-level short-term trends or factors from 2022 to year 2023. These historical data were acquired from EIA from the following links:

- Historical Natural Gas: http://www.eia.gov/dnav/ng/ng sum Isum a epg0 fgw mmcf a.htm
- Historical Crude Oil: http://www.eia.gov/dnav/pet/pet crd crpdn adc mbbl a.htm
- Historical CBM: https://www.eia.gov/dnav/ng/ng prod coalbed s1 a.htm

The second step involved using the Annual Energy Outlook (AEO) 2023 reference case for the Lower 48 forecast production tables to project from the year 2023 to the desired analytic year. Specifically, AEO 2023 Table 58 "Lower 48 Crude Oil Production and Wellhead Prices by Supply Region" and AEO 2023 Table 59 "Lower 48 Natural Gas Production and Supply Prices by Supply Region" were used in this projection process. The AEO2023 forecast production is supplied for each EIA Oil and Gas Supply region shown in Figure 4-1.

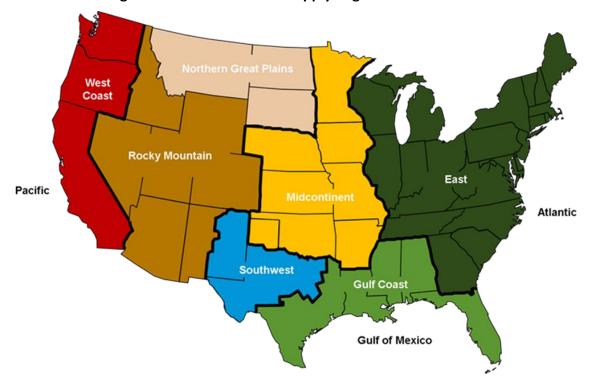


Figure 4-1. EIA Oil and Gas Supply Regions as of AEO2023

The result of this second step is a growth factor for each Supply Region from 2023 to 2026. A Supply Region mapping to FIPS cross-walk was developed so the regional growth factors could be applied for each FIPS (for pt_oilgas) or to the county-level np_oilgas inventories. Note that portions of Texas are in

three different Supply Regions and portions of New Mexico are in two different supply regions. The state-level historical factor (from 2022 to 2023) was then multiplied by the Supply Region factor to produce a state-level or FIPS-level factor to grow from 2023 to 2026. This process was done using crude production forecast information to generate a factor to apply to oil-production related SCCs or NAICS-SCC combinations and it was also done using natural gas production forecast information to generate a factor to apply to natural gas-production related NAICS-SCC combinations. For the SCC and NAICS-SCC combinations that are designated "BOTH" the average of the oil-production and natural-gas production factors was calculated and applied to these specific combinations.

Texas provided updated basin specific production for 2022 and 2023 to allow for a better calculation of the estimated growth for this three-year period

(http://webapps.rrc.texas.gov/PDQ/generalReportAction.do). The AEO2023 was used as described above for the three AEO Oil and Gas Supply Regions that include Texas counties to grow from 2023 to analytic year.

The state of New Mexico is broken up into two AEO Oil and Gas Supply Regions. County production data for New Mexico was obtained from their state website

(https://wwwapps.emnrd.nm.gov/ocd/ocdpermitting/Reporting/Production/CountyProductionInjection Summary.aspx) so that a better estimate of growth from 2022 to 2023 for the AEO Supply Regions in New Mexico could be calculated.

The state of Kansas provided county specific growth factors for production-related sources. Kansas used historical well information to derive their growth factors for oil and gas SCCs.

Transmission-related Sources (pt_oilgas)

Projection factors for transmissions-related sources were generated using the same AEO2023 tables used for production sources. These growth factors sources were developed solely using AEO 2023 data for the entire lower 48 states. For each analytic year, one national factor was used for oil transmission and another national factor was used for natural gas transmission. The 2022 to 2026 growth for oil transmissions is 9.3% and for natural gas transmission is -0.5%. The impact of the projection factors on the pt oilgas emissions is shown in Table 4-20.

		Inventory	Final	Emissions	Emissions	
Year	Pollutant	Emissions	Emissions	Change	% Change	
2026	СО	164,139	169,414	5,275	3.2%	
2026	NH3	322	305	-17	-5.3%	
2026	NOX	330,214	338,671	8,457	2.6%	
2026	PM10-PRI	12,959	13,456	497	3.8%	
2026	PM25-PRI	11,477	11,841	364	3.2%	
2026	SO2	29,576	31,308	1,732	5.9%	
2026	VOC	194,885	207,653	12,767	6.6%	

Table 4-20. Impact of projections on pt_oilgas emissions

Exploration-related Sources (np_oilgas)

Years 2018, 2019 and 2022 exploration activity were averaged and the resulting 3-year average activity used in the 2020NEI version of the Oil and Gas Tool to generate exploration emissions for 2026. Table 4-21 provides a high-level national summary of the emissions data for the three year-average. This three-year averaged-activity derived emissions data were used in 2022v1 because they reflected the most recent average of exploration activity and emissions. Note that CoST was not used to perform this projection step for exploration sources, but is used to apply controls to exploration sources for each analytic year. The change in emissions from 2022 to 2026 due to the impact of the projections is shown in Table 4-22.

Table 4-21. Three year average of national oil and gas exploration emissions

Pollutant	Emissions
	(tons)
СО	14,809
NH3	15
NOX	52,611
PM10-PRI	1,075
PM25-PRI	1,039
SO2	6,383
VOC	106,427

Table 4-22. Impact of projections on np oilgas emissions

		Inventory	Final	Emissions	Emissions %
Year	Pollutant	Emissions	Emissions	Change	Change
2026	СО	680,698	717,896	37,198	5.5%
2026	NH3	3,771	4,287	516	13.7%
2026	NOX	543,771	579,378	35,607	6.5%
2026	PM10-PRI	9,481	9,856	375	4.0%
2026	PM25-PRI	9,465	9,841	376	4.0%
2026	SO2	278,368	305,846	27,478	9.9%
2026	VOC	2,501,145	2,710,839	209,694	8.4%

4.2.3.9 Non-EGU point sources (ptnonipm)

Packets:

ptnonipm_projection_packet_2022v1_revision_2022hc_to_2026_02jan2025_21feb2025_v1 Projection_2022_2026_for_2022v1_ptnonipm_NJ_overrides_20dec2024_v0

Projection factors for ptnonipm were developed by industrial sector from AEO 2023 to project emissions from 2022 to 2026. Emissions were mapped to AEO categories by NAICS and SCC (combination of NAICS and SCC first, SCC only after that) and projection factors were created using a ratio between the base year and projection year estimates from each specific AEO category. SCC/NAICS combinations with emissions >100tons/year for any CAP were mapped to AEO sector and fuel. Table 4-23 details the AEO2023 tables used to map SCCs to AEO categories for the projections of industrial sources. The impact of the projection packets other than the refinery adjustments from 2022 to 2026 is shown in Table 4-24.

The NJ override packets act to hold facilities flat which would have otherwise been decreased (state comment) so a table for that really isn't applicable. The computation of the refinery adjustments is described in the latter part of this subsection.

Table 4-23. Annual Energy Outlook (AEO) 2023 tables used to project industrial sources

AEO 2023 Table #	AEO Table name			
2	Energy Consumption by Sector and Source			
24	Refining Industry Energy Consumption			
25	Food Industry Energy Consumption			
26	Paper Industry Energy Consumption			
27	Bulk Chemical Industry Energy Consumption			
28	Glass Industry Energy Consumption			
29	Cement Industry Energy Consumption			
30	Iron and Steel Industries Energy Consumption			
31	Aluminum Industry Energy Consumption			
32	Metal Based Durables Energy Consumption			
33	Other Manufacturing Sector Energy Consumption			
34	Nonmanufacturing Sector Energy Consumption			

Table 4-24. Impact of projections other than refinery adjustments on ptnonipm emissions

Year	Pollutant	Inventory Emissions	Final Emissions	Emissions Change	Emissions % Change
2026	СО	1,191,726	1,161,131	-30,595	-2.6%
2026	NH3	60,624	60,081	-544	-0.9%
2026	NOX	733,122	715,388	-17,734	-2.4%
2026	PM10-PRI	341,507	337,484	-4,023	-1.2%
2026	PM25-PRI	220,869	217,184	-3,684	-1.7%
2026	SO2	429,542	418,997	-10,545	-2.5%
2026	VOC	720,157	700,431	-19,726	-2.7%

4.2.3.10 Railroads (rail)

Packets:

Projection_rail_2022hc_to_2026_future_year_16aug2024_v0

Rail projection factors are relatively flat. Rail emissions were projected based on factors derived for categories of locomotives based on AEO (fuel use) growth rates including some adjustments. Table 4-25 shows the projection factors used for the various locomotive categories.

Table 4-25. Projection factors for Rail SCCs from the 2022 Base Year

STB R-1 Fuel Use Data	Passenger Rail	2022 Switcher &	Line Haul 2022
Trends 2005-2023	SCCs:	class 2/3 SCCs:	Projection Factors
	2285002008,	28500201,	SCCs: 2285002006
	2285002009	2285002007	
2022	1.000	1.000	1.000
2023	1.038	0.986	0.986
2024	1.060	1.026	1.045
2025	1.075	1.002	1.027
2026	1.091	0.959	0.991

4.2.3.11 Residential Wood Combustion (rwc)

For residential wood combustion emissions in the 2022v1 platform, it was determined to hold the emissions flat at the base year levels for 2026.

4.2.4 CoST CONTROL Packets (nonpt, np_oilgas, ptnonipm, pt_oilgas, np_solvents)

The final step in the projection of emissions to an analytic year is the application of any control technologies or programs. For analytic-year New Source Performance Standards (NSPS) controls (e.g., oil and gas, Reciprocating Internal Combustion Engines (RICE), Natural Gas Turbines, and Process Heaters), we attempted to control only new sources/equipment using the following equation to account for growth and retirement of existing sources and the differences between the new and existing source emission rates.

$$Qn = Qo\{[(1 + Pf)t - 1]Fn + (1 - Ri)tFe + [1 - (1 - Ri)t]Fn]\}$$
 Equation 4-1

where:

Qn = emissions in projection year

Qo = emissions in base year

Pf = growth rate expressed as ratio (e.g., 1.5=50 percent cumulative growth)

t = number of years between base and analytic years

Fn = emission factor ratio for new sources

Ri = retirement rate, expressed as whole number (e.g., 3.3 percent=0.033)

Fe = emission factor ratio for existing sources

The first term in Equation 4-1 represents new source growth and controls, the second term accounts for retirement and controls for existing sources, and the third term accounts for replacement source controls. For computing the CoST % reductions (Control Efficiency) for nonpt and ptnonipm sectors, the simplified Equation 4-2 was used for analytic year projections:

Control Efficiency
$$_{202x}(\%) = 100 \times \left(1 - \frac{\left[(Pf_{202x} - 1) \times Fn + (1 - Ri)^{12} + \left(1 - (1 - Ri)^{12}\right) \times Fn\right]}{Pf_{202x}}\right)$$
 Equation 4-2

For example, to compute the control efficiency for 2026 from a base year of 2022 the existing source emissions factor (Fe) is set to 1.0; 2026 (the analytic year) minus 2022 (the base year) is 4, and the new source emission factor (Fn) is the ratio of the NSPS emission factor to the existing emission factor. Note for the np oilgas and pt oilgas sectors the Fe is *not* assumed to be 1.0 for the Oil and Gas NSPS.

The NSPS are applied to sectors and with the specified retirement rates (R) as follows:

- The <u>Oil and Gas NSPS</u> from 2024 is applied to the np_oilgas and pt_oilgas sectors with no assumed retirement rate.
- The <u>RICE NSPS for Compression Ignition (CI) engines</u> that originated in 2006 but was amended as recently as 2024 is applied to the np_oilgas, pt_oilgas, nonpt, and ptnonipm sectors with an assumed retirement rate of 40 years (2.5%). The same retirement rate was used for the <u>RICE NSPS for spark ignition engines</u> that originated in 2008 and was amended as recently as 2024.
- The <u>Gas Turbines NSPS</u> that originated as subpart GG I 1979 but for subpart KKKK originated in 2006 is applied to the pt_oilgas and ptnonipm sectors with an assumed retirement rate of 45 years (2.2%).
- The Process Heaters NSPS with origination date around 2006-2010 is applied to the pt_oilgas and ptnonipm sectors with an assumed retirement rate of 30 years (3.3%).

