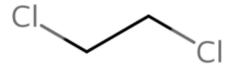


Risk Evaluation for 1,1-Dichloroethane

Supplemental Information File:


Benchmark Dose Modeling Results for 1,1-Dichloroethane

CASRN: 75-34-3

and 1,2-Dichloroethane (Analog)

CASRN: 107-06-2

June 2025

TABLE OF CONTENTS

1	BENCHMARK DOSE MODELING RESULTS FOR 1,1-DICHLOROETHANE	23
	1.1 Non-cancer Endpoints – 1,1-Dichloroethane	24
	1.1.1 Inhalation Data	
	1.1.1.1 Maternal Body Weight in Pregnant Female Rats	24
	1.1.2 Oral Data	27
	1.1.2.1 Mortality Effects	
	1.1.2.1.1 Mortality in Male Rats – 13 Weeks	
	1.1.2.2 Body Weight Effects	28
	1.1.2.2.1 Body Weight in Male Rats – 10 Days	28
	1.1.2.2.2 Body Weight in Male Rats – 13 Weeks	31
	1.1.2.3 Hepatic Effects	
	1.1.2.3.1 Relative Liver Weight in Male Rats	34
	1.1.2.4 Renal Effects	37
	1.1.2.4.1 Absolute Kidney Weight in Male Rats	37
2	BENCHMARK DOSE MODELING RESULTS FOR 1,2-DICHLOROETHANE	41
	2.1 Non-cancer Endpoints – 1,2-Dichloroethane	42
	2.1.1 Inhalation Data	
	2.1.1.1 Acute	42
	2.1.1.1.1 Mortality	
	2.1.1.1.1 Mortality in Male B6C3F1 Mice – 4-Hour Inhalation Exposure	
	2.1.1.1.2 Respiratory Effects	
	2.1.1.1.2.1 Degeneration with Necrosis of the Olfactory Mucosa in Male F344 Rats – 4- Hour Inhalation Exposure	
	2.1.1.1.2.2 Degeneration with Necrosis of the Olfactory Mucosa in Female F344 Rats – 4-Hour Inhalation Exposure	
	2.1.1.1.2.3 Degeneration with Necrosis of the Olfactory Mucosa in Male and Female F344 Rats (Combined) – 4-Hour Inhalation Exposure	
	2.1.1.1.2.4 Degeneration with Necrosis of the Olfactory Mucosa in Male F344 Rats – 8- Hour Inhalation Exposure	-
	2.1.1.1.2.5 Degeneration with Necrosis of the Olfactory Mucosa in Female F344 Rats – 8-Hour Inhalation Exposure	
	2.1.1.1.2.6 Degeneration with Necrosis of the Olfactory Mucosa in Male and Female F344 Rats (Combined) – 8-Hour Inhalation Exposure	
	2.1.1.1.2.7 Regeneration of the Olfactory Mucosa in Male F344 Rats – 4-Hour Inhalation Exposure	
	2.1.1.1.2.8 Regeneration of the Olfactory Mucosa in Female F344 Rats – 4-Hour Inhalation Exposure	
	2.1.1.1.2.9 Regeneration of the Olfactory Mucosa in Male and Female F344 Rats (Combined) – 4-Hour Inhalation Exposure	
	2.1.1.1.3 Hepatic Effects	
	2.1.1.1.4 Renal Effects	
	2.1.1.1.4 Relative Kidney Weight (Kidney Weight/100 g Body Weight) in Male	//
	B6C3F1 Mice – 4-Hour Inhalation Exposure	78
	2.1.1.2 Short-term/Intermediate	
	2.1.1.2 Shot-term/intermediate	
	2.1.1.2.1 Mortality in Male Rats – 30-Day Inhalation Exposure	
	2.1.1.2.1.1 Wortanty in Wate Kats – 50-Day initiation Exposure	01

2.1.1.2.1.2 Mortality in Female Rabbits – Inhalation Exposure on GD 6 to 18	. 85
2.1.1.2.2 Body Weight effects	
2.1.1.2.2.1 Body Weight in Male Mice – 28-Day Inhalation Exposure	
2.1.1.2.2.2 Body Weight Gain in Male Rats – 30-Day Inhalation Exposure	. 92
2.1.1.2.3 Hepatic Effects:	. 95
2.1.1.2.3.1 Relative Liver Weight in Male Mice – 28-Day Inhalation Exposure	. 95
2.1.1.2.3.2 Serum ALT in Male Mice – 28-Day Inhalation Exposure	. 98
2.1.1.2.3.3 Serum AST in Male Mice – 28-Day Inhalation Exposure	101
2.1.1.2.4 Reproductive Effects	
2.1.1.2.4.1 Sperm Concentration in Male Mice – 4-Week Inhalation Exposure	105
2.1.1.2.4.2 Diameter of Seminiferous Tubules in Male Mice – 4-Week Inhalation	
Exposure	109
2.1.1.2.4.3 Height of Germinal Epithelium in Male Mice – 4-Week Inhalation Exposure	
2.1.1.2.4.4 Number of Apoptotic Cells in the Testis in Male Mice – 4-Week Inhalation	
Exposure	115
2.1.1.3 Chronic	
2.1.1.3.1 Hepatic Effects	
2.1.1.3.1.1 LDH Levels in Female Sprague-Dawley Rats – 12-Month Inhalation	110
Exposure	118
2.1.1.3.2 Renal Effects	
2.1.1.3.2.1 Blood Urea Nitrogen (BUN) Levels in Male Sprague-Dawley Rats – 12-	121
Month Inhalation Exposure	121
2.1.1.3.2.2 Blood Urea Nitrogen (BUN) in Female Sprague-Dawley Rats – 12-Month	121
Inhalation Exposure	124
2.1.1.3.2.3 Calcium Levels in Male Sprague-Dawley Rats – 12-Month Inhalation	127
Exposure	127
2.1.1.3.2.4 Serum Potassium Levels in Male Sprague-Dawley Rats – 12-Month	121
Inhalation Exposure	131
2.1.1.3.2.5 Serum Potassium Levels in Female Sprague-Dawley Rats – 12-Month	151
Inhalation Exposure	135
2.1.1.4 Developmental	
2.1.1.4 Developmental Effects	
2.1.1.4.1 Developmental Effects	
2.1.2 Oral Data	
2.1.2.1 Acute	
2.1.2.1.1 Mortality	
2.1.2.1.1.1 Mortality in Male B6C3F1 Mice – Single Oral Gavage	
2.1.2.1.2 Hepatic Effects	
2.1.2.1.2.1 Relative Liver Weight in Male B6C3F1 Mice – Single Oral Gavage	
2.1.2.1.3 Renal Effects	
2.1.2.1.3.1 Relative Kidney Weight in Male B6C3F1 Mice – Single Oral Gavage	
2.1.2.1.3.2 Blood Urea Nitrogen in Male B6C3F1 Mice – Single Oral Gavage	
2.1.2.2 Short-term/Intermediate	
2.1.2.2.1 Mortality	
2.1.2.2.1.1 Mortality in F344 Male Rats – 13-Week Gavage	
2.1.2.2.1.2 Mortality in F344 Female Rats – 13-Week Gavage	
2.1.2.2.2 Body Weight Effects	
2.1.2.2.1 Maternal Absolute Weight Gain in Female Rats – Oral Gavage, GD 6 to 20.	171
2.1.2.2.3 Renal Effects	175

2.1.2. 2.1.2.2.4	 2.3.1 Absolute Kidney Weight in F344 Male Rats – 13-Week Gavage 2.3.2 Relative Kidney Weight in F344 Male Rats – 13-Week Gavage Immune Effects 2.4.1 Leukocyte Count in CD-1 Male Mice – 14-day Gavage Study 	178 181
	2.4.2 Thymus Necrosis in F344 Male Rats – One Time per Day, 5 days per Wee	
	2.4.3 Thymus Necrosis in F344 Female Rats – 13-Week Gavage	
	ndpoints – 1,2-Dichloroethane	
2.2.1 Rat Da	ta	193
	mor Incidence in Male Rats	
	Subcutaneous Fibromas in Male Rats	
	Mammary Gland Fibroadenomas in Male Rats	
	Mammary Gland Adenomas and Fibroadenomas (Combined) in Male Rats	
	Peritoneal Mesothelioma in Male Rats	201
2.2.1.1.5	Combined Mammary Gland, Subcutaneous, and Peritoneal Tumors in Male	
	Rats	
	mor Incidence in Female Rats	
	Subcutaneous Fibromas in Female Rats	
	Mammary Gland Adenomas in Female Rats	
	Mammary Gland Fibroadenomas in Female Rats	211
2.2.1.2.4	Mammary Gland Adenomas and Fibroadenomas (Combined) in Female Rats	214
22125	Mammary Gland Adenocarcinomas in Female Rats	
	Mammary Gland Adenocarcinomas in Penale Rats	217
2.2.1.2.0	(Combined) in Female Rats	220
22127	Combined Mammary Gland and Subcutaneous Tumors in Female Rats	
	Data	
	onchiolo-Alveolar Adenomas in Female Mice	
	onchiolo-Alveolar Carcinomas in Female Mice	
	onchiolo-Alveolar Adenomas and Carcinomas (Combined) in Female Mice	
	dometrial Stromal Polyps in Female Mice	
	ammary Gland Adenocarcinomas in Female Mice	
	epatocellular Adenomas in Female Mice	
2.2.2.7 He	epatocellular Adenomas and Carcinomas (Combined) in Female Mice	242
	ombined Lung, Uterine, Mammary Gland, and Liver Tumors in Female Mice	245
	ombined Lung, Mammary Gland, and Liver Tumors in Female Mice (Alternate	
Aı	nalysis of Combined Tumors with Uterine Polyps Excluded)	247
3 REFEREN	ICES	250

LIST OF TABLES

Table 1-1. Decreased Maternal Body Weight in Pregnant Female Rats and Associated Concentrations	5
Selected for Dose-Response Modeling for 1,1-Dichloroethane from a Gestational	
Inhalation Exposure Study (GD 6 to 15)	. 25
Table 1-2. Summary of BMD Modeling Results for Decreased Maternal Body Weight in Pregnant	
Female Rats Following Inhalation Exposure During Gestation (GD 6 to 15) to 1,1-	
Dichloroethane (Constant Variance Model) ^a	. 25
Table 1-3. Decreased Body Weight in Male Rats and Associated Doses Selected for Dose-Response	
Modeling for 1,1-Dichloroethane from a 10-Day Study	. 28

Table 1-4. Summary of BMD Modeling Results for Decreased Body Weight in Male Rats Following
Oral Exposure to 1,1-Dichloroethane in a 10-Day Study (Constant Variance Model) ^a 29
Table 1-5. Decreased Body Weight in Male Rats and Associated Doses Selected for Dose-Response
Modeling for 1,1-Dichloroethane from a 13-Week Study
Table 1-6. Summary of BMD Modeling Results for Decreased Body Weight in Male Rats Following
Oral Exposure to 1,1-Dichloroethane in a 13-Week Study (Constant Variance Model) ^{a} 32
Table 1-7. Decreased Relative Liver Weight in Male Rats and Associated Doses Selected for Dose-
Response Modeling for 1,1-Dichloroethane From a 10-Day Study
Table 1-8. Summary of BMD Modeling Results for Decreased Relative Liver Weight in Male Rats
Following Oral Exposure to 1,1-Dichloroethane in a 10-Day Study (Constant Variance
Model) ^{<i>a</i>}
Table 1-9. Decreased Absolute Kidney Weight in Male Rats and Associated Doses Selected for
Dose-Response Modeling for 1,1-Dichloroethane from a 10-Day Study
Table 1-10. Summary of BMD Modeling Results for Decreased Absolute Kidney Weight in Male
Rats Following Oral Exposure to 1,1-Dichloroethane in a 10-Day Study (Nonconstant
Variance Model) ^a
Table 2-1. Incidence of Mortality in Male Mice and Associated Concentrations Selected for Dose-
Response Modeling for 1,2-Dichloroethane
Table 2-2. BMD Modeling Results for Increased Incidence of Mortality in Male Mice Following a 4-
Hour Inhalation Exposure to 1,2-Dichloroethane ^{<i>a</i>}
Table 2-3. Incidence of Degeneration with Necrosis of the Olfactory Mucosa in Male Rats and
Associated Concentrations Selected for Dose-Response Modeling for 1,2-
Dichloroethane
Table 2-4. BMD Modeling Results for Degeneration with Necrosis of the Olfactory Mucosa in Male
Rats Following a 4-Hour Inhalation Exposure to 1,2-Dichloroethane ^{<i>a</i>}
Table 2-5. Incidence of Degeneration with Necrosis of the Olfactory Mucosa in Female Rats and
Associated Concentrations Selected for Dose-Response Modeling for 1,2-
Dichloroethane
Table 2-6. BMD Modeling Results for Degeneration with Necrosis of the Olfactory Mucosa in
Female Rats Following a 4-Hour Inhalation Exposure to 1,2-Dichloroethane ^{<i>a</i>}
Table 2-7. Incidence of Degeneration with Necrosis of the Olfactory Mucosa in Male and Female
Rats (Combined) and Associated Concentrations Selected for Dose-Response
Modeling for 1,2-Dichloroethane55
Table 2-8. BMD Modeling Results for Degeneration with Necrosis of the Olfactory Mucosa in Male
and Female Rats (Combined) Following a 4-Hour Inhalation Exposure to 1,2-
Dichloroethane ^a
Table 2-9. Incidence of Degeneration with Necrosis of the Olfactory Mucosa in Male Rats and
Associated Concentrations Selected for Dose-Response Modeling for 1,2-
Dichloroethane
Table 2-10. BMD Modeling Results for Degeneration with Necrosis of the Olfactory Mucosa in Male
Rats Following an 8-Hour Inhalation Exposure to 1,2-Dichloroethane ^a
Table 2-11. Incidence of Degeneration with Necrosis of the Olfactory Mucosa in Female Rats and
Associated Concentrations Selected for Dose-Response Modeling for 1,2-
Dichloroethane
Table 2-12. BMD Modeling Results for Degeneration with Necrosis of the Olfactory Mucosa in
Female Rats Following an 8-Hour Inhalation Exposure to 1,2-Dichloroethane ^{<i>a</i>}
Table 2-13. Incidence of Degeneration with Necrosis of the Olfactory Mucosa in Male and Female
Rats (combined) and Associated Concentrations Selected for Dose-Response
Modeling for 1,2-Dichloroethane

Table 2-14. BMD Modeling Results for Degeneration with Necrosis of the Olfactory Mucosa in Maleand Female Rats (Combined) Following an 8-Hour Inhalation Exposure to 1,2-
Dichloroethane ^{<i>a</i>}
Table 2-15. Incidence of Regeneration of the Olfactory Mucosa in Male Rats and Associated
Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane
Table 2-16. BMD Modeling Results for Regeneration of the Olfactory Mucosa in Male Rats
Following a 4-Hour Inhalation Exposure to 1,2-Dichloroethane ^a
Table 2-17. Incidence of Regeneration of the Olfactory Mucosa in Female Rats and Associated
Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane
Table 2-18. BMD Modeling Results for Regeneration of the Olfactory Mucosa in Female Rats
Following a 4-Hour Inhalation Exposure to 1,2-Dichloroethane ^{<i>a</i>}
Table 2-19. Incidence of Regeneration of the Olfactory Mucosa in Male and Female Rats (Combined)
and Associated Concentrations Selected for Dose-Response Modeling for 1,2-
Dichloroethane75
Table 2-20. BMD Modeling Results for Regeneration of the Olfactory Mucosa in Male and Female
Rats (Combined) Following a 4-Hour Inhalation Exposure to 1,2-Dichloroethane ^{<i>a</i>}
Table 2-21. Increased Relative Kidney Weight in Male Mice and Associated Concentrations Selected
for Dose-Response Modeling for 1,2-Dichloroethane from an Inhalation Exposure
Study
Table 2-22. Summary of BMD Modeling Results for Increased Relative Kidney Weight in Male Mice
Following Inhalation Exposure to 1,2-Dichloroethane (Constant Variance) ^{<i>a</i>}
Table 2-23. Incidence of Mortality in Male Rats and Associated Concentrations Selected for Dose-
Response Modeling for 1,2-Dichloroethane from an Inhalation Exposure Study
Table 2-24. Summary of BMD Modeling Results for Incidence of Mortality in Male Rats Following
Inhalation Exposure to 1,2-Dichloroethane ^{<i>a</i>}
Table 2-25. Incidence of Mortality in Female Rabbits and Associated Concentrations Selected for
Dose-Response Modeling for 1,2-Dichloroethane from an Inhalation Exposure Study 86
Table 2-26. Summary of BMD Modeling Results for Incidence of Mortality in Female Rabbits
Following Inhalation Exposure to 1,2-Dichloroethane Using BMR of 10% ER or
5%ER ^{<i>a</i>}
Table 2-27. Decreased Body Weight of Male Mice at Week 4 and Associated Concentrations
Selected for Dose-Response Modeling for 1,2-Dichloroethane in a 28-Day Inhalation
Exposure Study
Table 2-28. Summary of BMD Modeling Results for Decreased Body Weight in Male Mice at
Week 4 Following a 28-Day Inhalation Exposure to 1,2-Dichloroethane (Nonconstant
Variance) ^{<i>a</i>}
Table 2-29. Decreased Body Weight Gain of Male Rats and Associated Concentrations Selected for
Dose-Response Modeling for 1,2-Dichloroethane from a 30-Day Inhalation Exposure
Study
Table 2-30. Summary of BMD Modeling Results for Decreased Body Weight Gain of Male Rats
Following Inhalation Exposure to 1,2-Dichloroethane for 30 Days (Constant
Variance) ^{<i>a</i>}
Response Modeling for 1,2-Dichloroethane from a 28-Day Inhalation Exposure Study. 95 Table 2.22 Summers of BMD Modeling Desults for Increased Polating Liver Weight in Mole Mice
Table 2-32. Summary of BMD Modeling Results for Increased Relative Liver Weight in Male Mice
Following Inhalation Exposure to 1,2-Dichloroethane for 28 Days (Constant
$Variance)^a \dots 96$
Table 2-33. Serum ALT in Male Mice and Associated Concentrations Selected for Dose-Response Madeling for 1.2 Disklarge forms 228 Desclobeleting Formation Studies
Modeling for 1,2-Dichloroethane from a 28-Day Inhalation Exposure Study

Table 2-34. Summary of BMD Modeling Results for Increased Serum ALT in Male Mice Following Inhalation Exposure to 1,2-Dichloroethane for 28 Days (Nonconstant Variance) ^a
Table 2-35. Serum AST in Male Mice and Associated Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane from a 28-Day Inhalation Exposure Study
Table 2-36. Summary of BMD Modeling Results for Increased Serum AST in Male Mice Following Inhalation Exposure to 1,2-Dichloroethane for 28 Days (Nonconstant Variance) ^a 102
Table 2-37. Sperm Concentration in Male Mice and Associated Concentrations Selected for Dose- Response Modeling for 1,2-Dichloroethane from a 4-Week Inhalation Exposure Study 105
Table 2-38. Summary of BMD Modeling Results for Decreased Sperm Concentration in Male Mice Following Inhalation Exposure to 1,2-Dichloroethane for 4 Weeks (Constant Variance) ^a 106
Table 2-39. Diameter of Seminiferous Tubules in Male Mice and Associated Concentrations Selectedfor Dose-Response Modeling for 1,2-Dichloroethane from a 4-Week Inhalation
Exposure Study
Male Mice Following Inhalation Exposure to 1,2-Dichloroethane for 4 Weeks (Constant Variance) ^{<i>a</i>}
Table 2-41. Height of Germinal Epithelium in Male Mice and Associated Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane from a 4-Week Inhalation Exposure Study
Table 2-42. Summary of BMD Modeling Results for Decreased Height of Germinal Epithelium in Male Mice Following Inhalation Exposure to 1,2-Dichloroethane for 4 Weeks (Constant Variance) ^a
Table 2-43. Number of Apoptotic Cells in Male Mice and Associated Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane from a 4-Week Inhalation Exposure Study
Table 2-44. Summary of BMD Modeling Results for Increased Number of Apoptotic Cells in Male Mice Following Inhalation Exposure to 1,2-Dichloroethane for 4 Weeks (Constant Variance) ^a
Table 2-45. Increased LDH Levels in Female Rats and Associated Concentrations Selected for Dose- Response Modeling for 1,2-Dichloroethane from a 12-Month Inhalation Exposure Study 118
Table 2-46. Summary of BMD Modeling Results for Increased LDH Levels in Female Rats Following Inhalation Exposure to 1,2-Dichloroethane for 12 Months (Constant Variance) ^a 119
Table 2-47. BUN Levels in Male Rats and Associated Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane from a 12-Month Inhalation Exposure Study
Table 2-48. Summary of BMD Modeling Results for Increased BUN Levels in Male Rats Following Inhalation Exposure to 1,2-Dichloroethane for 12 Months (Constant Variance) ^a
Table 2-49. BUN Levels in Female Rats and Associated Concentrations Selected for Dose-ResponseModeling for 1,2-Dichloroethane from a 12-Month Inhalation Exposure Study
Table 2-50. Summary of BMD Modeling Results for Increased BUN Levels in Female Rats Following Inhalation Exposure to 1,2-Dichloroethane for 12 Months (Nonconstant Variance) ^a
Table 2-51. Serum Calcium Levels in Male Rats and Associated Concentrations Selected for Dose- Response Modeling for 1,2-Dichloroethane from a 12-Month Inhalation Exposure Study 127

Table 2-52. Summary of BMD Modeling Results for Decreased Serum Calcium Levels in Male Rats
Following Inhalation Exposure to 1,2-Dichloroethane for 12 Months (Constant Variance) ^{<i>a</i>}
Table 2-53. Serum Potassium Levels in Male Rats and Associated Concentrations Selected for Dose-
Response Modeling for 1,2-Dichloroethane from a 12-Month Inhalation Exposure
Study
Table 2-54. Summary of BMD Modeling Results for Increased Serum Potassium Levels in Male Rats Following Inhalation Exposure to 1,2-Dichloroethane for 12 Months (Constant
Variance) ^a
Table 2-55. Serum Potassium Levels in Female Rats and Associated Concentrations Selected for
Dose-Response Modeling for 1,2-Dichloroethane from a 12-Month Inhalation Exposure Study
Table 2-56. Summary of BMD Modeling Results for Increased Serum Potassium Levels in Female
Rats Following Inhalation Exposure to 1,2-Dichloroethane for 12 Months ^{<i>a</i>}
Table 2-57. Body Weight of Selected F1b Male Weanling Rats and Associated Concentrations
Selected for Dose-Response Modeling for 1,2-Dichloroethane from a One-Generation
Developmental Study ^{<i>a</i>}
Table 2-58. Summary of BMD Modeling Results for Decreased Body Weight of Selected F1b Male
Weanling Rats Following Inhalation Exposure to 1,2-Dichloroethane in a One-
Generation Reproduction Study (Constant Variance) ^a
Table 2-59. Incidence of Mortality in Male Mice and Associated Doses Selected for Dose-Response
Modeling for 1,2-Dichloroethane from an Acute Oral Exposure Study
Table 2-60. Summary of BMD Modeling Results for Increased Incidence of Mortality in Male Mice
Following a Single Oral Exposure to 1,2-Dichloroethane Using BMR of 10%ER or
20% ER ^a
Table 2-61. Relative Liver Weight in Male Mice and Associated Doses Selected for Dose-Response
Modeling for 1,2-Dichloroethane from an Acute Oral Exposure Study 147
Table 2-62. Summary of BMD Modeling Results for Increased Relative Liver Weight in Male Mice
Following a Single Oral Exposure to 1,2-Dichloroethane (Nonconstant Variance) ^{<i>a</i>} 148
Table 2-63. Increased Relative Kidney Weight in Male Mice and Associated Doses Selected for
Dose-Response Modeling for 1,2-Dichloroethane from an Oral Exposure Study 152
Table 2-64. Summary of BMD Modeling Results for Increased Relative Kidney Weight in Male Mice
Following a Single Oral Exposure to 1,2-Dichloroethane (Constant Variance) ^{<i>a</i>}
Table 2-65. Blood Urea Nitrogen in Male Mice and Associated Doses Selected for Dose-Response
Modeling for 1,2-Dichloroethane from an Oral Exposure Study
Table 2-66. Summary of BMD Modeling Results for Increased Blood Urea Nitrogen in Male Mice
Following a Single Oral Exposure to 1,2-Dichloroethane (Nonconstant Variance) ^{<i>a</i>} 156
Table 2-67. Incidence of Mortality in Male Rats and Associated Doses Selected for Dose-Response
Modeling for 1,2-Dichloroethane from a 13-Week Oral Exposure Study
Table 2-68. Summary of BMD Modeling Results for Increased Incidence of Mortality in Male Rats
Following Oral Exposure to 1,2-Dichloroethane for 13 Weeks ^{<i>a</i>}
Table 2-69. Incidence of Mortality in Female Rats and Associated Doses Selected for Dose-Response
Modeling for 1,2-Dichloroethane from a 13-Week Oral Exposure Study
Table 2-70. Summary of BMD Modeling Results for Increased Incidence of Mortality in Female Rats
Following Oral Exposure to 1,2-Dichloroethane for 13 Weeks ^{<i>a</i>}
Dose-Response Modeling for 1,2-Dichloroethane from an Oral Gestational Exposure
Study 172

Table 2-91. Summary of BMD Multi-Tumor (MS Combo) Modeling Results for Increased Incidence	
of Subcutaneous Fibromas, Mammary Gland Adenomas and Fibroadenomas, and	
Peritoneal Mesothelioma (Combined) in Male Rats Following Inhalation Exposure to	
1,2-Dichloroethane in a 2-Year Chronic Bioassay	
Table 2-92. Increased Incidence of Subcutaneous Fibromas in Female Rats and Associated	
Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane from a	
2-Year Chronic Bioassay	
Table 2-93. Summary of BMD Modeling Results for Increased Incidence of Subcutaneous Fibromas	
in Female Rats Following Inhalation Exposure to 1,2-Dichloroethane in a 2-Year	
Chronic Bioassay ^a	
Table 2-94. Increased Incidence of Mammary Gland Adenomas in Female Rats and Associated	
Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane from a	
2-Year Chronic Bioassay	
Table 2-95. Summary of BMD Modeling Results for Increased Incidence of Mammary Gland	
Adenomas in Female Rats Following Inhalation Exposure to 1,2-Dichloroethane in a	
2-Year Chronic Bioassay ^a	
Table 2-96. Increased Incidence of Mammary Gland Fibroadenomas in Female Rats and Associated	
Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane from a	
2-Year Chronic Bioassay	
Table 2-97. Summary of BMD Modeling Results for Increased Incidence of Mammary Gland	
Fibroadenomas in Female Rats Following Inhalation Exposure to 1,2-Dichloroethane	
in a 2-Year Chronic Bioassay ^{<i>a</i>}	
Table 2-98. Increased Incidence of Mammary Gland Adenomas and Fibroadenomas (Combined) in	
Female Rats and Associated Concentrations Selected for Dose-Response Modeling for	
1,2-Dichloroethane from a 2-Year Chronic Bioassay	
Table 2-99. Summary of BMD Modeling Results for Increased Incidence of Mammary Gland	
Adenomas and Fibroadenomas (Combined) in Female Rats Following Inhalation	
Exposure to 1,2-Dichloroethane in a 2-Year Chronic Bioassay ^a	
Table 2-100. Increased Incidence of Mammary Gland Adenocarcinomas in Female Rats and	
Associated Concentrations Selected for Dose-Response Modeling for 1,2-	
Dichloroethane from a 2-Year Chronic Bioassay	
Table 2-101. Summary of BMD Modeling Results for Increased Incidence of Mammary Gland	
Adenocarcinomas in Female Rats Following Inhalation Exposure to 1,2-	
Dichloroethane in a 2-Year Chronic Bioassay ^a	
Table 2-102. Increased Incidence of Mammary Gland Adenomas, Fibroadenomas, and	
Adenocarcinomas (Combined) in Female Rats and Associated Concentrations	
Selected for Dose-Response Modeling for 1,2-Dichloroethane from a 2-Year Chronic	
Bioassay	
Table 2-103. Summary of BMD Modeling Results for Increased Incidence of Mammary Gland	
Adenomas, Fibroadenomas, and Adenocarcinomas (Combined) in Female Rats	
Following Inhalation Exposure to 1,2-Dichloroethane in a 2-Year Chronic Bioassay ^a . 221	
Table 2-104. Summary of BMD Multi-Tumor (MS Combo) Modeling Results for Increased	
Incidence of Subcutaneous Fibromas and Mammary Gland Adenomas,	
Fibroadenomas, and Adenocarcinomas (Combined) in Female Rats Following	
Inhalation Exposure to 1,2-Dichloroethane in a 2-Year Chronic Bioassay	
Table 2-105. Increased Incidence of Bronchiolo-Alveolar Adenomas in Female Mice and Associated	
Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane from a	
2-Year Chronic Bioassay	
•	

Table 2-106. Summary of BMD Modeling Results for Increased Incidence of Bronchiolo-Alveolar
Adenomas in Female Mice Following Inhalation Exposure to 1,2-Dichloroethane in a
2-Year Chronic Bioassay ^a
Table 2-107. Increased Incidence of Bronchiolo-Alveolar Carcinomas in Female Mice and
Associated Concentrations Selected for Dose-Response Modeling for 1,2-
Dichloroethane from a 2-year Chronic Bioassay
Table 2-108. Summary of BMD Modeling Results for Increased Incidence of Bronchiolo-Alveolar
Carcinomas in Female Mice Following Inhalation Exposure to 1,2-Dichloroethane in a
2-Year Chronic Bioassay ^{<i>a</i>}
Table 2-109. Increased Incidence of Bronchiolo-Alveolar Adenomas and Carcinomas (Combined) in
Female Mice and Associated Concentrations Selected for Dose-Response Modeling
for 1,2-Dichloroethane from a 2-Year Chronic Bioassay
Table 2-110. Summary of BMD Modeling Results for Increased Incidence of Bronchiolo-Alveolar
Adenomas and Carcinomas (Combined) in Female Mice Following Inhalation
Exposure to 1,2-Dichloroethane in a 2-Year Chronic Bioassay ^{<i>a</i>}
Table 2-111. Increased Incidence of Endometrial Stromal Polyps in Female Mice and Associated
Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane from a
2-Year Chronic Bioassay
Table 2-112. Summary of BMD Modeling Results for Increased Incidence of Endometrial Stromal
Polyps in Female Mice Following Inhalation Exposure to 1,2-Dichloroethane in a 2-
Year Chronic Bioassay ^a
Table 2-113. Increased Incidence of Mammary Gland Adenocarcinomas in Female Mice and
Associated Concentrations Selected for Dose-Response Modeling for 1,2-
Dichloroethane from a 2-Year Chronic Bioassay
Table 2-114. Summary of BMD Modeling Results for Increased Incidence of Mammary Gland
Adenocarcinomas in Female Mice Following Inhalation Exposure to 1,2-
Dichloroethane in a 2-Year Chronic Bioassay ^a
Table 2-115. Increased Incidence of Hepatocellular Adenomas in Female Mice and Associated
Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane from a
2-Year Chronic Bioassay
Table 2-116. Summary of BMD Modeling Results for Increased Incidence of Hepatocellular
Adenomas in Female Mice Following Inhalation Exposure to 1,2-Dichloroethane in a 2-Year Chronic Bioassay ^a
2-Year Chronic Bioassay ^{<i>a</i>}
Female Mice and Associated Concentrations Selected for Dose-Response Modeling
for 1,2-Dichloroethane from a 2-Year Chronic Bioassay
Table 2-118. Summary of BMD Modeling Results for Increased Incidence of Hepatocellular
Adenomas and Carcinomas (Combined) in Female Mice Following Inhalation
Exposure to 1,2-Dichloroethane in a 2-Year Chronic Bioassay ^a
Table 2-119. Summary of BMD Multi-Tumor (MS Combo) Modeling Results for Increased
Incidence of Bronchiolo-alveolar Adenomas and Carcinomas, Uterine Endometrial
Stromal Polyps, Mammary Gland Adenocarcinomas, and Hepatocellular Adenomas
and Carcinomas (Combined) in Female Mice Following Inhalation Exposure to 1,2-
Dichloroethane in a 2-Year Chronic Bioassay
Table 2-120. Summary of BMD Multi-Tumor (MS Combo) Modeling Results for Increased
Incidence of Bronchiolo-alveolar Adenomas and Carcinomas, Mammary Gland
Adenocarcinomas, and Hepatocellular Adenomas and Carcinomas (Combined) in
Female Mice Following Inhalation Exposure to 1,2-Dichloroethane in a 2-Year
Chronic Bioassay
J