Table 4-26 shows the values for the emission factors for new sources (Fn) with respect to each NSPS regulation and other conditions within. Further information about the application of NSPS controls can be found in Section 4 of the *Additional Updates to Emissions Inventories for the Version 6.3, 2011 Emissions Modeling Platform for the Year 2023* technical support document (EPA, 2017).

Table 4-26. Assumed new source emission factor ratios for NSPS rules

NSPS	Pollutants	Applied where?	New Source Emission Factor (Fn)
Oil and Gas	VOC	Storage Tanks	Varies by state-SCC
Oil and Gas	VOC	Gas Well Completions: 95% control (regardless)	0.05
Oil and Gas	VOC	Pneumatic controllers, not high-bleed >6scfm or low-bleed	Varies by state-SCC
Oil and Gas	VOC	Pneumatic controllers, high-bleed >6scfm or low- bleed	Varies by state-SCC
Oil and Gas	VOC	Compressor Seals	Varies by state-SCC
Oil and Gas	VOC	Fugitive Emissions: 60% Valves, flanges, connections, pumps, open-ended lines, and other	Varies by state-SCC
RICE	NOx	Lean burn: PA, all other states	0.25, 0.606
RICE	NOx	Rich Burn: PA, all other states	0.1, 0.069
RICE	NOx	Combined (average) LB/RB: PA, other states	0.175, 0.338
RICE	CO	Lean burn: PA, all other states	1.0 (n/a), 0.889
RICE	СО	Rich Burn: PA, all other states	0.15, 0.25
RICE	СО	Combined (average) LB/RB: PA, other states	0.575, 0.569
RICE	VOC	Lean burn: PA, all other states	0.125, n/a
RICE	VOC	Rich Burn: PA, all other states	0.1, n/a
RICE	VOC	Combined (average) LB/RB: PA, other states	0.1125, n/a

NSPS	Pollutants	Applied where?	New Source Emission Factor (Fn)
Gas Turbines	NOx	California and NO _x SIP Call states	0.595
Gas Turbines	NOx	All other states	0.238
Process Heaters	NO _X	Nationally to Process Heater SCCs	0.41

4.2.4.1 Oil and Gas NSPS (np_oilgas, pt_oilgas)

Packets:

```
Control_2022_2026_OilGas_NSPS_np_oilgas_2022v1platform_03dec2024_v0
Control_2022_2026_OilGas_NSPS_np_oilgas_2022v1platform_KSupdate_03dec2024_v0
Control_2022_2026_OilGas_NSPS_pt_oilgas_2022v1platform_03dec2024_v0
Control_2022_2026_OilGas_NSPS_pt_oilgas_2022v1platform_KSupdate_03dec2024_v0
```

New packets to reflect the Oil and Gas NSPS were developed for the 2022 platform. For oil and gas NSPS controls, except for gas well completions (a 95 percent control), the assumption of no equipment retirements through year 2032 dictates that NSPS controls are applied to the growth component only of any PROJECTION factors. For example, if a growth factor is 1.5 for storage tanks (indicating a 50 percent increase activity), then, using Table 4-26, the 70.3 percent VOC NSPS control to this new growth will result in a 23.4 percent control: 100 *(70.3 * (1.5 -1) / 1.5); this yields an "effective" growth rate (combined PROJECTION and CONTROL) of 1.1485, or a 70.3 percent reduction from 1.5 to 1.0. The impacts of all non-drilling completion VOC NSPS controls are therefore greater where growth in oil and gas production is assumed highest.

Conversely, for oil and gas basins with assumed negative growth in activity/production, VOC NSPS controls will be limited to well completions only. These reductions are year-specific because projection factors for these sources are year-specific. Note that Fe and Fn emissions factor ratios for oil and gas emissions vary by state and by SCC in this emissions modeling platform. In some cases, pneumatic devices/pumps emissions are estimated to reach 100% control based on information available at the time, thus emissions are zero.

The packets with KSupdate in their names cover only the state of Kansas, while the other packets cover all other states. For details on growth and control factors used in CoST see https://gaftp.epa.gov/Air/emismod/2022/v1/reports/projection controls/final analytic/ for report summaries.

Table 4-27 shows the emission reductions for the oil and gas sectors as a result of applying the oil and gas NSPS. Table 4-28 and Table 4-29 list the SCCs in the np_oilgas and pt_oilgas sectors for which the Oil and Gas NSPS controls were. Note that controls are applied to both production and exploration-related SCCs.) For np_oilgas, the exploration-related pre-CoST emissions for 2022 are computed using an average across multiple years and are different than the 2022hc emissions. Thus, the two sets of emissions are shown in different columns.

Table 4-27. Emissions reductions for the oil and gas sectors due to applying the Oil and Gas NSPS

Sector	Year	Pollutant	2022hc	2022 pre-CoST emissions	Emissions change from 2022	% change
np_oilgas	2026	VOC	2,767,230	2,788,266	-892,682	-32.0%
pt_oilgas	2026	VOC	211,419	211,419	-14,701	-7.0%

Table 4-28. SCCs in np_oilgas for which the Oil and Gas NSPS controls were applied

SCC	PRODUCT	OG_NSPS_SCC	TOOL OR STATE	Source category	SCC Description*
					Crude Petroleum;Oil Well Tanks - Flashing &
2310010200	OIL	1. Storage Tanks	TOOL	PRODUCTION	Standing/Working/Breathing
		3. Pneumatic			Crude Petroleum;Oil Well
2310010300	OIL	Devices	TOOL	PRODUCTION	Pneumatic Devices
		5a. Associated Gas			On-Shore Oil Production; Associated
2310011001	OIL	Venting	TOOL	PRODUCTION	Gas Venting
					On-Shore Oil Production;Storage
2310011020	OIL	1. Storage Tanks	STATE	PRODUCTION	Tanks: Crude Oil
2310011450	OIL	4. Fugitives	STATE	PRODUCTION	On-Shore Oil Production;Wellhead
					On-Shore Oil Production; Fugitives:
2310011500	OIL	4. Fugitives	STATE	PRODUCTION	All Processes
					On-Shore Oil Production; Fugitives:
2310011501	OIL	4. Fugitives	TOOL	PRODUCTION	Connectors
					On-Shore Oil Production; Fugitives:
2310011502	OIL	4. Fugitives	TOOL	PRODUCTION	Flanges
					On-Shore Oil Production; Fugitives:
2310011503	OIL	4. Fugitives	TOOL	PRODUCTION	Open Ended Lines
					On-Shore Oil Production; Fugitives:
2310011505	OIL	4. Fugitives	TOOL	PRODUCTION	Valves
					On-Shore Gas Production;Storage
2310021010	NGAS	1. Storage Tanks	TOOL	PRODUCTION	Tanks: Condensate
		3. Pneumatic			On-Shore Gas Production; Gas Well
2310021300	NGAS	Devices	TOOL	PRODUCTION	Pneumatic Devices
		3. Pneumatic			On-Shore Gas Production; Gas Well
2310021310	NGAS	Devices	STATE	PRODUCTION	Pneumatic Pumps
					On-Shore Gas Production; Fugitives:
2310021501	NGAS	4. Fugitives	TOOL	PRODUCTION	Connectors
					On-Shore Gas Production; Fugitives:
2310021502	NGAS	4. Fugitives	TOOL	PRODUCTION	Flanges
					On-Shore Gas Production; Fugitives:
2310021503	NGAS	4. Fugitives	TOOL	PRODUCTION	Open Ended Lines
					On-Shore Gas Production; Fugitives:
2310021505	NGAS	4. Fugitives	TOOL	PRODUCTION	Valves
					On-Shore Gas Production; Fugitives:
2310021506	NGAS	4. Fugitives	TOOL	PRODUCTION	Other
					On-Shore Gas Production; Fugitives:
2310021509	NGAS	4. Fugitives	STATE	PRODUCTION	All Processes
					On-Shore Gas Production;Gas Well
2310021602	NGAS	2. Well Completions	STATE	EXPLORATION	Venting - Recompletions
					Coal Bed Methane Natural
2310023010	CBM	1. Storage Tanks	TOOL	PRODUCTION	Gas;Storage Tanks: Condensate

SCC	PRODUCT	OG_NSPS_SCC	TOOL OR STATE	Source category	SCC Description*
		3. Pneumatic			Coal Bed Methane Natural
2310023300	CBM	Devices	TOOL	PRODUCTION	Gas;Pneumatic Devices
		3. Pneumatic			Coal Bed Methane Natural
2310023310	CBM	Devices	TOOL	PRODUCTION	Gas;Pneumatic Pumps
					Coal Bed Methane Natural
2310023509	CBM	4. Fugitives	STATE	PRODUCTION	Gas;Fugitives
					Coal Bed Methane Natural
2310023511	CBM	4. Fugitives	TOOL	PRODUCTION	Gas; Fugitives: Connectors
					Coal Bed Methane Natural
2310023512	CBM	4. Fugitives	TOOL	PRODUCTION	Gas;Fugitives: Flanges
					Coal Bed Methane Natural
2310023513	CBM	4. Fugitives	TOOL	PRODUCTION	Gas;Fugitives: Open Ended Lines
					Coal Bed Methane Natural
2310023515	CBM	4. Fugitives	TOOL	PRODUCTION	Gas;Fugitives: Valves
					Coal Bed Methane Natural
2310023516	CBM	4. Fugitives	TOOL	PRODUCTION	Gas;Fugitives: Other
					Coal Bed Methane Natural Gas;CBM
2310023600	CBM	2. Well Completions	TOOL	EXPLORATION	Well Completion: All Processes
		3. Pneumatic			On-Shore Oil Exploration;Oil Well
2310111401	OIL	Devices	TOOL	PRODUCTION	Pneumatic Pumps
					On-Shore Oil Exploration;Oil Well
2310111700	OIL	2. Well Completions	TOOL	EXPLORATION	Completion: All Processes
		3. Pneumatic			On-Shore Gas Exploration;Gas Well
2310121401	NGAS	Devices	TOOL	PRODUCTION	Pneumatic Pumps
					On-Shore Gas Exploration;Gas Well
2310121700	NGAS	2. Well Completions	TOOL	EXPLORATION	Completion: All Processes
					On-Shore Gas Exploration;Gas Well
2310121702	NGAS	2. Well Completions	STATE	EXPLORATION	Completion: Venting
					On-Shore Gas Production -
					Conventional;Storage Tanks:
2310321010	NGAS	1. Storage Tanks	STATE	PRODUCTION	Condensate
					On-Shore Gas Production -
					Unconventional;Storage Tanks:
2310421010	NGAS	1. Storage Tanks	STATE	PRODUCTION	Condensate

^{*} All SCC descriptions in this table start with "Industrial Processes; Oil and Gas Exploration and Production;"

Table 4-29. SCCs in pt_oilgas for which the Oil and Gas NSPS controls were applied

SCC	Fuel	OG_NSPS_	SCC Description*	
		scc		
		2. Well	Industrial Processes;Oil and Gas Production;Crude Oil Production;Well	
31000101	OIL	Completions	Completion;;	
			Industrial Processes;Oil and Gas Production;Crude Oil Production;Valves:	
31000124	OIL	4. Fugitives	General;;	
			Industrial Processes;Oil and Gas Production;Crude Oil Production;Relief	
31000125	OIL	4. Fugitives	Valves;;	
			Industrial Processes;Oil and Gas Production;Crude Oil Production;Pump	
31000126	OIL	4. Fugitives	Seals;;	
			Industrial Processes;Oil and Gas Production;Crude Oil Production;Flanges	
31000127	OIL	4. Fugitives	and Connections;;	
		1. Storage	Industrial Processes;Oil and Gas Production;Crude Oil Production;Storage	
31000133	OIL	Tanks	Tank;;	

SCC	Fuel	OG_NSPS_ SCC	SCC Description*		
		3. Pneumatic	Industrial Processes;Oil and Gas Production;Crude Oil		
31000151	OIL	Devices	Production;Pneumatic Controllers, Low Bleed;;		
		3. Pneumatic	Industrial Processes;Oil and Gas Production;Crude Oil		
31000152	OIL	Devices	Production;Pneumatic Controllers High Bleed >6 scfh;;		
		3. Pneumatic	Industrial Processes;Oil and Gas Production;Crude Oil		
31000153	OIL	Devices	Production;Pneumatic Controllers Intermittent Bleed;;		
			Industrial Processes;Oil and Gas Production;Natural Gas		
31000207	NGAS	4. Fugitives	Production; Valves: Fugitive Emissions;;		
		1. Storage	Industrial Processes;Oil and Gas Production;Natural Gas		
31000212	NGAS	Tanks	Production;Condensate Storage Tank;;		
		1. Storage	Industrial Processes;Oil and Gas Production;Natural Gas		
31000213	NGAS	Tanks	Production;Produced Water Storage Tank;;		
		1. Storage	Industrial Processes;Oil and Gas Production;Natural Gas		
31000214	NGAS	Tanks	Production;Natural Gas Liquids Storage Tank;;		
			Industrial Processes;Oil and Gas Production;Natural Gas Production;All		
31000220	NGAS	4. Fugitives	Equipt Leak Fugitives (Valves, Flanges, Connections, Seals, Drains;;		
		2. Well	Industrial Processes;Oil and Gas Production;Natural Gas Production;Well		
31000222	NGAS	Completions	Completions;;		
		,	Industrial Processes;Oil and Gas Production;Natural Gas Production;Relief		
31000223	NGAS	4. Fugitives	Valves;;		
		3. Pneumatic	Industrial Processes;Oil and Gas Production;Natural Gas Production;Pump		
31000224	NGAS	Devices	Seals;;		
		6.	Industrial Processes;Oil and Gas Production;Natural Gas		
31000225	NGAS	Compressors	Production;Compressor Seals;;		
31000223	110/15	Compressors	Industrial Processes;Oil and Gas Production;Natural Gas		
31000226	NGAS	4. Fugitives	Production; Flanges and Connections;;		
31000220	110/15	4. 1 48111465	Industrial Processes;Oil and Gas Production;Natural Gas		
31000231	NGAS	4. Fugitives	Production; Fugitives: Drains;;		
31000231	110/15	3. Pneumatic	Industrial Processes;Oil and Gas Production;Natural Gas		
31000233	NGAS	Devices	Production; Pneumatic Controllers, Low Bleed;;		
31000233	110/15	3. Pneumatic	Industrial Processes;Oil and Gas Production;Natural Gas		
31000234	NGAS	Devices	Production; Pneumatic Controllers, High Bleed >6 scfh;;		
31000234	NOAS	3. Pneumatic	Industrial Processes;Oil and Gas Production;Natural Gas		
31000235	NGAS	Devices	Production; Pneumatic Controllers Intermittent Bleed;;		
31000233	NOAS	Devices	Industrial Processes;Oil and Gas Production;Natural Gas		
31000306	NGAS	4. Fugitives	Processing; Process Valves;;		
31000300	NOAS	4. Tugitives	Industrial Processes;Oil and Gas Production;Natural Gas Processing;Relief		
31000307	NGAS	4. Fugitives	Valves;;		
31000307	NOAS	4. Tugitives	Industrial Processes;Oil and Gas Production;Natural Gas Processing;Open-		
31000308	NGAS	4. Fugitives	ended Lines;;		
31000308	NUAS	6.	Industrial Processes;Oil and Gas Production;Natural Gas		
31000309	NGAS	Compressors	Processing;Compressor Seals;;		
21000303	INUAS	Compressors	Industrial Processes;Oil and Gas Production;Natural Gas		
31000311	NGAS	4. Fugitives	Processing; Flanges and Connections;;		
21000311	INUAS	6a.	ו וספביטווק, ומווקביט מווע בטווודבנוטווט,,		
		Centrifugal	Industrial Processes;Oil and Gas Production;Natural Gas		
31000312	NGAS	Compressors	Processing;Centrifugal Compressor;;		
31000312	INUAS	6b.	Troccosing, centinugal compressor,,		
		Reciprocating	Industrial Processes;Oil and Gas Production;Natural Gas		
31000313	NGAS	Compressors	Processing;Reciprocating Compressor;;		
21000313	INUAS	1. Storage	Industrial Processes;Oil and Gas Production;Liquid Waste Treatment;Oil-		
31000506	OII	Tanks	Water Separation Wastewater Holding Tanks;;		
31000506	OIL	1 d11K5	water separation wastewater noming raffks;;		

SCC	Fuel	OG_NSPS_	SCC Description*	
		SCC		
			Industrial Processes;Oil and Gas Production;Fugitive Emissions;Specify in	
31088801	BOTH	4. Fugitives	Comments Field;;	
			Industrial Processes;Oil and Gas Production;Fugitive Emissions;Fugitive	
31088811	BOTH	4. Fugitives	Emissions;;	
		3. Pneumatic	Industrial Processes;NGTS;Natural Gas Transmission and Storage	
31700101	NGAS	Devices	Facilities;Pneumatic Controllers Low Bleed;;	
		3. Pneumatic	Industrial Processes;NGTS;Natural Gas Transmission and Storage	
31700103	NGAS	Devices	Facilities;Pneumatic Controllers Intermittent Bleed;;	

^{*} For all entries in this table, TOOL OR STATE = STATE and SRC_CAT = PRODUCTION; In the SCC description, IP is an abbreviation for Industrial Processes and CE is an abbreviation for Chemical Evaporation

4.2.4.2 RICE NSPS (nonpt, ptnonipm, np_oilgas, pt_oilgas)

Packets:

Control_2022_2026_RICE_NSPS_np_oilgas_2022v1platform_09sep2024_v0
Control_2022_2026_RICE_NSPS_np_oilgas_2022v1platform_KSupdate_16oct2024_v0
Control_2022_2026_RICE_NSPS_pt_oilgas_2022v1platform_09sep2024_v0
Control_2022_2026_RICE_NSPS_pt_oilgas_2022v1platform_KSupdate_16oct2024_v0
Control_2022_2026_RICE_NSPS_nonpt_ptnonipm_2022v1platform_07oct2024_v1

Multiple sectors are affected by the RICE NSPS controls (https://www.epa.gov/stationary-engines). For the pt_oilgas and np_oilgas sectors, year-specific RICE NSPS factors were generated for 2026. New growth factors based on AEO2023 and state-specific production data were calculated for the oil and gas sectors which were included in the calculation of the new RICE NSPS control factors. Note that Kansas specific county growth factors were used and therefore, the packets with KSupdate in their names are used in addition to the other packets that contain data used for the rest of the states. For RICE NSPS controls, the EPA emission requirements for stationary engines differ according to whether the engine is new or existing, whether the engine is located at an area source or major source, and whether the engine is a compression ignition or a spark ignition engine. Spark ignition engines are further subdivided by power cycle, two-stroke versus four-stroke, and whether the engine is rich burn or lean burn. The NSPS reduction was applied to lean burn, rich burn and "combined" engines using Equation 4-2 and information listed in Table 4-26.

Table 4-30, Table 4-31, Table 4-32 and Table 4-33 show the reductions in emissions in the nonpt, ptnonipm, and np_oilgas and pt_oilgas sectors after the application of the RICE NSPS CONTROL packet. Note that for nonpoint oil and gas, VOC reductions were only appropriate in the state of Pennsylvania. For np_oilgas, the exploration-related pre-CoST emissions for 2022 are computed using an average across multiple years and are different than the 2022hc emissions. Thus, the two sets of emissions are shown in different columns in Table 4-32. Table 4-34, Table 4-35, and Table 4-36 show the SCCs to which the NSPS controls are applied in the nonpt, ptnonipm, np_oilgas, and pt_oilgas sectors.

Table 4-30. Emissions reductions in nonpt due to RICE NSPS

			Emissions changes	
year	Poll	2022hc (tons)	(tons)	% change
2026	СО	842,395	-5,684	-0.7%
2026	NOX	741,248	-10,601	-1.4%
2026	VOC	949,760	-55	0.0%

Table 4-31. Emissions reductions in ptnonipm due to the RICE NSPS

year	poll	2022hc (tons)	Emissions changes (tons)	% change
2026	СО	1,207,678	-107	-0.01%
2026	NOX	780,504	-226	-0.03%
2026	VOC	732,606	-1	0.00%

Table 4-32. Emissions reductions in np_oilgas due to the RICE NSPS

			2022 pre-CoST	Emissions	
Year	Poll	2022hc (tons)	emissions	change	% change
2026	СО	705,089	695,507	-26,585	-3.8%
2026	NOX	679,016	596,382	-45,346	-7.6%
2026	VOC	2,767,230	2,788,266	-31	0.00%

Table 4-33. Emissions reductions in pt_oilgas due to the RICE NSPS

Year	Pollutant	2022hc (tons)	Emissions change (tons)	% change
2026	СО	188,876	-4,942	-2.6%
2026	NOX	365,805	-11,614	-3.2%
2026	VOC	211,419	-45	-0.02%

Table 4-34. SCCs and Engine Types where RICE NSPS controls applied for nonpt and ptnonipm

SCC	Lean, Rich, or Combined	SCCDESC		
300	Combined	SCCDESC		
20200202	Combined	Internal Combustion Engines; Industrial; Natural Gas; Reciprocating		
20200253	Rich	Internal Combustion Engines; Industrial; Natural Gas; 4-cycle Rich Burn		
20200254	Lean	Internal Combustion Engines; Industrial; Natural Gas; 4-cycle Lean Burn		
20200256	Lean	Internal Combustion Engines; Industrial; Natural Gas; 4-cycle Clean Burn		
		Internal Combustion Engines; Commercial/Institutional; Natural Gas;		
20300201	Combined	Reciprocating		
		Industrial Processes;Oil and Gas Production;Natural Gas		
31000203	Combined	Production; Compressors (See also 310003-12 and -13)		
		Stationary Source Fuel Combustion; Industrial; Natural Gas; Total: Boilers		
2102006000	Combined	and IC Engines		
		Stationary Source Fuel Combustion; Commercial/Institutional; Natural Gas;		
2103006000	Combined	Total: Boilers and IC Engines		

Table 4-35. Non-point Oil and Gas SCCs where RICE NSPS controls are applied

scc	Lean/ Rich/ Combined	Product	Source Category	SCC Description
				Industrial Processes;Oil and Gas Exploration and
2310020600	Combined	NGAS	PRODUCTION	Production; Natural Gas; Compressor Engines
				Industrial Processes;Oil and Gas Exploration and
				Production;On-Shore Gas Production;Natural Gas
				Fired 4Cycle Lean Burn Compressor Engines 50 To
2310021202	Lean	NGAS	PRODUCTION	499 HP
				Industrial Processes;Oil and Gas Exploration and
				Production;On-Shore Gas Production;Total: All
				Natural Gas Fired 4Cycle Lean Burn Compressor
2310021209	Lean	NGAS	PRODUCTION	Engines
				Industrial Processes;Oil and Gas Exploration and
				Production;On-Shore Gas Production;Lateral
2310021251	Lean	NGAS	PRODUCTION	Compressors 4 Cycle Lean Burn
				Industrial Processes;Oil and Gas Exploration and
				Production;On-Shore Gas Production;Natural Gas
				Fired 4Cycle Rich Burn Compressor Engines 50 To
2310021302	Rich	NGAS	PRODUCTION	499 HP
				Industrial Processes;Oil and Gas Exploration and
				Production;On-Shore Gas Production;Total: All
				Natural Gas Fired 4Cycle Rich Burn Compressor
2310021309	Rich	NGAS	PRODUCTION	Engines
				Industrial Processes;Oil and Gas Exploration and
				Production;On-Shore Gas Production;Lateral
2310021351	Rich	NGAS	PRODUCTION	Compressors 4 Cycle Rich Burn
				Industrial Processes;Oil and Gas Exploration and
				Production;Coal Bed Methane Natural Gas;CBM
				Fired 4Cycle Lean Burn Compressor Engines 50 To
2310023202	Lean	CBM	PRODUCTION	499 HP
				Industrial Processes;Oil and Gas Exploration and
				Production; Coal Bed Methane Natural Gas; Lateral
2310023251	Lean	CBM	PRODUCTION	Compressors 4 Cycle Lean Burn
				Industrial Processes;Oil and Gas Exploration and
				Production;Coal Bed Methane Natural Gas;CBM
				Fired 4Cycle Rich Burn Compressor Engines 50 To
2310023302	Rich	CBM	PRODUCTION	499 HP
				Industrial Processes;Oil and Gas Exploration and
				Production;Coal Bed Methane Natural Gas;Lateral
2310023351	Rich	CBM	PRODUCTION	Compressors 4 Cycle Rich Burn