LIST OF FIGURES

Figure 1-1. Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 3) for
Decreased Maternal Body Weight in Female Rats Exposed to 1,1-Dichloroethane Via
Inhalation During Gestation (GD 6 to 15) and BMR of 1SD (Constant Variance
Model)
Figure 1-2. Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 3) for
Decreased Maternal Body Weight in Female Rats Exposed to 1,1-Dichloroethane Via
Inhalation During Gestation (GD 6 to 15) and BMR of 10%RD (Constant Variance
Model)
Figure 1-3. Details Regarding the Selected Model (Exponential 3) for Decreased Maternal Body
Weight in Pregnant Female Rats Following Inhalation Exposure to 1,1-Dichloroethane
in a Gestational Exposure (GD 6 to 15) Toxicity Study (Constant Variance Model) 27
Figure 1-4. Plot of Response by Dose with Fitted Curve for the Selected Model (Hill) for Decreased
Body Weight in Male Rats Exposed to 1,1-Dichloroethane Via Oral Gavage (10-Day
Study) and BMR of 1SD (Constant Variance Model)
Figure 1-5. Plot of Response by Dose with Fitted Curve for the Selected Model (Hill) for Decreased
Body Weight in Male Rats Exposed to 1,1-Dichloroethane Via Oral Gavage (10-Day
Study) and BMR of 10%RD (Constant Variance Model)
Figure 1-6. Details Regarding the Selected Model (Hill) for Decreased Body Weight in Male Rats
Following Oral Exposure to 1,1-Dichloroethane in a 10-Day Toxicity Study
Figure 1-7. Plot of Response by Dose with Fitted Curve for the Selected Model (Power) for
Decreased Body Weight in Male Rats Exposed to 1,1-Dichloroethane Via Oral
Gavage (13-Week Study) and BMR of 1SD (Constant Variance Model)
Figure 1-8. Plot of Response by Dose with Fitted Curve for the Selected Model (Power) for
Decreased Body Weight in Male Rats Exposed to 1,1-Dichloroethane Via Oral
Gavage (13-Week Study) and BMR of 10% RD (Constant Variance Model)
Figure 1-9. Details Regarding the Selected Model (Power) for Decreased Body Weight in Male Rats
Following Oral Exposure to 1,1-Dichloroethane in a 13-Week Toxicity Study
Figure 1-10. Plot of Response by Dose with Fitted Curve for the Selected Model (Hill) for Decreased
Relative Liver Weight in Male Rats Exposed to 1,1-Dichloroethane Via Oral Gavage
(10-Day Study) and BMR of 1SD (Constant Variance Model)
Figure 1-11. Details Regarding the Selected Model (Hill) for Decreased Relative Liver Weight in
Male Rats Following Oral Exposure to 1,1-Dichloroethane in a 10-Day Toxicity Study 37
Figure 1-12. Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 5) for
Absolute Kidney Weight Decreases in Male Rats Exposed to 1,1-Dichloroethane Via
Oral Gavage (10-Day Study) and BMR of 1SD (Nonconstant Variance Model)
Figure 1-13. Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 5) for
Absolute Kidney Weight Decreases in Male Rats Exposed to 1,1-Dichloroethane Via
Oral Gavage (10-Day Study) and BMR of 10%RD (Nonconstant Variance Model) 39
Figure 1-14. Details Regarding the Selected Model (Exponential 5) for Absolute Kidney Weight
Decreases in Male Rats Following Oral Exposure to 1,1-Dichloroethane in a 10-Day
Toxicity Study
Figure 2-1. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage
1-Degree) for Mortality in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation
for Four Hours and BMR of 10% ER
Figure 2-2. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage
2-Degree) for Mortality in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation
for Four Hours and BMR of 1%ER45

Figure 2-3. Details Regarding the Selected Model (Multistage 1-Degree) for Mortality in Male Mice Following a 4-Hour Inhalation Exposure to 1,2-Dichloroethane
Figure 2-4. Details Regarding the Selected Model (Multistage 2-Degree) for Mortality in Male Mice
Following a 4-Hour Inhalation Exposure to 1,2-Dichloroethane
Figure 2-5. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage
1-Degree) for Degeneration with Necrosis of the Olfactory Mucosa in Male Rats
Exposed to 1,2-Dichloroethane Via Inhalation for 4 Hours and BMR of 10% ER
Figure 2-6. Details Regarding the Selected Model (Multistage 1-Degree) for Degeneration with
Necrosis of the Olfactory Mucosa in Male Rats Following a 4-Hour Inhalation
Exposure to 1,2-Dichloroethane
Figure 2-7. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage
1-Degree) for Degeneration with Necrosis of the Olfactory Mucosa in Female Rats
Exposed to 1,2-Dichloroethane Via Inhalation for Four Hours and BMR of 10%ER 53
Figure 2-8. Details Regarding the Selected Model (Multistage 1-Degree) for Degeneration with
Necrosis of the Olfactory Mucosa in Female Rats Following a 4-Hour Inhalation
Exposure to 1,2-Dichloroethane
Figure 2-9. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage
1-Degree) for Degeneration with Necrosis of the Olfactory Mucosa in Male and
Female Rats (Combined) Exposed to 1,2-Dichloroethane Via Inhalation for 4 Hours
and BMR of 10% ER 57
Figure 2-10. Details Regarding the Selected Model (Multistage 1-Degree) for Degeneration with
Necrosis of the Olfactory Mucosa in Male and Female Rats (Combined) Following a
4-Hour Inhalation Exposure to 1,2-Dichloroethane
Figure 2-11. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage
1-Degree) for Degeneration with Necrosis of the Olfactory Mucosa in Male Rats
Exposed to 1,2-Dichloroethane Via Inhalation for 8 Hours and BMR of 10% ER
Figure 2-12. Details Regarding the Selected Model (Multistage 1-Degree) for Degeneration with
Necrosis of the Olfactory Mucosa in Male Rats Following an 8-Hour Inhalation
Exposure to 1,2-Dichloroethane
Figure 2-13. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage
1-Degree) for Degeneration with Necrosis of the Olfactory Mucosa in Female Rats
Exposed to 1,2-Dichloroethane Via Inhalation for 8 Hours and BMR of 10% ER
Figure 2-14. Details Regarding the Selected Model (Multistage 1-Degree) for Degeneration with
Necrosis of the Olfactory Mucosa in Female Rats Following an 8-Hour Inhalation
Exposure to 1,2-Dichloroethane
Figure 2-15. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage
3-Degree) for Degeneration with Necrosis of the Olfactory Mucosa in Male and
Female Rats (Combined) Exposed to 1,2-Dichloroethane Via Inhalation for 8 Hours
and BMR of 10% ER
Figure 2-16. Details Regarding the Selected Model (Multistage 3-Degree) for Degeneration with
Necrosis of the Olfactory Mucosa in Male and Female Rats (Combined) Following an
8-Hour Inhalation Exposure to 1,2-Dichloroethane
Figure 2-17. Plot of Response by Concentration with Fitted Curve for the Selected Model (Logistic)
for Regeneration of the Olfactory Mucosa in Male Rats Exposed to 1,2-
Dichloroethane Via Inhalation for 4 Hours and BMR of 10%ER
Figure 2-18. Details Regarding the Selected Model (Logistic) for Regeneration of the Olfactory
Mucosa in Male Rats Following a 4-Hour Inhalation Exposure to 1,2-Dichloroethane 71

Figure 2-19.	Plot of Response by Concentration with Fitted Curve for the Selected Model (Logistic) for Regeneration of the Olfactory Mucosa in Female Rats Exposed to 1,2- Dicklamathema Wie Jukeletian for 4 House and DMP of 10% FP
Figure 2-20.	Dichloroethane Via Inhalation for 4 Hours and BMR of 10%ER
Figure 2-21.	Dichloroethane
Figure 2-22.	Exposed to 1,2-Dichloroethane Via Inhalation for 4 Hours and BMR of 10%ER
Figure 2-23.	Exposure to 1,2-Dichloroethane
Figure 2-24.	Dichloroethane Via Inhalation for 4 Hours and BMR of 1SD (Constant Variance) 79 Plot of Response by Dose with Fitted Curve for the Selected Model (Polynomial 2-Degree) for Increased Relative Kidney Weight in Male Mice Exposed to 1,2-
Figure 2-25.	Dichloroethane Via Inhalation for 4 Hours and BMR of 10%RD (Constant Variance) 79 Details Regarding the Selected Model (Polynomial 2-Degree) for Increased Relative Kidney Weight in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation for 4
Figure 2-26.	Hours
Figure 2-27.	for 30 Days (Seven Hours per Day, 5 days per Week) and BMR of 10%ER
Figure 2-28.	for 30 Days (Seven Hours per Day, 5 days per Week) and BMR of 5%ER
Figure 2-29.	for 30 Days (7n Hours per Day, 5 Days per Week) and BMR of 1%ER
Figure 2-30.	 Plot of Response by Dose with Fitted Curve for the Selected Model (Log-Logistic) for Mortality in Female Rabbits Exposed to 1,2-Dichloroethane Via Inhalation on GD 6 to 18 (7 Hours per Day) and BMR of 10%ER
Figure 2-31.	Plot of Response by Dose with Fitted Curve for the Selected Model (Log-Logistic) for Mortality in Female Rabbits Exposed to 1,2-Dichloroethane Via Inhalation on GD 6 to 18 (7 Hours per Day) and BMR of 5% ER
Figure 2-32.	Details Regarding the Selected Model (Log-Logistic) for Mortality in Female Rabbits Exposed to 1,2-Dichloroethane Via Inhalation on GD 6 to 18 (7 Hours per Day)
Figure 2-33.	Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 3) for Decreased Body Weight in Male Mice at Week 4 Following a 28-Day Inhalation Exposure to 1,2-Dichloroethane and a BMR of 1SD (Nonconstant Variance)
Figure 2-34.	Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 3) for Decreased Body Weight in Male Mice at Week 4 Following a 28-Day Inhalation Exposure to 1,2-Dichloroethane and a BMR of 10%RD (Nonconstant Variance)
Figure 2-35.	Details Regarding the Selected Model (Exponential 3) for Decreased Body Weight in Male Mice at Week 4 Exposed to 1,2-Dichloroethane Via Inhalation for 28 Days

Figure 2-36. Plot of Response by Dose with Fitted Curve for the Selected Model (Polynomial
2-Degree) for Body Weight Gain in Male Rats Exposed to 1,2-Dichloroethane Via
Inhalation for 30 Days and BMR of 1SD (Constant Variance)
Figure 2-37. Plot of Response by Dose with Fitted Curve for the Selected Model (Polynomial
2-Degree) for Body Weight Gain in Male Rats Exposed to 1,2-Dichloroethane Via
Inhalation for 30 Days and BMR of 10% RD (Constant Variance)
Figure 2-38. Details Regarding the Selected Model (Polynomial 2-Degree) for Body Weight Gain in
Male Rats Exposed to 1,2-Dichloroethane Via Inhalation for 30 Days
Figure 2-39. Plot of Response by Dose with Fitted Curve for the Selected Model (Linear) for
Increased Relative Liver Weight in Male Mice Exposed to 1,2-Dichloroethane Via
Inhalation for 28 Days and BMR of 1SD (Constant Variance)
Figure 2-40. Plot of Response by Dose with Fitted Curve for the Selected Model (Linear) for
Increased Relative Liver Weight in Male Mice Exposed to 1,2-Dichloroethane Via
Inhalation for 28 Days and BMR of 10% RD (Constant Variance)
Figure 2-41. Details Regarding the Selected Model (Linear) for Relative Liver Weight Increases in
Male Mice Exposed to 1,2-Dichloroethane Via Inhalation for 28 Days
Figure 2-42. Plot of Response by Dose with Fitted Curve for the Selected Model (Linear) for
Increased Serum ALT in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation for
28 Days and BMR of 1SD (Nonconstant Variance)
Figure 2-43. Details Regarding the Selected Model (Linear) for Increased Serum ALT in Male Mice
Exposed to 1,2-Dichloroethane Via Inhalation for 28 Days
Increased Serum AST in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation for
28 Days and BMR of 1SD (Nonconstant Variance)
Figure 2-45. Details Regarding the Selected Model (Linear) for Increased Serum AST in Male Mice
Exposed to 1,2-Dichloroethane Via Inhalation for 28 Days
Figure 2-46. Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 3) for
Decreased Sperm Concentration in Male Mice Exposed to 1,2-Dichloroethane Via
Inhalation for 4 Weeks and BMR of 1SD (Constant Variance)
Figure 2-47. Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 3) for
Decreased Sperm Concentration in Male Mice Exposed to 1,2-Dichloroethane Via
Inhalation for 4 Weeks and BMR of 5%RD (Constant Variance)
Figure 2-48. Details Regarding the Selected Model (Exponential 3) for Decreased Sperm
Concentration in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation for 4
Weeks
Figure 2-49. Plot of Response by Dose with Fitted Curve for the Selected Model (Linear) for
Decreased Diameter of Seminiferous Tubules in Male Mice Exposed to 1,2-
Dichloroethane Via Inhalation for 4 Weeks and BMR of 1SD (Constant Variance) 110
Figure 2-50. Details Regarding the Selected Model (Linear) for Decreased Diameter of Seminiferous
Tubules in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation for 4 Weeks 111
Figure 2-51. Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 3) for
Decreased Height of Germinal Epithelium in Male Mice Exposed to 1,2-
Dichloroethane Via Inhalation for 4 Weeks and BMR of 1SD (Constant Variance) 113
Figure 2-52. Details Regarding the Selected Model (Exponential 3) for Decreased Height of
Germinal Epithelium in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation for
4 Weeks
Figure 2-53. Plot of Response by Dose with Fitted Curve for the Selected Model (Linear) for
Increased Number of Apoptotic Cells in Male Mice Exposed to 1,2-Dichloroethane
Via Inhalation for 4 Weeks and BMR of 1SD (Constant Variance)

Figure 2-54. Details Regarding the Selected Model (Linear) for Increased Number of Apoptotic Cells in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation for 4 Weeks
Figure 2-55. Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 5) for Increased LDH Levels in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months and BMR of 1SD (Constant Variance)
Figure 2-56. Details Regarding the Selected Model (Exponential 5) for Increased LDH Levels in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months
Figure 2-57. Plot of Response by Dose with Fitted Curve for the Selected Model (Polynomial 3-Degree) for Increased BUN Levels in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months and BMR of 1SD (Constant Variance)
Figure 2-58. Details Regarding the Selected Model (Polynomial 3-Degree) for Increased BUN Levels in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months
Figure 2-59. Plot of Response by Dose with Fitted Curve for the Selected Model (Polynomial 2-Degree) for Increased BUN Levels in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months and BMR of 1SD (Nonconstant Variance)
Figure 2-60. Details Regarding the Selected Model (Polynomial 2-Degree) for Increased BUN Levels in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months
Figure 2-61. Plot of Response by Dose with Fitted Curve for the Selected Model (Hill) for Decreased Serum Calcium Levels in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months and BMR of 1SD (Constant Variance)
Figure 2-62. Plot of Response by Dose with Fitted Curve for the Selected Model (Hill) for Decreased Serum Calcium Levels in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months and BMR of 10%RD (Constant Variance)
Figure 2-63. Details Regarding the Selected Model (Hill) for Increased Serum Calcium Levels in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months
Figure 2-64. Plot of Response by Dose with Fitted Curve for the Selected Model (Hill) for Increased Serum Potassium Levels in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months and BMR of 1SD (Constant Variance)
Figure 2-65. Plot of Response by Dose with Fitted Curve for the Selected Model (Hill) for Increased Serum Potassium Levels in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months and BMR of 10%RD (Constant Variance)
Figure 2-66. Details Regarding the Selected Model (Hill) for Increased Serum Potassium Levels in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months
Figure 2-67. Plot of Response by Dose with Fitted Curve for the Selected Model (Hill) for Increased Serum Potassium Levels in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months and BMR of 1SD (Constant Variance)
Figure 2-68. Plot of Response by Dose with Fitted Curve for the Selected Model (Hill) for Increased Serum Potassium Levels in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months and BMR of 10%RD (Constant Variance)
Figure 2-69. Details Regarding the Selected Model (Hill) for Increased Serum Potassium Levels in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months
Figure 2-70. Plot of Response by Dose with Fitted Curve for the Selected Model (Linear) for Decreased Body Weight of Selected F1B Male Weanling Rats Exposed to 1,2- Dichloroethane Via Inhalation in a One-Generation Reproduction Study and BMR of 1SD (Constant Variance)
Figure 2-71. Plot of Response by Dose with Fitted Curve for the Selected Model (Linear) for Decreased Body Weight of Selected F1B Male Weanling Rats Exposed to 1,2- Dichloroethane Via Inhalation in a One-Generation Reproduction Study and BMR of 5%RD (Constant Variance)

Figure 2-72. Plot of Response by Dose with Fitted Curve for the Selected Model (Linear) for
Decreased Body Weight of Selected F1B Male Weanling Rats Exposed to 1,2-
Dichloroethane Via Inhalation in a One-Generation Reproduction Study and BMR of
10%RD (Constant Variance) 142
Figure 2-73. Details Regarding the Selected Model (Linear) for Decreased Body Weight of Selected
F1B Male Weanling Rats Exposed to 1,2-Dichloroethane Via Inhalation in a One-
Generation Reproduction Study143
Figure 2-74. Plot of Response by Dose with Fitted Curve for the Selected Model (Multistage
3-Degree) for Incidence of Mortality in Male Mice Exposed to 1,2-Dichloroethane Via
Oral Gavage in an Acute Toxicity Study and BMR of 10%ER 145
Figure 2-75. Plot of Response by Dose with Fitted Curve for the Selected Model (Multistage
3-Degree) for Incidence of Mortality in Male Mice Exposed to 1,2-Dichloroethane Via
Oral Gavage in an Acute Toxicity Study and BMR of 20%ER 145
Figure 2-76. Details Regarding the Selected Model (Multistage 3-Degree) for Increased Incidence of
Mortality in Male Mice Exposed to 1,2-Dichloroethane Via Oral Gavage in an Acute
Toxicity Study146
Figure 2-77. Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 5) for
Increased Relative Liver Weight in Male Mice Exposed to 1,2-Dichloroethane Via
Oral Gavage in an Acute Toxicity Study and BMR of 1SD (Nonconstant Variance) 149
Figure 2-78. Plot of Response by Dose with Fitted Curve for the Selected Model (Polynomial
3-Degree) for Increased Relative Liver Weight in Male Mice Exposed to 1,2-
Dichloroethane Via Oral Gavage in an Acute Toxicity Study and BMR of 10% RD
(Nonconstant Variance)149
Figure 2-79. Details Regarding the Selected Model (Exponential 5) for Increased Relative Liver
Weight in Male Mice Exposed to 1,2-Dichloroethane Via Oral Gavage in an Acute
Toxicity Study with a BMR of 1SD150
Figure 2-80. Details Regarding the Selected Model (Polynomial 3-Degree) for Increased Relative
Liver Weight in Male Mice Exposed to 1,2-Dichloroethane Via Oral Gavage in an
Acute Toxicity Study with a BMR of 10% RD 151
Figure 2-81. Plot of Response by Dose with Fitted Curve for the Selected Model (Polynomial
2-Degree) for Increased Relative Kidney Weight in Male Mice Exposed to 1,2-
Dichloroethane Via Oral Gavage in an Acute Toxicity Study and BMR of 1SD
(Constant Variance) 153
Figure 2-82. Plot of Response by Dose with Fitted Curve for the Selected Model (Polynomial
2-Degree) for Increased Relative Kidney Weight in Male Mice Exposed to 1,2-
Dichloroethane Via Oral Gavage in an Acute Toxicity Study and BMR of 10% RD
(Constant Variance)
Figure 2-83. Details Regarding the Selected Model (Polynomial 2-Degree) for Increased Relative
Kidney Weight in Male Mice Exposed to 1,2-Dichloroethane Via Oral Gavage in an
Acute Toxicity Study155
Figure 2-84. Plot of Response by Dose with Fitted Curve for the Selected Model (Power) for
Increased Blood Urea Nitrogen in Male Mice Exposed to 1,2-Dichloroethane Via Oral
Gavage in an Acute Toxicity Study and BMR of 1SD (Nonconstant Variance)
Figure 2-85. Plot of Response by Dose with Fitted Curve for the Selected Model (Linear) for
Increased Blood Urea Nitrogen in Male Mice Exposed to 1,2-Dichloroethane Via Oral
Gavage in an Acute Toxicity Study and BMR of 10%RD (Nonconstant Variance) 157
Figure 2-86. Details Regarding the Selected Model (Power) for Increased BUN Levels in Male Mice
Exposed to 1,2-Dichloroethane Via Oral Gavage in an Acute Toxicity Study (BMR of
1SD)

Figure 2-87.	Details Regarding the Selected Model (Linear) for Increased BUN Levels in Male Mice Exposed to 1,2-Dichloroethane Via Oral Gavage in an Acute Toxicity Study (BMR of
	10%RD)
Figure 2-88.	Plot of Response by Dose with Fitted Curve for the Selected Model (Logistic Model) for
	Mortality in Male Rats Exposed to 1,2-Dichloroethane Via Oral Gavage for 13 Weeks and BMR of 10%ER
Figure 2-89.	Plot of Response by Dose with Fitted Curve for the Selected Model (Multistage
	2-Degree) for Mortality in Male Rats Exposed to 1,2-Dichloroethane Via Oral Gavage
	for 13 Weeks and BMR of 5%ER163
Figure 2-90.	Plot of Response by Dose with Fitted Curve for the Selected Model (Multistage
	2-Degree) for Mortality in Male Rats Exposed to 1,2-Dichloroethane Via Oral Gavage
	for 13 Weeks and BMR of 1%ER163
Figure 2-91.	Details Regarding the Selected Model (Logistic) for Mortality in Male Rats Exposed to
	1,2-Dichloroethane Via Oral Gavage for 13 Weeks
Figure 2-92.	Details Regarding the Selected Model (Multistage 2-Degree) for Mortality in Male Rats
	Exposed to 1,2-Dichloroethane Via Oral Gavage for 13 Weeks 165
Figure 2-93.	Plot of Response by Dose with Fitted Curve for the Selected Model (Weibull) for
	Mortality in Female Rats Exposed to 1,2-Dichloroethane Via Oral Gavage for 13
-	Weeks and BMR of 10%ER
Figure 2-94.	Plot of Response by Dose with Fitted Curve for the Selected Model (Multistage
	2-Degree) for Mortality in Female Rats Exposed to 1,2-Dichloroethane Via Oral
E' 2.05	Gavage for 13 Weeks and BMR of 5% ER
Figure 2-95.	Plot of Response by Dose with Fitted Curve for the Selected Model (Multistage
	2-Degree) for Mortality in Female Rats Exposed to 1,2-Dichloroethane Via Oral
	Gavage for 13 Weeks and BMR of 1%ER
Figure 2-90.	Details Regarding the Selected Model (Weibull) for Mortality in Female Rats Exposed to 1,2-Dichloroethane Via Oral Gavage for 13 Weeks
Eiguro 2 07	Details Regarding the Selected Model (Multistage 2-Degree) for Mortality in Female
Figure 2-97.	Rats Exposed to 1,2-Dichloroethane Via Oral Gavage for 13 Weeks
Figure 2-08	Plot of Response by Dose with Fitted Curve for the Selected Model (Hill) for Decreased
1 Igure 2-90.	Maternal Absolute Weight Gain in Female Rats Exposed to 1,2-Dichloroethane Via
	Oral Gavage GD 6 to 20 and BMR of 1SD (Nonconstant Variance)
Figure 2-99	Plot of Response by Dose with Fitted Curve for the Selected Model (Hill) for Decreased
1 iguie 2 99.	Maternal Absolute Weight Gain in Female Rats Exposed to 1,2-Dichloroethane Via
	Oral Gavage GD 6 to 20 and BMR of 10%RD (Nonconstant Variance)
Figure 2-100). Details Regarding the Selected Model (Hill) for Decreased Maternal Absolute Weight
8	Gain in Female Rats Exposed to 1,2-Dichloroethane Via Oral Gavage GD 6 to 20 175
Figure 2-101	. Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 5) for
0	Increased Absolute Kidney Weight in Male Rats Exposed to 1,2-Dichloroethane Via
	Oral Gavage for 13 Weeks and BMR of 1SD (Nonconstant Variance)
Figure 2-102	2. Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 5) for
-	Increased Absolute Kidney Weight in Male Rats Exposed to 1,2-Dichloroethane Via
	Oral Gavage for 13 Weeks and BMR of 10% RD (Nonconstant Variance)
Figure 2-103	3. Details Regarding the Selected Model (Exponential 5) for Increased Absolute Kidney
	Weight in Male Rats Exposed to 1,2-Dichloroethane Via Oral Gavage for 13 Weeks 178
Figure 2-104	I. Plot of Response by Dose with Fitted Curve for the Selected Model (Power) for
	Increased Absolute Kidney Weight in Male Rats Exposed to 1,2-Dichloroethane Via
	Oral Gavage for 13 Weeks and BMR of 1SD (Constant Variance)

Figure 2-105. Plot of Response by Dose with Fitted Curve for the Selected Model (Power) for	
Increased Absolute Kidney Weight in Male Rats Exposed to 1,2-Dichloroethane Via	20
Oral Gavage for 13 Weeks and BMR of 10%RD (Constant Variance)	30
Figure 2-106. Details Regarding the Selected Model (Power) for Increased Relative Kidney Weight	
in Male Rats Exposed to 1,2-Dichloroethane Via Oral Gavage for 13 Weeks	31
Figure 2-107. Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 3) for	
Decreased Leukocytes in Male Mice Exposed to 1,2-Dichloroethane Via Oral Gavage	
for 14 Days and BMR of 1SD (Nonconstant Variance)18	33
Figure 2-108. Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 3) for	
Decreased Leukocytes in Male Mice Exposed to 1,2-Dichloroethane Via Oral Gavage	
for 14 Days and BMR of 10%RD (Nonconstant Variance)18	34
Figure 2-109. Details Regarding the Selected Model (Exponential 3) for Decreased Leukocytes in	
Male Mice Exposed to 1,2-Dichloroethane Via Oral Gavage for 14 Days 18	35
Figure 2-110. Plot of Response by Dose with Fitted Curve for the Selected Model (Multistage	
3-Degree) for Increased Incidence of Thymus Necrosis in Male Rats Exposed to 1,2-	
Dichloroethane Via Oral Gavage for 13 Weeks and BMR of 10%ER	38
Figure 2-111. Details Regarding the Selected Model (Multistage 3-Degree) for Increased Incidence of	
Thymus Necrosis in Male Rats Exposed to 1,2-Dichloroethane Via Oral Gavage for 13	
Weeks	39
Figure 2-112. Plot of Response by Dose with Fitted Curve for the Selected Model (Quantal Linear)	
for Increased Incidence of Thymus Necrosis in Female Rats Exposed to 1,2-	
Dichloroethane Via Oral Gavage for 13 Weeks and BMR of 10% ER) 1
Figure 2-113. Details Regarding the Selected Model (Quantal Linear) for Increased Incidence of	
Thymus Necrosis in Female Rats Exposed to 1,2-Dichloroethane Via Oral Gavage for	
13 Weeks	€€
Figure 2-114. Plot of Response by Concentration with Fitted Curve for the Selected Model	
(Multistage 1-Degree) for the Increased Incidence of Subcutaneous Fibromas in Male	
Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)) 4
Figure 2-115. Details Regarding the Selected Model (Multistage 1-Degree) for the Increased	
Incidence of Subcutaneous Fibromas in Male Rats Exposed to 1,2-Dichloroethane Via	
Inhalation (2-Year Study)) 5
Figure 2-116. Plot of Response by Concentration with Fitted Curve for the Selected Model	
(Multistage 1-Degree) for the Increased Incidence of Mammary Gland Fibroadenomas	
in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)	€
Figure 2-117. Details Regarding the Selected Model (Multistage 1-Degree) for the Increased	
Incidence of Mammary Gland Fibroadenomas in Male Rats Exposed to 1,2-	
Dichloroethane Via Inhalation (2-Year Study)	98
Figure 2-118. Plot of Response by Concentration with Fitted Curve for the Selected Model	0
(Multistage 3-Degree) for the Increased Incidence of Mammary Gland Adenomas and	
Fibroadenomas (Combined) in Male Rats Exposed to 1,2-Dichloroethane Via	
Inhalation (2-Year Study))()
Figure 2-119. Details Regarding the Selected Model (Multistage 3-Degree) for the Increased	0
Incidence of Mammary Gland Adenomas and Fibroadenomas (Combined) in Male	
Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study))1
Figure 2-120. Plot of Response by Concentration with Fitted Curve for the Selected Model	11
(Multistage 3-Degree) for the Increased Incidence of Peritoneal Mesothelioma in Male	
	12
Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)	JS .