Table 4-36. Point source SCCs in pt_oilgas sector where RICE NSPS controls applied

SCC	Lean, Rich, or Combined	SCCDESC
20100202	Combined	Internal Combustion Engines; Electric Generation; Natural Gas; Reciprocating
20200202	Combined	Internal Combustion Engines;Industrial;Natural Gas;Reciprocating
20200204	Combined	Internal Combustion Engines;Industrial;Natural Gas;Reciprocating: Cogeneration
20200253	Rich	Internal Combustion Engines;Industrial;Natural Gas;4-cycle Rich Burn
20200254	Lean	Internal Combustion Engines;Industrial;Natural Gas;4-cycle Lean Burn
20200256	Combined	Internal Combustion Engines;Industrial;Natural Gas;4-cycle Clean Burn

	Lean, Rich, or	
SCC	Combined	SCCDESC
20201702	Combined	Internal Combustion Engines;Industrial;Gasoline;Reciprocating Engine
20300201	Combined	Internal Combustion Engines;Commercial/Institutional;Natural Gas;Reciprocating
		Internal Combustion Engines;Off-highway 4-stroke Gasoline Engines;Industrial
26500320	Combined	Equipment;Industrial Fork Lift: Gasoline Engine (4-stroke)
		Industrial Processes;Oil and Gas Production;Natural Gas Production;Compressors
31000203	Combined	(See also 310003-12 and -13)
		Industrial Processes;Oil and Gas Production;Natural Gas Processing;Reciprocating
31000313	Combined	Compressor

4.2.4.3 Organic Liquids Distribution NESHAP (ptnonipm)

Packets:

Control_2022_2026_Organic_Liquids_Distribution_NESHAP_2022v1platform_02oct2024_v1
Control_2022_203X_Organic_Liquids_Distribution_NESHAP_2022v1platform_02oct2024_nf_v3

The Organic Liquids Distribution National Emissions Standards for Hazardous Air Pollutants (NESHAP) is an EPA rule to reduce emissions of toxic air pollutants from facilities that distribute organic liquids other than gasoline. Affected facilities were listed in Appendix A of the Review of the RACT/BACT/LAER Clearinghouse Database for the Organic Liquids Distribution Source Category memo found in the regulatory docket. Facility information was pulled from EIS to check control information. If no VOC controls existed at a facility, an 8% VOC emissions reduction was applied. Table 4-37 summarizes the impact of the organic liquids distribution NESHAP on VOC emissions in the ptnonipm sector.

Table 4-37. Summary of Organic Liquids Distribution NESHAP controls on ptnonipm emissions

Year	Pollutant	2022hc (tons)	Emissions Change (tons)	% change
2026	VOC	732,606	-2,244	-0.3%

4.2.4.4 Natural Gas Turbines NO_x NSPS (ptnonipm, pt_oilgas)

Packets:

Control_2022_2026_NG_Turbines_NSPS_ptnonipm_2022v1platform_30sep2024_v0 Control_2022_2026_NG_Turbines_pt_oilgas_2022v1platform_05sep2024_v0 Control_2022_2026_NG_Turbines_pt_oilgas_2022v1platform_KSupdate_16oct2024_v0

For ptnonipm, the <u>Natural Gas Turbines NSPS</u> packet was reused from the 2016v2 platform because the last finalized regulation was dated March 20, 2009. For pt_oilgas, packets are based on updated growth information for that sector from state-historical production data and the AEO2023 production forecast database. The new growth factors were to calculate the new control efficiencies for 2026. The control efficiency calculation methodology did not change from the 2016v3 modeling platform.

Natural Gas Turbines NSPS controls were generated based on examination of emission limits for stationary combustion turbines that are not in the power sector. In 2006, the EPA promulgated standards of performance for new stationary combustion turbines in 40 CFR part 60, subpart KKKK. The standards reflect changes in NOx emission control technologies and turbine design since standards for

these units were originally promulgated in 40 CFR part 60, subpart GG. The 2006 NSPSs affecting NO_x and SO₂ were established at levels that bring the emission limits up-to-date with the performance of current combustion turbines. Stationary combustion turbines were also regulated by the NOx State Implementation Plan (SIP) Call, which required affected gas turbines to reduce their NOx emissions by 60 percent. Table 4-38 compares the federal 2006 NSPS NO_x emission limits for new stationary combustion turbines with the NO_x Reasonably Available Control Technology (RACT) regulations in selected states within the NO_x SIP Call region. More information on the NOx SIP call is available at https://www.epa.gov/power-sector/final-update-nox-sip-call-regulations (84 FR 8422). The state NO_x RACT regulations summary (Pechan, 2001) is from a year 2001 analysis, so some states may have updated their rules since that time.

Table 4-38. Stationary gas turbines NSPS analysis and RACT regulations in selected states

		50-850	>850	
Firing Natural Gas limits:	<50 MMBTU/hr	MMBTU/hr	MMBTU/hr	
Federal NSPS	100	25	15	Ppm
	5-100	100-250	>250	
State	MMBTU/hr	MMBTU/hr	MMBTU/hr	
Connecticut	225	75	75	Ppm
Delaware	42	42	42	Ppm
Massachusetts	65*	65	65	Ppm
New Jersey	50*	50	50	Ppm
New York	50	50	50	Ppm
New Hampshire	55	55	55	ppm

^{*} Only applies to 25-100 MMBTU/hr

The above state RACT table is from a 2001 analysis. Note that the current New York State regulations use the same emission limits. The resulting new source NOx ratio (Fn) for NOx SIP call state and California = 0.595 or 40.5% control (as computed by dividing 25 by 42). For other states Fn = 0.238 or 76.2% control (as computed by dividing 25 by 105).

For control factor development, the existing source emission ratio was set to 1.0 for combustion turbines. The new source emission ratio for the NOx SIP Call states and California is the ratio of state NOx emission limit to the Federal NSPS. A complicating factor in the above is the lack of size information in the stationary source SCCs. Plus, the size classifications in the NSPS do not match the size differentiation used in state air emission regulations. We accepted a simplifying assumption that most industrial applications of combustion turbines are in the 100-250 MMBtu/hr size range and computed the new source emission rates as the NSPS emission limit for 50-850 MMBtu/hr units divided by the state emission limits. We used a conservative new source emission ratio by using the lowest state emission limit of 42 ppmv (Delaware). This yields a new source emission ratio of 25/42, or 0.595 (40.5 percent reduction) for states with existing combustion turbine emission limits. States without existing turbine NOx limits would have a lower new source emission ratio: the uncontrolled emission rate (105 ppmv via AP-42) divided into 25 ppmv = 0.238 (76.2 percent reduction). This control was then plugged into Equation 4-2 as a function of the year-specific projection factor. The Natural Gas Turbines control packet for pt_oilgas also includes additional controls for the EPNG Williams facility in Arizona, in order to reduce the post-control facility total of 584.77 tons/yr NOx.

Table 4-39 shows the reduction in NOx emissions after the application of the Natural Gas Turbines NSPS CONTROL. Table 4-40 and Table 4-41 list the point source SCCs for which Natural Gas Turbines NSPS controls were applied in ptnonipm and pt_oilgas, respectively.

Table 4-39. Emissions reductions due to the Natural Gas Turbines NSPS

				Emissions	%
Sector	Year	Pollutant	2022hc (tons)	change (tons)	change
pt_oilgas	2026	NOX	365,805	-7,531	-2.1%
ptnonipm	2026	NOX	780,504	-846	-0.1%

Table 4-40. SCCs in ptnonipm for which Natural Gas Turbines NSPS controls were applied

SCC	SCC Description
20200201	Internal Combustion Engines; Industrial; Natural Gas; Turbine
20200203	Internal Combustion Engines; Industrial; Natural Gas; Turbine: Cogeneration
20200209	Internal Combustion Engines; Industrial; Natural Gas; Turbine: Exhaust
20200701	Internal Combustion Engines; Industrial; Process Gas; Turbine
20200714	Internal Combustion Engines; Industrial; Process Gas; Turbine: Exhaust
20300203	Internal Combustion Engines; Commercial/Institutional; Natural Gas; Turbine: Cogeneration

Table 4-41. SCCs in pt_oilgas for which Natural Gas Turbines NSPS controls were applied

SCC	SCC description
20100201	Internal Combustion Engines; Electric Generation; Natural Gas; Turbine
20100209	Internal Combustion Engines; Electric Generation; Natural Gas; Turbine: Exhaust
20200201	Internal Combustion Engines;Industrial;Natural Gas;Turbine
20200203	Internal Combustion Engines;Industrial;Natural Gas;Turbine: Cogeneration
20200209	Internal Combustion Engines;Industrial;Natural Gas;Turbine: Exhaust
20300202	Internal Combustion Engines;Commercial/Institutional;Natural Gas;Turbine
20300203	Internal Combustion Engines; Commercial/Institutional; Natural Gas; Turbine: Cogeneration
20300209	Internal Combustion Engines; Commercial/Institutional; Natural Gas; Turbine: Exhaust

4.2.4.5 Process Heaters NO_x NSPS (ptnonipm, pt_oilgas)

Packets:

Control_2022_2026_Process_Heaters_NSPS_ptnonipm_2022v1platform_30sep2024_v0 Control_2022_2026_Process_Heaters_pt_oilgas_2022v1platform_06sep2024_v0 Control_2022_2026_Process_Heaters_pt_oilgas_2022v1platform_KSupdate_16oct2024_v0

For ptnonipm, the packet was reused from the 2016v2 platform. For pt_oilgas, the packets were newly developed for 2022v2 based on updated information including the AEO2023 forecast oil and gas production.

Process heaters are used throughout refineries and chemical plants to raise the temperature of feed materials to meet reaction or distillation requirements. Fuels are typically residual oil, distillate oil, refinery gas, or natural gas. In some sense, process heaters can be considered as emission control devices because they can be used to control process streams by recovering the fuel value while

destroying the VOC. The criteria pollutants of most concern for process heaters are NO_x and SO_2 . In 2022, it is assumed that process heaters have not been subject to regional control programs like the NOx SIP Call, so most of the emission controls put in-place at refineries and chemical plants have resulted from RACT regulations that were implemented as part of SIPs to achieve ozone NAAQS in specific areas, and refinery consent decrees. The boiler/process heater NSPS established NOx emission limits for new and modified process heaters. These emission limits are displayed in Table 4-42.

Table 4-42. Process Heaters NSPS analysis emission rates used to estimate controls

	Natural Draft	Forced Draft	Average
NO _x emission rate Existing PPMV (=Fe)	(fraction)	(fraction)	
80	0.4	0	
100	0.4	0.5	
150	0.15	0.35	
200	0.05	0.1	
240	0	0.05	
Cumulative, weighted (=Fe)	104.5	134.5	119.5
NSPS Standard	40	60	
New Source NO _x ratio (=Fn)	0.383	0.446	0.414
NSPS Control (%)	61.7	55.4	58.6

For computations, the existing source emission ratio (Fe) was set to 1.0. The computed (average) NO_x emission factor ratio used for new sources (Fn) is 0.41 (59 percent control). The retirement rate is the inverse of the expected unit lifetime. There is limited information in the literature about process heater lifetimes. This information was reviewed at the time that the Western Regional Air Partnership (WRAP) developed its initial regional haze program emission projections, and energy technology models used a 20-year lifetime for most refinery equipment. However, it was noted that in practice, heaters would probably have a lifetime that was on the order of 50 percent above that estimate. Therefore, a 30-year lifetime was used to estimate the effects of process heater growth and retirement. This yields a 3.3 percent retirement rate. This control was then plugged into Equation 4-2 as a function of the year-specific projection factor.

The impact on emissions from applying the process heaters NSPS is shown in Table 4-43. Table 4-44 and Table 4-45 list the point source SCCs for which the Process Heaters NSPS controls were applied in the ptnonipm and pt oilgas sectors, respectively.

Table 4-43. Emissions reductions due to the application of the Process Heaters NSPS

Sector	Year	Pollutant	2022hc (tons)	Emissions change (tons)	% change
pt_oilgas	2026	NOX	365,805	-1,398	-0.4%
ptnonipm	2026	NOX	780,504	-3,888	-0.5%

Table 4-44. SCCs in ptnonipm for which Process Heaters NSPS controls were applied

SCC	SCC Description*
30190003	IP;Chemical Manufacturing;Fuel Fired Equipment;Process Heater: Natural Gas
30190004	IP;Chemical Manufacturing;Fuel Fired Equipment;Process Heater: Process Gas
30590002	IP;Mineral Products;Fuel Fired Equipment;Residual Oil: Process Heaters
30590003	IP;Mineral Products;Fuel Fired Equipment;Natural Gas: Process Heaters
30600103	IP;Petroleum Industry;Process Heaters;Oil
30600104	IP;Petroleum Industry;Process Heaters;Gas
30600105	IP;Petroleum Industry;Process Heaters;Natural Gas
30600106	IP;Petroleum Industry;Process Heaters;Process Gas
30600107	IP;Petroleum Industry;Process Heaters;Liquified Petroleum Gas (LPG)
30600199	IP;Petroleum Industry;Process Heaters;Other Not Elsewhere Classified
30990003	IP;Fabricated Metal Products;Fuel Fired Equipment;Natural Gas: Process Heaters
31000401	IP;Oil and Gas Production;Process Heaters;Distillate Oil (No. 2)
31000403	IP;Oil and Gas Production;Process Heaters;Crude Oil
31000404	IP;Oil and Gas Production;Process Heaters;Natural Gas
31000405	IP;Oil and Gas Production;Process Heaters;Process Gas
31000406	IP;Oil and Gas Production;Process Heaters;Propane/Butane
31000414	IP;Oil and Gas Production;Process Heaters;Natural Gas: Steam Generators
31000415	IP;Oil and Gas Production;Process Heaters;Process Gas: Steam Generators
39900501	IP;Miscellaneous Manufacturing Industries;Process Heater/Furnace;Distillate Oil
39900601	IP;Miscellaneous Manufacturing Industries;Process Heater/Furnace;Natural Gas
	IP;Miscellaneous Manufacturing Industries;Miscellaneous Manufacturing
39990003	Industries;Natural Gas: Process Heaters

^{*} IP = Industrial Processes

Table 4-45. SCCs in pt_oilgas for which Process Heaters NSPS controls were applied

SCC	SCC Description
	Industrial Processes; Chemical Manufacturing; Fuel Fired Equipment; Process Heater: Distillate Oil (No.
30190001	2)
30190003	Industrial Processes;Chemical Manufacturing;Fuel Fired Equipment;Process Heater: Natural Gas
30190004	Industrial Processes;Chemical Manufacturing;Fuel Fired Equipment;Process Heater: Process Gas
30290003	Industrial Processes; Food and Agriculture; Fuel Fired Equipment; Natural Gas: Process Heaters
30390003	Industrial Processes; Primary Metal Production; Fuel Fired Equipment; Natural Gas: Process Heaters
30590003	Industrial Processes; Mineral Products; Fuel Fired Equipment; Natural Gas: Process Heaters
30600103	Industrial Processes;Petroleum Industry;Process Heaters;Oil
30600104	Industrial Processes;Petroleum Industry;Process Heaters;Gas
30600105	Industrial Processes;Petroleum Industry;Process Heaters;Natural Gas
30600106	Industrial Processes;Petroleum Industry;Process Heaters;Process Gas
30600107	Industrial Processes;Petroleum Industry;Process Heaters;Liquified Petroleum Gas (LPG)
30600199	Industrial Processes;Petroleum Industry;Process Heaters;Other Not Elsewhere Classified
30990003	Industrial Processes; Fabricated Metal Products; Fuel Fired Equipment; Natural Gas: Process Heaters
31000401	Industrial Processes;Oil and Gas Production;Process Heaters;Distillate Oil (No. 2)

SCC	SCC Description
31000402	Industrial Processes;Oil and Gas Production;Process Heaters;Residual Oil
31000403	Industrial Processes;Oil and Gas Production;Process Heaters;Crude Oil
31000404	Industrial Processes;Oil and Gas Production;Process Heaters;Natural Gas
31000405	Industrial Processes;Oil and Gas Production;Process Heaters;Process Gas
31000406	Industrial Processes;Oil and Gas Production;Process Heaters;Propane/Butane
31000411	Industrial Processes;Oil and Gas Production;Process Heaters;Distillate Oil (No. 2): Steam Generators
31000414	Industrial Processes;Oil and Gas Production;Process Heaters;Natural Gas: Steam Generators
31000415	Industrial Processes;Oil and Gas Production;Process Heaters;Process Gas: Steam Generators
31390001	Industrial Processes; Electrical Equipment; Process Heaters; Distillate Oil (No. 2)
31390003	Industrial Processes; Electrical Equipment; Process Heaters; Natural Gas
39900601	Industrial Processes; Miscellaneous Manufacturing Industries; Process Heater/Furnace; Natural Gas
39900701	Industrial Processes; Miscellaneous Manufacturing Industries; Process Heater/Furnace; Process Gas
	Industrial Processes; Miscellaneous Manufacturing Industries; Miscellaneous Manufacturing
39990003	Industries; Natural Gas: Process Heaters

4.2.4.6 State-specific controls (nonpt, np_solvents, ptnonipm)

Packets:

Control_2022_20XX_2022v1_point_nonpoint_SLT_controls_07oct2024_v1

A few states submitted state-specific controls for the nonpt, np_solvents, and ptnonipm sectors. For nonpt sectors, Utah and Delaware both submitted controls that were applied to their state emissions for the years 2026. Table 4-46 shows which SCCs and pollutants in nonpt these controls were applied. Table 4-47 shows the impacts of the controls on the three sectors.

Table 4-46. SCCs in nonpt, np_solvents, and ptnonipm for which state-specific controls were applied

State	Pollutant	scc	SCC Description
			Stationary Source Fuel Combustion;Industrial;Natural Gas;Total:
Utah	NOX	2102006000	Boilers and IC Engines
			Stationary Source Fuel Combustion; Commercial/Institutional; Natural
Utah	NOX	2103006000	Gas;Total: Boilers and IC Engines
			Storage and Transport;Petroleum and Petroleum Product
Delaware	VOC	2501060053	Storage;Gasoline Service Stations;Stage 1: Bal
			Storage and Transport;Petroleum and Petroleum Product
Delaware	VOC	2501060201	Storage; Gasoline Service Stations; Underground
			Delaware submitted population projections for all counties within
			their State and requested all relevant SCC to use this provided data in
Delaware	Many	Many	making emissions projections.
			New Jersey submitted population projections for all counties within
New			their State and requested all relevant SCC to use this provided data in
Jersey	Many	Many	making emissions projections.

For ptnonipm, several states submitted emission reductions and controls due to fuel switching, consent decrees, or state or local rules that would reduce emissions in the future. Iowa submitted NO_x and SO₂

reductions for Iowa State University (EIS Facility ID: 18936211) due to a fuel switch from coal to natural gas that occurred in 2023. Iowa reduced SO₂ at ADM - Des Moines Soybean facility (EIS Facility ID: 3163611) due to an Iowa State consent order and Polk County local program that required a coal fired boiler to be decommissioned in 2023 and replaced with a natural gas boiler. In Washington State, Cardinal FG Company Winlock (EIS Facility ID: 1262611) installed a silicon controlled rectifier (SCR) on its glass furnace in 2024, reducing NO_x emissions. In Texas, the Streetman Lightweight Agregate Plant (EIS Facility ID: 4946511) installed SO₂ controls in late 2022.

Table 4-47. Summary of SLT-provided controls on 2022 emissions

				Emissions change	
Sector	Year	Pollutant	2022hc (tons)	(tons)	% change
nonpt	2026	NOX	741,248	-240	-0.03%
nonpt	2026	VOC	949,760	-84	-0.01%
np_solvents	2026	VOC	2,634,832	-34	-0.001%
ptnonipm	2026	NOX	780,504	-771	-0.10%
ptnonipm	2026	SO2	438,306	-2,864	-0.65%

4.3 Sectors with Projections Computed Outside of CoST

Projections for sectors not calculated using CoST are discussed in this section.

4.3.1 Nonroad Mobile Equipment Sources (nonroad)

Outside of California, the MOVES4 model was run for 2026. The fuels used are specific to the analytic year, but the meteorological data represented the year 2022. The analytic year nonroad emissions include all nonroad control programs finalized as of the date of the MOVES4 release. The resulting analytic year inventories were processed into the format needed by SMOKE in the same way as the base year emissions.

From the data review: North Carolina commented that growth relative to 2022 of industrial SCCs was too aggressive, and suggested we cap growth of nonroad industrial emissions in NC as follows:

2026 = 1.096

We adjusted the MOVES outputs so that growth of NC industrial never exceeds the above limits, resulting in a notable decrease in emissions. For example, if 2026/2022 = 1.2, then we reduced the 2026 emissions by a factor of 0.9133 (1.096 / 1.2) so that 2026/2022 = 1.096. If the existing growth was under the cap, then no change was made. When doing this, we preserved VOC and PM speciation, such that growth of a particular species, VOC HAP, or NONHAPTOG or PM2.5 component may exceed the cap, but growth of overall VOC or PM2.5 will not.

In California, California Air Resources Board (CARB) provided inventories were used for 2026.

4.3.2 Onroad Mobile Sources (onroad)

For 2022v1, MOVES4 was run to obtain onroad emission factors that account for the impact of on-the-books rules that are implemented into MOVES4. These include regulations such as:

- Revised 2023 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions Standards, 86 FR 74434 (December 30, 2021);
- Safer Affordable Fuel Efficient (SAFE) Vehicles Final Rule for Model Years 2021-2026 (March 2020);
- Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty Engines and Vehicles Phase 2 (October 2016);
- Tier 3 Vehicle Emission and Fuel Standards Program (March 2014)
 (https://www.epa.gov/regulations-emissions-vehicles-and-engines/final-rule-control-air-pollution-motor-vehicles-tier-3);
- 2017 and Later Model Year Light-Duty Vehicle GHG Emissions and Corporate Average Fuel Economy Standards (October 2012);
- Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty Engines and Vehicles (September 2011);
- Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program (RFS2) (December 2010); and
- Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards Final Rule for Model-Year 2012-2016 (May 2010).

State-level adjustment factors were developed to account for California and other Section 177 states that have adopted <u>California's Advanced Clean Trucks</u> regulation. This regulation requires greater sales of zero-emission heavy-duty trucks than EPA's <u>Greenhouse Gas Emissions Standards for Heavy-Duty Vehicles—Phase 3</u> rule, especially prior to 2030. Adjustment factors by calendar year, state, pollutant, and SCC are calculated as the ratio of MOVES5 output to MOVES4 output.

Adjustment factors for the year 2022 were developed for states that have decommissioned Stage II refueling programs, where their decommissioning is accounted for in MOVES5 but not in MOVES4.

Local inspection and maintenance (I/M) and other onroad mobile programs are included such as: California LEVIII, the National Low Emissions Vehicle (LEV) and Ozone Transport Commission (OTC); LEV regulations, local fuel programs, and Stage II refueling control programs. Note that MOVES3 emission rates for model years 2017 and beyond are equivalent to CA LEVIII rates for NOx and VOC. Therefore, it was not necessary to update the rates used for states that have adopted the rules in 2020 or later years. The most recent California rules passed after 2020 are not reflected in this platform. Onroad emissions in California were based on emissions provided by CARB for 2026. In a similar fashion to the adjustments applied in other states to reflect rules not included in MOVES4, adjustment factors were also developed and applied to California emissions to estimate the impact of the federal rules not reflected in CARB's EMFAC2017 model. No attempt was made to account for recent California regulations other than Advanced Clean Trucks.