Figure 2-121. De	tails Regarding the Selected Model (Multistage 3-Degree) for the Increased	
Ine	cidence of Peritoneal Mesothelioma in Male Rats Exposed to 1,2-Dichloroethane	
Vi	a Inhalation (2-Year Study)	04
Figure 2-122. Plo	ot of Response by Concentration with Fitted Curve for Selected Models used for the	
	ulti-Tumor (MS Combo) Model for Increased Incidence of Subcutaneous Fibromas,	
Μ	ammary Gland Adenomas and Fibroadenomas, and Peritoneal Mesothelioma	
	Combined) in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year	
	udy)2	05
	tails Regarding the Multi-Tumor (MS Combo) Model for the Increased Incidence of	
Su	bcutaneous Fibromas, Mammary Gland Adenomas and Fibroadenomas, and	
	ritoneal Mesothelioma (Combined) in Male Rats Exposed to 1,2-Dichloroethane	
	a Inhalation (2-Year Study)	06
	ot of Response by Concentration with Fitted Curve for the Selected Model	
-	Iultistage 1-Degree) for the Increased Incidence of Subcutaneous Fibromas in	
•	male Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)	07
	tails Regarding the Selected Model (Multistage 1-Degree) for the Increased	-
-	cidence of Subcutaneous Fibromas in Female Rats Exposed to 1,2-Dichloroethane	
	a Inhalation (2-Year Study)	08
	ot of Response by Concentration with Fitted Curve for the Selected Model	
0	Iultistage 1-Degree) for the Increased Incidence of Mammary Gland Adenomas in	
,	male Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)	10
	tails Regarding the Selected Model (Multistage 1-Degree) for the Increased	10
0	cidence of Mammary Gland Adenomas in Female Rats Exposed to 1,2-	
	ichloroethane Via Inhalation (2-Year Study)	11
	ot of Response by Concentration with Fitted Curve for the Selected Model	11
-	(ultistage 1-Degree) for the Increased Incidence of Mammary Gland Fibroadenomas	
•	Female Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)	13
	tails Regarding the Selected Model (Multistage 1-Degree) for the Increased	15
0	cidence of Mammary Gland Fibroadenomas in Female Rats Exposed to 1,2-	
	ichloroethane Via Inhalation (2-Year Study)	14
	ot of Response by Concentration with Fitted Curve for the Selected Model	1 7
0	Iultistage 1-Degree) for the Increased Incidence of Mammary Gland Adenomas and	
	broadenomas (Combined) in Female Rats Exposed to 1,2-Dichloroethane Via	
	halation (2-Year Study)	16
	tails Regarding the Selected Model (Multistage 1-Degree) for the Increased	10
	cidence of Mammary Gland Adenomas and Fibroadenomas (Combined) in Female	
	ats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)	17
	ot of Response by Concentration with Fitted Curve for the Selected Model	1/
U	(In the Selected Model Aultistage 3-Degree) for the Increased Incidence of Mammary Gland	
•	denocarcinomas in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-	
	ear Study)	10
	tails Regarding the Selected Model (Multistage 3-Degree) for the Increased	19
0		
	cidence of Mammary Gland Adenocarcinomas in Female Rats Exposed to 1,2-	20
	ichloroethane Via Inhalation (2-Year Study)	20
-	ot of Response by Concentration with Fitted Curve for the Selected Model	
	Aultistage 1-Degree) for the Increased Incidence of Mammary Gland Adenomas,	
	broadenomas, and Adenocarcinomas (Combined) in Female Rats Exposed to 1,2-	22
Di	chloroethane Via Inhalation (2-Year Study)	22

Figure 2-135.	Details Regarding the Selected Model (Multistage 1-Degree) for the Increased
	Incidence of Mammary Gland Adenomas, Fibroadenomas, and Adenocarcinomas
	(Combined) in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year
	Study)
Figure 2-136.	Plot of Response by Concentration with Fitted Curve for Selected Models Used for the
	Multi-Tumor (MS Combo) Model for Increased Incidence of Subcutaneous Fibromas
	and Mammary Gland Adenomas, Fibroadenomas, and Adenocarcinomas (Combined)
	in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)
Figure 2-137.	Details Regarding the Multi-Tumor (MS Combo) Model for the Increased Incidence of
C	Subcutaneous Fibromas and Mammary Gland Adenomas, Fibroadenomas, and
	Adenocarcinomas (Combined) in Female Rats Exposed to 1,2-Dichloroethane Via
	Inhalation (2-Year Study)
Figure 2-138.	Plot of Response by Concentration with Fitted Curve for the Selected Model
C	(Multistage 3-Degree) for the Increased Incidence of Bronchiolo-Alveolar Adenomas
	in Female Mice Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)
Figure 2-139.	Details Regarding the Selected Model (Multistage 3-Degree) for the Increased
C	Incidence of Bronchiolo-Alveolar Adenomas in Female Mice Exposed to 1,2-
	Dichloroethane Via Inhalation (2-Year Study)
Figure 2-140.	Plot of Response by Concentration with Fitted Curve for the Selected Model
C	(Multistage 2-Degree) for the Increased Incidence of Bronchiolo-Alveolar Carcinomas
	in Female Mice Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)
Figure 2-141.	Details Regarding the Selected Model (Multistage 2-Degree) for the Increased
C	Incidence of Bronchiolo-Alveolar Carcinomas in Female Mice Exposed to 1,2-
	Dichloroethane Via Inhalation (2-Year Study)
Figure 2-142.	Plot of Response by Concentration with Fitted Curve for the Selected Model
-	(Multistage 2-Degree) for the Increased Incidence of Bronchiolo-Alveolar Adenomas
	and Carcinomas (Combined) in Female Mice Exposed to 1,2-Dichloroethane Via
	Inhalation (2-Year Study)
Figure 2-143.	Details Regarding the Selected Model (Multistage 2-Degree) for the Increased
	Incidence of Bronchiolo-Alveolar Adenomas and Carcinomas (Combined) in Female
	Mice Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)
Figure 2-144.	Plot of Response by Concentration with Fitted Curve for the Selected Model
-	(Multistage 3-Degree) for the Increased Incidence of Endometrial Stromal Polyps in
	Female Mice Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study) 235
Figure 2-145.	Details Regarding the Selected Model (Multistage 3-Degree) for the Increased
-	Incidence of Endometrial Stromal Polyps in Female Mice Exposed to 1,2-
	Dichloroethane Via Inhalation (2-Year Study)
Figure 2-146.	Plot of Response by Concentration with Fitted Curve for the Selected Model
-	(Multistage 3-Degree) for the Increased Incidence of Mammary Gland
	Adenocarcinomas in Female Mice Exposed to 1,2-Dichloroethane Via Inhalation (2-
	Year Study)
Figure 2-147.	Details Regarding the Selected Model (Multistage 3-Degree) for the Increased
-	Incidence of Mammary Gland Adenocarcinomas in Female Mice Exposed to 1,2-
	Dichloroethane Via Inhalation (2-Year Study)
Figure 2-148.	Plot of Response by Concentration with Fitted Curve for the Selected Model
-	(Multistage 3-Degree) for the Increased Incidence of Hepatocellular Adenomas in
	Female Mice Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

Figure 2-149. Details Regarding the Selected Model (Multistage 3-Degree) for the Increased
Incidence of Hepatocellular Adenomas in Female Mice Exposed to 1,2-
Dichloroethane Via Inhalation (2-Year Study)
Figure 2-150. Plot of Response by Concentration with Fitted Curve for the Selected Model
(Multistage 2-Degree) for the Increased Incidence of Hepatocellular Adenomas and
Carcinomas (Combined) in Female Mice Exposed to 1,2-Dichloroethane Via
Inhalation (2-Year Study)
Figure 2-151. Details Regarding the Selected Model (Multistage 2-Degree) for the Increased
Incidence of Hepatocellular Adenomas and Carcinomas (Combined) in Female Mice
Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)
Figure 2-152. Plot of Response by Concentration with Fitted Curve for Selected Models used for the
Multi-Tumor (MS Combo) Model for Increased Incidence of Bronchiolo-alveolar
Adenomas and Carcinomas, Uterine Endometrial Stromal Polyps, Mammary Gland
Adenocarcinomas, and Hepatocellular Adenomas and Carcinomas (Combined) in
Female Mice Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study) 247
Figure 2-153. Details Regarding the Multi-Tumor (MS Combo) Model for the Increased Incidence of
Bronchiolo-alveolar Adenomas and Carcinomas, Uterine Endometrial Stromal Polyps,
Mammary Gland Adenocarcinomas, and Hepatocellular Adenomas and Carcinomas
(Combined) in Female Mice Exposed to 1,2-Dichloroethane Via Inhalation (2-Year
Study)
Figure 2-154. Plot of Response by Concentration with Fitted Curve for Selected Models Used for the
Multi-Tumor (MS Combo) Model for Increased Incidence of Bronchiolo-alveolar
Adenomas and Carcinomas, Mammary Gland Adenocarcinomas, and Hepatocellular
Adenomas and Carcinomas (Combined) in Female Mice Exposed to 1,2-
Dichloroethane Via Inhalation (2-Year Study)
Figure 2-155. Details Regarding the Multi-Tumor (MS Combo) Model for the Increased Incidence of
Bronchiolo-alveolar Adenomas and Carcinomas, Mammary Gland Adenocarcinomas,
and Hepatocellular Adenomas and Carcinomas (Combined) in Female Mice Exposed
to 1,2-Dichloroethane Via Inhalation (2-Year Study)

1 BENCHMARK DOSE MODELING RESULTS FOR 1,1-DICHLOROETHANE

EPA identified 16 studies and candidate points of departure (PODs) for 1,1-dichloroethane. All relevant studies were evaluated to determine whether they were suitable for POD use. Excluding studies that failed systematic review (SR), 9 studies remained. Each of these studies was considered further for potential use in POD identification for each exposure duration. Due to the small number of available studies, limited evaluations performed in many studies, and paucity of information available to identify target organs for 1,1-dichloroethane, overall no-observed-adverse-effect levels (NOAELs) and lowest-observed-adverse-effect levels (LOAELs) were identified for each study, rather than identifying NOAELs and LOAELs by organ/system. EPA performed benchmark dose (BMD) modeling using EPA's BMD modeling software (<u>BMDS</u> Version 3.3) for each of the NOAELs and LOAELs that were identified during hazard identification for both non-cancer and cancer endpoints, and that received a weight-of-the-scientific-evidence judgment of at least suggestive during evidence integration. EPA conducted BMD modeling in a manner consistent with EPA's *Benchmark Dose (BMD) Technical Guidance* (U.S. EPA, 2012).

EPA used dichotomous models to fit quantal data (*e.g.*, incidences of tumors) and continuous models to fit continuous data (*e.g.*, body and organ weights), as recommended by EPA's *BMD Technical Guidance* (U.S. EPA, 2012). The BMDs/BMDLs (benchmark doses lower 95 percent confidence limit) are provided based on a daily exposure (*i.e.*, 7 days per week) for easier comparison across all hazard endpoints and thus, doses were adjusted as needed before BMD modeling. EPA modeled endpoints that had statistically significant pairwise comparisons between individual doses and controls or significant dose-response trends. EPA also considered potential biologically significant changes from controls where possible and/or that appeared to exhibit a dose-response relationship upon visual inspection. Multiple health endpoints may have been modeled from each study, depending on the relevance of the data to adverse health outcomes and to identify sensitive health endpoints for each domain.

Although some of the data sets could be fit using models after dropping doses (either one, two, or three of the highest doses), EPA preferred to consider only modeling results from full data sets. When none of the models in the BMD suite provided an adequate fit to the full data sets, EPA did not present modeling results. Several additional endpoints evaluated in various 1,1-dichloroethane toxicity studies were not considered for BMD modeling because 1,1-dichloroethane was not associated with any effects or the changes were observed only at the highest dose. Studies were also not considered for BMD modeling if the LOAELs were more than 10 times greater than the most sensitive LOAEL for the health domain. For non-cancer endpoints, if BMD modeling was not possible or when data did not fit the available models, EPA used NOAELs and LOAELs during POD selection for the risk evaluation.

EPA relied on the BMD guidance and other information to choose benchmark responses (BMRs) appropriate for each endpoint. Although the *BMD Technical Guidance* doesn't recommend default BMRs, it describes how various BMD modeling results compare with NOAEL values, and the guidance does recommend calculating 10 percent extra risk (ER) for quantal data and one standard deviation (SD) for continuous data to compare modeling results across endpoints. EPA also modeled percent relative deviations (RD) for certain continuous endpoints. EPA's choice of BMRs for the 1,1-dichloroethane health endpoints are described in more detail in the following sections that present BMD modeling results for each health domain.

When modeling dose-response relationships, the data can be modeled as either extra risk or additional risk. EPA modeled the data as extra risk. EPA's *BMD Technical Guidance* defines extra risk as "a

measure of the proportional increase in risk of an adverse effect adjusted for the background incidence of the same effect." Mathematically, extra risk is equal to [P(d) - P(0)]/[1 - P(0)]. P(d) is the probability of the effect at dose d, and P(0) is the probability of risk with no exposure to a hazard (U.S. EPA, 2012).¹

1.1 Non-cancer Endpoints – 1,1-Dichloroethane

All non-cancer endpoints selected for modeling were based on continuous measurement data. The BMD modeling of continuous data was conducted with the EPA's BMD software (BMDS 3.3). For these data, the Exponential, Hill, Linear, Polynomial, and Power continuous models available within the software were fit employing a BMR of one SD and 10 percent RD. For inhalation data, administered concentrations were modeled in units of ppm. An adequate fit was judged based on the chi-square goodness-of-fit p-value (p > 0.1), magnitude of the scaled residuals in the vicinity of the BMR, and visual inspection of the model fit. In addition to these three criteria for judging adequacy of model fit, a determination was made as to whether the variance across dose groups was constant. If a constant variance model was deemed appropriate based on the statistical test provided in BMDS (i.e., test 2; p-value > 0.05 [note: this is a change from previous versions of BMDS, which required variance p-value > 0.10 for adequate fit]), the final BMD results were estimated from a constant variance model. If the test for homogeneity of variance was rejected (p-value < 0.05), the model was run again while modeling the variance as a power function of the mean to account for this nonconstant variance. If this nonconstant variance model did not adequately fit the data (*i.e.*, test 3; p-value < 0.05), the data set was considered unsuitable for BMD modeling. Among all models providing adequate fit, the lowest BMDL was selected if the BMDLs estimated from different models varied > 3-fold; otherwise, the BMDL from the model with the lowest Akaike's Information Criterion (AIC) was selected.

1.1.1 Inhalation Data

1.1.1.1 Maternal Body Weight in Pregnant Female Rats

Maternal body weights were significantly decreased in pregnant female rats exposed to 1,1dichloroethane by inhalation for 10 days on gestation days (GD) 6 to 15 (<u>Schwetz et al., 1974</u>). First, the exposure concentrations were duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day rather than seven hours per day. Then, continuous models were fit to the dose-response data.

A BMR of one SD was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). A BMR of 10 percent RD was also selected because EPA considers a 10 percent change in body weight to be biologically significant. The concentrations and response data used for the modeling are presented in Table 1-1.

¹ EPA's *BMD Technical Guidance* also uses the terms, excess incidence and excess risk, which are defined more generally as increased risk or incidence above control or background responses. These terms can refer to either additional or extra risk (U.S. EPA, 2012).

Table 1-1. Decreased Maternal Body Weight in Pregnant Female Rats and AssociatedConcentrations Selected for Dose-Response Modeling for 1,1-Dichloroethane from a GestationalInhalation Exposure Study (GD 6 to 15)

Adjusted Concentration (ppm)	Number of Animals	Mean (g)	SD (g)	
0	43	317	18	
1108	16	289	24	
1639	19	281	24	

The BMD modeling results for decreased maternal body weight in pregnant rats are summarized in Table 1-2. The constant variance model provided adequate fit to the variance data. With the constant variance model applied, all the models except for the Exponential 5 and Hill models provided adequate fit to the means (test 4 p-value > 0.1). The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC (Exponential 3) was selected. Figure 1-1 and Figure 1-2 show the Exponential 3 model for BMRs of one SD and 10 percent RD, respectively, while Figure 1-3 shows additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood.

Table 1-2. Summary of BMD Modeling Results for Decreased Maternal Body Weight in Pregnant Female Rats Following Inhalation Exposure During Gestation (GD 6 to 15) to 1,1-Dichloroethane (Constant Variance Model)^{*a*}

Madal	Goodness of Fit (Means)		BMD	BMDL	BMD	BMDL	
Model	Test 4 p-value	AIC	1SD (ppm)	1SD (ppm)	10%RD (ppm)	10%RD (ppm)	Basis for Model Selection
Exponential 3	0.6035	698.42	881	684	1388	1118	Several models provided
Exponential 5	NA	700.15	728	12	1332	18	adequate fit to the means (test 4 p-values > 0.1). The BMDLs for the fit models were sufficiently close (differed by < 3- fold); therefore, EPA chose the Exponential 3 model, which had the lowest AIC.
Hill	NA	702.15	720	0	1335	963	
Polynomial Degree 2	0.5477	698.51	904	712	1397	1141	
Power	0.5476	698.51	905	712	1397	1141	
Linear	0.5477	698.51	904	712	1397	1141	
^a Selected model in	n bold.						

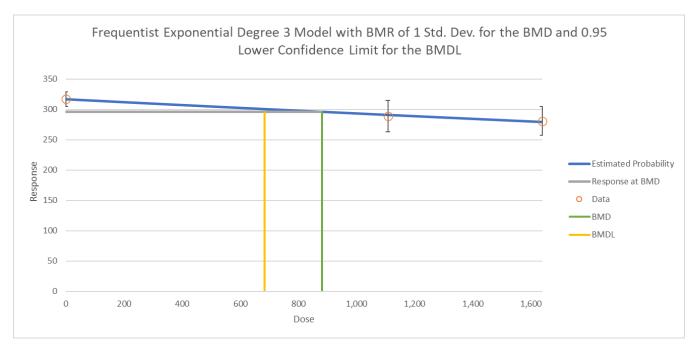


Figure 1-1. Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 3) for Decreased Maternal Body Weight in Female Rats Exposed to 1,1-Dichloroethane Via Inhalation During Gestation (GD 6 to 15) and BMR of 1SD (Constant Variance Model)

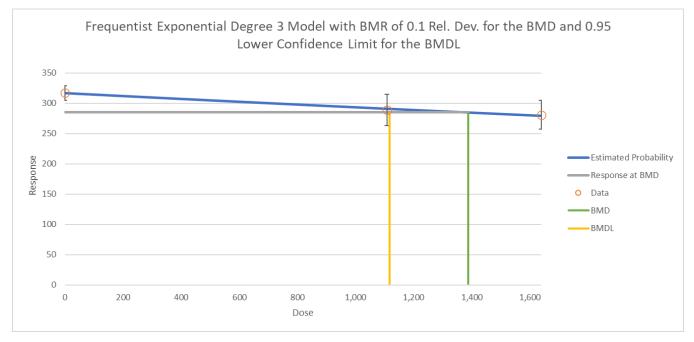


Figure 1-2. Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 3) for Decreased Maternal Body Weight in Female Rats Exposed to 1,1-Dichloroethane Via Inhalation During Gestation (GD 6 to 15) and BMR of 10%RD (Constant Variance Model)

Model Pa	rameters							
# of								
Parameters	4							
Variable	Estimate	Std Error	Lower Conf	Upper Conf				
а	316.7552625	3.088957687	310.7010167	322.8095084				
b	7.59159E-05	1.10E-05	5.44088E-05	9.7423E-05				
d	Bounded	NA	NA	NA				
log-alpha	6.03930729	1.60E-01	5.725462731	6.35315185				
Goodne	ss of Fit							
Dose	Size	Estimated	Calc'd	Observed	Estimated	Calc'd SD	Observe	Scaled
0030	5120	Median	Median	Mean	SD	care a 5D	d SD	Residual
0	43	316.7552625	317	317	20.48419566	18	18	0.078345808
1107.75	16	291.2067686	289	289	20.48419566	24	24	-0.430921208
1639.166667	19	279.6924393	281	281	20.48419566	24	24	0.278240112
Likelihoods	of Interest							
	Log	# of						
Model	Likelihood*	Parameters	AIC					
A1	-346.0753329	4	700.1506658					
A2	-344.6592228	6	701.3184456					
A3	-346.0753329	4	700.1506658					
fitted	-346.2101901	3	698.4203803					
R	-365.2701134	2	734.5402268					
* Includes add	itive constant c	of -71.67721. T	his constant w	vas not include	ed in the LL de	rivation p	rior to BM	DS 3.0.
Tests of	Interest			1				
	-							
	2*Log(Likelih							
Test	ood Ratio)	Test df	p-value					
1	41.22178125	4	<0.0001					
2	2.832220217	2	0.242656089					
3	2.832220217	2	0.242656089					
· · · · · · · · · · · · · · · · · · ·			0.603523356					

Figure 1-3. Details Regarding the Selected Model (Exponential 3) for Decreased Maternal Body Weight in Pregnant Female Rats Following Inhalation Exposure to 1,1-Dichloroethane in a Gestational Exposure (GD 6 to 15) Toxicity Study (Constant Variance Model)

1.1.2 Oral Data

1.1.2.1 Mortality Effects

1.1.2.1.1 Mortality in Male Rats – 13 Weeks

Mortality was observed in male rats exposed by oral gavage to 1,1-dichloroethane for 13 weeks, including a significant increase at the high dose (<u>Muralidhara et al., 2001</u>). The incidences of mortality were 0/15, 0/15, 0/15, 1/15, and 15/15 (including animals sacrificed in extremis) at adjusted daily doses of 0, 357, 714, 1429, and 2857 mg/kg-day, respectively. The data set is problematic for BMD modeling because only one of the five data points is between 0 and 100 percent incidence. The models can easily fit this one data point; in fact, all the models with sufficient flexibility (*i.e.*, all except multistage) provide a near-perfect fit to the data set. There is insufficient information in the data set to discriminate

reliably among the fits of these models. For this reason, the NOAEL/LOAEL approach is used instead for this endpoint.

1.1.2.2 Body Weight Effects

1.1.2.2.1 Body Weight in Male Rats – 10 Days

Body weights were significantly decreased in male rats exposed by oral gavage to 1,1-dichloroethane once a day for 10 consecutive days (<u>Muralidhara et al., 2001</u>). Continuous models were fit to the dose-response data.

A BMR of one SD was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). A BMR of 10 percent RD was also selected because EPA considers a 10 percent change in body weight to be biologically significant. The doses and response data used for the modeling are presented in Table 1-3.

Table 1-3. Decreased Body Weight in Male Rats and Associated Doses Selected for Dose-Response Modeling for 1,1-Dichloroethane from a 10-Day Study

Dose (mg/kg-day)	Number of Animals	Mean (g)	SD (g)
0	8	341.7	5.3
1000	8	313.7	4.4
2000	8	295.0	4.4
4000	8	270.5	8.5

The BMD modeling results for decreased body weight in male rats are summarized in Table 1-4. The constant variance model provided adequate fit to the variance data. With the constant variance model applied, the Exponential 5 and Hill models provided adequate fit to the means (test 4 p-value > 0.1). The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC (Hill) was selected. Figure 1-4 and Figure 1-5 show the Hill model for BMRs of one SD and 10 percent RD, respectively, while Figure 1-6 shows additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood.

	Goodnes (Mea		BMD 1SD	BMDL 1SD	BMD 10%RD	BMDL 10%RD		
Model	Test 4 p- value	AIC	(mg/kg- day)	(mg/kg- day)	(mg/kg- day)	(mg/kg- day)	Basis for Model Selection	
Exponential 3	0.0004	221.78	363	294	1806	1665		
Exponential 5	0.7432	208.20	176	138	1308	1138	The Exponential 5 and Hill models provided	
Hill	0.9110	208.11	167	128	1297	1167	adequate fit to the means	
Polynomial Degree 3	< 0.0001	227.02	454	359	1981	1795	(test 4 p-values > 0.1). The BMDLs for the fit models were sufficiently close	
Polynomial Degree 2	< 0.0001	226.89	445	360	1953	1798	(differed by < 3-fold); therefore, EPA chose the	
Power	< 0.0001	226.89	443	360	1946	1800	Hill model, which had the lowest AIC.	
Linear	< 0.0001	226.89	443	360	1946	1800		
^{<i>a</i>} Selected model	in bold.						•	

Table 1-4. Summary of BMD Modeling Results for Decreased Body Weight in Male Rats Following Oral Exposure to 1,1-Dichloroethane in a 10-Day Study (Constant Variance Model)^{*a*}

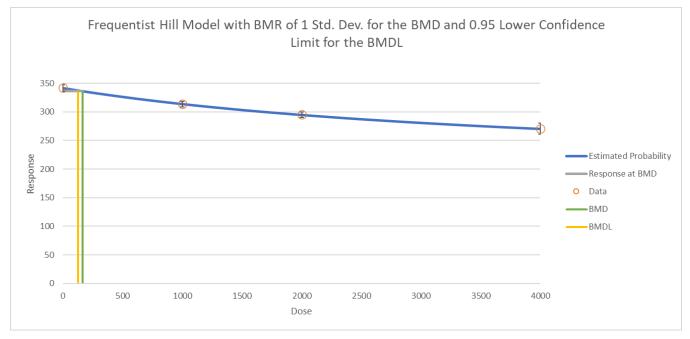


Figure 1-4. Plot of Response by Dose with Fitted Curve for the Selected Model (Hill) for Decreased Body Weight in Male Rats Exposed to 1,1-Dichloroethane Via Oral Gavage (10-Day Study) and BMR of 1SD (Constant Variance Model)

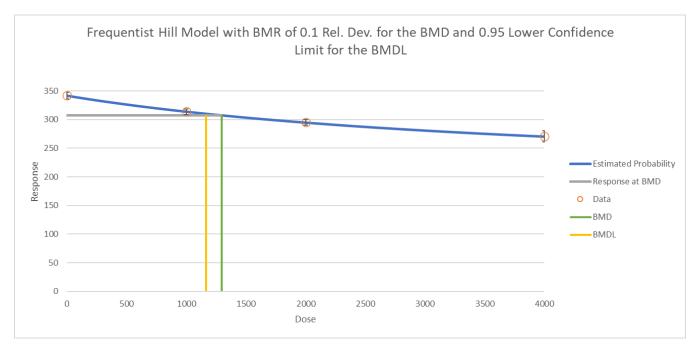


Figure 1-5. Plot of Response by Dose with Fitted Curve for the Selected Model (Hill) for Decreased Body Weight in Male Rats Exposed to 1,1-Dichloroethane Via Oral Gavage (10-Day Study) and BMR of 10%RD (Constant Variance Model)

Model P	arameters							
# of								
Parameters	5							
Variable	Estimate	Std Error	Lower Conf	Upper Conf				
g	341.6643268	1.925158804	337.8910849	345.4375688				
v	-147.629602	19.78805227	-186.413472	-108.8457319				
k	4306.621234	1061.695823	2225.735642	6387.506827				
n	Bounded	NA	NA	NA				
alpha	30.43125264	231.5152221	-423.3302482	484.1927534				
Goodn	ess of Fit							
Dose	Size	Estimated	Calc'd	Observed	Estimated	Calc'd SD	Observed	
DOSC	5120	Median	Median	Mean	SD	care a sp	SD	Residual
0	8	341.6643268	341.7	341.7	5.516452904	5.3	5.3	0.018290542
1000	8	313.8444401	313.7	313.7	5.516452904	4.4	4.4	-0.07405813
2000	8	294.8469911	295	295	5.516452904	4.4	4.4	0.078451607
4000	8	270.5742421	270.53	270.53	5.516452904	8.5	8.5	-0.022684041
		I						
Likelihood	ls of Interest			1				
	Log	# of						
Model	Likelihood*	Parameters	AIC					
A1	-100.0473089	5	210.0946178					
A2	-97.43738731	8	210.8747746					
A3	-100.0473089	5	210.0946178					
fitted	-100.0535543	4	208.1071086					
R *	-150.4063937	2	304.8127875		la dita dia 11 di			
* includes ad	dditive constar	it of -29.40603	. This constant	was not includ	led in the LL de	erivation p	orior to Bivil	JS 3.0.
Tosts o	f Interest							
12515 0	i interest			I				
	- 2*Log(Likelih							
Test	ood Ratio)	Test df	p-value					
1	105.9380129	6	<0.0001	ł				
2	5.219843219	3	0.156389028	ł				
	5.219045219		0.130303028	ł				
3	5.219843219	3	0.156389028					

Figure 1-6. Details Regarding the Selected Model (Hill) for Decreased Body Weight in Male Rats Following Oral Exposure to 1,1-Dichloroethane in a 10-Day Toxicity Study

1.1.2.2.2 Body Weight in Male Rats – 13 Weeks

Body weights were significantly decreased in male rats exposed by oral gavage to 1,1-dichloroethane for 13 weeks (<u>Muralidhara et al., 2001</u>). First, the administered doses were duration adjusted to estimate an equivalent oral dose for animals exposed for 7 days per week rather than 5 days per week. Then, continuous models were fit to the dose-response data.

A BMR of one SD was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). A BMR of 10 percent RD was also selected because EPA considers a 10 percent change in body weight to be biologically significant. The doses and response data used for the modeling are presented in Table 1-5.

Adjusted Dose (mg/kg-day)	Number of Animals	Mean (g)	SD (g)
0	15	431.9	18.1
357	15	424.4	19.2
714	15	428.6	14.9
1429	14	376.3	26.7

 Table 1-5. Decreased Body Weight in Male Rats and Associated Doses Selected for Dose-Response

 Modeling for 1,1-Dichloroethane from a 13-Week Study

The BMD modeling results for decreased body weight in male rats are summarized in Table 1-6. The constant variance model provided adequate fit to the variance data. With the constant variance model applied, all models except for the 2-degree Polynomial and Linear models provided adequate fit to the means (test 4 p-value > 0.1). The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC was selected (Power). Figure 1-7 and Figure 1-8 show the Power model for BMRs of one SD and 10 percent RD, respectively, while Figure 1-9 shows additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood.

 Table 1-6. Summary of BMD Modeling Results for Decreased Body Weight in Male Rats

 Following Oral Exposure to 1,1-Dichloroethane in a 13-Week Study (Constant Variance Model)^a

M- J-1	Goodness of Fit (Means)		BMD 1SD	BMDL 1SD	BMD 10%RD	BMDL 10%RD	Basis for Model
Model	Test 4 p-value	AIC	(mg/kg- day)	(mg/kg- day)	(mg/kg- day)	(mg/kg- day)	Selection
Exponential 3	0.5713	524.24	1350	884	1412	1246	Several models
Exponential 5	0.29	526.24	1350	884	1412	1246	provided adequate fit to the means (test
Hill	0.29	526.24	1254	769	1367	1197	4 p-values > 0.1).
Polynomial Degree 3	0.3144	525.43	997	789	1322	1209	The BMDLs for the fit models were sufficiently close
Polynomial Degree 2	0.0331	529.66	870	708	1277	1150	(differed by < 3-fold); therefore,
Power	0.5713	524.24	1353	884	1413	1248	EPA chose the Power model, which
Linear	0.0009	537.20	573	447	1153	943	had the lowest AIC.
^a Selected model	in bold.		•	•	•	•	

Figure 1-7. Plot of Response by Dose with Fitted Curve for the Selected Model (Power) for Decreased Body Weight in Male Rats Exposed to 1,1-Dichloroethane Via Oral Gavage (13-Week Study) and BMR of 1SD (Constant Variance Model)

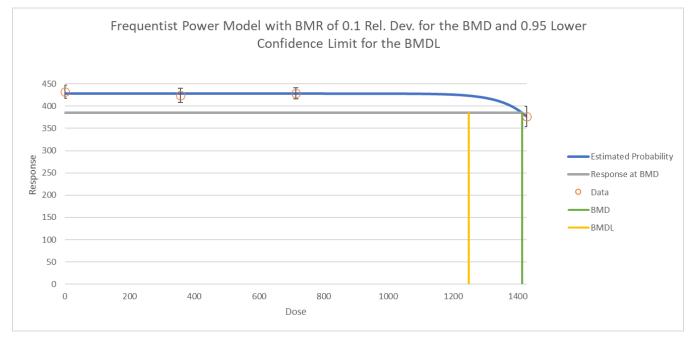


Figure 1-8. Plot of Response by Dose with Fitted Curve for the Selected Model (Power) for Decreased Body Weight in Male Rats Exposed to 1,1-Dichloroethane Via Oral Gavage (13-Week Study) and BMR of 10%RD (Constant Variance Model)

Model P	arameters							
# of								
Parameters	4							
Variable	Estimate	Std Error	Lower Conf	Upper Conf				
g	428.3000658	2.914141494	422.5884533	434.0116782				
v	-8.46776E-56	9.74E-57	-1.03771E-55	-6.55845E-56				
n	Bounded	NA	NA	NA				
alpha	382.154439	2.69E+04	-52318.23724	53082.54612				
		1						
Goodn	ess of Fit							
Dose	Size	Estimated	Calc'd	Observed	Estimated	Calc'd SD	Observed	Scaled
		Median	Median	Mean	SD		SD	Residual
0	15	428.3000658	431.9	431.9	19.54877078	18.1	18.1	0.713215452
357.142857	15	428.3000658	424.4	424.4	19.54877078	19.2	19.2	-0.772677212
714.285714	15	428.2998674	428.6	428.6	19.54877078	14.9	14.9	0.059461979
1428.57143	14	376.300001	376.3	376.3	19.54877078	26.7	26.7	-1.9727E-07
	ls of Interest	1						
Likeimood		# of		1				
Model	Log Likelihood*	# OI Parameters	AIC					
A1	-258.5593045	5	527.1186089	1				
۸2	255 01/210/	0	577 0206200					
A2	-255.9143194	8	527.8286388					
A3	-258.5593045	5	527.1186089					
A3 fitted	-258.5593045 -259.1192054	5 3	527.1186089 524.2384108					
A3 fitted R	-258.5593045 -259.1192054 -283.4397916	5 3 2	527.1186089 524.2384108 570.8795831	was not include	od in the 11 d	orivotion -		DC 2 0
A3 fitted R	-258.5593045 -259.1192054 -283.4397916	5 3 2	527.1186089 524.2384108 570.8795831	was not includ	ed in the LL d	erivation	prior to BMI	DS 3.0.
A3 fitted R * Includes ad	-258.5593045 -259.1192054 -283.4397916	5 3 2	527.1186089 524.2384108 570.8795831	was not includ	ed in the LL d	erivation p	prior to BMI	DS 3.0.
A3 fitted R * Includes ad	-258.5593045 -259.1192054 -283.4397916 dditive constan	5 3 2	527.1186089 524.2384108 570.8795831	was not includ	ed in the LL d	erivation p	prior to BMI	DS 3.0.
A3 fitted R * Includes ad	-258.5593045 -259.1192054 -283.4397916 dditive constan	5 3 2	527.1186089 524.2384108 570.8795831	was not includ	ed in the LL d	erivation p	prior to BMI	DS 3.0.
A3 fitted R * Includes ad	-258.5593045 -259.1192054 -283.4397916 dditive constan f Interest - 2*Log(Likelih	5 3 2	527.1186089 524.2384108 570.8795831	was not includ	ed in the LL d	erivation p	prior to BMI	DS 3.0.
A3 fitted R * Includes ad Tests o	-258.5593045 -259.1192054 -283.4397916 dditive constan f Interest 2*Log(Likelih ood Ratio)	5 3 2 nt of -54.21737	527.1186089 524.2384108 570.8795831 . This constant	was not includ	ed in the LL d	erivation p	orior to BM[DS 3.0.
A3 fitted R * Includes ad Tests o Test	-258.5593045 -259.1192054 -283.4397916 dditive constan f Interest 2*Log(Likelih ood Ratio) 55.0509443	5 3 2 ht of -54.21737 Test df 6	527.1186089 524.2384108 570.8795831 . This constant p-value <0.0001	was not includ	ed in the LL d	erivation p	orior to BMI	DS 3.0.
A3 fitted R * Includes ad Tests o Test 1	-258.5593045 -259.1192054 -283.4397916 dditive constan f Interest 2*Log(Likelih ood Ratio)	5 3 2 ht of -54.21737 Test df	527.1186089 524.2384108 570.8795831 . This constant	was not includ	ed in the LL d	erivation p	prior to BMI	DS 3.0.

Figure 1-9. Details Regarding the Selected Model (Power) for Decreased Body Weight in Male Rats Following Oral Exposure to 1,1-Dichloroethane in a 13-Week Toxicity Study

1.1.2.3 Hepatic Effects

1.1.2.3.1 Relative Liver Weight in Male Rats

Relative liver weights were significantly decreased in male rats exposed by oral gavage to 1,1dichloroethane once a day for 10 consecutive days (<u>Muralidhara et al., 2001</u>). Continuous models were fit to the dose-response data. Additionally, changes in absolute liver weight (increased in female rats exposed via inhalation and decreased in male rats treated by gavage) were observed in 10-day toxicity studies; however, these changes were not consistently observed in longer-duration studies in rats, guinea pigs, rabbits, or cats, and were therefore not modeled.

A BMR of one SD was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). A BMR of 10 percent RD was also selected because EPA considers a 10 percent change in relative liver weight to be biologically significant. The doses and response data used for the modeling are presented in Table 1-7.

Dose (mg/kg-day)	Number of Animals	Mean (g/100 g body weight)	SD (g/100 g body weight)
0	8	3.8	0.2
1000	8	3.6	0.2
2000	8	3.3	0.3
4000	8	3.4	0.3

 Table 1-7. Decreased Relative Liver Weight in Male Rats and Associated Doses Selected for Dose-Response Modeling for 1,1-Dichloroethane From a 10-Day Study

The BMD modeling results for decreased relative liver weight are summarized in Table 1-8. The constant variance model provided adequate fit to the variance data. With the constant variance model applied, only the Hill model provided adequate fit to the means (test 4 p-value > 0.1); therefore, this model was selected. When applying the BMR of 10 percent RD, the BMD and BMDL calculation failed; therefore, this model could not be used to estimate a BMD or BMDL for this BMR. Figure 1-10 shows the Hill model for BMR of one SD while Figure 1-11 shows additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood.

Table 1-8. Summary of BMD Modeling Results for Decreased Relative Liver Weight in Male RatsFollowing Oral Exposure to 1,1-Dichloroethane in a 10-Day Study (Constant Variance Model)^a

Madal	Goodness of Fit (Means)		BMD 1SD	BMDL 1SD	BMD 10%RD	BMDL 10%RD	Basis for Model	
Model	Test 4 p-value	AIC	(mg/kg- day)	(mg/kg- day)	(mg/kg- day)	(mg/kg- day)	Selection	
Exponential 3	0.0269	12.30	2542	1582	ND	ND	Out of the	
Exponential 5	NA	9.77	1053	516	ND	ND	available models, only the Hill model	
Hill	0.4042	7.77	1021	574	ND	ND		
Polynomial Degree 3	0.0236	12.56	2695	1711	ND	ND	provided adequate fit to the means	
Polynomial Degree 2	0.0236	12.56	2670	1711	ND	ND	(test 4 p-values	
Power	0.0236	12.56	2681	1711	ND	ND	> 0.1); therefore, this model was selected.	
Linear	0.0236	12.56	2681	1711	ND	ND		
^{<i>a</i>} Selected model	in bold.						•	

Figure 1-10. Plot of Response by Dose with Fitted Curve for the Selected Model (Hill) for Decreased Relative Liver Weight in Male Rats Exposed to 1,1-Dichloroethane Via Oral Gavage (10-Day Study) and BMR of 1SD (Constant Variance Model)

Model P	arameters							
# of								
Parameters	5							
Variable	Estimate	Std Error	Lower Conf	Upper Conf				
g	3.800000406	8.52E-02	3.632935768	3.967065044				
v	-0.450001072	1.04E-01	-0.654613058	-0.245389086				
k	1012.473446	5.12E+01	912.1401025	1112.80679				
n	Bounded	NA	NA	NA				
alpha	0.058125044	8.45E-04	0.056469598	0.05978049				
		I						
Goodn	ess of Fit							
Dose	Size	Estimated	Calc'd	Observed	Estimated	Calc'd SD	Observed	Scaled
0	0	Median	Median	Mean	SD	0.2	SD	Residual
0	8	3.800000406	3.8	3.8	0.241091359	0.2	0.2	-4.76E-06
1000	8	3.599998789	3.6	3.6	0.241091359	0.2	0.2	1.42088E-05
2000	8	3.35000148	3.3	3.3	0.241091359	0.3	0.3	-0.586605602
4000	8	3.349999334	3.4	3.4	0.241091359	0.3	0.3	0.586596052
Likelihood	s of Interest							
LIKCIIIIOOU	Log	# of]				
Model	Likelihood*	Parameters	AIC					
A1	0.464357365	5	9.07128527					
A2	1.745040688	8	12.50991862					
A3	0.464357365	5	9.07128527					
fitted	0.116502812	4	7.766994376					
R	-7.532055236	2	19.06411047					
				ı was not includ	ed in the LL d	erivation r	prior to BMI	05.3.0.
Tests of	f Interest							
	-							
	2*Log(Likelih							
Test	ood Ratio)	Test df	p-value					
1	18.55419185	6	0.004986684	1				
2	2.561366646	3	0.464302762	1				
2	2.561366646	3	0.464302762	1				
3	2.301300040	5	0.404302702					

Figure 1-11. Details Regarding the Selected Model (Hill) for Decreased Relative Liver Weight in Male Rats Following Oral Exposure to 1,1-Dichloroethane in a 10-Day Toxicity Study

1.1.2.4 Renal Effects

1.1.2.4.1 Absolute Kidney Weight in Male Rats

Absolute kidney weights were significantly decreased in male rats exposed by oral gavage to 1,1dichloroethane once a day for 10 consecutive days (<u>Muralidhara et al., 2001</u>). Continuous models were fit to the dose-response data.

A BMR of one SD was chosen according to EPA *BMD Technical Guidance* (U.S. EPA, 2012). A BMR of 10 percent RD was also selected because EPA considers a 10 percent change in kidney weight to be biologically significant. The doses and response data used for the modeling are presented in Table 1-9.

Dose (mg/kg-day)	Number of Animals	Mean (g)	SD (g)
0	8	2.4	0.1
1000	8	2.3	0.1
2000	8	2.0	0.2
4000	8	1.9	0.1

Table 1-9. Decreased Absolute Kidney Weight in Male Rats and Associated Doses Selected for Dose-Response Modeling for 1,1-Dichloroethane from a 10-Day Study

The BMD modeling results for decreased absolute kidney weight are summarized in Table 1-10. The constant variance model provided adequate fit to the variance data; however, with that model applied, none of the available models provided adequate fit to the means (test 4 p-value < 0.1). The nonconstant variance model also provided an adequate fit to the variance data. With the nonconstant variance model applied, only the Exponential 5 model provided adequate fit to the means (test 4 p-value > 0.1); therefore, this model was selected. Figure 1-12 and Figure 1-13 show the Exponential 5 model for BMRs of one SD and 10 percent RD, respectively, while Figure 1-14 shows additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood.

Table 1-10. Sun	nmary of BMD Mode	eling Result	s for Decrea	ased Absolu	te Kidney V	Veight in Male
Rats Following	Oral Exposure to 1,1	l-Dichloroet	thane in a 1	0-Day Study	y (Nonconst	ant Variance
Model) ^a						

Madal	Goodness of Fit (Means)		BMD 1SD	BMDL 1SD	BMD 10%RD	BMDL 10%RD	Basis for Model	
Model	Test 4 p-value	AIC	(mg/kg- day)	(mg/kg- day)	(mg/kg- day)	(mg/kg- day)	Selection	
Exponential 3	0.0206	-29.29	947	716	1662	1363	Out of the	
Exponential 5	0.143	-32.92	1089	724	1458	1133	available models, only the	
Hill	NA	-33.06	985	739	1344	1129	Exponential 5	
Polynomial Degree 3	0.0045	-26.25	1100	826	1815	1515	model provided adequate fit to the means (test	
Polynomial Degree 2	0.0047	-26.33	1078	829	1811	1518	4 p-values > 0.1); therefore, this model was	
Power	0.0046	-26.32	1090	829	1811	1518		
Linear	0.0133	-28.33	1077	829	1811	1519	selected.	
^a Selected model in	n bold.			1	•	•	•	

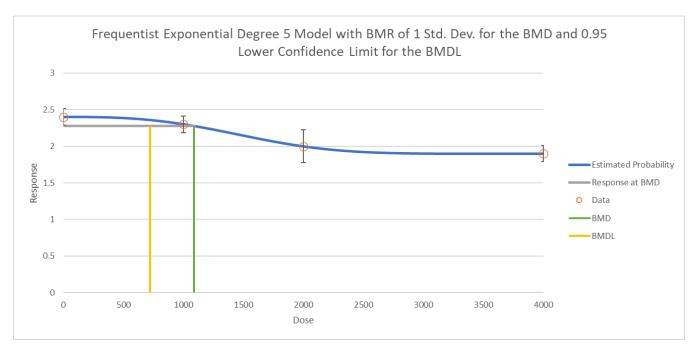


Figure 1-12. Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 5) for Absolute Kidney Weight Decreases in Male Rats Exposed to 1,1-Dichloroethane Via Oral Gavage (10-Day Study) and BMR of 1SD (Nonconstant Variance Model)

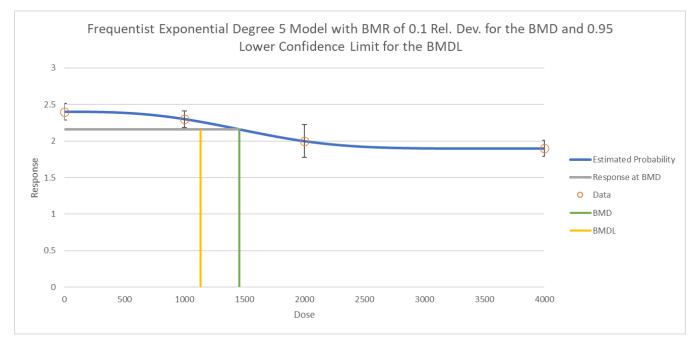


Figure 1-13. Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 5) for Absolute Kidney Weight Decreases in Male Rats Exposed to 1,1-Dichloroethane Via Oral Gavage (10-Day Study) and BMR of 10%RD (Nonconstant Variance Model)

Model P	arameters							
# of								
Parameters	6							
Variable	Estimate	Std Error	Lower Conf	Upper Conf				
а	2.4	4.37E-02	2.314251719	2.485748282				
b	0.000590842	6.89E-05	0.000455747	0.000725937				
С	0.791664772	2.94E-02	0.734078987	0.849250557				
d	2.850495003	9.60E-01	0.969247537	4.731742469				
rho	Bounded	NA	NA	NA				
log-alpha	-4.179085795	2.50E-01	-4.669076531	-3.68909506				
	•	•						
Goodn	ess of Fit							
Daaa	Cine	Estimated	Calc'd	Observed	Estimated		Observed	Scaled
Dose	Size	Median	Median	Mean	SD	Calc'd SD	SD	Residual
0	8	2.4	2.4	2.4	0.123743686	0.1	0.1	-1.35398E-09
1000	8	2.30000001	2.3	2.3	0.123743686	0.1	0.1	-1.67941E-08
2000	8	2.00000001	2	2	0.123743686	0.2	0.2	-1.33297E-08
4000	8	1.90000001	1.9	1.9	0.123743686	0.1	0.1	-2.36304E-08
Likelihood	ls of Interest Log	# of]				
Model	Likelihood*	Parameters	AIC					
A1	21.45933959	5	-32.91867918					
A2	24.86801475	8	-33.7360295					
A3	22.53203157	6	-33.06406313					
fitted	21.45933959	5	-32.91867918	1				
R	0.202771157	2	3.594457686	1				
* Includes ad	dditive constar	nt of -29.40603		was not includ	led in the LL d	erivation r	orior to BMI	DS 3.0.
Tests o	f Interest							
Tests o	f Interest -]				
Tests o	f Interest - 2*Log(Likelih							
Tests o	-	Test df	p-value					
	- 2*Log(Likelih	Test df 6	p-value <0.0001					
Test	- 2*Log(Likelih ood Ratio)		•					
Test 1	- 2*Log(Likelih ood Ratio) 49.33048719	6	<0.0001					

Figure 1-14. Details Regarding the Selected Model (Exponential 5) for Absolute Kidney Weight Decreases in Male Rats Following Oral Exposure to 1,1-Dichloroethane in a 10-Day Toxicity Study

2 BENCHMARK DOSE MODELING RESULTS FOR 1,2-DICHLOROETHANE

The available non-cancer and cancer data for 1,1-dichloroethane were insufficient for development of PODs (see Section 5.2.1.2 in the Risk Evaluation for 1,1-Dichloroethane (U.S. EPA, 2025). Therefore, an analysis of other chlorinated solvents was conducted to identify potential analogs for read across data (see Section 5.2.1.3 and Appendix J.2 in the Risk Evaluation for 1,1-Dichloroethane (U.S. EPA, 2025). This analysis considered structural similarities, physical and chemical properties, and toxicological similarities. Based on these various parameters, 1,2-dichloroethane was selected as a close structural analog to 1,1-dichloroethane and was used as read-across for non-cancer and cancer endpoints. EPA conducted BMD modeling on these data as described below.

EPA performed BMD modeling using EPA's BMD modeling software (BMDS Version 3.3 for continuous and cancer data and Version 3.3.2 for dichotomous non-cancer data) for the health domains that were identified during hazard identification and that received a judgment of "likely" ("evidence indicates that 1,2-dichloroethane exposure likely causes [health effect]") or "suggestive" ("evidence suggests but is not sufficient to conclude that 1,2-dichloroethane exposure causes [health effect]") during evidence integration, including cancer (various tumor types), mortality, body weight effects, respiratory tract effects, renal effects, hepatic effects, immune/hematological effects, and male reproductive effects. Although it was concluded during evidence integration that 1,2-dichloroethane exposure likely causes neurological/behavioral effects, none of the data for this domain were amenable for BMD modeling. EPA conducted BMD modeling in a manner consistent with EPA's *Benchmark Dose (BMD) Technical Guidance* (U.S. EPA, 2012).

EPA used dichotomous models to fit quantal data (*e.g.*, incidences of tumors) and continuous models to fit continuous data (*e.g.*, body and organ weights), as recommended by EPA's *BMD Technical Guidance* (U.S. EPA, 2012). The BMDs/BMDLs are provided based on a daily exposure (*i.e.*, 7 days per week) for easier comparison across all hazard endpoints and thus, doses were adjusted as needed before BMD modeling. EPA modeled endpoints that had statistically significant pairwise comparisons between individual doses and controls or significant dose-response trends. EPA also considered potential biologically significant changes from controls where possible and/or changes that appeared to exhibit a dose-response relationship upon visual inspection. Multiple health endpoints may have been modeled from each study, depending on the relevance of the data to adverse health outcomes and to identify sensitive health endpoints for each domain.

Although some of the data sets could be fit using models after dropping doses (either one, two, or three of the highest doses), EPA considered only modeling results from full data sets for use in quantifying risk. This document does not present results of modeling exercises in which none of the models in the BMD suite provided an adequate fit to the full data sets. Endpoints were also not considered for BMD modeling if changes were observed only at the highest dose. Studies with LOAELs more than 10 times greater than the most sensitive LOAEL for the health domain were also not considered for BMD modeling. For non-cancer endpoints, if BMD modeling was not possible or when data did not fit the available models, EPA used NOAELs and LOAELs during POD selection for the risk evaluation.

EPA relied on the BMD guidance and other information to choose BMRs appropriate for each endpoint. Although the *BMD Technical Guidance* doesn't recommend default BMRs, it describes how various BMD modeling results compare with NOAEL values, and the guidance does recommend calculating 10 percent ER for quantal data and one SD for continuous data to compare modeling results across endpoints. EPA also modeled percent RD for certain continuous endpoints. EPA's choice of BMRs for the 1,2-dichloroethane health endpoints is described in more detail in the following sections that present BMD modeling results for each health domain.

When modeling dose-response relationships, the data can be modeled as either ER or additional risk. EPA modeled the data as ER. EPA's *BMD Technical Guidance* defines ER as "a measure of the proportional increase in risk of an adverse effect adjusted for the background incidence of the same effect." Mathematically, ER is equal to [P(d) - P(0)]/[1 - P(0)]. P(d) is the probability of the effect at dose d, and P(0) is the probability of risk with no exposure to a hazard (U.S. EPA, 2012).

2.1 Non-cancer Endpoints – 1,2-Dichloroethane

Non-cancer endpoints selected for modeling were based on both dichotomous and continuous measurement data. For dichotomous data, the Gamma, Logistic, Log-Logistic, Log-Probit, Multistage, Probit, Weibull, and Quantal Linear dichotomous models available within the software were fit using the selected BMR. For inhalation data, administered concentrations were modeled in units of mg/m³. Adequacy of model fit was judged based on the χ^2 goodness-of-fit p-value (p > 0.1), magnitude of scaled residuals in the vicinity of the BMR, and visual inspection of the model fit. Among all models providing adequate fit, the lowest BMDL was selected if the BMDLs estimated from different models varied > 3-fold; otherwise, the BMDL from the model with the lowest AIC was selected. For continuous measurement data, the Exponential, Hill, Linear, Polynomial, and Power continuous models available within the software were fit employing the selected BMR(s). An adequate fit was judged based on the chi-square goodness-of-fit p-value (p > 0.1), magnitude of the scaled residuals in the vicinity of the BMR, and visual inspection of the model fit. In addition to these three criteria for judging adequacy of model fit, a determination was made as to whether the variance across dose groups was constant. If a constant variance model was deemed appropriate based on the statistical test provided in BMDS (i.e., Test 2; p-value > 0.05 [note: this is a change from previous versions of BMDS, which required variance p-value > 0.10 for adequate fit]), the final BMD results were estimated from a constant variance model. If the test for homogeneity of variance was rejected (p-value < 0.05), the model was run again while modeling the variance as a power function of the mean to account for this nonconstant variance. If this nonconstant variance model also did not adequately fit the data (*i.e.*, Test 3; p-value < 0.05), the data set was considered unsuitable for BMD modeling. Among all models providing adequate fit, the lowest BMDL was selected if the BMDLs estimated from different models varied > 3-fold; otherwise, the BMDL from the model with the lowest AIC was selected.

2.1.1 Inhalation Data

2.1.1.1 Acute

2.1.1.1.1 Mortality

Storer et al. (1984) provided data showing increased mortality in mice following acute inhalation exposure to 1,2-dichloroethane.

2.1.1.1.1.1 Mortality in Male B6C3F1 Mice – 4-Hour Inhalation Exposure

Increased incidence of mortality was observed in male mice exposed to 1,2-dichloroethane by inhalation for four hours (Storer et al., 1984). The measured exposure concentrations (reported in units of ppm) were converted to units of mg/m³ and duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day. The concentration and response data used for the modeling are presented in Table 2-1. Dichotomous models were fit to the incidence data. EPA chose a BMR of 10 percent ER according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012) to compare with other PODs. A BMR of one percent ER was also selected based on the severity of the endpoint.

Concentration (mg/m ³)	Number of Animals	Incidence
0	5	0
107	5	0
337	5	0
723.2	5	4
1313	5	5

 Table 2-1. Incidence of Mortality in Male Mice and Associated Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane

The BMD modeling results for incidence of mortality are summarized in Table 2-2. All models provided adequate fit to the data (chi-square p-value > 0.1). Using a BMR of 10 percent ER, the BMDLs were not sufficiently close (differed by > 3-fold); therefore, the model with the lowest BMDL (Multistage 1-degree) was selected. Using a BMR of one percent ER, the Multistage 1-degree/Quantal Linear model was considered questionable because the BMD and BMDL were 10 times lower than the lowest non-zero concentration. The BMDLs of the remaining models were not sufficiently close; therefore, the BMDS recommended the model with the lowest BMDL (Multistage 2-degree).

This data set is not well suited for BMD modeling; there is a single datapoint (at 80 percent incidence) with incidence between 0 and 100 percent; there are no data to inform the shape of the curve at the region of interest, as defined by the BMR. As a result, the different models provide a broad range of BMD and BMDL estimates: an ~6-fold BMDL spread at a BMR of 10 percent and an ~ 38-fold BMDL spread at a BMR of one percent. For both BMRs, selection of the low end of the range to represent the BMDL is not among the more realistic possibilities and involves extrapolation below the range of observation to generate a BMD estimate well below the lowest tested dose. The much higher spread of BMDLs at a BMR of one percent indicates much higher uncertainty associated with modeling using this BMR, reflecting the greater distance from the lowest observable change in the study, which was only 20 percent (1/5).

 Table 2-2. BMD Modeling Results for Increased Incidence of Mortality in Male Mice Following a

 4-Hour Inhalation Exposure to 1,2-Dichloroethane^a

	Goodnes	ss of Fit	BMD	BMDL	BMD	BMDL	
Model	p- value	AIC	1%ER (mg/m ³)	1%ER (mg/m ³)	10%ER (mg/m ³)	10%ER (mg/m ³)	Basis for Model Selection
Dichotomous Hill	1.000	7.004	519	130	593	263	All models provided adequate fit to the data (chi-square
Gamma	0.9994	7.140	328	113	438	242	p-value > 0.1). With a BMR of 10 percent ER applied, the
Log-Logistic	1.000	7.004	519	130	593	263	BMDLs were not sufficiently
Multistage 3	0.9730	6.507	143	13.8	313	137	close (differed by > 3-fold); therefore, the Multistage
Multistage 2	0.7410	10.32	67.3	11.1	218	103	1-degree model, which has
Multistage 1	0.2538	15.59	7.25	4.11	76.0	43.1	the lowest BMDL was selected. With a BMR of
Weibull	0.9998	7.083	350	81	491	230	one percent ER applied, the
Logistic	1.000	7.005	500	57.5	590	261	Multistage 1-degree/Quantal Linear model was considered
Log-Probit	1.000	9.004	553	157	604	263	questionable because the
Probit	1.000	9.004	492	56.8	568	246	BMD and BMDL were 10 times lower than the
Quantal Linear	0.2538	15.59	7.25	4.11	76.0	43.1	lowest non-zero concentration. The BMDLs of the remaining models were not sufficiently close; therefore, the model with the lowest BMDL (Multistage 2-degree) was selected. NOTE: This data set is not well suited for BMD modeling and the results should be interpreted with caution.
^a Selected mode	el in bold.						

Plots of the Multistage 1-degree and Multistage 2-degree models with BMRs of 10 percent and one Percent ER are shown in Figure 2-1 and Figure 2-2, respectively. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown below in Figure 2-3 and Figure 2-4 for the Multistage 1-degree and Multistage 2-degree models, respectively.

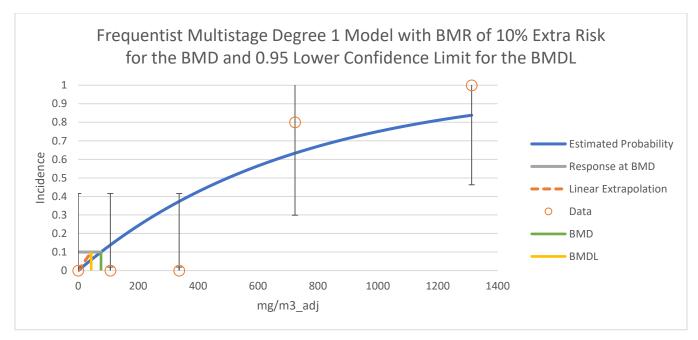


Figure 2-1. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage 1-Degree) for Mortality in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation for Four Hours and BMR of 10%ER

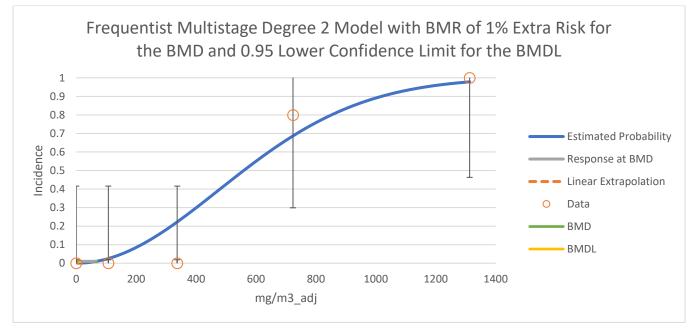


Figure 2-2. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage 2-Degree) for Mortality in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation for Four Hours and BMR of 1%ER

Benchmark Dose								
BMD	75.96529122							
BMDL	43.13559104							
BMDU	144.8556487							
AIC	15.58503443							
P-value	0.253844445							
D.O.F.	4							
Chi ²	5.343368092							
Slope Factor	0.002318271							

Model Para	imeters			
# of Parameters	2			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	Bounded	NA	NA	NA
b1	0.001386956	0.664907502	-1.3018078	1.30458172

Goodnes	s of Fit				
Dose	Estimated	Expected	Observed	Size	Scaled
0036	Probability	Expected	Observed	5120	Residual
0	1.523E-08	7.61499E-08	0	5	-0.000276
107	0.1379175	0.689587501	0	5	-0.894376
337	0.373373232	1.866866159	0	5	-1.726045
723.2	0.633239628	3.166198142	4	5	0.7737535
1313	0.838148045	4.190740227	5	5	0.9826155
		_			
Analysis of	Deviance				
Model	Log Likelihood	# of Parameters	Deviance	Test d.f.	P Value
Full Model	-2.502012118	5	-	-	NA
	-6.792517214	1	8.58101019	4	0.0724694
Fitted Model					

Figure 2-3. Details Regarding the Selected Model (Multistage 1-Degree) for Mortality in Male Mice Following a 4-Hour Inhalation Exposure to 1,2-Dichloroethane

Benchmark Dose							
BMD	67.31979018						
BMDL	11.12084919						
BMDU	97.41764876						
AIC	10.32271674						
P-value	0.740950577						
D.O.F.	4						
Chi ²	1.971774077						
Slope Factor	0.000899212						

Model Para	meters			
# of Parameters	3			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	Bounded	NA	NA	NA
b1	Bounded	NA	NA	NA
b2	2.21766E-06	1.668562717	-3.2703206	3.27032508

Goodness of Fit					
Dose	Estimated Probability	Expected	Observed	Size	Scaled Residual
0	1.523E-08	7.61499E-08	0	5	-0.000276
107	0.025070411	0.125352057	0	5	-0.358574
337	0.22264463	1.113223149	0	5	-1.196689
723.2	0.686475475	3.432377376	4	5	0.5471752
1313	0.978141831	4.890709155	5	5	0.3342651

Analysis of Deviance					
Model	Log Likelihood	# of Parameters	Deviance	Test d.f.	P Value
Full Model	-2.502012118	5	-	-	NA
Fitted Model	-4.161358368	1	3.3186925	4	0.5059761
Reduced Model	-16.33545487	1	27.6668855	4	< 0.0001

Figure 2-4. Details Regarding the Selected Model (Multistage 2-Degree) for Mortality in Male Mice Following a 4-Hour Inhalation Exposure to 1,2-Dichloroethane

2.1.1.1.2 Respiratory Effects

Incidence data for degeneration with necrosis of the olfactory mucosa following a four- or eight-hour inhalation exposure and regeneration of the olfactory mucosa following a four-hour of exposure were modeled for males, females, and males and females combined (<u>Dow Chemical, 2006</u>).

2.1.1.1.2.1 Degeneration with Necrosis of the Olfactory Mucosa in Male F344 Rats – 4-Hour Inhalation Exposure

Increased incidence of degeneration with necrosis of the olfactory mucosa was observed in male rats exposed to 1,2-dichloroethane by inhalation for four hours (<u>Dow Chemical, 2006</u>). The measured exposure concentrations (reported in units of ppm) were converted to units of mg/m³ and duration

adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day. The concentration and response data used for the modeling are presented in Table 2-3. Dichotomous models were fit to the incidence data.

A BMR of 10 percent ER was chosen according to EPA's BMD Technical Guidance (U.S. EPA, 2012).

Table 2-3. Incidence of Degeneration with Necrosis of the Olfactory Mucosa in Male Rats and
Associated Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane

Concentration (mg/m ³)	Number of Animals	Incidence
0	5	0
35.3	5	0
132.5	5	3
410.0	5	5
1368.7	5	5

The BMD modeling results for increased incidence of degeneration with necrosis of the olfactory mucosa in male rats are summarized in Table 2-4. All models provided adequate fit to the data (chi-square p-value > 0.1). The BMDL computation for the Weibull model failed because the lower limit included zero. The BMDLs were not sufficiently close (differed by >3-fold). Therefore, EPA chose the model with the lowest BMDL (Multistage 1-degree model).

This data set is not well suited for BMD modeling; there is a single datapoint (at 60 percent incidence) with incidence between 0 and 100 percent; there are no data to inform the shape of the curve at the region of interest (~10 percent). As a result, the different models provide a broad range of BMD and BMDL estimates. Selection of the low end of the range to represent the BMDL is not among the more

realistic possibilities and in this case involves extrapolation below the range of observation to generate a BMD estimate well below the lowest tested dose.