VMT data were projected from 2022 to 2026 using projection factors based on AEO2023 projections and applied nationally by fuel type and broad vehicle type (light duty, medium duty for buses and single unit trucks, and heavy duty for combination trucks). Diesel light duty cars were held flat in projections, but diesel light duty trucks were projected using the AEO. Light duty VMT projections also incorporated a county-level adjustment based on projected human population trends, so that counties expected to grow more than the national average in population receive a corresponding increase in VMT for those counties, and vice versa. The AEO2023-based VMT projection factors are shown in Table 4-48. Four states (NJ, NY, NC, and WI) provided VMT for each analytic year. Massachusetts gave us VMT for 2026 as well, but it was not in time to be incorporated into the draft version of the emissions. Thus since the VMT they gave us was higher than that used in the draft version, there are increases in onroad emissions in the final version of the 2026 emissions.

Table 4-48. Projection factors for VMT by Fuel and Vehicle Class

	2022-to-2026
Gas light duty	1.036
Gas medium duty	1.108
Gas heavy duty	1.103
Diesel light duty cars	1.000
Diesel light duty trucks	1.252
Diesel medium duty	1.008
Diesel heavy duty	1.018
CNG medium duty	1.073
CNG heavy duty	1.080
E-85 light duty	0.900
Electric light duty	3.339

In addition, a small, negligible amount of VMT was created for CNG combination long haul trucks, and for all electric heavy duty vehicle types, for the analytic years. These fuel and source type combinations are newly supported in MOVES4, and activity for these SCCs was created to support future considerations. For the moment, activity for these new MOVES4 SCCs is very small and does not impact the results.

Vehicle population is computed as: analytic year VPOP = base year VPOP * (analytic year VMT / base year VMT) by county and SCC6 (fuel + vehicle type). Wisconsin provided VPOP for each analytic year.

Vehicle starts for analytic years are computed as:

analytic year starts = base year starts * (analytic year VPOP / base year VPOP).

Long haul hoteling hours are computed at the county level using the formula:

analytic year hoteling = base year hoteling * (analytic year VMT / base year VMT)

where only the VMT from combination long haul trucks on restricted roads are considered. Where hoteling exists in counties with zero combo-long-haul-restricted-road VMT, hoteling from the base year was projected using the national diesel heavy duty projection factors for VMT from AEO2023. Year-specific APU fractions were used to split county-level hoteling to individual SCCs as follows: 17.0% for 2026.

On-network idling hours (ONI) activity data were calculated based on VMT. For each representative county, the ratio of ONI hours to onroad VMT (on all road types) was calculated using the MOVES ONI Tool by source type, fuel type, and month. These ratios were then multiplied by each county's total VMT (aggregated by source type, fuel type, and month) to get hours of ONI activity.

In comments received DE, DC, LA, NJ, and WA were noted to have unrealistic increases in refueling emissions between the base and analytic years. OTAQ-provided adjustment factors for refueling were originally applied to 2026. Future years then reflected the elimination of Stage II controls in those five states. This resulted in an artificial increase in refueling emissions in the five states in analytic years versus 2022hc (in which the Stage II updates were not accounted for). In response to the state comments, we took away adjustment factors to refueling in those five states.

4.3.3 Sources Outside of the United States (canada_onroad, mexico_onroad, canmex_point, canmex_ag, canada_og2D, ptfire_othna, canmex_area, canada_afdust, canada_ptdust)

This section discusses the projection of emissions from Canada and Mexico. Information about the base year inventory used for these projections or the naming conventions can be found in Section 2.7. The Canada projections for 2026 are based on ECCC-provided inventories, while most Mexico emissions are not projected to 2026 from the base year. Fire emissions in Canada and Mexico in the ptfire_othna sector were not projected.

4.3.3.1 Canadian fugitive dust sources (canada_afdust, canada_ptdust)

For Canadian area and point source dust sectors, emissions were provided by ECCC for 2026 and follow a methodology consistent with their 2022 inventory. As with the base year, the analytic year dust emissions are pre-adjusted, so analytic year dust follows the same emissions processing methodology as the base year with respect to the transportable fraction and meteorological adjustments.

4.3.3.2 Point Sources in Canada and Mexico (canmex_point, canada_og2D)

Canadian point source inventories were provided by ECCC for 2026 and follow a methodology consistent with their 2022 inventory.

Mexico point source inventories from 2022 were held flat through 2026.

4.3.3.3 Nonpoint sources in Canada and Mexico (canmex_area, canmex_ag)

Canadian area source inventories, including nonpoint, nonroad, and agricultural sources, were provided by ECCC for 2026 and follow a methodology consistent with their 2022 inventory.

Mexico area source inventories from 2022 were held flat to 2026.

4.3.3.4 Onroad sources in Canada and Mexico (canada_onroad, canada_onroad)

For Canadian mobile onroad sources, ECCC provided the year 2026 emissions.

For Mexican mobile onroad sources, monthly onroad mobile inventories for 2026 were developed at municipio resolution based on an interpolation of 2023 and 2027 runs of MOVES-Mexico done for the 2016 platform.

5 Emission Summaries

Table 5-1 and Table 5-2 summarize base year emissions by sector for CAPs and key HAPs for the year 2022 in this platform. Similarly, Table 5-3 and Table 5-4 show emissions for the year 2026. These summaries are provided at the national level by sector for the contiguous U.S. and for the portions of Canada and Mexico inside the larger 12km domain (12US1) discussed in Section 3.1. Note that totals for the 12US2 domain are not available here, but the sum of the U.S. sectors would be essentially the same and only the Canadian and Mexican emissions would change according to the extent of the grids to the north and south of the continental United States. The afdust sector emissions here represent the emissions after application of both the land use (transport fraction) and meteorological adjustments; therefore, this sector is called "afdust_adj" in these summaries. The onroad sector totals are post-SMOKE-MOVES totals, representing air quality model-ready emission totals, and include CARB emissions for California. The cmv sectors include U.S. emissions within state waters only; these extend to roughly 3-5 miles offshore and include CMV emissions at U.S. ports. "Offshore" represents CMV emissions that are outside of U.S. state waters. Canadian CMV emissions are included in the other sector. The total of all US sectors is listed as "Con U.S. Total."

State totals and other summaries are available in the reports area on the FTP site for the 2022 platform (https://gaftp.epa.gov/Air/emismod/2022/v1).

Table 5-1. National by-sector CAP emissions for the 2022 platform, year 2022, 12US1 grid (tons/yr)

Sector	со	NH3	NOX	PM10	PM2_5	SO2	VOC
afdust_adj				6,146,958	855,377		
Airports	369,923	0	116,884	9,098	8,077	11,956	43,850
cmv_c1c2	20,296	70	137,145	3,748	3,632	626	5,265
cmv_c3	10,207	32	84,352	1,833	1,686	4,141	4,676
Fertilizer		1,671,402					
Livestock		2,590,376					207,230
Nonpt	802,522	69,110	721,734	478,209	411,444	74,590	933,778
Nonroad	11,095,444	2,013	773,485	75,879	71,154	921	923,704
np_oilgas	700,012	3,823	676,201	12,366	12,248	280,038	2,757,565
np_solvents	0	0	0	0	0	0	2,590,493
Onroad	13,332,341	185,022	2,066,044	189,078	70,302	8,749	982,106
Openburn	1,394,786	79,167	45,645	231,930	212,185	13,867	104,784
Ptegu	466,676	17,913	851,055	106,981	91,801	879,719	26,332
Ptagfire	873,964	9,946	37,243	119,877	75,028	12,029	128,359
ptfire-rx	7,653,954	67,401	129,063	1,260,341	1,117,863	77,351	1,567,213
ptfire-wild	6,856,611	70,503	70,961	1,440,745	938,357	68,088	1,850,700
Ptnonipm	1,204,525	60,957	768,611	345,152	224,138	434,482	730,824
pt_oilgas	180,921	9,324	327,107	13,442	12,774	32,115	209,689
Rail	96,147	303	456,604	11,803	11,448	341	18,789
Rwc	2,944,487	22,597	44,594	450,210	448,814	11,893	450,881
Beis	3,376,155		964,950				30,694,065
CONUS w/ beis	51,378,972	4,859,958	8,271,679	10,897,651	4,566,328	1,910,908	44,230,301
Canada ag		506,067		6,564	1,875		124,234
Canada oil and gas 2D		8					293,600
Canada afdust				975,005	183,021		
Canada ptdust				3,980	510		
Canada area	2,061,247	5,978	312,938	184,538	133,031	14,092	712,989
Canada onroad	1,715,237	7,135	357,211	25,404	13,469	955	120,229
Canada point	1,034,599	19,020	521,418	113,269	43,293	440,207	150,300
Canada fires	2,650,916	24,845	30,977	590,473	332,539	13,904	633,450
Canada cmv_c1c2	3,193	10	20,631	545	529	66	726
Canada cmv_c3	8,394	22	66,152	1,255	1,155	2,625	4,082
Mexico ag		137,454		54,305	11,689		
Mexico area	97,707	26,199	57,912	41,688	21,073	21,910	412,170
Mexico onroad	1,594,936	2,887	389,027	15,190	10,549	6,665	144,126
Mexico point	158,096	979	199,363	90,722	53,873	341,028	32,822
Mexico fires	297,069	4,862	13,226	43,610	34,575	2,574	62,461
Mexico cmv_c1c2	199	1	1,296	35	34	7	50
Mexico cmv_c3	9,626	95	95,412	5,362	4,933	14,099	4,777
Offshore cmv_c1c2	4,864	15	31,122	822	797	123	1,148
Offshore cmv_c3	52,623	313	470,598	17,673	16,259	44,675	25,782
Offshore pt_oilgas	28,551	5	34,660	422	416	321	31,406

Table 5-2. National by-sector VOC HAP emissions for the 2022 platform, year 2022, 12US1 grid (tons/yr)

Sector	Acetaldehyde	Benzene	Formaldehyde	Methanol	Naphthalene	Acrolein	1,3- Butadiene
airports	1,559	614	4,448	651	470	928	660
cmv_c1c2	22	11	97	0	10	10	5
cmv_c3	20	10	86	0	9	9	5
livestock	1,478	473	0	13,661	0		
nonpt	9,460	3,357	5,357	14,606	451	9,460	336
nonroad	8,056	25,536	19,848	1,157	1,411	1,180	4,333
np_oilgas	2,912	35,872	50,849	3,820	112	1,941	458
np_solvents	73	336	10	13,780	8,117		
onroad	8,324	17,172	10,319	1,407	1,324	750	2,263
openburn	2,143	4,626	2,218	0	57	134	701
ptegu	14	883	8,253	189	4	202	2
ptagfire	10,074	9,493	7,502	0	0		988
ptfire-rx	65,156	21,017	126,604	89,682	18,170	25,708	16,273
ptfire-wild	54,041	15,732	97,891	99,573	18,453	16,382	8,331
ptnonipm	3,902	21,465	11,487	23,589	730	853	653
pt_oilgas	1,261	2,153	9,418	298	56	1,857	262
rail	1,471	423	4,190	0	51	301	35
rwc	51,243	13,303	35,899	0	6,945	1,949	3,615
beis	374,228		513,183	2,110,685			
CONUS w/ beis	595,436	172,476	907,658	2,373,098	56,368	61,661	38,922
Can. ag	1,398	159	0	32,657	0		
Can. oil & gas 2D	0	877	0	0	0		
Can. Area	15,252	12,725	12,871	4,082	2,589		
Can. Onroad	2,170	5,247	2,997	0	40		
Can. Point	1,543	1,986	5,262	10,627	26		
Can. Fires	22,127	5,988	44,383	49,869	7,330	6,739	3,566
Can. cmv_c1c2	3	1	13	0	1	1	1
Can. cmv_c3	17	8	75	0	8	8	4
Mex. Area	3,085	1,742	2,539	2,666	469		
Mex. Onroad	591	3,376	1,438	665	200	102	494
Mex. Point	65	1,208	2,587	519	11		
Mex. Fires	3,406	892	3,772	1,386	168	0	0
Mex. cmv_c1c2	0	0	1	0	0	0	0
Mex. cmv_c3	15	7	67	0	23	9	5
Off. cmv_c1c2	5	2	21	0	2	2	1
Off. cmv_c3	97	47	423	0	80	48	26
Off. pt_oilgas	631	121	1,070	41	0	0	0