	Goodn	ess of Fit	BMD	BMDL		
Model	Modelp-valueAIC10%ER (mg/m³)10%ER (mg/m³)	10%ER (mg/m ³)	Basis for Model Selection			
Dichotomous Hill	1.000	10.73	93.8	24.9	All models provided adequate fit to the data (chi-	
Gamma	0.9999	10.74	77.1	17.4	square p-value > 0.1); however, the BMDL	
Log-Logistic	1.000	10.73	93.8	24.9	computation for the Weibull	
Multistage 3	0.9999	6.900	65.1	13.7	model failed because the lower limit included zero.	
Multistage 2	0.9876	9.349	47.3	12.6	Of the models with	
Multistage 1	0.7953	11.76	16.1	8.33	adequate and viable fits, the BMDLs were not	
Weibull	0.9560	11.30	50.2	0	sufficiently close (differed	
Logistic	0.9999	10.74	97.0	36.3	by $>$ 3-fold); therefore, EPA chose the model with the	
Log-Probit	1.000	10.73	103	24.5	lowest BMDL.	
Probit	0.7909	12.33	55.2	27.5	NOTE: This data set is not	
Quantal Linear	0.7953	11.76	16.1	8.33	well suited for BMD modeling and the results should be interpreted with caution.	
^a Selected model in	bold.		<u> </u>	1		

 Table 2-4. BMD Modeling Results for Degeneration with Necrosis of the Olfactory Mucosa in

 Male Rats Following a 4-Hour Inhalation Exposure to 1,2-Dichloroethane^a

A plot of the Multistage 1-degree model with a BMR of 10 percent ER is shown in Figure 2-5. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-6.

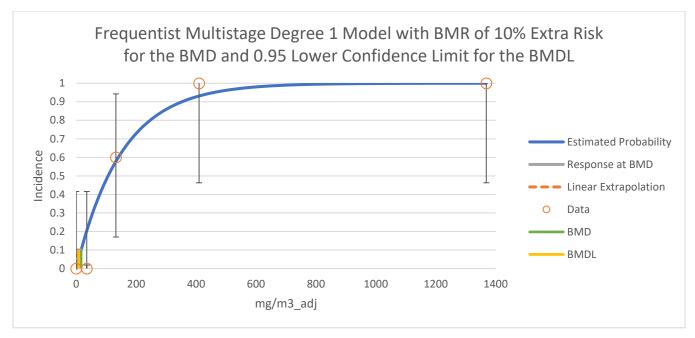


Figure 2-5. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage 1-Degree) for Degeneration with Necrosis of the Olfactory Mucosa in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation for 4 Hours and BMR of 10%ER

Benchmark Dose				
16.14009333				
8.334284842				
32.92192881				
11.757832				
0.795259973				
4				
1.674965599				
0.01199863				

Model Para	meters			
# of Parameters	2			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	Bounded	NA	NA	NA
b1	0.006527875	3.737480823	-7.3188	7.33185574

Goodness	Goodness of Fit				
Dose	Estimated	Expected	Observed	Size	Scaled
Dose	Probability	Expected	Observed		Residual
0	1.523E-08	7.61499E-08	0	5	-0.000276
35.3	0.205811145	1.029055727	0	5	-1.014424
132.5	0.578924623	2.894623116	3	5	0.0619369
410	0.931191546	4.655957729	5	5	0.1594437
1368.7	0.999868263	4.999341314	5	5	0.0002946
Analysis of I	Deviance				
Model	Log Likelihood	# of Parameters	Deviance	Test d.f.	P Value
Full Model	-3.365058335	5	-	-	NA
Fitted Model	-4.878915999	1	3.02771533	4	0.5531981
Reduced Model	-17.30867418	1	27.8872317	4	< 0.0001

Figure 2-6. Details Regarding the Selected Model (Multistage 1-Degree) for Degeneration with Necrosis of the Olfactory Mucosa in Male Rats Following a 4-Hour Inhalation Exposure to 1,2-Dichloroethane

2.1.1.1.2.2 Degeneration with Necrosis of the Olfactory Mucosa in Female F344 Rats – 4-Hour Inhalation Exposure

Increased incidence of degeneration with necrosis of the olfactory mucosa was observed in female rats exposed to 1,2-dichloroethane by inhalation for four hours (<u>Dow Chemical, 2006</u>). The measured exposure concentrations (reported in units of ppm) were converted to units of mg/m³ and duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day. The concentration and response data used for the modeling are presented in Table 2-5. Dichotomous models were fit to the incidence data.

Table 2-5. Incidence of Degeneration with Necrosis of the Olfactory Mucosa in Female Rats and
Associated Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane

Adjusted Concentration (mg/m ³)	Number of Animals	Incidence
0	5	0
35.3	5	0
132.5	5	4
410.0	5	5
1368.7	5	5

The BMD modeling results for increased incidence of degeneration with necrosis of the olfactory mucosa in female rats are summarized in Table 2-6. All models provided adequate fit to the data (chi-square p-value > 0.1). The BMDL computation for the Weibull model failed because the lower limit included zero. The BMDLs were not sufficiently close (differed by > 3-fold). Therefore, EPA chose the model with the lowest BMDL (Multistage 1-degree model).

	Goodn	ess of Fit	BMD	BMDL	
Model	el10%ER10%ERp-valueAIC(mg/m³)(mg/m³)	10%ER (mg/m ³)	Basis for Model Selection		
Dichotomous Hill	1.000	9.008	80.1	22.5	All models provided adequate fit to the data (chi-
Gamma	0.9975	9.087	60.3	17.5	square p-value > 0.1); however, the BMDL
Log-Logistic	1.000	9.008	80.1	22.5	computation for the Weibull
Multistage 3	0.9995	5.301	54.2	12.7	model failed because the lower limit included zero.
Multistage 2	0.9645	8.058	36.7	10.2	Of the viable models, the
Multistage 1	0.6890	10.70	12.2	6.20	BMDLs were not sufficiently close (differed
Weibull	0.8634	10.24	35.9	0	by $>$ 3-fold); therefore, EPA
Logistic	0.9994	9.039	83.8	30.2	chose the model with the lowest BMDL.
Log-Probit	1.000	9.004	98.0	22.7	
Probit	0.5357	12.24	41.4	21.1	NOTE: This data set is not well suited for BMD
Quantal Linear	0.6890	10.70	12.2	6.20	modeling and the results should be interpreted with caution.
^a Selected model in	bold.				

 Table 2-6. BMD Modeling Results for Degeneration with Necrosis of the Olfactory Mucosa in

 Female Rats Following a 4-Hour Inhalation Exposure to 1,2-Dichloroethane^a

This data set is not well suited for BMD modeling; there is a single datapoint (at 80 percent incidence) with incidence between 0 and 100 percent; there are no data to inform the shape of the curve at the region of interest (~ 10 percent). As a result, the different models provide a broad range of BMD and BMDL estimates. Selection of the low end of the range to represent the BMDL is not among the more

realistic possibilities and in this case involves extrapolation below the range of observation to generate a BMD estimate well below the lowest tested dose.

A plot of the Multistage 1-degree model with a BMR of 10 percent ER is shown in Figure 2-7. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-8.

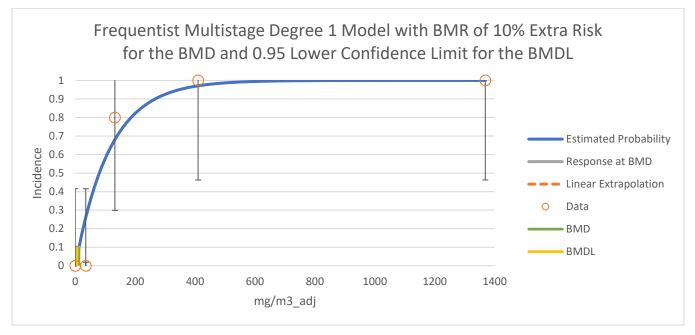


Figure 2-7. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage 1-Degree) for Degeneration with Necrosis of the Olfactory Mucosa in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation for Four Hours and BMR of 10%ER

Benchmark Dose				
BMD	12.20199573			
BMDL	6.197861053			
BMDU	25.08064423			
AIC	10.69847938			
P-value	0.689023139			
D.O.F.	4			
Chi ²	2.254728302			
Slope Factor	0.016134599			

Model Parameters				
# of Parameters	2			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	Bounded	NA	NA	NA
b1	0.008634695	5.028308495	-9.8466689	9.86393833

Goodness	s of Fit				
Dece	Estimated	Function	Observed	Sizo	Scaled
Dose	Probability	Expected	Observed	Size	Residual
0	1.523E-08	7.61499E-08	0	5	-0.000276
35.3	0.262732682	1.313663408	0	5	-1.334841
132.5	0.68148862	3.407443098	4	5	0.5687917
410	0.970993197	4.854965983	5	5	0.3864798
1368.7	0.999992632	4.999963158	5	5	0.0060698
Analysis of I	Deviance				
Model	Log Likelihood	# of Parameters	Deviance	Test d.f.	P Value
Full Model	-2.502012118	5	-	-	NA
Fitted Model	-4.349239691	1	3.69445515	4	0.4489329
Reduced Model	-17.14824501	1	29.2924658	4	< 0.0001

Figure 2-8. Details Regarding the Selected Model (Multistage 1-Degree) for Degeneration with Necrosis of the Olfactory Mucosa in Female Rats Following a 4-Hour Inhalation Exposure to 1,2-Dichloroethane

2.1.1.1.2.3 Degeneration with Necrosis of the Olfactory Mucosa in Male and Female F344 Rats (Combined) – 4-Hour Inhalation Exposure

Increased incidence of degeneration with necrosis of the olfactory mucosa was observed in male and female rats (combined) exposed to 1,2-dichloroethane by inhalation for four hours (<u>Dow Chemical</u>, 2006). The measured exposure concentrations (reported in units of ppm) were converted to units of mg/m³ and duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day. The concentration and response data used for the modeling are presented in Table 2-7. Dichotomous models were fit to the incidence data.

 Table 2-7. Incidence of Degeneration with Necrosis of the Olfactory Mucosa in Male and Female

 Rats (Combined) and Associated Concentrations Selected for Dose-Response Modeling for 1,2

 Dichloroethane

Concentration (mg/m ³)	Number of Animals	Incidence
0	10	0
35.3	10	0
132.5	10	7
410.0	10	10
1368.7	10	10

The BMD modeling results for increased incidence of degeneration with necrosis of the olfactory mucosa in male and female rats (combined) are summarized in Table 2-8. All models provided adequate fit to the data (chi-square p-value > 0.1). The BMDL computation for the Weibull model failed because the lower limit included zero. The BMDLs were not sufficiently close (differed by > 3-fold). Therefore, EPA chose the model with the lowest BMDL (Multistage 1-degree model).

This data set is not well suited for BMD modeling; there is a single datapoint (at 70 percent incidence) with incidence between 0 and 100 percent; there are no data to inform the shape of the curve at the region of interest (~ 10 percent). As a result, the different models provide a broad range of BMD and BMDL estimates. Selection of the low end of the range to represent the BMDL is not among the more realistic possibilities and in this case involves extrapolation below the range of observation to generate a BMD estimate well below the lowest tested dose.

Table 2-8. BMD Modeling Results for Degeneration with Necrosis of the Olfactory Mucosa inMale and Female Rats (Combined) Following a 4-Hour Inhalation Exposure to 1,2-Dichloroethane^a

Model	Goodness of Fit		BMD 10%ER	BMDL 10%ER	Basis for Model Selection	
	p-value	AIC	(mg/m^3)	(mg/m^3)		
Dichotomous Hill	1.000	16.22	87.6	34.9	All models provided	
Gamma	0.9987	16.27	68.9	30.9	adequate fit to the data (chi- square p-value > 0.1);	
Log-Logistic	1.000	16.22	87.6	34.9	however, the BMDL	
Multistage 3	0.9988	12.66	59.5	24.6	computation for the Weibull model failed because the	
Multistage 2	0.9280	15.82	41.8	18.8	lower limit included zero. Of	
Multistage 1	0.4440	20.68	14.1	8.76	the viable models, The BMDLs were not sufficiently	
Weibull	0.8079	17.90	42.7	0	close (differed by > 3-fold);	
Logistic	0.9992	16.26	91.0	44.7	therefore, EPA chose the model with the lowest	
Log-Probit	1.000	16.22	95.1	33.7	BMDL.	
Probit	0.3831	20.81	47.8	29.2	NOTE: This data set is not	
Quantal Linear	0.4440	20.68	14.1	8.76	well suited for BMD modeling and the results should be interpreted with caution.	
^{<i>a</i>} Selected model in bo	old.		1	1		

A plot of the Multistage 1-degree model with a BMR of 10 percent ER is shown in Figure 2-9. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-10.

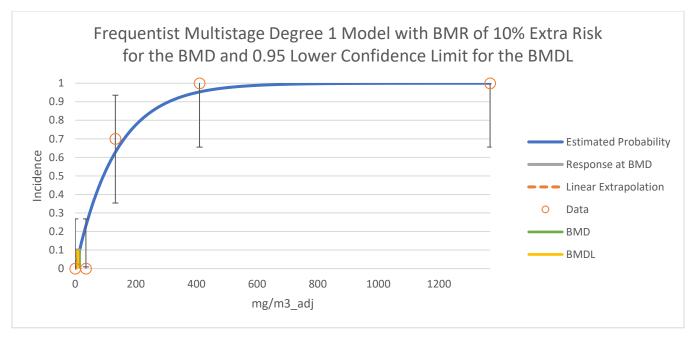


Figure 2-9. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage 1-Degree) for Degeneration with Necrosis of the Olfactory Mucosa in Male and Female Rats (Combined) Exposed to 1,2-Dichloroethane Via Inhalation for 4 Hours and BMR of 10%ER

Benchmark Dose					
14.10695256					
8.757017138					
23.27887944					
20.67643472					
0.444048554					
4					
3.72812481					
0.011419414					

Model Parameters				
# of Parameters	2			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	Bounded	NA	NA	NA
b1	0.007468694	3.038026138	-5.9469532	5.96189056

Dose	Estimated Probability	Expected	Observed	Size	Scaled Residual
0	1.523E-08	1.523E-07	0	10	-0.00039
35.3	0.231753727	2.317537268	0	10	-1.736853
132.5	0.628275403	6.282754027	7	10	0.4693345
410	0.953213694	9.532136945	10	10	0.7005905
1368.7	0.999963653	9.999636531	10	10	0.0190652

Analysis of Deviance					
Model	Log Likelihood	# of Parameters	Deviance	Test d.f.	P Value
Full Model	-6.108643021	5	-	-	NA
Fitted Model	-9.338217359	1	6.45914868	4	0.1673826
Reduced Model	-34.49718792	1	56.7770898	4	< 0.0001

Figure 2-10. Details Regarding the Selected Model (Multistage 1-Degree) for Degeneration with Necrosis of the Olfactory Mucosa in Male and Female Rats (Combined) Following a 4-Hour Inhalation Exposure to 1,2-Dichloroethane

2.1.1.1.2.4 Degeneration with Necrosis of the Olfactory Mucosa in Male F344 Rats – 8-Hour Inhalation Exposure

Increased incidence of degeneration with necrosis of the olfactory mucosa was observed in male rats exposed to 1,2-dichloroethane by inhalation for eight hours (<u>Dow Chemical, 2006</u>). The measured exposure concentrations (reported in units of ppm) were converted to units of mg/m³ and duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day. The concentration and response data used for the modeling are presented in Table 2-9. Dichotomous models were fit to the incidence data.

Adjusted Concentration (mg/m ³)	Number of Animals	Incidence	
0	5	0	
71.3	5	0	
145.0	5	1	
210.2	5	4	

 Table 2-9. Incidence of Degeneration with Necrosis of the Olfactory Mucosa in Male Rats and

 Associated Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane

The BMD modeling results for increased incidence of degeneration with necrosis of the olfactory mucosa in male rats are summarized in Table 2-10. All models provided adequate fit to the data (chi-square p-value > 0.1). The BMDLs were not sufficiently close (differed by > 3-fold). Therefore, EPA chose the model with the lowest BMDL (Multistage 1-degree model).

This data set is not well suited for BMD modeling; there is a single datapoint (at 20 percent incidence) with incidence between 0 and 80 percent. As a result, the different models provide a broad range of BMD and BMDL estimates. Selection of the low end of the range to represent the BMDL is not among the more realistic possibilities and, in this case, involves extrapolation below the range of observation to generate a BMD estimate well below the lowest tested dose.

Model	Goodness of Fit		BMD 10%ER	BMDL 10%ER	Basis for Model Selection
	p-value	AIC	(mg/m^3)	(mg/m ³)	
Dichotomous Hill	1.000	14.01	138	70.1	All models provided
Gamma	0.9992	12.03	127	67.7	adequate fit to the data (chi- square p-value > 0.1). The
Log-Logistic	0.9969	14.02	131	69.9	BMDLs were not sufficiently
Multistage 3	0.9325	11.13	94.3	37.2	close (differed by > 3-fold); therefore, EPA chose the
Multistage 2	0.5937	14.54	70.9	26.8	model with the lowest
Multistage 1	0.2777	17.03	33.5	17.1	BMDL.
Weibull	0.9989	12.05	128	63.8	NOTE: This data set is not
Logistic	0.9729	14.10	130	71.5	well suited for BMD modeling and the results
Log-Probit	0.9999	14.01	132	71.7	should be interpreted with
Probit	0.9926	14.03	130	68.3	caution.
Quantal Linear	0.2777	17.03	33.5	17.1	
^a Selected model in bo	old.		·		•

 Table 2-10. BMD Modeling Results for Degeneration with Necrosis of the Olfactory Mucosa in

 Male Rats Following an 8-Hour Inhalation Exposure to 1,2-Dichloroethane^a

A plot of the Multistage 1-degree model with a BMR of 10 percent ER is shown in Figure 2-11. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-12.

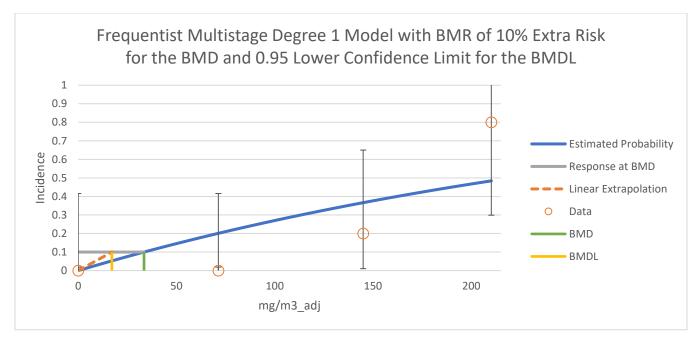


Figure 2-11. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage 1-Degree) for Degeneration with Necrosis of the Olfactory Mucosa in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation for 8 Hours and BMR of 10%ER

Benchmark Dose					
BMD	33.46390531				
BMDL	17.11048878				
BMDU	78.84479045				
AIC	17.03210085				
P-value	0.277708981				
D.O.F.	3				
Chi ²	3.853633558				
Slope Factor	0.005844368				

Model Parameters				
# of Parameters	2			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	Bounded	NA	NA	NA
b1	0.003148482	0.300815071	-0.5864382	0.59273519

0 1.523E-08 7.61499E-08 0 5 -0.000276 71.3 0.20107387 1.005369348 0 5 -1.121785 145 0.366521946 1.832609729 1 5 -0.772753 210.2 0.484083813 2.420419067 4 5 1.4135365	Dose	Estimated Probability	Expected	Observed	Size	Scaled Residual
145 0.366521946 1.832609729 1 5 -0.772753	0	1.523E-08	7.61499E-08	0	5	-0.000276
	71.3	0.20107387	1.005369348	0	5	-1.121785
210.2 0.484083813 2.420419067 4 5 1.4135365	145	0.366521946	1.832609729	1	5	-0.772753
	210.2	0.484083813	2.420419067	4	5	1.4135365

Analysis of Deviance					
Model Log Likelihood		# of Parameters	Deviance	Test d.f.	P Value
Full Model	-5.004024235	4	-	-	NA
Fitted Model	-7.516050426	1	5.02405238	3	0.1700444
Reduced Model	-11.24670289	1	12.4853573	3	0.0585611

Figure 2-12. Details Regarding the Selected Model (Multistage 1-Degree) for Degeneration with Necrosis of the Olfactory Mucosa in Male Rats Following an 8-Hour Inhalation Exposure to 1,2-Dichloroethane

2.1.1.1.2.5 Degeneration with Necrosis of the Olfactory Mucosa in Female F344 Rats – 8-Hour Inhalation Exposure

Increased incidence of degeneration with necrosis of the olfactory mucosa was observed in female rats exposed to 1,2-dichloroethane by inhalation for eight hours (<u>Dow Chemical, 2006</u>). The measured exposure concentrations (reported in units of ppm) were converted to units of mg/m³ and duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day. The concentration and response data used for the modeling are presented in Table 2-11. Dichotomous models were fit to the incidence data.

Adjusted Concentration (mg/m ³)	Number of Animals	Incidence
0	5	0
71.3	5	0
145.0	5	3
210.2	5	5

 Table 2-11. Incidence of Degeneration with Necrosis of the Olfactory Mucosa in Female Rats and
 Associated Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane

The BMD modeling results for increased incidence of degeneration with necrosis of the olfactory mucosa in male rats are summarized in Table 2-12. All models provided adequate fit to the data (chi-square p-value > 0.1). The BMDL computation for the Weibull model failed because the lower limit included zero. The BMDLs were not sufficiently close (differed by > 3-fold). Therefore, EPA chose the model with the lowest BMDL (Multistage 1-degree model).

This data set is not well suited for BMD modeling; there is a single datapoint (at 60 percent incidence) with incidence between 0 and 100 percent; there are no data to inform the shape of the curve at the region of interest (~ 10 percent). As a result, the different models provide a broad range of BMD and BMDL estimates. Selection of the low end of the range to represent the BMDL is not among the more realistic possibilities and in this case involves extrapolation below the range of observation to generate a BMD estimate well below the lowest tested dose.

	Goodness of Fit		BMD	BMDL	
Model	p-value	AIC	10%ER (mg/m ³)	10%ER (mg/m ³)	Basis for Model Selection
Dichotomous Hill	0.9999	8.738	125	64.6	All models provided
Gamma	0.9835	9.036	97.6	57.9	adequate fit to the data (chi- square p-value > 0.1);
Log-Logistic	0.9999	8.738	125	64.7	however, the BMDL
Multistage 3	0.9249	8.426	68.9	26.1	computation for the Weibull model failed because the
Multistage 2	0.5547	12.47	47.1	18.6	lower limit included zero. Of
Multistage 1	0.1987	16.31	16.3	9.20	the viable models, the BMDLs were not sufficiently
Weibull	0.9997	10.73	122	0	close (differed by > 3-fold);
Logistic	1.000	8.733	124	58.8	therefore, EPA chose the model with the lowest
Log-Probit	1.000	10.73	132	64.5	BMDL.
Probit	1.000	10.73	126	55.0	NOTE: This data set is not
Quantal Linear	0.1987	16.31	16.3	9.20	well suited for BMD modeling and the results should be interpreted with caution.
^a Selected model in bo	old.				

 Table 2-12. BMD Modeling Results for Degeneration with Necrosis of the Olfactory Mucosa in

 Female Rats Following an 8-Hour Inhalation Exposure to 1,2-Dichloroethane^a

A plot of the Multistage 1-degree model with a BMR of 10 percent ER is shown in Figure 2-13. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-14.

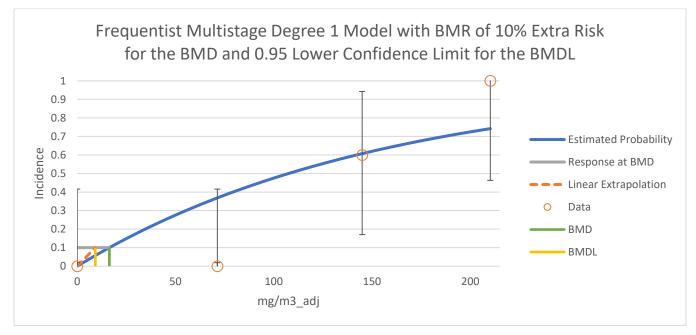


Figure 2-13. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage 1-Degree) for Degeneration with Necrosis of the Olfactory Mucosa in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation for 8 Hours and BMR of 10%ER

Benchmark Dose						
BMD	16.34257648					
BMDL	9.199716086					
BMDU	32.02480499					
AIC	16.31075155					
P-value	0.198741114					
D.O.F.	3					
Chi ²	4.656587683					
Slope Factor	0.010869901					

Model Para	imeters			
# of Parameters	2			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	Bounded	NA	NA	NA
b1	0.006446995	0.508897083	-0.990973	1.00386696

Goodness of Fit					
Dose	Estimated	Exported	Observed	Size	Scaled
Dose	Probability	Expected	Observed	5120	Residual
0	1.523E-08	7.61499E-08	0	5	-0.000276
71.3	0.368508494	1.842542471	0	5	-1.708146
145	0.607341244	3.03670622	3	5	-0.033615
210.2	0.742093574	3.710467871	5	5	1.3182165
Analysis of Deviance					
Model	Log Likelihood	# of Parameters	Deviance	Test d.f.	P Value
Full Model	-3.365058335	4	-	_	NA
Fitted Model	-7.155375774	1	7.58063488	3	0.0555224
Reduced Model	-13.46023334	1	20.19035	3	0.000155

Figure 2-14. Details Regarding the Selected Model (Multistage 1-Degree) for Degeneration with Necrosis of the Olfactory Mucosa in Female Rats Following an 8-Hour Inhalation Exposure to 1,2-Dichloroethane

2.1.1.1.2.6 Degeneration with Necrosis of the Olfactory Mucosa in Male and Female F344 Rats (Combined) – 8-Hour Inhalation Exposure

Increased incidence of degeneration with necrosis of the olfactory mucosa was observed in male and female rats (combined) exposed to 1,2-dichloroethane by inhalation for eight hours (<u>Dow Chemical</u>, 2006). The measured exposure concentrations (reported in units of ppm) were converted to units of mg/m³ and duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day. The concentration and response data used for the modeling are presented in Table 2-13. Dichotomous models were fit to the incidence data.

 Table 2-13. Incidence of Degeneration with Necrosis of the Olfactory Mucosa in Male and Female

 Rats (combined) and Associated Concentrations Selected for Dose-Response Modeling for 1,2

 Dichloroethane

Adjusted Concentration (mg/m ³)	Number of Animals	Incidence
0	10	0
71.3	10	0
145.0	10	4
210.2	10	9

The BMD modeling results for increased incidence of degeneration with necrosis of the olfactory mucosa in male rats are summarized in Table 2-14. All models provided adequate fit to the data (chi-square p-value > 0.1) except for the Multistage 1-degree/Quantal Linear model. The BMDLs of the fit models were sufficiently close (differed by < 3-fold). Therefore, EPA chose the model with the lowest AIC (Multistage 3-degree model).

Table 2-14. BMD Modeling Results for Degeneration with Necrosis of the Olfactory Mucosa in Male and Female Rats (Combined) Following an 8-Hour Inhalation Exposure to 1,2-Dichloroethane^{*a*}

	Goodn	ess of Fit	BMD	BMDL	
Model	p-value	AIC	10%ER (mg/m ³)	10%ER (mg/m ³)	Basis for Model Selection
Dichotomous Hill	1.000	23.96	131	78.1	All models provided
Gamma	0.9847	24.01	112	75.2	adequate fit to the data (chi- square p-value > 0.1) except
Log-Logistic	0.9779	24.04	114	77.5	for the Multistage
Multistage 3	0.8911	21.80	81.4	48.9	1-degree/Quantal Linear model. The BMDLs of the fit
Multistage 2	0.3612	26.88	57.8	34.3	models were sufficiently
Multistage 1	0.0570	32.87	23.1	14.8	close (differed by < 3-fold); therefore, EPA chose the
Weibull	0.9664	22.40	106	68.2	model with the lowest AIC.
Logistic	0.8515	24.46	110	72.6	
Log-Probit	0.9965	23.97	114	77.8	
Probit	0.9049	24.26	110	70.5	
Quantal Linear	0.0570	32.87	23.1	14.8	
^{<i>a</i>} Selected model in bo	old.		1		

A plot of the Multistage 3-degree model with a BMR of 10 percent ER is shown in Figure 2-15. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-16.

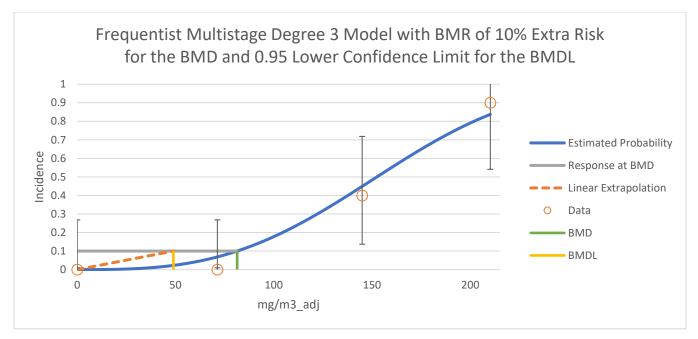


Figure 2-15. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage 3-Degree) for Degeneration with Necrosis of the Olfactory Mucosa in Male and Female Rats (Combined) Exposed to 1,2-Dichloroethane Via Inhalation for 8 Hours and BMR of 10%ER

Benchmark Dose						
BMD	81.37548237					
BMDL	48.94695881					
BMDU	97.14021529					
AIC	21.80354181					
P-value	0.891072257					
D.O.F.	4					
Chi ²	1.120086799					
Slope Factor	0.002043028					

Model Para	imeters			
# of Parameters	2			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	Bounded	NA	NA	NA
b1	Bounded	NA	NA	NA
b2	Bounded	NA	NA	NA
b3	Bounded	NA	NA	NA

Goodness of Fit					
Dose	Estimated Probability	Expected	Observed	Size	Scaled Residual
0	1.523E-08	1.523E-07	0	10	-0.00039
71.3	0.068417522	0.68417522	0	10	-0.856985
145	0.449030218	4.490302179	4	10	-0.311718
210.2	0.837310844	8.373108437	9	10	0.5371181

Analysis of Deviance					
Model	Log Likelihood	# of Parameters	Deviance	Test d.f.	P Value
Full Model	-9.980946404	4	-	-	NA
Fitted Model	-10.90177091	0	1.84164901	4	0.7648543
Reduced Model	-25.22324114	1	30.4845895	3	< 0.0001

Figure 2-16. Details Regarding the Selected Model (Multistage 3-Degree) for Degeneration with Necrosis of the Olfactory Mucosa in Male and Female Rats (Combined) Following an 8-Hour Inhalation Exposure to 1,2-Dichloroethane

2.1.1.1.2.7 Regeneration of the Olfactory Mucosa in Male F344 Rats – 4-Hour Inhalation Exposure

Increased incidence of regeneration of the olfactory mucosa was observed in male rats exposed to 1,2dichloroethane by inhalation for four hours (<u>Dow Chemical, 2006</u>). The measured exposure concentrations (reported in units of ppm) were converted to units of mg/m³ and duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day. The concentration and response data used for the modeling are presented in Table 2-15. Dichotomous models were fit to the incidence data. A BMR of 10 percent ER was chosen according to EPA's BMD Technical Guidance (U.S. EPA, 2012).

Adjusted Concentration (mg/m ³)	Number of Animals	Incidence
0	5	0
132.5	5	4
410.0	5	5
1368.7	5	5

 Table 2-15. Incidence of Regeneration of the Olfactory Mucosa in Male Rats and Associated

 Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane

The BMD modeling results for increased incidence of regeneration of the olfactory mucosa in male rats are summarized in Table 2-16. All models provided adequate fit to the data (chi-square p-value > 0.1). The BMDL computations failed for the Dichotomous Hill and Log-Probit models because the lower limit included zero. The Gamma, Log-Logistic, Multistage 3-, 2-, and 1-degree, Weibull, and Quantal Linear models were questionable because the BMDL values were 10 times lower than the lowest non-zero concentration. The BMDLs of the remaining viable models (Logistic and Probit) were sufficiently close (differed by < 3-fold). Therefore, EPA chose the model with the lower AIC (Logistic).

This data set is not well suited for BMD modeling. There is a single datapoint (at 80 percent incidence) with incidence between 0 and 100 percent; there are no data to inform the shape of the curve at the region of interest (~ 10 percent). As a result, the different models provide a broad range of BMD and BMDL estimates, all of which in this case involve extrapolation below the range of observation to generate BMD estimates well below the lowest tested dose.

Model	Goodness of Fit		BMD	BMDL	
	p-value	AIC	10%ER (mg/m ³)	10%ER (mg/m ³)	Basis for Model Selection
Dichotomous Hill	0.9998	9.005	80.07	0	All models provided
Gamma	1.000	9.004	58.72	3.712	adequate fit to the data (chi- square p-value > 0.1);
Log-Logistic	0.9998	9.005	80.07	0.3723	however, the BMDL
Multistage 3	1.000	7.004	17.27	3.712	computations failed for the Dichotomous Hill and Log-
Multistage 2	1.000	7.004	33.90	3.712	Probit models because the
Multistage 1	0.9983	7.065	8.302	3.679	lower limit included zero. The Gamma, Log-Logistic,
Weibull	1.000	9.004	28.36	3.712	Multistage 3-, 2-, and
Logistic	0.9994	9.007	83.51	16.06	1-degree, Weibull, and Quantal Linear models were
Log-Probit	1.000	9.004	81.52	0	questionable because the
Probit	0.6397	10.43	30.47	14.20	BMDL values were 10 times lower than the lowest non-
Quantal Linear	0.9983	7.065	8.302	3.679	 NOTE: This data set is not well suited for BMD MOTE: This data set is not well suited for BMD modeling and the results should be interpreted with caution.

 Table 2-16. BMD Modeling Results for Regeneration of the Olfactory Mucosa in Male Rats

 Following a 4-Hour Inhalation Exposure to 1,2-Dichloroethane^a

A plot of the Logistic model with a BMR of 10 percent ER is shown in Figure 2-17. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-18.

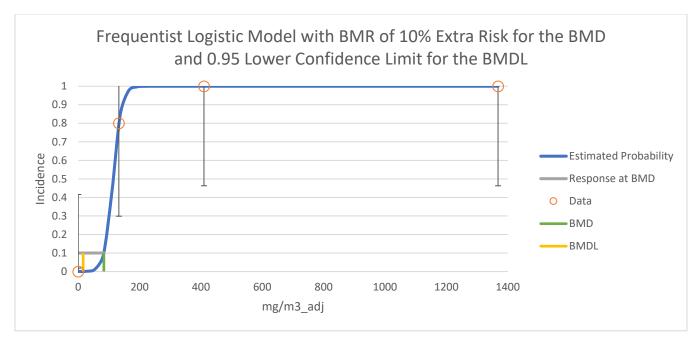


Figure 2-17. Plot of Response by Concentration with Fitted Curve for the Selected Model (Logistic) for Regeneration of the Olfactory Mucosa in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation for 4 Hours and BMR of 10%ER

Benchmark Dose					
BMD	83.50781438				
BMDL	16.05730006				
BMDU	105.6670162				
AIC	9.006521039				
P-value	0.999376363				
D.O.F.	2				
Chi ²	0.001247664				

Model Para	imeters			
# of Parameters	2			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
а	-8.295982925	1.11664204	-10.484561	-6.1074047
b	0.07306203	3.16E-07	0.07306141	0.07306265

Goodness of Fit					
Dose	Estimated Probability	Expected	Observed	Size	Scaled Residual
0	0.000249455	0.001247275	0	5	-0.035321
132.5	0.799750546	3.998752732	4	5	0.0013938
410	1	4.999999998	5	5	4.428E-05
1368.7	1	5	5	5	0

Analysis of Deviance					
Model	Log Likelihood	# of Parameters	Deviance	Test d.f.	P Value
Full Model	-2.502012118	4	-	-	NA
Fitted Model	-2.503260519	2	0.0024968	2	0.9987524
Reduced Model	-12.21728604	1	19.4305478	3	0.0002227

Figure 2-18. Details Regarding the Selected Model (Logistic) for Regeneration of the Olfactory Mucosa in Male Rats Following a 4-Hour Inhalation Exposure to 1,2-Dichloroethane

2.1.1.1.2.8 Regeneration of the Olfactory Mucosa in Female F344 Rats – 4-Hour Inhalation Exposure

Increased incidence of regeneration of the olfactory mucosa was observed in female rats exposed to 1,2dichloroethane by inhalation for four hours (<u>Dow Chemical, 2006</u>). The measured exposure concentrations (reported in units of ppm) were converted to units of mg/m³ and duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day. The concentration and response data used for the modeling are presented in Table 2-17. Dichotomous models were fit to the incidence data.

Adjusted Concentration (mg/m ³)	Number of Animals	Incidence
0	5	0
132.5	5	4
410.0	5	5
1368.7	5	5

 Table 2-17. Incidence of Regeneration of the Olfactory Mucosa in Female Rats and Associated

 Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane

The BMD modeling results for increased incidence of regeneration of the olfactory mucosa in female rats are summarized in Table 2-18. All models provided adequate fit to the data (chi-square p-value > 0.1). The BMDL computations failed for the Dichotomous Hill and Log-Probit models because the lower limit included zero. The Gamma, Log-Logistic, Multistage 3-, 2-, and 1-degree, Weibull, and Quantal Linear models were considered questionable because the BMDL values were 10 times lower than the lowest non-zero concentration. The BMDLs of the remaining models (Logistic and Probit) were sufficiently close (differed by < 3-fold). Therefore, EPA chose the model with the lower AIC (Logistic).

This data set is not well suited for BMD modeling; there is a single datapoint (at 80 percent incidence) with incidence between 0 and 100 percent; there are no data to inform the shape of the curve at the region of interest (~ 10 percent). As a result, the different models provide a broad range of BMD and BMDL estimates, all of which in this case involve extrapolation below the range of observation to generate BMD estimates well below the lowest tested dose.

	Goodn	ess of Fit	BMD	BMDL	
Model	p-value	AIC	10%ER (mg/m ³)	10%ER (mg/m ³)	Basis for Model Selection
Dichotomous Hill	0.9998	9.005	80.07	0	All models provided adequate fit to the data (chi-
Gamma	1.000	9.004	58.72	3.712	square p-value > 0.1); however, the BMDL
Log-Logistic	0.9998	9.005	80.07	0.3723	computations failed for the
Multistage 3	1.000	7.004	17.27	3.712	Dichotomous Hill and Log- Probit models because the
Multistage 2	1.000	7.004	33.90	3.712	lower limit included zero.
Multistage 1	0.9983	7.065	8.302	3.679	The Gamma, Log-Logistic, Multistage 3-, 2-, and
Weibull	1.000	9.004	28.36	3.712	1-degree, Weibull, and
Logistic	0.9994	9.007	83.51	16.06	Quantal Linear models were considered questionable
Log-Probit	1.000	9.004	81.52	0	because the BMDL values
Probit	0.6397	10.43	30.47	14.20	were 10 times lower than the lowest non-zero
Quantal Linear	0.9983	7.065	8.302	3.679	concentration. The BMDLs of the remaining viable models (Logistic and Probit) were sufficiently

 Table 2-18. BMD Modeling Results for Regeneration of the Olfactory Mucosa in Female Rats

 Following a 4-Hour Inhalation Exposure to 1,2-Dichloroethane^a

	Goodn	Goodness of Fit		BMDL	
Model	p-value	AIC	10%ER (mg/m ³)	10%ER (mg/m ³)	Basis for Model Selection
					close (differed by < 3-fold); therefore, EPA chose the model with the lower AIC.
					NOTE: This data set is not well suited for BMD modeling and the results should be interpreted with caution.
^a Selected model in b	oold.		•	•	•

A plot of the Logistic model with a BMR of 10 percent ER is shown in Figure 2-19. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-20.

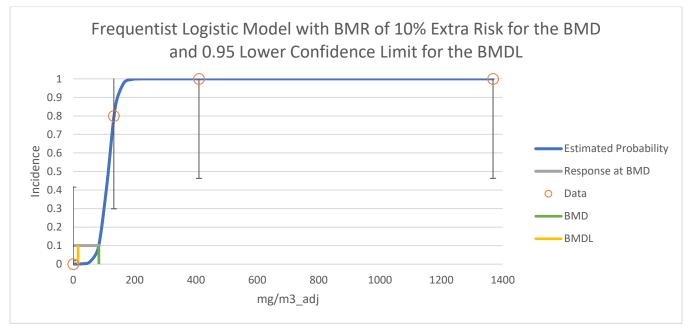


Figure 2-19. Plot of Response by Concentration with Fitted Curve for the Selected Model (Logistic) for Regeneration of the Olfactory Mucosa in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation for 4 Hours and BMR of 10%ER

Benchmark Dose				
BMD	83.50781438			
BMDL	16.05730006			
BMDU	105.6670162			
AIC	9.006521039			
P-value	0.99937543			
D.O.F.	2			
Chi ²	0.00124953			

Model Para	imeters			
# of Parameters	2			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
а	-8.295982925	1.11664204	-10.484561	-6.1074047
b	0.07306203	3.16E-07	0.07306141	0.07306265

Goodnes	s of Fit				
Dose	Estimated Probability	Expected	Observed	Size	Scaled Residual
0	0.000249455	0.001247275	0	5	-0.035321
132.5	0.799750546	3.998752732	4	5	0.0013938
410	1	4.999999998	5	5	4.428E-05
1368.7	1	5	5	5	0

Analysis of Deviance					
Model	Log Likelihood	# of Parameters	Deviance	Test d.f.	P Value
Full Model	-2.502012118	4	-	-	NA
Fitted Model	-2.503260519	2	0.0024968	2	0.9987524
Reduced Model	-12.21728604	1	19.428051	3	0.000223

Figure 2-20. Details Regarding the Selected Model (Logistic) for Regeneration of the Olfactory Mucosa in Female Rats Following a 4-Hour Inhalation Exposure to 1,2-Dichloroethane

2.1.1.1.2.9 Regeneration of the Olfactory Mucosa in Male and Female F344 Rats (Combined) – 4-Hour Inhalation Exposure

Increased incidence of regeneration of the olfactory mucosa was observed in male and female rats (combined) exposed to 1,2-dichloroethane by inhalation for four hours (<u>Dow Chemical, 2006</u>). The measured exposure concentrations (reported in units of ppm) were converted to units of mg/m³ and duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day. The concentration and response data used for the modeling are presented in Table 2-19. Dichotomous models were fit to the incidence data.

A BMR of 10 percent ER was chosen according to EPA's BMD Technical Guidance (U.S. EPA, 2012).

Table 2-19. Incidence of Regeneration of the Olfactory Mucosa in Male and Female Rats(Combined) and Associated Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane

Adjusted Concentration (mg/m ³)	Number of Animals	Incidence
0	10	0
132.5	10	8
410.0	10	10
1368.7	10	10

The BMD modeling results for increased incidence of regeneration of the olfactory mucosa in male rats are summarized in Table 2-20. All models provided adequate fit to the data (chi-square p-value > 0.1). The Dichotomous Hill, Gamma, Log-Logistic, Multistage 3-, 2-, and 1-degree, Weibull, Log-Probit, and Quantal Linear models were considered questionable because the BMDL values were 10 times lower than the lowest non-zero concentration. The BMDLs of the remaining models (Logistic and Probit) were sufficiently close (differed by < 3-fold). Therefore, EPA chose the model with the lower AIC (Logistic).

This data set is not well suited for BMD modeling; there is a single datapoint (at 80 percent incidence) with incidence between 0 and 100 percent; there are no data to inform the shape of the curve at the region of interest (~ 10 percent). As a result, the different models provide a broad range of BMD and BMDL estimates, all of which in this case involve extrapolation below the range of observation to generate BMD estimates well below the lowest tested dose.

	Goodn	ess of Fit	BMD	BMDL	
Model	p-value	AIC	10%ER (mg/m ³)	10%ER (mg/m ³)	Basis for Model Selection
Dichotomous Hill	0.9996	14.01	80.07	0.9633	All models provided
Gamma	1.000	14.01	58.72	4.706	adequate fit to the data (chi- square p-value > 0.1);
Log-Logistic	0.9996	14.01	80.07	0.9651	however, the Dichotomous
Multistage 3	1.000	12.01	17.27	4.706	Hill, Gamma, Log-Logistic, Multistage 3-, 2-, and
Multistage 2	1.000	12.01	33.90	4.706	1-degree, Weibull, Log-
Multistage 1	0.9954	12.13	8.302	4.645	Probit, and Quantal Linear models were considered
Weibull	1.000	14.01	28.36	4.706	questionable because the
Logistic	0.9988	14.01	83.51	23.18	BMDL values were 10 times lower than the lowest non-
Log-Probit	1.000	14.01	81.52	0.005232	zero concentration. The
Probit	0.4092	16.86	30.47	17.47	BMDLs of the remaining viable models (Logistic and
Quantal Linear	0.995	12.13	8.302	4.645	Probit) were sufficiently close (differed by < 3-fold); therefore, EPA chose the model with the lower AIC.

 Table 2-20. BMD Modeling Results for Regeneration of the Olfactory Mucosa in Male and Female

 Rats (Combined) Following a 4-Hour Inhalation Exposure to 1,2-Dichloroethane^a

	Goodness of Fit		BMD	BMDL		
Model	p-value	AIC	10%ER (mg/m ³)	10%ER (mg/m ³)	Basis for Model Selection	
					NOTE: This data set is not well suited for BMD modeling and the results should be interpreted with caution.	
^a Selected model in b	old.					

A plot of the Logistic model with a BMR of 10 percent ER is shown in Figure 2-21. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-22.

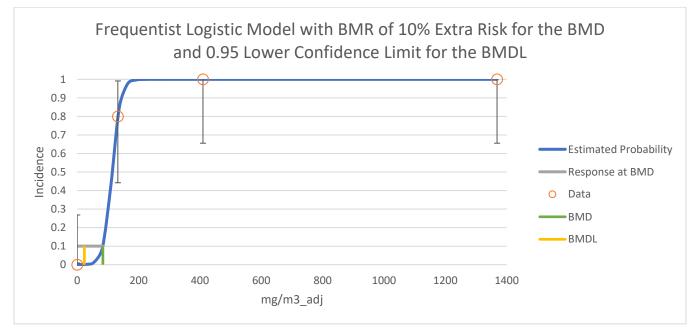


Figure 2-21. Plot of Response by Concentration with Fitted Curve for the Selected Model (Logistic) for Regeneration of the Olfactory Mucosa in Male and Female Rats (Combined) Exposed to 1,2-Dichloroethane Via Inhalation for 4 Hours and BMR of 10%ER

Benchmark Dose				
BMD	83.50781438			
BMDL	23.18348326			
BMDU	99.55849153			
AIC	14.01304208			
P-value	0.99875125			
D.O.F.	2			
Chi ²	0.002499061			

Model Para	ameters			
# of Parameters	2			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
а	-8.295982925	0.789585159	-9.8435414	-6.7484244
b	0.07306203	3.16E-07	0.07306141	0.07306265

Goodness	of Fit				
Dose	Estimated	Expected	Observed	Size	Scaled
Dose	Probability	LAPECIEU	Observed		Residual
0	0.000249455	0.002494549	0	10	-0.049952
132.5	0.799750546	7.997505465	8	10	0.0019712
410	1	9.999999996	10	10	6.262E-05
1368.7	1	10	10	10	0

Analysis of I	Deviance				
Model	Log Likelihood	# of Parameters	Deviance	Test d.f.	P Value
Full Model	-5.004024235	4	-	-	NA
Fitted Model	-5.006521039	2	0.00499361	2	0.9975063
Reduced Model	-24.43457208	1	38.8561021	3	< 0.0001

Figure 2-22. Details Regarding the Selected Model (Logistic) for Regeneration of the Olfactory Mucosa in Male and Female Rats (Combined) Following a 4-Hour Inhalation Exposure to 1,2-Dichloroethane

2.1.1.1.3 Hepatic Effects

Only one hepatic endpoint was identified for acute-duration inhalation exposure. EPA modeled serum L-iditol dehydrogenase levels in male mice exposed to 1,2-dichloroethane by inhalation for four hours (Storer et al., 1984). The modeling results are not presented because neither the constant nor nonconstant variance models provided adequate fit to the variance data.

2.1.1.1.4 Renal Effects

For acute inhalation exposure, EPA selected two renal endpoints for quantitative dose-response analysis with BMDS, including relative kidney weights and blood urea nitrogen (BUN) levels in serum following four-hour inhalation exposure in male mice (Storer et al., 1984). For both data sets, only data for the control and two lowest concentrations (0, 107, and 337 mg/m³) were modeled; high mortality (four of five and five of five) precluded collection of relevant data at the two highest tested concentrations (723.2

and 1313 mg/m³, respectively). EPA did not present the BMD modeling results for increased BUN in male mice because no model resulted in an adequate fit.

2.1.1.1.4.1 Relative Kidney Weight (Kidney Weight/100 g Body Weight) in Male B6C3F1 Mice – 4-Hour Inhalation Exposure

Relative kidney weight was significantly increased in male mice exposed to 1,2-dichloroethane by inhalation for four hours (Storer et al., 1984). The measured exposure concentrations (reported in units of ppm) were converted to units of mg/m³ and duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day. The concentration and response data used for the modeling are presented in Table 2-21. Continuous models were fit to the dose-response data.

A BMR of one SD was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). A BMR of 10 percent RD was also selected because EPA considers a 10 percent change in relative kidney weight to be biologically significant.

 Table 2-21. Increased Relative Kidney Weight in Male Mice and Associated Concentrations

 Selected for Dose-Response Modeling for 1,2-Dichloroethane from an Inhalation Exposure Study

Adjusted Concentration (mg/m ³)	Number of Animals	Mean (Kidney Weight/100 g Body Weight)	SD (Kidney Weight/100 g Body Weight)
0	5	1.53	0.07
107	5	1.53	0.08
337	5	1.71	0.09

The BMD modeling results for increased relative kidney weight in male mice are summarized in Table 2-22. The constant variance model provided an adequate fit to the variance data. With the constant variance model applied, only the Polynomial 2-degree and Linear models provided adequate fit to the means. The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC (Polynomial 2-degree model) was selected.

Mice Following Inhalation Exposure to 1,2-Dichloroethane (Constant Variance) ^a
whee Following initiation Exposure to 1,2-Demonocentate (Constant Variance)

Madal	Goodnes (Mea		BMD	BMDL	BMD	BMDL	Desig for Model Colortion
Model	Test 4 p-value	AIC	1SD (mg/m ³)	1SD (mg/m ³)	10%RD (mg/m ³)	10%RD (mg/m ³)	Basis for Model Selection
Exponential 3	NA	-28.40	319	107	334	213	Only the Polynomial
Exponential 5	NA	-26.40	205	160	221	113	2-degree and Linear models provided adequate
Hill	NA	-26.40	299	106	330	318	fit to the means (test 4 p-
Polynomial Degree 2	0.6765	-30.22	209	102	303	207	value > 0.1). The BMDLs were sufficiently close (differed by < 3-fold);
Power	NA	-28.40	319	105	334	211	therefore, EPA chose the
Linear	0.1691	-28.50	134	88.5	262	180	model with the lowest AIC.
^a Selected model	in bold.						

Plots of the Polynomial 2-degree model with BMRs of one SD and 10 percent RD are shown in Figure 2-23 and Figure 2-24, respectively. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-25 (BMD and BMDL shown are for BMR of one SD; the rest is applicable to both BMRs).

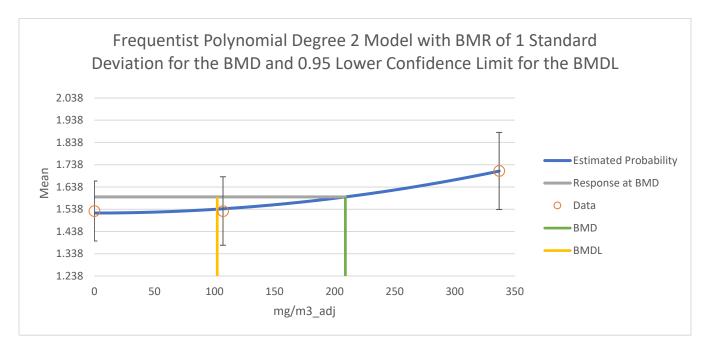


Figure 2-23. Plot of Response by Dose with Fitted Curve for the Selected Model (Polynomial 2-Degree) for Increased Relative Kidney Weight in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation for 4 Hours and BMR of 1SD (Constant Variance)

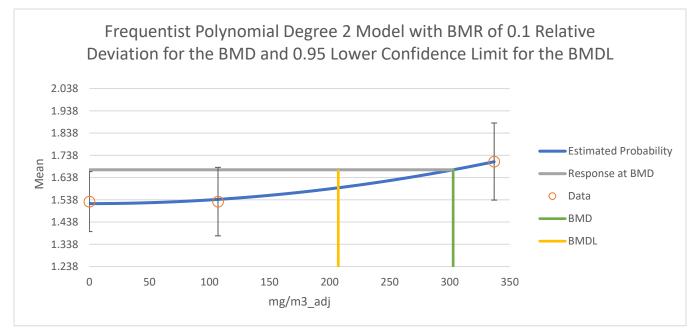


Figure 2-24. Plot of Response by Dose with Fitted Curve for the Selected Model (Polynomial 2-Degree) for Increased Relative Kidney Weight in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation for 4 Hours and BMR of 10%RD (Constant Variance)

Benchmark Dose						
208.9772425						
102.2542989						
285.9155546						
-30.22136297						
0.676535642						
1						

Model Parameters			
4			
Estimate	Std Error	Lower Conf	Upper Conf
1.520909738	2.41E-02	1.47361189	1.56820759
Bounded	NA	NA	NA
1.65792E-06	3.66E-07	9.4021E-07	2.3756E-06
0.005242334	1.00E-05	0.00522265	0.00526202
	4 Estimate 1.520909738 Bounded 1.65792E-06	4 Estimate Std Error 1.520909738 2.41E-02 Bounded NA 1.65792E-06 3.66E-07	4 Std Error Lower Conf 1.520909738 2.41E-02 1.47361189 Bounded NA NA 1.65792E-06 3.66E-07 9.4021E-07

Goodness	s of Fit							
Dasa	Size	Estimated	Calc'd	Observed	Estimated	Calc'd	Observed	Scaled
Dose	Dose Size Median	Median	Median	Mean	SD	SD	SD	Residual
0	5	1.520909738	1.53	1.53	0.07240397	0.07	0.07	0.280736593
107	5	1.539891291	1.53	1.53	0.07240397	0.08	0.08	-0.305474959
337	5	1.709198317	1.71	1.71	0.07240397	0.09	0.09	0.024758571

Likelihoods	of Interest		
		# of	
Model	Log Likelihood*	Parameters	AIC
A1	18.1977074	4	-28.395415
A2	18.35417009	6	-24.70834
A3	18.1977074	4	-28.395415
fitted	18.11068148	3	-30.221363
R	11.65750945	2	-19.315019

Tests o	f Interest		
	-2*Log(Likelihood		
Test	Ratio)	Test d.f.	p-value
1	13.39332127	4	0.0095056
2	0.312925375	2	0.85516343
3	0.312925375	2	0.85516343
4	0.174051828	1	0.67653564

Figure 2-25. Details Regarding the Selected Model (Polynomial 2-Degree) for Increased Relative Kidney Weight in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation for 4 Hours

2.1.1.2 Short-term/Intermediate

2.1.1.2.1 Mortality

Two short-term/intermediate-duration inhalation studies were identified that showed potentially treatment-related incidence of mortality in exposed animals (Igwe et al., 1986; Rao et al., 1980). Though neither data set showed a statistically significant increase, these data were modeled.

2.1.1.2.1.1 Mortality in Male Rats – 30-Day Inhalation Exposure

There was mortality in male rats exposed to 1,2-dichloroethane by inhalation for 30 days (seven hours per day, 5 days per week) (Igwe et al., 1986). The measured exposure concentrations (reported in units of ppm) were converted to units of mg/m³ and duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day and 7 days per week. The concentration and response data used for the modeling are presented in Table 2-23. Dichotomous models were fit to the dose-response data.

A BMR of 10 percent ER was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). BMRs of one and five percent ER were also selected due to severity of the endpoint.

Adjusted Concentration (mg/m ³)	Number of Animals	Incidence
0	30	0
129	12	0
256	12	1
383	12	2

 Table 2-23. Incidence of Mortality in Male Rats and Associated Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane from an Inhalation Exposure Study

The BMD modeling results for incidence of mortality are summarized in Table 2-24. All models provided adequate fit to the data (chi-square p-value > 0.1). The Dichotomous Hill and Log-Probit models were considered questionable/unusable at all attempted BMRs because the BMD/BMDL ratio was > 20 and the BMDL was > 10 times lower than the lowest non-zero concentration or the BMDL computation failed. At a BMR of 10 percent ER or five percent ER, the BMDLs of the remaining fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC was selected (Multistage 3-degree). At a BMR of one percent ER, there is much greater uncertainty because the BMR is well below anything observable in the data. As a result, there is greater spread in the BMDLs (> 3-fold) and additional models provided questionable results (Multistage 1-degree and Quantal Linear models) due to BMDL > 10 times lower than the lowest non-zero concentration. Because the BMDLs of remaining viable models differed by > 3-fold, the BMDS recommended the model with the lowest BMDL (Log-Logistic); however, the Multistage 3-degree model was a viable alternative and was selected to be consistent with model selection at 10 percent ER and five percent ER. There was little difference in BMD/BMDL values between the Multistage 3-degree and Log-Logistic models.

Model	Goodnes (Mea		BMD 1%ER	BMDL 1%ER	BMD 5%ER	BMDL 5%ER	BMD 10%ER	BMDL 10%ER	Basis for Model Selection
	p-value	AIC	(mg/m ³)	(mg/m ³)	(mg/m ³)	$\mathbf{m}^{3}) (\mathbf{mg/m^{3}})$	(mg/m ³)	(mg/m ³)	
Dichotomous Hill	1.000	21.70	220	0.0383	244	0.0428	262	1.42	All models provided adequate fit to the data (chi-square p-value > 0.1). The
Gamma	0.9055	31.97	145	14.9	239	75.8	304	156	Dichotomous Hill and Log-Probit models were considered questionable/unusable,
Log-Logistic	0.8976	22.00	138	13.7	238	71.2	305	150	however, at all attempted BMRs because
Multistage 3	0.9929	18.02	141	14.7	243	75.1	308	154	the BMD/BMDL ratio was > 20 and the BMDL was > 10 times lower than the
Multistage 2	0.9676	20.19	92.7	14.3	209	73.1	300	150	lowest non-zero concentration or the
Multistage 1	0.8614	20.95	29.1	12.8	149	65.4	305	134	BMDL computation failed. At BMR = 10 percent ER or five percent ER, the BMDLs of the fit models were sufficientl close (differed by < 3-fold); therefore, EP chose the model with the lowest AIC
Weibull	0.9727	20.02	136	14.7	239	75.1	307	154	
Logistic	0.7460	22.41	143	52.2	265	170	325	243	
Log-Probit	0.9254	21.91	151	0	236	0	300	0.0316	(Multistage 3-degree). At BMR = one
Probit	0.8109	22.21	143	47.7	255	158	316	230	percent ER, additional models provided questionable results (Multistage 1-degree and Quantal Linear models) due to BMDL > 10 times lower than the lowest non-zero concentration. The BMDLs of remaining viable models differed by > 3-fold and the BMDS recommended the model with the lowest BMDL (Log-Logistic); however, th Multistage 3-degree model was a viable alternative and was selected to be consisten with model selection at 10 percent ER and five percent ER.
Quantal Linear	0.8614	20.95	29.1	12.8	149	65.4	305	134	

Table 2-24. Summary of BMD Modeling Results for Incidence of Mortality in Male Rats Following Inhalation Exposure to 1,2-Dichloroethane^{*a*}

^{*a*} Selected model in bold.

Plots of the Multistage 3-degree model with BMRs of 10 percent, five percent, and one percent ER are shown in Figure 2-26, Figure 2-27, and Figure 2-28, respectively. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-29 (BMD and BMDL shown are for BMR of 10 percent ER; the rest is applicable to all BMRs).



Figure 2-26. Plot of Response by Dose with Fitted Curve for the Selected Model (Multistage 3-Degree) for Mortality in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation for 30 Days (Seven Hours per Day, 5 days per Week) and BMR of 10%ER

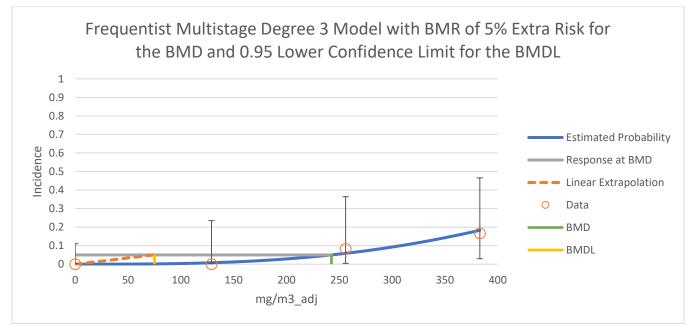


Figure 2-27. Plot of Response by Dose with Fitted Curve for the Selected Model (Multistage 3-Degree) for Mortality in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation for 30 Days (Seven Hours per Day, 5 days per Week) and BMR of 5%ER

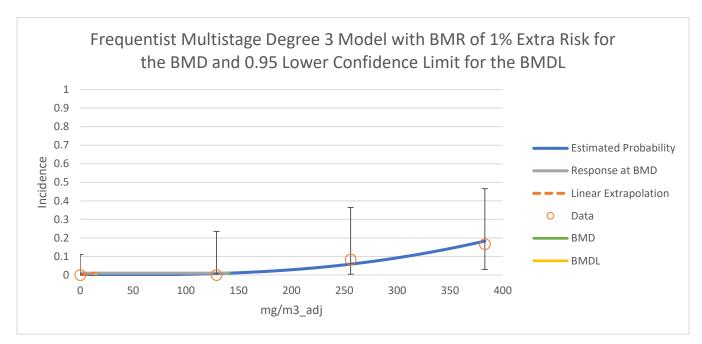


Figure 2-28. Plot of Response by Dose with Fitted Curve for the Selected Model (Multistage 3-Degree) for Mortality in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation for 30 Days (7n Hours per Day, 5 Days per Week) and BMR of 1%ER

Benchmark Dose						
BMD	308.342534					
BMDL	154.1950362					
BMDU	738.5150207					
AIC	18.0236136					
P-value	0.992913128					
D.O.F.	4					
Chi ²	0.248106117					
Slope Factor	0.000648529					

Model Para	ameters			
# of Parameters	4			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	Bounded	NA	NA	NA
b1	Bounded	NA	NA	NA
b2	Bounded	NA	NA	NA
b3	Bounded	NA	NA	NA

Goodness of Fit					
Dava	Estimated	Function	Observed	Cina	Scaled
Dose	Probability	Expected Observed		Size	Residual
0	1.523E-08	4.56899E-07	0	30	-0.000676
129	0.007685521	0.092226257	0	12	-0.304862
256	0.058515379	0.702184543	1	12	0.3662815
383	0.18283766	2.194051923	2	12	-0.144924

Analysis of Deviance					
Model	Log Likelihood	# of Parameters	Deviance	Test d.f.	P Value
Full Model	-8.848766303	4	-	-	NA
Fitted Model	-9.011806799	0	0.32608099	4	0.9880689
Reduced Model	-12.20388835	1	6.71024408	3	0.0817297

Figure 2-29. Details Regarding the Selected Model (Multistage 3-Degree) for Mortality in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation for 30 Days

2.1.1.2.1.2 Mortality in Female Rabbits – Inhalation Exposure on GD 6 to 18

There was mortality in female rabbits exposed to exposed to 1,2-dichloroethane by inhalation on GD 6 to 18 (seven hours per day) (Rao et al., 1980). The measured exposure concentrations (reported in units of ppm) were converted to units of mg/m³ and duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day. The concentration and response data used for the modeling are presented in Table 2-25. Dichotomous models were fit to the dose-response data.