Table 5-3. National by-sector CAP emissions for the 2022 platform, year 2026, 12US1 grid (tons/yr)

Sector	со	NH3	NOX	PM10	PM2_5	SO2	VOC
afdust_adj				6,203,842	866,327		
Airports	403,009	0	135,130	9,619	8,554	13,768	47,811
cmv_c1c2	20,967	72	141,595	3,872	3,752	662	5,428
cmv_c3	10,743	34	83,629	1,929	1,775	4,360	4,928
Fertilizer		1,671,402					
Livestock		2,595,138					207,785
Nonpt	800,002	67,631	685,799	488,859	422,715	61,902	956,983
Nonroad	11,377,186	2,074	651,041	63,282	59,036	942	862,143
np_oilgas	701,014	15	583,910	10,892	10,841	308,766	2,095,720
np_solvents	0	0	0	0	0	0	2,667,432
onroad	10,973,776	169,669	1,398,945	184,377	62,516	11,452	786,425
openburn	1,394,786	79,167	45,645	231,930	212,185	13,867	104,784
ptegu	411,310	32,477	665,673	102,988	89,934	603,941	27,277
ptagfire	873,964	9,946	37,243	119,877	75,028	12,029	128,359
ptfire-rx	7,653,954	67,401	129,063	1,260,341	1,117,863	77,351	1,567,213
ptfire-wild	6,856,611	70,503	70,961	1,440,745	938,357	68,088	1,850,700
ptnonipm	1,166,259	60,185	733,559	338,082	217,959	412,759	702,269
pt_oilgas	179,652	9,307	314,246	13,773	13,052	33,717	207,331
rail	95,644	302	454,085	11,744	11,391	339	18,694
rwc	2,944,487	22,597	44,594	450,210	448,814	11,893	450,881
beis	3,376,155		964,950				30,694,065
CONUS w/ beis	49,239,521	4,857,919	7,140,070	10,936,362	4,560,100	1,635,837	43,386,227
Canada ag		537,399		6,579	1,880		124,415
Canada oil and gas 2D		7					244,808
Canada afdust				1,065,831	197,478		
Canada ptdust				4,392	561		
Canada area	2,057,231	5,918	293,945	177,603	123,038	13,389	721,003
Canada onroad	1,775,762	7,169	344,288	26,593	13,354	1,203	119,545
Canada point	1,036,019	20,345	403,929	117,450	46,201	438,599	158,061
Canada fires	2,650,916	24,845	30,977	590,473	332,539	13,904	633,450
Canada cmv_c1c2	3,193	10	20,631	545	529	66	726
Canada cmv_c3	8,394	22	66,152	1,255	1,155	2,625	4,082
Mexico ag		137,454		54,305	11,689		
Mexico area	97,707	26,199	57,912	41,688	21,073	21,910	412,170
Mexico onroad	1,677,654	3,544	407,007	18,039	12,301	8,138	163,294
Mexico point	158,096	979	199,363	90,722	53,873	341,028	32,822
Mexico fires	297,069	4,862	13,226	43,610	34,575	2,574	62,461
Mexico cmv_c1c2	199	1	1,296	35	34	7	50
Mexico cmv_c3	9,626	95	95,412	5,362	4,933	14,099	4,777
Offshore cmv_c1c2	5,043	16	32,268	853	826	128	1,191
Offshore cmv_c3	54,783	320	471,623	18,061	16,616	45,527	26,892
Offshore pt_oilgas	28,543	5	34,654	422	416	321	31,396

Table 5-4. National by-sector VOC HAP emissions for the 2022 platform, year 2026, 12US1 grid (tons/yr)

Sector	Acetaldehyde	Benzene	Formaldehyde	Methanol	Naphthalene	Acrolein	1,3- Butadiene
airports	1,700	670	4,841	708	511	1,000	711
cmv_c1c2	23	11	100	0	10	10	5
cmv_c3	21	10	90	0	9	0	0
livestock	1,514	481	0	13,711	0		
nonpt	10,053	3,373	5,437	15,673	461	10,053	348
nonroad	6,753	24,622	16,374	1,064	1,281	888	4,261
np_oilgas	2,747	29,342	47,162	3,993	100	2,057	487
np_solvents	75	334	11	14,074	8,428		
onroad	5,971	12,726	6,532	1,162	857	473	1,570
openburn	2,143	4,626	2,218	0	57	134	701
ptegu	13	967	10,516	183	3		
ptagfire	10,074	9,493	7,502	0	0		988
ptfire-rx	65,156	21,017	126,604	89,682	18,170	25,708	16,273
ptfire-wild	54,041	15,732	97,891	99,573	18,453	16,382	8,331
ptnonipm	3,681	21,168	11,201	21,828	694	821	615
pt_oilgas	1,388	2,197	9,779	300	58	1,922	269
rail	1,464	421	4,169	0	51	299	35
rwc	51,243	13,303	35,899	0	6,945	1,949	3,615
beis	374,228		513,183	2,110,685			
CONUS w/ beis	592,287	160,490	899,508	2,372,636	56,089	61,695	38,209
Can. ag	1,400	160	0	32,704	0		
Can. oil & gas 2D	0	727	0	0	0		
Can. Area	13,737	12,419	11,796	4,302	2,426		
Can. Onroad	2,124	5,207	2,931	0	40		
Can. Point	1,555	1,971	5,336	11,488	33		
Can. Fires	22,127	5,988	44,383	49,869	7,330	6,739	3,566
Can. cmv_c1c2	3	1	13	0	1	1	1
Can. cmv_c3	17	8	75	0	8	8	4
Mex. Area	3,085	1,742	2,539	2,666	469		
Mex. Onroad	646	3,502	1,612	720	213	111	493
Mex. Point	65	1,208	2,587	519	11		
Mex. Fires	3,406	892	3,772	1,386	168	0	0
Mex. cmv_c1c2	0	0	1	0	0	0	0
Mex. cmv_c3	15	7	67	0	23	9	5
Off. cmv_c1c2	5	2	22	0	2	2	1
Off. cmv_c3	102	49	443	0	83	50	27
Off. pt_oilgas	631	121	1,070	41	0	0	0

6 References

- Adelman, Z. 2012. *Memorandum: Fugitive Dust Modeling for the 2008 Emissions Modeling Platform*. UNC Institute for the Environment, Chapel Hill, NC. September 28, 2012.
- Adelman, Z. 2016. 2014 Emissions Modeling Platform Spatial Surrogate Documentation. UNC Institute for the Environment, Chapel Hill, NC. October 1, 2016. Available at https://gaftp.epa.gov/Air/emismod/2014/v1/spatial surrogates/.
- Adelman, Z., M. Omary, Q. He, J. Zhao and D. Yang, J. Boylan, 2012. "A Detailed Approach for Improving Continuous Emissions Monitoring Data for Regulatory Air Quality Modeling." Presented at the 2012 International Emission Inventory Conference, Tampa, Florida.
- Appel, K.W., Napelenok, S., Hogrefe, C., Pouliot, G., Foley, K.M., Roselle, S.J., Pleim, J.E., Bash, J., Pye, H.O.T., Heath, N., Murphy, B., Mathur, R., 2018. Overview and evaluation of the Community Multiscale Air Quality Model (CMAQ) modeling system version 5.2. In Mensink C., Kallos G. (eds), Air Pollution Modeling and its Application XXV. ITM 2016. Springer Proceedings in Complexity. Springer, Cham. Available at https://doi.org/10.1007/978-3-319-57645-9 11.
- Bash, J.O., Baker, K.R., Beaver, M.R., Park, J.-H., Goldstein, A.H., 2016. Evaluation of improved land use and canopy representation in BEIS with biogenic VOC measurements in California. Available from http://www.geosci-model-dev.net/9/2191/2016/.
- Bullock Jr., R, and K. A. Brehme (2002) "Atmospheric mercury simulation using the CMAQ model: formulation description and analysis of wet deposition results." Atmospheric Environment 36, pp 2135–2146. Available at https://doi.org/10.1016/S1352-2310(02)00220-0.
- California Air Resources Board (CARB): Final 2015 Consumer & Commercial Product Survey Data Summaries, 2019.
- Coordinating Research Council (CRC), 2017. Report A-100. Improvement of Default Inputs for MOVES and SMOKE-MOVES. Final Report. February 2017. Available at http://crcsite.wpengine.com/wp-content/uploads/2019/05/ERG FinalReport CRCA100 28Feb2017.pdf.
- Coordinating Research Council (CRC), 2019. Report A-115. Developing Improved Vehicle Population Inputs for the 2017 National Emissions Inventory. Final Report. April 2019. Available at http://crcsite.wpengine.com/wp-content/uploads/2019/05/CRC-Project-A-115-Final-Report 20190411.pdf.
- Drillinginfo, Inc. 2017. "DI Desktop Database powered by HPDI." Currently available from https://www.enverus.com/.
- England, G., Watson, J., Chow, J., Zielenska, B., Chang, M., Loos, K., Hidy, G., 2007. "Dilution-Based Emissions Sampling from Stationary Sources: Part 2-- Gas-Fired Combustors Compared with Other Fuel-Fired Systems," Journal of the Air & Waste Management Association, 57:1, 65-78, DOI: 10.1080/10473289.2007.10465291. Available at https://www.tandfonline.com/doi/abs/10.1080/10473289.2007.10465291.

- EPA. 2007a. Control of Hazardous Air Pollutants from Mobile Sources Regulatory Impact Analysis. EPA420-R-07-002. EPA Office of Transportation and Air Quality (OTAQ) Assessment and Standards Division, Ann Arbor, MI. Available online at https://nepis.epa.gov/Exe/ZyPdf.cgi?Dockey=P1004LNN.PDF.
- EPA, 2015b. Draft Report Speciation Profiles and Toxic Emission Factors for Nonroad Engines. EPA-420-R-14-028. Available at https://cfpub.epa.gov/si/si public record Report.cfm?dirEntryId=309339&CFID=83476290&CFT OKEN=35281617.
- EPA, 2015c. Speciation of Total Organic Gas and Particulate Matter Emissions from On-road Vehicles in MOVES2014. EPA-420-R-15-022. Available at https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100NOJG.pdf.
- EPA, 2016. SPECIATE Version 4.5 Database Development Documentation, U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Research Triangle Park, NC 27711, EPA/600/R-16/294, September 2016. Available at https://www.epa.gov/sites/production/files/2016-09/documents/speciate-4.5.pdf.
- EPA, 2018. AERMOD Model Formulation and Evaluation Document. EPA-454/R-18-003. U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711. Available at https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100UT95.TXT.
- EPA, 2019. Final Report, SPECIATE Version 5.0, Database Development Documentation, Research Triangle Park, NC, EPA/600/R-19/988. Available at https://www.epa.gov/air-emissions-modeling/speciate-51-and-50-addendum-and-final-report.
- EPA and National Emissions Inventory Collaborative (NEIC), 2019. Technical Support Document (TSD)

 Preparation of Emissions Inventories for the Version 7.2 North American Emissions Modeling

 Platform. Available at https://www.epa.gov/air-emissions-modeling/2016-version-72-technical-support-document.
- EPA, 2020. Population and Activity of Onroad Vehicles in MOVES3. EPA-420-R-20-023. Office of Transportation and Air Quality. US Environmental Protection Agency. Ann Arbor, MI. November 2020. Available under the MOVES3 section at https://www.epa.gov/moves/moves-technical-reports.
- EPA, 2020b. Technical Support document: "Development of Mercury Speciation Factors for EPA's Air Emissions Modeling Programs, April 2020". US EPA Office of Air Quality Planning and Standards.
- EPA, 2021. 2017 National Emission Inventory: January 2021 Updated Release, Technical Support Document. U.S. Environmental Protection Agency, OAQPS, Research Triangle Park, NC 27711. Available at: https://www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-nei-technical-support-document-tsd.
- EPA, 2021. 2017 National Emissions Inventory (NEI) data, Research Triangle Park, NC, January 2021. https://www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-nei-data.
- EPA and NEIC, 2021. Technical Support Document (TSD) Preparation of Emissions Inventories for the 2016v1 North American Emissions Modeling Platform. Available at: https://www.epa.gov/air-emissions-modeling/2016-version-1-technical-support-document.