A BMR of 10 percent ER was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). BMRs of one and five percent ER were also selected due to severity of the endpoint.

Adjusted Concentration (mg/m ³)	Number of Animals	Incidence
0	20	0
118	21	4
353	19	3

 Table 2-25. Incidence of Mortality in Female Rabbits and Associated Concentrations Selected for

 Dose-Response Modeling for 1,2-Dichloroethane from an Inhalation Exposure Study

The BMD modeling results for incidence of mortality are summarized in Table 2-26. All models provided adequate fit to the data (chi-square p-value > 0.1) except for the Logistic, Log-Probit, and Probit models. The Dichotomous Hill model was unusable because the BMDL computation failed (lower limit included zero). With BMRs of 10 percent or five percent ER applied, the BMDLs of the viable models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC (Log-Logistic) was selected. With a BMR of one percent ER applied, all models were considered questionable because the BMDLs (and in some cases the BMDs) were 10 times lower than the lowest non-zero concentration; no model was selected for the one percent ER BMR.

 Table 2-26. Summary of BMD Modeling Results for Incidence of Mortality in Female Rabbits

 Following Inhalation Exposure to 1,2-Dichloroethane Using BMR of 10%ER or 5%ER^a

Model	Goodnes (Mea		BMD 5%ER	BMDL 5%ER	BMD 10%ER	BMDL 10%ER	Basis for Model Selection
	p-value	AIC	(mg/m ³)	Selection			
Dichotomous Hill	0.7865	41.10	2.15E-06	0	7.17E-06	0	All models provided adequate fit to the data
Gamma	0.1759	41.94	65.9	34.8	135	71.6	(chi-square p-value > 0.1) except for the
Log-Logistic	0.2591	41.51	54.3	28.1	115	59.4	Logistic, Log-Probit,
Multistage 2	0.1963	41.90	61.5	34.9	126	71.8	and Probit models. The Dichotomous Hill
Multistage 1	0.1963	41.90	61.5	34.9	126	71.8	model was unusable
Weibull	0.1963	41.90	61.5	34.9	126	71.8	because the BMDL computation failed
Logistic	0.0537	45.64	170	97.6	286	167	(lower limit included
Log-Probit	_	_	_	_	_	_	zero). The BMDLs of the fit models were
Probit	0.0542	45.54	157	89.4	271	156	sufficiently close
Quantal Linear	0.1963	41.90	61.5	34.9	126	71.8	(differed by < 3-fold); therefore, EPA chose the model with the lowest AIC.
^a Selected model in	n bold.		-		-		•

Plots of the Log-Logistic model with BMRs of 10 percent and five percent ER are shown in Figure 2-30 and Figure 2-31, respectively. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-32 (BMD and BMDL shown are for BMR of 10 percent ER; the rest is applicable to all BMRs).

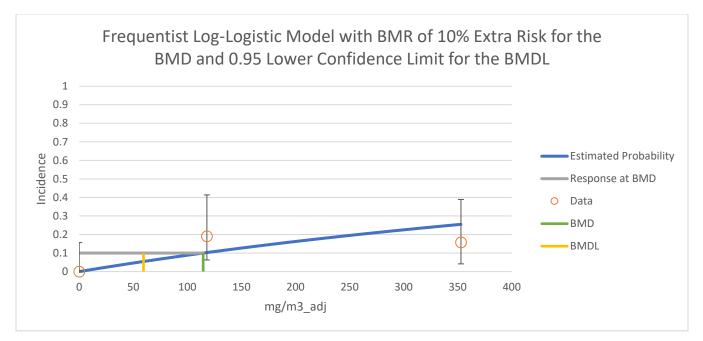


Figure 2-30. Plot of Response by Dose with Fitted Curve for the Selected Model (Log-Logistic) for Mortality in Female Rabbits Exposed to 1,2-Dichloroethane Via Inhalation on GD 6 to 18 (7 Hours per Day) and BMR of 10%ER

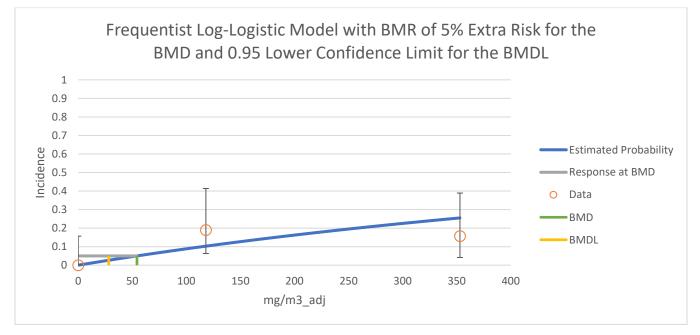


Figure 2-31. Plot of Response by Dose with Fitted Curve for the Selected Model (Log-Logistic) for Mortality in Female Rabbits Exposed to 1,2-Dichloroethane Via Inhalation on GD 6 to 18 (7 Hours per Day) and BMR of 5%ER

Benchmark Dose					
BMD	114.6125356				
BMDL	59.4154249				
BMDU	760.5776692				
AIC	41.51198247				
P-value	0.259131334				
D.O.F.	2				
Chi ²	2.700840529				

Model Para	ameters			
# of Parameters	3			
				Upper Conf
Variable	Estimate	Std Error	Lower Conf	Conf
g	Bounded	NA	NA	NA
а	-6.938781761	0.424700555	-7.7711796	-6.106384
b	Bounded	NA	NA	NA

Estimated	_		1	
Probability	Expected	Observed	Size	Scaled Residual
1.523E-08	3.046E-07	0	20	-0.000552
.102652196	2.155696122	4	21	1.3260451
.254963342	4.844303497	3	19	-0.970796
	1.523E-08 .102652196 .254963342	1.523E-083.046E-07.1026521962.155696122	1.523E-083.046E-070.1026521962.1556961224	1.523E-083.046E-07020.1026521962.155696122421

Analysis of Deviance					
Model	Log Likelihood	# of Parameters	Deviance	Test d.f.	P Value
Full Model	-18.51225108	3	-	-	NA
Fitted Model	-19.75599124	1	2.48748031	2	0.2883039
Reduced Model	-21.61383127	1	6.20316038	2	0.0449781

Figure 2-32. Details Regarding the Selected Model (Log-Logistic) for Mortality in Female Rabbits Exposed to 1,2-Dichloroethane Via Inhalation on GD 6 to 18 (7 Hours per Day)

2.1.1.2.2 Body Weight effects

Two short-term/intermediate-duration inhalation studies were identified for BMD modeling that showed significant changes in body weight (Zeng et al., 2018) or body weight gain (Igwe et al., 1986).

2.1.1.2.2.1 Body Weight in Male Mice – 28-Day Inhalation Exposure

Body weight was significantly decreased at week 4 in male mice exposed to 1,2-dichloroethane by inhalation for 28 days (6 hours per day, 7 days per week) (Zeng et al., 2018). The measured exposure concentrations were duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day, 7 days per week. The concentration and response data used for the modeling are presented in Table 2-27. Continuous models were fit to the dose-response data.

A BMR of one SD was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). A BMR of 10 percent RD was also selected because EPA considers a 10 percent change in body weight to be biologically significant.

 Table 2-27. Decreased Body Weight of Male Mice at Week 4 and Associated Concentrations

 Selected for Dose-Response Modeling for 1,2-Dichloroethane in a 28-Day Inhalation Exposure

 Study

Adjusted Concentration (mg/m ³)	Number of Animals	Mean (g)	SD (g)
0.068	10	39.85	0.83
90.895	10	38.80	1.08
182.78	10	35.68	0.94

The BMD modeling results for decreased body weight are summarized in Table 2-28. The constant variance model provided adequate fit to the variance data, but with this model applied, none of the available models provided adequate fit to the means (all except for the Linear model were saturated, with degree of freedom = 0). The nonconstant variance model also provided adequate fit to the variance data. With the nonconstant variance model applied, the Exponential 3, Polynomial 2-degree, and Linear models provided adequate fit to the means. The BMDLs for the fit models were sufficiently close (< 3-fold); therefore, the model with the lowest AIC (Exponential 3) was selected. The Exponential 3 and the Polynomial 2-degree model had identical goodness-of-fit statistics; BMDS recommended the Exponential 3 model.

Model	Goodnes (Mea		BMD 1SD	BMDL 1SD	BMD 10%RD	BMDL 10%RD	Basis for Model
Model	Test 4 p-value	AIC	(mg/m^3)	(mg/m^3)	(mg/m^3)	(mg/m^3)	Selection
Exponential 3	0.9116	87.24	84.480	57.281	178.52	162.78	BMDLs for the fit
Exponential 5	NA	89.24	84.489	57.313	178.51	98.30	models (Exponential 3,
Hill	NA	91.23	87.838	55.459	161.06	111.21	Polynomial 2-degree, and Linear models) were
Polynomial Degree 2	0.9116	87.24	84.336	53.975	178.64	163.92	sufficiently close (< 3- fold); therefore, EPA
Power	NA	89.24	84.437	56.727	178.64	163.15	chose the model with the
Linear	0.0237	92.72	44.945	35.028	175.95	148.16	lowest AIC.
^a Selected model in	n bold.						

 Table 2-28. Summary of BMD Modeling Results for Decreased Body Weight in Male Mice at

 Week 4 Following a 28-Day Inhalation Exposure to 1,2-Dichloroethane (Nonconstant Variance)^a

Plots of the Exponential 3 model with BMRs of one SD and 10 percent RD are shown in Figure 2-33 and Figure 2-34, respectively. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-35 (BMD and BMDL shown are for BMR of one SD; the rest is applicable to both BMRs).

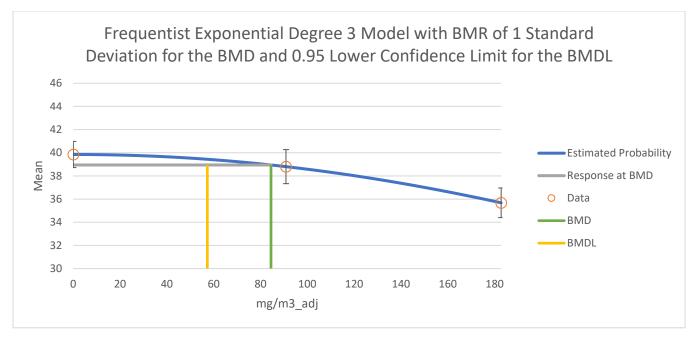


Figure 2-33. Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 3) for Decreased Body Weight in Male Mice at Week 4 Following a 28-Day Inhalation Exposure to 1,2-Dichloroethane and a BMR of 1SD (Nonconstant Variance)

Figure 2-34. Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 3) for Decreased Body Weight in Male Mice at Week 4 Following a 28-Day Inhalation Exposure to 1,2-Dichloroethane and a BMR of 10%RD (Nonconstant Variance)

Benchmark Dose					
BMD	84.4797913				
BMDL	57.28149371				
BMDU	122.8881893				
AIC	87.24381926				
Test 4 P-value	0.911550593				
D.O.F.	1				

Model Parameters			
5			
Estimate	Std Error	Lower Conf	Upper Conf
39.85000044	0.286645626	39.2881853	40.4118156
0.001852231	4.83E-04	0.0009047	0.00279976
2.0335034	5.03E-01	1.04725263	3.01975417
Bounded	NA	NA	NA
-0.19641642	2.58E-01	-0.7023586	0.3095258
	Estimate 39.85000044 0.001852231 2.0335034 Bounded	Estimate Std Error 39.85000044 0.286645626 0.001852231 4.83E-04 2.0335034 5.03E-01 Bounded NA	EstimateStd ErrorLower Conf39.850000440.28664562639.28818530.0018522314.83E-040.00090472.03350345.03E-011.04725263BoundedNANA

Goodness of Fit

Goodine	55 01 110							
Dose Size	Estimated	Calc'd	Observed	Estimated	Calc'd	Observed	Scaled	
Dose	5120	Median	Median	Mean	SD	SD	SD	Residual
0.068	10	39.84999997	39.85	39.85	0.90646015	0.83	0.83	9.10707E-08
90.895	10	38.8000002	38.8	38.8	0.90646015	1.08	1.08	-7.0194E-08
182.78	10	35.68000002	35.68	35.68	0.90646015	0.94	0.94	-5.25043E-08

Likelihoods	of Interest		
Model	Log Likelihood*	Parameters	AIC
A1	-39.62190963	4	87.2438193
A2	-39.27530885	6	90.5506177
A3	-39.61573992	5	89.2314798
fitted	-39.62190963	4	87.2438193
R	-63.20374602	2	130.407492

	1	
Interest		
-2*Log(Likelihood		
Ratio)	Test df	p-value
47.85687434	4	<0.0001
0.693201554	2	0.70708756
0.680862138	1	0.40929001
0.012339415	1	0.91155059
	-2*Log(Likelihood Ratio) 47.85687434 0.693201554 0.680862138	-2*Log(Likelihood Ratio) Test df 47.85687434 4 0.693201554 2 0.680862138 1

Figure 2-35. Details Regarding the Selected Model (Exponential 3) for Decreased Body Weight in Male Mice at Week 4 Exposed to 1,2-Dichloroethane Via Inhalation for 28 Days

2.1.1.2.2.2 Body Weight Gain in Male Rats – 30-Day Inhalation Exposure

Body weight gain was significantly decreased in male rats exposed to exposed to 1,2-dichloroethane by inhalation for 30 days (seven hours per day, 5 days per week) (Igwe et al., 1986). The measured exposure concentrations were duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day and 7 days per week. The concentration and response data used for the modeling are presented in Table 2-29. Continuous models were fit to the dose-response data.

A BMR of one SD was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). A BMR of 10 percent RD was also selected.

Table 2-29. Decreased Body Weight Gain of Male Rats and Associated Concentrations Selected
for Dose-Response Modeling for 1,2-Dichloroethane from a 30-Day Inhalation Exposure Study

Adjusted Concentration (mg/m ³)	Number of Animals	Mean (g)	SD (g)
0	30	190	37
129	12	194	20
256	11	170	32
383	10	147	24

The BMD modeling results for decreased body weight gain are summarized in Table 2-30. The constant variance model provided an adequate fit to the variance data. With the constant variance model applied, all models, except for the Hill model, provided adequate fit to the means (test 4 p-value > 0.1). The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC (Polynomial 2-degree) was selected.

Table 2-30. Summary of BMD Modeling Results for Decreased Body Weight Gain of Male Rats
Following Inhalation Exposure to 1,2-Dichloroethane for 30 Days (Constant Variance) ^a

Madal	Goodnes (Mea		BMD	BMDL	BMD	BMDL	Basis for Model
Model	Test 4 p-value	AIC	1SD (mg/m ³)	1SD (mg/m ³)	10%RD (ppm)	10%RD (ppm)	Selection
Exponential 3	0.4178	619.1	322	244	262	168	
Exponential 5	0.7034	618.5	265	243	254	177	All models, except for
Hill	NA	620.5	269	239	253	228	the Hill model, provided adequate fit to the
Polynomial Degree 3	0.6343	617.3	336	246	282	164	means (test 4 p-value > 0.1). The BMDLs for
Polynomial Degree 2	0.6688	617.2	317	248	250	166	the fit models were < 3- fold different; therefore, EPA chose the model
Power	0.3992	619.1	325	305	264	168	with the lowest AIC.
Linear	0.1894	619.7	306	209	188	134	
^a Selected model in	n bold.						

Plots of the Polynomial 2-degree model with BMRs of one SD and 10 percent RD are shown in Figure 2-36 and Figure 2-37, respectively. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-38 (BMD and BMDL shown are for BMR of one SD; the rest is applicable to both BMRs).

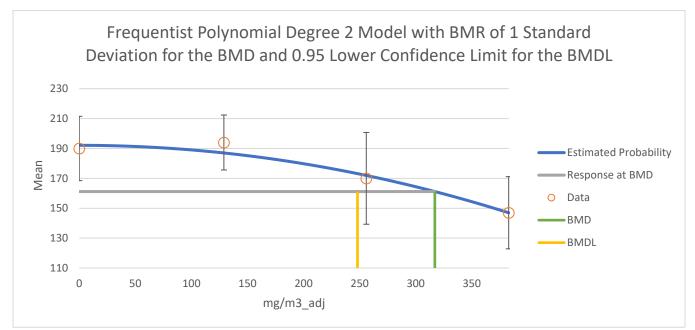


Figure 2-36. Plot of Response by Dose with Fitted Curve for the Selected Model (Polynomial 2-Degree) for Body Weight Gain in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation for 30 Days and BMR of 1SD (Constant Variance)

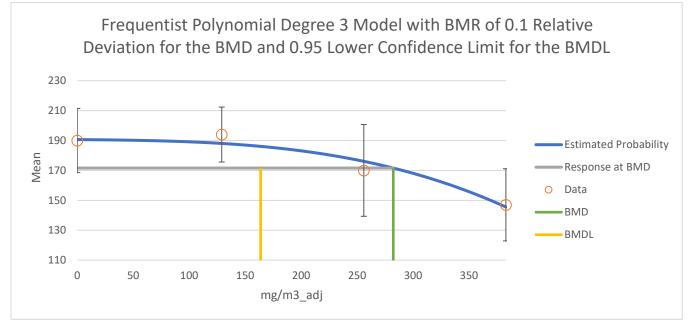


Figure 2-37. Plot of Response by Dose with Fitted Curve for the Selected Model (Polynomial 2-Degree) for Body Weight Gain in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation for 30 Days and BMR of 10%RD (Constant Variance)

Benchmark Dose						
BMD	317.080575					
BMDL	248.0936048					
BMDU	417.0049545					
AIC	617.2047371					
Test 4 P-value	0.668842162					
D.O.F.	2					

Model Pa	rameters			
# of Parameters	4			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	192.1048183	4.79868076	182.699577	201.51006
beta	Bounded	NA	NA	NA
beta2	-0.000307689	7.39E-05	-0.0004525	-0.0001629
alpha	956.9809221	1.63E+05	-318857.33	320771.297

Goodness	of Fit							
Dose	Size	Estimated	Calc'd	Observed	Estimated	Calc'd	Observed	Scaled
Dose	SIZE	Median	Median	Mean	SD	SD	SD	Residual
0	30	192.1048183	190	190	30.9351082	37	37	-0.37266928
129	12	186.984561	194	194	30.9351082	20	20	0.785586185
256	11	171.9400936	170	170	30.9351082	32	32	-0.208001943
383	10	146.9701855	147	147	30.9351082	24	24	0.003047727

Likelihoods	of Interest		
Model	Log Likelihood*	Parameters	AIC
A1	-305.2001614	5	620.400323
A2	-301.4914854	8	618.982971
A3	-305.2001614	5	620.400323
fitted	-305.6023685	3	617.204737
R	-313.2489895	2	630.497979

Tests of	Interest		
	-2*Log(Likelihood		
Test	Ratio)	Test df	p-value
1	23.51500828	6	0.00064112
2	7.417351949	3	0.0597205
3	7.417351949	3	0.0597205
4	0.804414355	2	0.66884216

Figure 2-38. Details Regarding the Selected Model (Polynomial 2-Degree) for Body Weight Gain in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation for 30 Days

2.1.1.2.3 Hepatic Effects:

EPA modeled both absolute and relative liver weight changes in male mice in a 28-day inhalation study (Zeng et al., 2018). Absolute liver weight in male mice, though not statistically significant, was increased by > 10 percent at both concentrations tested. Relative liver weight in male mice was increased by > 10 percent at both tested concentrations and reached statistical significance at the highest concentration. EPA also modeled statistically significant increases in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the male mice.

Modeled results for relative liver weight and serum liver enzyme levels from the <u>Zeng et al. (2018)</u> studies are presented. Results for absolute liver weight changes in male mice are not presented because neither the constant nor the nonconstant variance models provided adequate fit to the variance data.

EPA also modeled statistically significant metabolic changes in the liver, including increased liver concentrations of glycogen, triglycerides, and free fatty acids in male mice (Zeng et al., 2018). These results are not shown because, for each of these data sets, none of the models provided adequate fits to the data either assuming constant or nonconstant variance.

2.1.1.2.3.1 Relative Liver Weight in Male Mice – 28-Day Inhalation Exposure

Relative liver weight was significantly increased in male mice exposed to 1,2-dichloroethane by inhalation for 28 days (6 hours per day, 7 days per week) (Zeng et al., 2018). The measured exposure concentrations were duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day, 7 days per week. The concentration and response data used for the modeling are presented in Table 2-31. Continuous models were fit to the dose-response data.

A BMR of one SD was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). A BMR of 10 percent RD was also selected because EPA considers a 10 percent change in relative liver weight to be biologically significant.

Adjusted Concentration (mg/m ³)	Number of Animals	Mean (Liver/Body Weight Ratio)	SD (Liver/Body Weight Ratio)
0.068	10	4.38	0.30
90.895	10	5.14	0.46
182.78	10	5.59	0.46

Table 2-31. Relative Liver Weight in Male Mice and Associated Concentrations Selected for Dose-
Response Modeling for 1,2-Dichloroethane from a 28-Day Inhalation Exposure Study

The BMD modeling results for increased relative liver weight are summarized in Table 2-32. The constant variance model provided an adequate fit to the variance data. With the constant variance model applied, all models, except for the Exponential 5 and Hill models, provided adequate fit to the means (test 4 p-value > 0.1). The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC was selected. The Power model converged on the Linear model and these had the lowest AIC; the Linear model was selected as the more parsimonious choice.

Table 2-32. Summary of BMD Modeling Results for Increased Relative Liver Weight in Male						
Mice Following Inhalation Exposure to 1,2-Dichloroethane for 28 Days (Constant Variance) ^{<i>a</i>}						
Model	Goodness of Fit (Means)	BMD 1SD	BMDL 1SD	BMD 10%RD	BMDL 10%RD	Basis for Model Selection

. .

	(Ivitalis)		16D 16D		100/ DD 100/ DD		Basis for Model	
Model	Test 4 p-value	AIC	1SD (mg/m ³)	1SD (mg/m ³)	10%RD (mg/m ³)	10%RD (mg/m ³)	Selection	
Exponential 3	0.2069	36.60	66.637	51.379	73.314	58.420	All models, except for	
Exponential 5	NA	37.00	40.867	20.758	46.314	22.869	the Exponential 5 and Hill models, provided	
Hill	NA	39.00	56.026	15.337	59.981	16.927	adequate fit to the means	
Polynomial Degree 2	0.3012	36.0735	60.246	45.510	66.752	51.726	(test 4 p-value > 0.1). Among the fit models, BMDLs differed by < 3- fold; the Linear model	
Power	0.3013	36.0730	60.345	45.508	66.968	51.720		
Linear	0.3013	36.0730	60.345	45.508	66.968	51.720	was selected based on the lowest AIC.	
^a Selected model in	^a Selected model in bold.							

Plots of the Linear model with BMRs of one SD and 10 percent RD are shown in Figure 2-39 and Figure 2-40, respectively. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-41 (BMD and BMDL shown are for BMR of one SD; the rest is applicable to both BMRs).

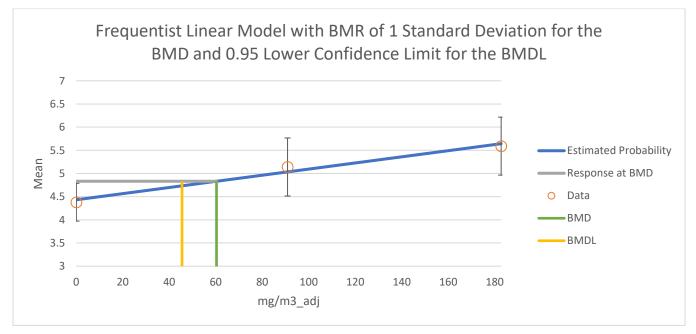


Figure 2-39. Plot of Response by Dose with Fitted Curve for the Selected Model (Linear) for Increased Relative Liver Weight in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation for 28 Days and BMR of 1SD (Constant Variance)

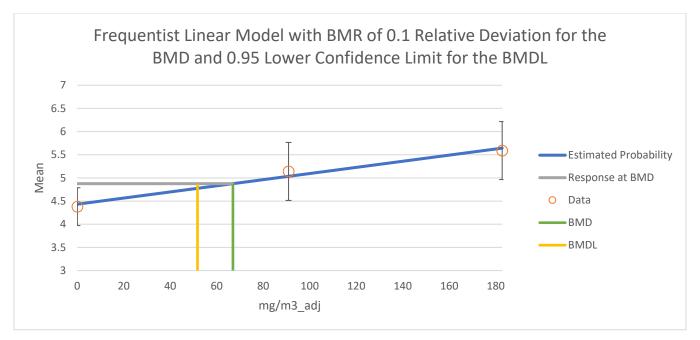


Figure 2-40. Plot of Response by Dose with Fitted Curve for the Selected Model (Linear) for Increased Relative Liver Weight in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation for 28 Days and BMR of 10%RD (Constant Variance)

Benchmark Dose				
BMD	60.34484029			
BMDL	45.50823313			
BMDU	88.69790107			
AIC	36.07303736			
Test 4 P-value	0.301262139			
D.O.F.	1			

Model Pa	rameters			
# of Parameters	3			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	4.432689666	0.115222371	4.20685797	4.65852137
beta	0.006619095	9.78E-04	0.00470294	0.00853525
alpha	0.15954289	6.57E-03	0.14666168	0.1724241

Goodness	of Fit							
Dose	Size	Estimated	Calc'd	Observed	Estimated	Calc'd	Observed	Scaled
Dose	SIZE	Median	Median	Mean	SD	SD	SD	Residual
0.068	10	4.433139765	4.38	4.38	0.3994282	0.3	0.3	-0.420708124
90.895	10	5.034332331	5.14	5.14	0.3994282	0.46	0.46	0.836572145
182.78	10	5.6425279	5.59	5.59	0.3994282	0.46	0.46	-0.415863983

Likelihoods	of Interest		
		# of	
Model	Log Likelihood*	Parameters	AIC
A1	-14.50221924	4	37.0044385
A2	-13.41744443	6	38.8348889
A3	-14.50221924	4	37.0044385
fitted	-15.03651868	3	36.0730374
R	-28.94761589	2	61.8952318

Tests o	of Interest		
	-2*Log(Likelihood		
Test	Ratio)	Test df	p-value
1	31.06034292	4	< 0.0001
2	2.169549619	2	0.33797789
3	2.169549619	2	0.33797789
4	1.068598887	1	0.30126214

Figure 2-41. Details Regarding the Selected Model (Linear) for Relative Liver Weight Increases in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation for 28 Days

2.1.1.2.3.2 Serum ALT in Male Mice – 28-Day Inhalation Exposure

Serum ALT levels were significantly increased in male mice exposed to 1,2-dichloroethane by inhalation for 28 days (6 hours per day, 7 days per week) (Zeng et al., 2018). The measured exposure

concentrations were duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day, 7 days per week. The concentration and response data used for the modeling are presented in Table 2-33. Continuous models were fit to the dose-response data.

A BMR of one SD was chosen according to EPA's BMD Technical Guidance (U.S. EPA, 2012).

 Table 2-33. Serum ALT in Male Mice and Associated Concentrations Selected for Dose-Response

 Modeling for 1,2-Dichloroethane from a 28-Day Inhalation Exposure Study

Adjusted Concentration (mg/m ³)	Number of Animals	Mean (U/L)	SD (U/L)
0.068	10	34.80	2.78
90.895	10	50.40	8.06
182.78	10	65.20	7.45

The BMD modeling results for increased serum ALT are summarized in Table 2-34. The constant variance model did not provide adequate fit to the variance data, but the nonconstant variance model did. With the nonconstant variance model applied, the Polynomial 2-degree, Power, and Linear models provided adequate fit to the means (test 4 p-value > 0.1). The BMDLs for the fit models were sufficiently close (< 3-fold); therefore, the model with the lowest AIC (Linear Model) was selected.

Table 2-34. Summary of BMD Modeling Results for Increased Serum ALT in Male MiceFollowing Inhalation Exposure to 1,2-Dichloroethane for 28 Days (Nonconstant Variance)^a

Madal		ess of Fit eans)	BMD 1SD BMDL 1SD		Desig for Model Selection	
Model	Test 4 p- value	AIC	(mg/m ³)	(mg/m ³)	Basis for Model Selection	
Exponential 3	0.0657	198.7	27.148	18.025		
Exponential 5	NA	199.3	18.907	7.8091	The Polynomial 2-degree, Power, and	
Hill	NA	199.3	31.175	7.0150	Linear models provided adequate fit	
Polynomial Degree 2	0.4543	195.8730	18.715	12.621	to the means (test 4 p-value > 0.1). The BMDLs for the fit models differed by < 3-fold; therefore, EPA	
Power	0.4535	195.8752	18.607	12.620	chose the model with the lowest AIC	
Linear	0.4543	195.8729	18.705	12.620		
^a Selected model	in bold.					

A plot of the Linear model with a BMR of one SD is shown in Figure 2-42. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-43.

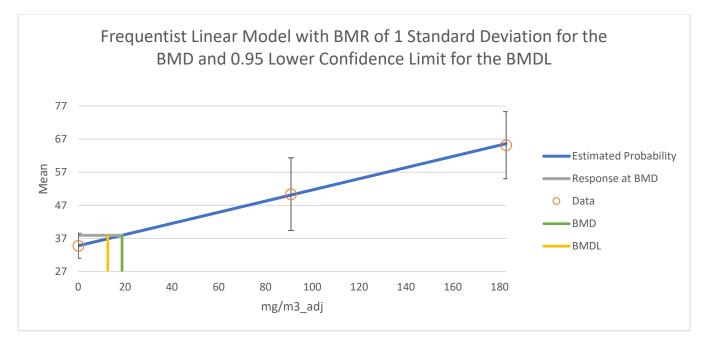


Figure 2-42. Plot of Response by Dose with Fitted Curve for the Selected Model (Linear) for Increased Serum ALT in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation for 28 Days and BMR of 1SD (Nonconstant Variance)

Benchmark Dose				
BMD	18.70544198			
BMDL	12.62045044			
BMDU	30.11786611			
AIC	195.8729428			
Test 4 P-value	0.454349562			
D.O.F.	1			

Model Parameters				
# of Parameters	4			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	34.80093952	0.977490421	32.8850935	36.7167856
beta	0.16873094	0.014569002	0.14017622	0.19728566
rho	3.377393896	1.243700214	0.93978625	5.81500154
alpha	6.19107E-05	1.85E-08	6.1874E-05	6.1947E-05

Goodness o	of Fit							
Dose	Size	Estimated	Calc'd	Observed	Estimated	Calc'd	Observed	Scaled
Dose	3120	Median	Median	Mean	SD	SD	SD	Residual
0.068	10	34.81241322	34.8	34.8	3.15794416	2.78	2.78	-0.012430257
90.895	10	50.13773829	50.4	50.4	5.84717017	8.06	8.06	0.141836875
182.78	10	65.64158069	65.2	65.2	9.21610491	7.45	7.45	-0.151517454

Likelihoods	of Interest		
		# of	
Model	Log Likelihood*	Parameters	AIC
A1	-97.31179356	4	202.623587
A2	-92.16353343	6	196.327067
A3	-93.65658221	5	197.313164
fitted	-93.93647138	4	195.872943
R	-121.4712012	2	246.942402

Tests of	f Interest		
	-2*Log(Likelihood		
Test	Ratio)	Test df	p-value
1	58.61533564	4	< 0.0001
2	10.29652026	2	0.0058095
3	2.986097556	1	0.08398233
4	0.559778352	1	0.45434956

Figure 2-43. Details Regarding the Selected Model (Linear) for Increased Serum ALT in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation for 28 Days

2.1.1.2.3.3 Serum AST in Male Mice – 28-Day Inhalation Exposure

Serum AST levels were significantly increased in male mice exposed to 1,2-dichloroethane by inhalation for 28 days (6 hours per day, 7 days per week) (Zeng et al., 2018). The measured exposure

concentrations were duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day, 7 days per week. The concentration and response data used for the modeling are presented in Table 2-35. Continuous models were fit to the dose-response data.