- EPA, 2022a. Technical Support Document EPA's Air Toxics Screening Assessment 2018 AirToxScreen TSD (EPA-452/B-22-002). Available at: https://www.epa.gov/AirToxScreen/airtoxscreen-technical-support-document.
- EPA, 2022b. Technical Support Document: Preparation of Emissions Inventories for the 2019 North American Emissions Modeling Platform. Available at: https://www.epa.gov/air-emissions-modeling/2019-emissions-modeling-platform-technical-support-document.
- EPA, 2023. 2020 National Emission Inventory Technical Support Document. U.S. Environmental Protection Agency, OAQPS, Research Triangle Park, NC 27711. Available at: https://www.epa.gov/air-emissions-inventories/2020-national-emissions-inventory-nei-technical-support-document-tsd.
- EPA, 2024a. Category 3 Commercial Marine Vessel 2022 Emissions Inventory. U.S. Environmental Protection Agency, National Vehicle and Fuel Emissions Laboratory, Ann Arbor, MI 48105. Available at:

 https://gaftp.epa.gov/Air/emismod/2022/v1/reports/mobile/CMV/2022%20C3%20Marine%20Emissions%20Tool%20%20Documentation.pdf.
- EPA, 2024b. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2022. U.S. Environmental Protection Agency, EPA 430-R-24-004. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2022.
- ERG, 2016b. "Technical Memorandum: Modeling Allocation Factors for the 2014 Oil and Gas Nonpoint Tool." Available at https://gaftp.epa.gov/air/emismod/2014/v1/spatial-surrogates/oil-and-gas/.
- ERG, 2017. "Technical Report: Development of Mexico Emission Inventories for the 2014 Modeling Platform." Available at https://gaftp.epa.gov/air/emismod/2016/v1/reports/EPA%205-18%20Report Clean%20Final 01042017.pdf.
- ERG, 2018. Technical Report: "2016 Nonpoint Oil and Gas Emission Estimation Tool Version 1.0".

 Available at
 https://gaftp.epa.gov/air/emismod/2016/v1/reports/2016%20Nonpoint%20Oil%20and%20Gas%20Emission%20Estimation%20Tool%20V1 0%20December 2018.pdf.
- ERG, 2022. Technical Report: 2020 National Emissions Inventory Locomotive Methodology. Available at: https://gaftp.epa.gov/Air/nei/2020/doc/supporting_data/nonpoint/Rail/2020_NEI_Rail_062722.pdf.
- ERG, 2024a. Technical Report: 2022 National Emissions Inventory: Aviation Component. Available at: https://gaftp.epa.gov/Air/emismod/2022/v1/reports/mobile/airports/Aviation2022%20Documentation%20v4.pdf.
- ERG, 2024b. Technical Report: Category 1 and 2 Commercial Marine Vessel 2022 Emissions Inventory.

 Available at:

 https://gaftp.epa.gov/Air/emismod/2022/v1/reports/mobile/CMV/C1C2 Documentation 2022P

 latform 08012024.pdf.
- ERG, 2024c. Technical Report: Category 1 and 2 Commercial Marine Vessel 2022 Emissions Inventory.

 Available at:
 https://gaftp.epa.gov/Air/emismod/2022/v1/reports/mobile/CMV/C1C2 Documentation 2022P

- <u>latform 08012024.pdf</u>.Khare, P., and Gentner, D. R.: Considering the future of anthropogenic gas-phase organic compound emissions and the increasing influence of non-combustion sources on urban air quality, Atmos Chem Phys, 18, 5391-5413, 10.5194/acp-18-5391-2018, 2018.
- Luecken D., Yarwood G, Hutzell WT, 2019. Multipollutant modeling of ozone, reactive nitrogen and HAPs across the continental US with CMAQ-CB6. Atmospheric environment. 2019 Mar 15;201:62-72.
- MANE-VU, 2004. Open Burning in Residential Areas, Emissions Inventory Development Report".

 Available from: https://s3.amazonaws.com/marama.org/wp-content/uploads/2019/11/26123253/Open Burning Residential Areas Emissions Report-2004.pdf
- Mansouri, K., Grulke, C. M., Judson, R. S., and Williams, A. J.: OPERA models for predicting physicochemical properties and environmental fate endpoints, J Cheminformatics, 10, 10.1186/s13321-018-0263-1, 2018.
- McCarty, J.L., Korontzi, S., Jutice, C.O., and T. Loboda. 2009. The spatial and temporal distribution of crop residue burning in the contiguous United States. Science of the Total Environment, 407 (21): 5701-5712. Available at https://doi.org/10.1016/j.scitotenv.2009.07.009.
- MDNR, 2008. "A Minnesota 2008 Residential Fuelwood Assessment Survey of individual household responses". Minnesota Department of Natural Resources. Available from http://files.dnr.state.mn.us/forestry/um/residentialfuelwoodassessment07 08.pdf.
- NCAR, 2016. FIRE EMISSION FACTORS AND EMISSION INVENTORIES, FINN Data. Downloaded 2014 SAPRC99 version from https://www.acom.ucar.edu/Data/fire/.
- NEIC, 2019. Specification sheets for the 2016v1 platform. Available from http://views.cira.colostate.edu/wiki/wiki/10202.
- NESCAUM, 2006. "Assessment of Outdoor Wood-fired Boilers". Northeast States for Coordinated Air Use Management (NESCAUM) report. Available from http://www.nescaum.org/documents/assessment-of-outdoor-wood-fired-boilers/2006-1031-owb-report revised-june2006-appendix.pdf.
- NYSERDA, 2012. "Environmental, Energy Market, and Health Characterization of Wood-Fired Hydronic Heater Technologies, Final Report". New York State Energy Research and Development Authority (NYSERDA). Available from: https://www.nyserda.ny.gov/-/media/Project/Nyserda/Files/Publications/Research/Environmental/Wood-Fired-Hydronic-Heater-Tech.pdf.
- Pouliot, G., H. Simon, P. Bhave, D. Tong, D. Mobley, T. Pace, and T. Pierce. 2010. "Assessing the Anthropogenic Fugitive Dust Emission Inventory and Temporal Allocation Using an Updated Speciation of Particulate Matter." International Emission Inventory Conference, San Antonio, TX. Available at http://www3.epa.gov/ttn/chief/conference/ei19/session9/pouliot_pres.pdf.
- Pouliot, G. and J. Bash, 2015. Updates to Version 3.61 of the Biogenic Emission Inventory System (BEIS).

 Presented at Air and Waste Management Association conference, Raleigh, NC, 2015.
- Pouliot G, Rao V, McCarty JL, Soja A. Development of the crop residue and rangeland burning in the 2014 National Emissions Inventory using information from multiple sources. Journal of the Air & Waste Management Association. 2017 Apr 27;67(5):613-22.

- Reichle, L., R. Cook, C. Yanca, D. Sonntag, 2015. "Development of organic gas exhaust speciation profiles for nonroad spark-ignition and compression-ignition engines and equipment", Journal of the Air & Waste Management Association, 65:10, 1185-1193, DOI: 10.1080/10962247.2015.1020118. Available at https://doi.org/10.1080/10962247.2015.1020118.
- Reff, A., Bhave, P., Simon, H., Pace, T., Pouliot, G., Mobley, J., Houyoux. M. "Emissions Inventory of PM2.5 Trace Elements across the United States", Environmental Science & Technology 2009 43 (15), 5790-5796, DOI: 10.1021/es802930x. Available at https://doi.org/10.1021/es802930x.
- Sarwar, G., S. Roselle, R. Mathur, W. Appel, R. Dennis, "A Comparison of CMAQ HONO predictions with observations from the Northeast Oxidant and Particle Study", Atmospheric Environment 42 (2008) 5760–5770). Available at https://doi.org/10.1016/j.atmosenv.2007.12.065.
- Schauer, J., G. Lough, M. Shafer, W. Christensen, M. Arndt, J. DeMinter, J. Park, "Characterization of Metals Emitted from Motor Vehicles," Health Effects Institute, Research Report 133, March 2006. Available at https://pubmed.ncbi.nlm.nih.gov/16669575/.
- Seltzer, K. M., Pennington, E., Rao, V., Murphy, B. N., Strum, M., Isaacs, K. K., and Pye, H. O. T., 2021: "Reactive organic carbon emissions from volatile chemical products", Atmos. Chem. Phys. 21, 5079–5100, 2021. https://doi.org/10.5194/acp-21-5079-2021 and https://acp.copernicus.org/articles/21/5079/2021/.
- Skamarock, W., J. Klemp, J. Dudhia, D. Gill, D. Barker, M. Duda, X. Huang, W. Wang, J. Powers, 2008. A Description of the Advanced Research WRF Version 3. NCAR Technical Note. National Center for Atmospheric Research, Mesoscale and Microscale Meteorology Division, Boulder, CO. June 2008. Available at:

 https://www.researchgate.net/publication/306154004 A Description of the Advanced Resear https://www.researchgate.net/publication/306154004 A Description of the Advanced Researchgate.
- Swedish Environmental Protection Agency, 2004. Swedish Methodology for Environmental Data; Methodology for Calculating Emissions from Ships: 1. Update of Emission Factors.
- U.S. Bureau of Labor and Statistics, 2020. Producer Price Index by Industry, retrieved from FRED, Federal Reserve Bank of St. Louis, available at: https://fred.stlouisfed.org/categories/31, access date: 21 August 2020.
- U.S. Census Bureau: Paint and Allied Products 2010, MA325F(10), 2011. https://www.census.gov/data/tables/time-785 series/econ/cir/ma325f.html.
- U.S. Census Bureau, Economy Wide Statistics Division: County Business Patterns, 2018. https://www.census.gov/programs-surveys/cbp/data/datasets.html.
- U.S. Department of Transportation and the U.S. Department of Commerce, 2015. 2012 Commodity Flow Survey, EC12TCF-US. https://www.census.gov/library/publications/2015/econ/ec12tcf-us.html.
- U.S. Energy Information Administration, 2019. The Distribution of U.S. Oil and Natural Gas Wells by Production Rate, Washington, DC. https://www.eia.gov/petroleum/wells/.

- U.S. Energy Information Administration, 2023. Annual Energy Outlook 2023. https://www.eia.gov/outlooks/aeo/tables_ref.php
- Wang, Y., P. Hopke, O. V. Rattigan, X. Xia, D. C. Chalupa, M. J. Utell. (2011) "Characterization of Residential Wood Combustion Particles Using the Two-Wavelength Aethalometer", Environ. Sci. Technol., 45 (17), pp 7387–7393. Available at https://doi.org/10.1021/es2013984.
- Weschler, C. J., and Nazaroff, W. W.: Semivolatile organic compounds in indoor environments, Atmos Environ, 42, 9018-9040, 2008.
- Wiedinmyer, C., Y. Kimura, E. C. McDonald-Buller, L. K. Emmons, R. R. Buchholz, W. Tang, K. Seto, M. B. Joseph, K. C. Barsanti, A. G. Carlton, and R. Yokelson, Volume 16, issue 13, GMD, 16, 3873–3891, 2023. https://gmd.copernicus.org/articles/16/3873/2023/.
- Wiedinmyer, C., S.K. Akagi, R.J. Yokelson, L.K. Emmons, J.A. Al-Saadi, J. J. Orlando, and A. J. Soja. (2011) "The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning", Geosci. Model Dev., 4, 625-641. http://www.geosci-model-dev.net/4/625/2011/ doi:10.5194/gmd-4-625-2011.
- Yarwood, G., R. Beardsley, Y. Shi, and B. Czader: Revision 5 of the Carbon Bond 6 Mechanism (CB6r5). Presented at the Annual CMAS Conference, Chapel Hill, NC, 2020.
- Zhu, Henze, et al, 2013. "Constraining U.S. Ammonia Emissions using TES Remote Sensing Observations and the GEOS-Chem adjoint model", Journal of Geophysical Research: Atmospheres, 118: 1-14. Available at https://doi.org/10.1002/jgrd.50166.

United States Environmental Protection	Office of Air Quality Planning and Standards Air Quality Assessment Division	Publication No. EPA-454/B-25-001 May 2025
Agency	Research Triangle Park, NC	