A BMR of one SD was chosen according to EPA's BMD Technical Guidance (U.S. EPA, 2012).

 Table 2-35. Serum AST in Male Mice and Associated Concentrations Selected for Dose-Response

 Modeling for 1,2-Dichloroethane from a 28-Day Inhalation Exposure Study

Adjusted Concentration (mg/m ³)	Number of Animals	Mean (U/L)	SD (U/L)
0.068	10	137.30	9.09
90.895	10	182.30	8.82
182.78	10	231.80	18.09

The BMD modeling results for increased serum AST are summarized in Table 2-36. The constant variance model did not provide adequate fit to the variance data, but the nonconstant variance model did. With the nonconstant variance model applied, the Exponential 3 and Linear models provided adequate fit to the means (test 4 p-value > 0.1). The BMDLs for the fit models were sufficiently close (< 3-fold); therefore, the model with the lowest AIC (Linear model) was selected.

Madal	Goodnes (Mea		BMD 1SD	BMDL 1SD	Desig for Model Colortion		
Model	Test 4 p-value	AIC	(mg/m ³)	(mg/m ³)	Basis for Model Selection		
Exponential 3	0.3721	238.3	19.271	14.286	The Europential 2 and Lincon		
Exponential 5	NA	241.5	34.809	11.861	The Exponential 3 and Linear models provided adequate fit to		
Hill	NA	241.5	28.918	11.976	the means (test 4 p-value > 0.1). The BMDLs for the fit		
Polynomial Degree 2	NA	239.5	16.812	11.559	models differed by < 3 -fold;		
Power	NA	239.5	18.264	11.562	therefore, EPA chose the model with the lowest AIC.		
Linear	0.5631	237.8	15.370	11.360	with the lowest AIC.		
^{<i>a</i>} Selected model in bold.	^{<i>a</i>} Selected model in bold.						

Table 2-36. Summary of BMD Modeling Results for Increased Serum AST in Male MiceFollowing Inhalation Exposure to 1,2-Dichloroethane for 28 Days (Nonconstant Variance)^a

A plot of the Linear model with a BMR of one SD is shown in Figure 2-44. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-45.

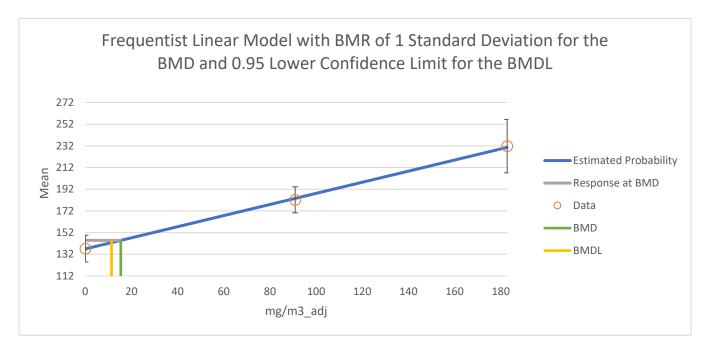


Figure 2-44. Plot of Response by Dose with Fitted Curve for the Selected Model (Linear) for Increased Serum AST in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation for 28 Days and BMR of 1SD (Nonconstant Variance)

Benchmark Dose				
BMD	15.37039918			
BMDL	11.35979052			
BMDU	22.23350808			
AIC	237.8188306			
Test 4 P-value	0.563122068			
D.O.F.	1			

Model Pa	rameters			
# of Parameters	4			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	136.9827797	2.397347299	132.284065	141.681494
beta	0.512404641	2.81E-02	0.45735724	0.56745205
rho	2.562173101	1.12E+00	0.37562471	4.7487215
alpha	0.000208012	2.51E-07	0.00020752	0.0002085

Goodness	of Fit							
Dose	Size	Estimated	Calc'd	Observed	Estimated	Calc'd	Observed	Scaled
Dose	5120	Median	Median	Mean	SD	SD	SD	Residual
0.068	10	137.0176232	137.3	137.3	7.87843043	9.09	9.09	0.113341577
90.895	10	183.5577996	182.3	182.3	11.4586407	8.82	8.82	-0.347118969
182.78	10	230.6401001	231.8	231.8	15.3521135	18.09	18.09	0.238919918

Likelihoods	of Interest		
		# of	
Model	Log Likelihood*	Parameters	AIC
A1	-117.3531051	4	242.70621
A2	-113.783309	6	239.566618
A3	-114.7422517	5	239.484503
fitted	-114.9094153	4	237.818831
R	-153.5664702	2	311.13294

[*] Log(Likelihood Ratio)	Test df	p-value
Ratio)	Test df	n-value
		praide
79.56632236	4	< 0.0001
7.139592092	2	0.0281616
1.917885267	1	0.16608997
0.334327285	1	0.56312207
	7.139592092 1.917885267	7.139592092 2 1.917885267 1

Figure 2-45. Details Regarding the Selected Model (Linear) for Increased Serum AST in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation for 28 Days

2.1.1.2.4 Reproductive Effects

Reproductive endpoints from a short-term/intermediate inhalation study were identified for BMD modeling (Zhang et al., 2017). EPA did not present the BMD modeling results for abnormalities in the sperm head, abnormalities in sperm body, or total sperm abnormalities because there were no adequately fit models with either the constant or nonconstant variance models. Although the Hill model provided adequate fit to data for abnormalities in sperm tail (with nonconstant variance applied), the results are not presented because the BMD/BMDL ratio was greater than 10 and the BMDL was more than three times lower than the lowest dose tested.

2.1.1.2.4.1 Sperm Concentration in Male Mice – 4-Week Inhalation Exposure

Sperm concentration was significantly decreased in male mice exposed to 1,2-dichloroethane by inhalation for four weeks (6 hours per day, 7 days per week) (Zhang et al., 2017). The measured exposure concentrations were duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day, 7 days per week. The concentration and response data used for the modeling are presented in Table 2-37. Continuous models were fit to the dose-response data.

A BMR of one SD was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). A BMR of five percent RD was also selected because EPA considers a five percent change in sperm concentration to be biologically relevant. In some strains of rats and mice, production of normal sperm can be reduced by up to 90% or more without compromising fertility (Working, 1988; Robaire et al., 1984; Meistrich et al., 1982; Aafjes et al., 1980). However, less severe reductions can cause reduced fertility in human males who appear to function closer to the threshold for the number of normal sperm needed to ensure full reproductive competence. This difference between test species and humans suggests that results from a test species may not fully represent toxicity in humans due to chemical exposure.

Adjusted Concentration (mg/m ³)	Number of Animals	Mean (M/g)	SD (M/g)
0.075	10	4.65	0.52
25.675	10	4.36	0.40
89.010	10	3.89	0.47
176.75	10	3.30	0.57

Table 2-37. Sperm Concentration in Male Mice and Associated Concentrations Selected for Dose-
Response Modeling for 1,2-Dichloroethane from a 4-Week Inhalation Exposure Study

The BMD modeling results for decreased sperm concentration are summarized in Table 2-38. The constant variance model provided adequate fit to the variance data. With the constant variance model applied, all models provided adequate fit to the means (test 4 p-value > 0.1). The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC (Exponential 3) was selected.

Model	Goodness of Fit (Means)		BMD	BMDL 1SD	BMD 5%RD	BMDL 5%RD	Basis for Model
	Test 4 p-value	AIC	1SD (mg/m ³)	(mg/m^3)	(mg/m^3)	(mg/m^3)	Selection
Exponential 3	0.9453	59.00	55.847	41.335	26.735	21.240	All models provided
Exponential 5	0.7855	60.96	51.913	26.379	24.578	12.196	adequate fit to the means (test 4 p-value
Hill	0.7929	60.95	51.506	23.774	24.276	10.475	> 0.1). The BMDLs for
Polynomial Degree 3	0.8432	59.23	64.002	48.238	31.202	25.351	the fit models were < 3- fold different; therefore, EPA chose
Polynomial Degree 2	0.8484	59.21	62.561	48.259	30.564	25.353	the model with the lowest AIC.
Power	0.8494	59.21	62.986	48.252	30.748	25.351	
Linear	0.8494	59.21	62.986	48.252	30.748	25.351	
^{<i>a</i>} Selected model in bold.							

 Table 2-38. Summary of BMD Modeling Results for Decreased Sperm Concentration in Male

 Mice Following Inhalation Exposure to 1,2-Dichloroethane for 4 Weeks (Constant Variance)^a

Plots of the Exponential 3 model with a BMR of one SD and five percent RD are shown in Figure 2-46 and Figure 2-47, respectively. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-48. (BMD and BMDL shown are for BMR of one SD; the rest is applicable to both BMRs).

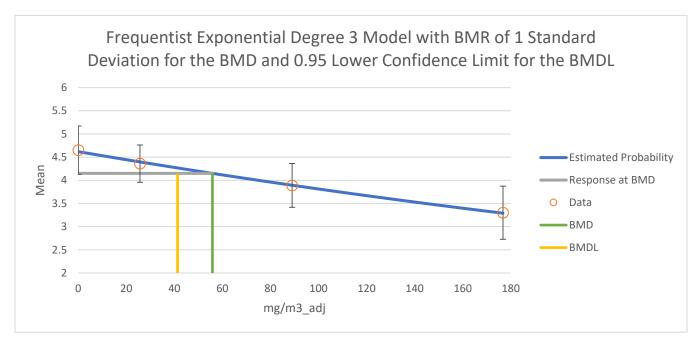


Figure 2-46. Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 3) for Decreased Sperm Concentration in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation for 4 Weeks and BMR of 1SD (Constant Variance)

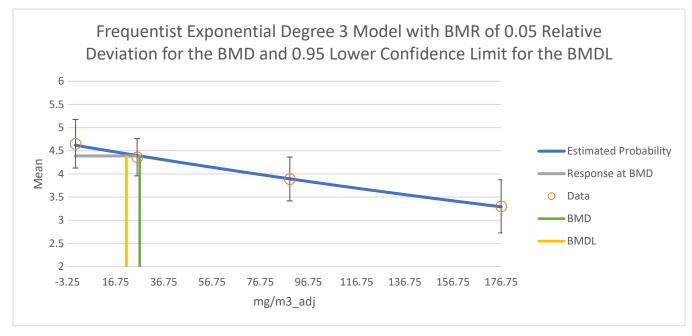


Figure 2-47. Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 3) for Decreased Sperm Concentration in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation for 4 Weeks and BMR of 5%RD (Constant Variance)

Benchmark Dose					
BMD	55.84663409				
BMDL	41.33515229				
BMDU	100.8093304				
AIC	58.99784667				
Test 4 P-value	0.945316531				
D.O.F.	2				

Model Pa	rameters			
# of Parameters	4			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
а	4.618972239	0.113350836	4.39680868	4.8411358
b	0.001918616	2.92E-04	0.00134608	0.00249115
d	Bounded	NA	NA	NA
log-alpha	-1.512930902	2.24E-01	-1.9511885	-1.0746734

Goodness of Fit

Goodiicaa o								
Dose	Size	Estimated	Calc'd	Observed	Estimated	Calc'd	Observed	Scaled
Dose	3120	Median	Median	Mean	SD	SD	SD	Residual
0.075	10	4.618307635	4.65	4.65	0.46932234	0.52	0.52	0.213542059
25.675	10	4.396952797	4.36	4.36	0.46932234	0.4	0.4	-0.248986667
89.01	10	3.893841526	3.89	3.89	0.46932234	0.47	0.47	-0.025884069
176.75	10	3.29055696	3.3	3.3	0.46932234	0.57	0.57	0.063626873

Likelihoods	of Interest		
		# of	
Model	Log Likelihood*	Parameters	AIC
A1	-26.44268788	5	62.8853758
A2	-25.776744	8	67.553488
A3	-26.44268788	5	62.8853758
fitted	-26.49892334	3	58.9978467
R	-42.10709522	2	88.2141904

Tests of	Interest		
-2*Log(Likelihood			
Test	Ratio)	Test df	p-value
1	32.66070244	6	< 0.0001
2	1.331887768	3	0.7215753
3	1.331887768	3	0.7215753
4	0.112470908	2	0.94531653

Figure 2-48. Details Regarding the Selected Model (Exponential 3) for Decreased Sperm Concentration in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation for 4 Weeks

2.1.1.2.4.2 Diameter of Seminiferous Tubules in Male Mice – 4-Week Inhalation Exposure

The diameter of seminiferous tubules was significantly decreased in male mice exposed to 1,2dichloroethane by inhalation for four weeks (6 hours per day, 7 days per week) (Zhang et al., 2017). The measured exposure concentrations were duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day, 7 days per week. The concentration and response data used for the modeling are presented in Table 2-39. Continuous models were fit to the dose-response data.

A BMR of one SD was chosen according to EPA's BMD Technical Guidance (U.S. EPA, 2012).

Table 2-39. Diameter of Seminiferous Tubules in Male Mice and Associated ConcentrationsSelected for Dose-Response Modeling for 1,2-Dichloroethane from a 4-Week Inhalation ExposureStudy

Adjusted Concentration (mg/m ³)	Number of Animals	Mean (µm)	SD (µm)
0.075	5	249	29.3
25.675	5	236	28.2
89.010	5	180	19.2
176.75	5	100	11.3

The BMD modeling results for decreased diameter of seminiferous tubules are summarized in Table 2-40. The constant variance model provided adequate fit to the variance data. With the constant variance model applied, the Exponential 3, Power, and Linear models provided adequate fit to the means (test 4 p-value > 0.1). The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC (Linear) was selected.

Table 2-40. Summary of BMD Modeling Results for Decreased Diameter of Seminiferous Tubules
n Male Mice Following Inhalation Exposure to 1,2-Dichloroethane for 4 Weeks (Constant
Variance) ^a

Madal	Goodness of Fit (Means)		BMD 1SD	BMDL 1SD	De de for Medal Colorfor
Model	Test 4 p-value	AIC	(mg/m ³)	(mg/m ³)	Basis for Model Selection
Exponential 3	0.9424	186.0	37.039	20.640	
Exponential 5	NA	188.0	37.039	20.640	The Exponential 3, Power, and
Hill	NA	189.0	81.915	16.819	Linear models provided adequate fit to the means (test 4
Polynomial Degree 3	NA	188.3	28.539	19.113	p-value > 0.1). BMDLs differed
Polynomial Degree 2	0.0353	190.5	64.600	63.257	by < 3-fold; therefore, EPA chose the model with the lowest
Power	0.7415	186.1	31.371	19.242	AIC.
Linear	0.7447	184.6	24.471	18.815	
^{<i>a</i>} Selected model in bold.					

A plot of the Linear model with a BMR of one SD is shown in Figure 2-49. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-50.

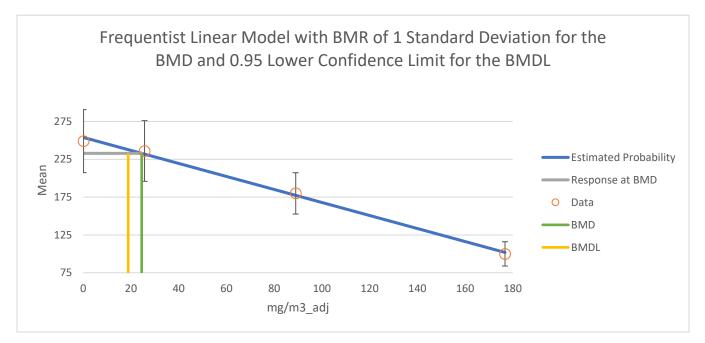


Figure 2-49. Plot of Response by Dose with Fitted Curve for the Selected Model (Linear) for Decreased Diameter of Seminiferous Tubules in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation for 4 Weeks and BMR of 1SD (Constant Variance)

Benchmark Dose					
BMD	24.47144499				
BMDL	18.81509191				
BMDU	34.10427505				
AIC	184.6234089				
Test 4 P-value	0.744678566				
D.O.F.	2				

Model Parameters				
# of Parameters	3			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	253.9223097	6.889545669	240.419048	267.425571
beta	-0.85996788	6.90E-02	-0.9953008	-0.724635
alpha	442.8775746	6.20E+04	-121124.09	122009.843

Goodness	of Fit							
Dose	Size	Estimated	Calc'd	Observed	Estimated	Calc'd	Observed	Scaled
Dose	3120	Median	Median	Mean	SD	SD	SD	Residual
0.075	5	253.8578122	249	249	21.0446567	29.3	29.3	-0.51615944
25.675	5	231.8426344	236	236	21.0446567	28.2	28.2	0.441734553
89.01	5	177.3765688	180	180	21.0446567	19.2	19.2	0.278748693
176.75	5	101.922987	100	100	21.0446567	11.3	11.3	-0.20432406

Likelihoods	of Interest		
		# of	
Model	Log Likelihood*	Parameters	AIC
A1	-89.01690182	5	188.033804
A2	-86.63044764	8	189.260895
A3	-89.01690182	5	188.033804
fitted	-89.31170443	3	184.623409
R	-111.0087441	2	226.017488

Tests of	f Interest		
-2*Log(Likelihood			
Test	Ratio)	Test df	p-value
1	48.75659293	6	< 0.0001
2	4.772908345	3	0.18920143
3	4.772908345	3	0.18920143
4	0.589605219	2	0.74467857

Figure 2-50. Details Regarding the Selected Model (Linear) for Decreased Diameter of Seminiferous Tubules in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation for 4 Weeks

2.1.1.2.4.3 Height of Germinal Epithelium in Male Mice – 4-Week **Inhalation Exposure**

The height of germinal epithelium was significantly decreased in male mice exposed to 1,2dichloroethane by inhalation for four weeks (6 hours per day, 7 days per week) (Zhang et al., 2017). The measured exposure concentrations were duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day, 7 days per week. The concentration and response data used for the modeling are presented in Table 2-41. Continuous models were fit to the dose-response data.

A BMR of one SD was chosen according to EPA's BMD Technical Guidance (U.S. EPA, 2012).

Table 2-41. Height of Germinal Epithelium in Male Mice and Associated Concentrations Selected						
for Dose-Response Modeling for 1,2-Dichloroethane from a 4-Week Inhalation Exposure Study						

Adjusted Concentration (mg/m ³)	Number of Animals	Mean (µm)	SD (µm)
0.075	5	100	8.2
25.675	5	90	9.4
89.010	5	52	8.2
176.75	5	30	5.9

The BMD modeling results for decreased height of germinal epithelium are summarized in Table 2-42. The constant variance model provided adequate fit to the variance data. With the constant variance model applied, only the Exponential 3 model provided adequate fit to the means (test 4 p-value > 0.1); therefore, this model was selected.

Table 2-42. Summary of BMD Modeling Results for Decreased Height of Germinal Epithelium in
Male Mice Following Inhalation Exposure to 1,2-Dichloroethane for 4 Weeks (Constant
Variance) ^a

Model	Goodness of Fit (Means)		BMD 1SD	BMDL 1SD	Basis for Model
	Test 4 p- value	AIC	(mg/m ³)	(mg/m ³)	Selection
Exponential 3	0.1184	146.0	13.975	8.6304	
Exponential 5	NA	145.6	20.581	10.711	Only the Exponential 3 model provided
Hill	NA	145.6	20.977	11.178	
Polynomial Degree 3	< 0.0001	168.0	71.926	70.452	adequate fit to the means (test 4 p-value
Polynomial Degree 2	0.0022	152.9	22.452	17.037	> 0.1); therefore, this
Power	0.0010	150.8	22.172	17.118	model was selected.
Linear	0.0010	150.8	22.172	17.118	
^{<i>a</i>} Selected model in bold.			·	•	·

A plot of the Exponential 3 model with a BMR of one SD is shown in Figure 2-51. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-52.

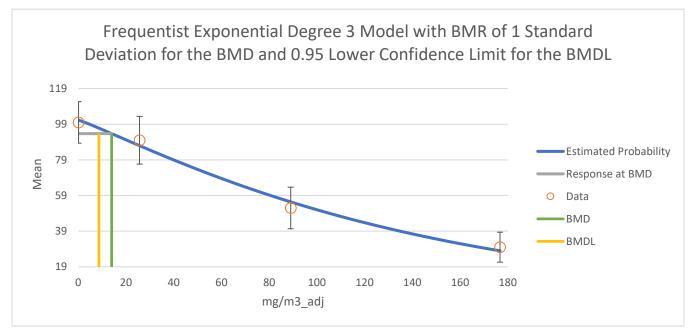


Figure 2-51. Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 3) for Decreased Height of Germinal Epithelium in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation for 4 Weeks and BMR of 1SD (Constant Variance)

Benchmark Dose					
BMD	13.97510463				
BMDL	8.630430863				
BMDU	25.05659301				
AIC	146.0395411				
Test 4 P-value	0.118373042				
D.O.F.	1				

Model Pa	rameters			
# of Parameters	4			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
а	101.3424129	3.217463633	95.0363	107.648526
b	0.007113595	5.18E-04	0.00609928	0.00812791
d	1.103577087	1.41E-01	0.82721977	1.3799344
log-alpha	4.064099969	3.16E-01	3.44430945	4.68389048

Goodness of Fit

Sizo	Estimated	Calc'd	Observed	Estimated	Calc'd	Observed	Scaled
3120	Median	Median	Mean	SD	SD	SD	Residual
5	101.3176446	100	100	7.62971113	8.2	8.2	-0.386167039
5	86.95185553	90	90	7.62971113	9.4	9.4	0.893331102
5	55.40096565	52	52	7.62971113	8.2	8.2	-0.996733724
5	27.96627608	30	30	7.62971113	5.9	5.9	0.596031076
	Size 5 5 5 5	Size Estimated Median 5 101.3176446 5 86.95185553 5 55.40096565	Size Estimated Median Calc'd Median 5 101.3176446 100 5 86.95185553 90 5 55.40096565 52	Size Estimated Median Calc'd Median Observed Mean 5 101.3176446 100 100 5 86.95185553 90 90 5 55.40096565 52 52	Size Estimated Median Calc'd Median Observed Mean Estimated SD 5 101.3176446 100 100 7.62971113 5 86.95185553 90 90 7.62971113 5 55.40096565 52 52 7.62971113	Size Estimated Median Calc'd Median Observed Mean Estimated SD Calc'd SD 5 101.3176446 100 100 7.62971113 8.2 5 86.95185553 90 90 7.62971113 9.4 5 55.40096565 52 52 7.62971113 8.2	Size Estimated Median Calc'd Median Observed Mean Estimated SD Calc'd SD Observed SD 5 101.3176446 100 100 7.62971113 8.2 8.2 5 86.95185553 90 90 7.62971113 9.4 9.4 5 55.40096565 52 52 7.62971113 8.2 8.2

Likelihoods	of Interest		
		# of	
Model	Log Likelihood*	Parameters	AIC
A1	-67.80041229	5	145.600825
A2	-67.26698689	8	150.533974
A3	-67.80041229	5	145.600825
fitted	-69.01977056	4	146.039541
R	-95.87257757	2	195.745155

Tests of	fInterest		
Test	-2*Log(Likelihood Ratio)	Test df	p-value
1	57.21118136	6	<0.0001
2	1.066850786	3	0.78508185
3	1.066850786	3	0.78508185
4	2.438716552	1	0.11837304

Figure 2-52. Details Regarding the Selected Model (Exponential 3) for Decreased Height of Germinal Epithelium in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation for 4 Weeks

2.1.1.2.4.4 Number of Apoptotic Cells in the Testis in Male Mice – 4-Week Inhalation Exposure

The number of apoptotic cells in the testis was significantly increased in male mice exposed to 1,2dichloroethane by inhalation for four weeks (6 hours per day, 7 days per week) (Zhang et al., 2017). The measured exposure concentrations were duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day, 7 days per week. The concentration and response data used for the modeling are presented in Table 2-43. Continuous models were fit to the dose-response data.

A BMR of one SD was chosen according to EPA's BMD Technical Guidance (U.S. EPA, 2012).

Adjusted Concentration (mg/m ³)	Number of Animals	Mean	SD
0.075	5	169	108
25.675	5	207	160
89.010	5	273	198
176.75	5	400	216

 Table 2-43. Number of Apoptotic Cells in Male Mice and Associated Concentrations Selected for

 Dose-Response Modeling for 1,2-Dichloroethane from a 4-Week Inhalation Exposure Study

The BMD modeling results for increased number of apoptotic cells are summarized in Table 2-44. The constant variance model provided an adequate fit to the variance data. With the constant variance model applied, all models, except for the Exponential 5 and Hill models, provided adequate fit to the means (test 4 p-value > 0.1). The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC (Linear) was selected.

Table 2-44. Summary of BMD Modeling Results for Increased Number of Apoptotic Cells in Male
Mice Following Inhalation Exposure to 1,2-Dichloroethane for 4 Weeks (Constant Variance) ^a

Model	Goodness of Fit (Means)		BMD 1SD	BMDL 1SD	Basis for Model Selection
Widder	Test 4 p-value	AIC	(mg/m^3)	(mg/m ³)	Dasis for Model Selection
Exponential 3	0.9847	265.019	137.37	98.972	
Exponential 5	NA	269.009	127.39	87.083	All models, except for the
Hill	NA	269.016	127.36	23.227	Exponential 5 and Hill models, provided adequate fit to the
Polynomial Degree 3	0.9605	265.068	112.45	71.178	means (test 4 p-value > 0.1).
Polynomial Degree 2	0.9054	267.002	128.54	71.734	BMDLs differed by < 3-fold; therefore, EPA chose the model
Power	0.8850	267.009	127.39	71.487	with the lowest AIC.
Linear	0.9852	265.018	122.18	71.431	
^{<i>a</i>} Selected model in bold.					

A plot of the Linear model with a BMR of one SD is shown in Figure 2-53. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-54.

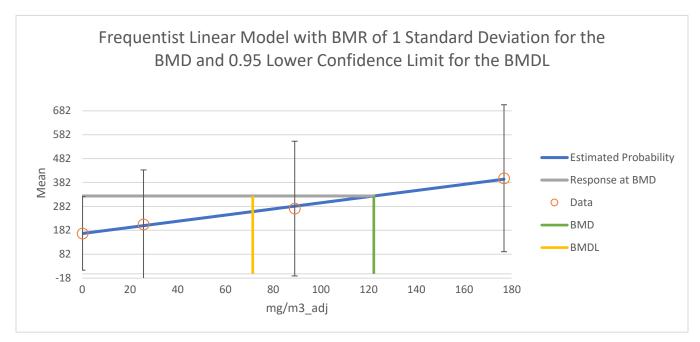


Figure 2-53. Plot of Response by Dose with Fitted Curve for the Selected Model (Linear) for Increased Number of Apoptotic Cells in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation for 4 Weeks and BMR of 1SD (Constant Variance)

Benchmark Dose					
BMD	122.1802163				
BMDL	71.4305637				
BMDU	417.429177				
AIC	265.0175897				
Test 4 P-value	0.985180162				
D.O.F.	2				

Model Pa	rameters			
# of Parameters	3			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	168.5794306	51.40667943	67.8241895	269.334672
beta	1.285315329	0.515232602	0.27547798	2.29515268
alpha	24661.59453	192327488.6	-376930292	376979615

Goodness	of Fit							
Dose	Size	Estimated	Calc'd	Observed	Estimated	Calc'd	Observed	Scaled
Dose	5120	Median	Median	Mean	SD	SD	SD	Residual
0.075	5	168.6758292	169	169	157.040105	108	108	0.004615814
25.675	5	201.5799016	207	207	157.040105	160	160	0.077175881
89.01	5	282.985348	273	273	157.040105	198	198	-0.142179712
176.75	5	395.7589149	400	400	157.040105	216	216	0.060388106

Likelihoo	ds of Interest		
		# of	
Model	Log Likelihood*	Parameters	AIC
A1	-129.4938641	5	268.987728
A2	-128.2515876	8	272.503175
A3	-129.4938641	5	268.987728
fitted	-129.5087949	3	265.01759
R	-132.2176673	2	268.435335

Tests o	of Interest		
-2*Log(Likelihood			
Test	Ratio)	Test df	p-value
1	7.9321595	6	0.24311574
2	2.484553103	3	0.47808915
3	2.484553103	3	0.47808915
4	0.029861498	2	0.98518016

Figure 2-54. Details Regarding the Selected Model (Linear) for Increased Number of Apoptotic Cells in Male Mice Exposed to 1,2-Dichloroethane Via Inhalation for 4 Weeks

2.1.1.3 Chronic

2.1.1.3.1 Hepatic Effects

EPA identified hepatic endpoints in a chronic inhalation study for BMD modeling (IRFMN, 1978). Modeling results are presented for increased serum lactate dehydrogenase (LDH) levels in female rats. Modeled results are not presented for serum LDH levels in male rats or serum ALT or cholesterol levels in male or female rats because neither the constant nor nonconstant variance models provided adequate fit to the variance data or because none of the models provided adequate fits to the means (test 4 p-value < 0.1) assuming either constant or nonconstant variance.

2.1.1.3.1.1 LDH Levels in Female Sprague-Dawley Rats – 12-Month Inhalation Exposure

Serum LDH levels were significantly increased in female rats exposed to 1,2-dichloroethane by inhalation for 12 months (seven hours per day, 5 days per week) (<u>IRFMN, 1978</u>). The exposure concentrations (reported in ppm) were converted to units of mg/m³ and duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day and 7 days per week. The concentration and response data used for the modeling are presented in Table 2-45. Continuous models were fit to the dose-response data.

A BMR of one SD was chosen according to EPA's BMD Technical Guidance (U.S. EPA, 2012).

Adjusted Concentration (mg/m ³)	Number of Animals	Mean (mU/mL)	SD (mU/mL)
0	8	617.50	47.12
4	8	682.50	78.15
8.3	8	700.00	81.40
42	8	770.00	51.28
126	8	705.00	91.81

Table 2-45. Increased LDH Levels in Female Rats and Associated Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane from a 12-Month Inhalation Exposure Study

The BMD modeling results for increased serum LDH levels in female rats are summarized in Table 2-46. The constant variance model provided an adequate fit to the variance data. With the constant variance model applied, only the Exponential 5 model provided adequate fit to the means (test 4 p-value > 0.1); therefore, this model was selected.

Table 2-46. Summary of BMD Modeling Results for Increased LDH Levels in Female Rats Following Inhalation Exposure to 1,2-Dichloroethane for 12 Months (Constant Variance)^{*a*}

Mahl	Goodness of Fit (Means)		BMD 1SD	BMDL			
Model	Test 4 p-value	AIC	1SD (mg/m ³)	1SD (mg/m ³)	Basis for Model Selection		
Exponential 3	0.0019	471.3	210	100			
Exponential 5	0.1563	462.2	5.5	1.7			
Hill	0.0007	472.8	210	210	Only the Exponential 5 model		
Polynomial Degree 3	0.0020	471.2	210	96	provided adequate fit to the means (test 4 p-value > 0.1); therefore, this		
Polynomial Degree 2	0.0020	471.2	210	96	model was selected.		
Power	0.0020	471.2	210	96			
Linear	0.0020	471.2	210	96			
^{<i>a</i>} Selected model in bold.							

A plot of the Exponential 5 model with a BMR of one SD is shown in Figure 2-55. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-56.

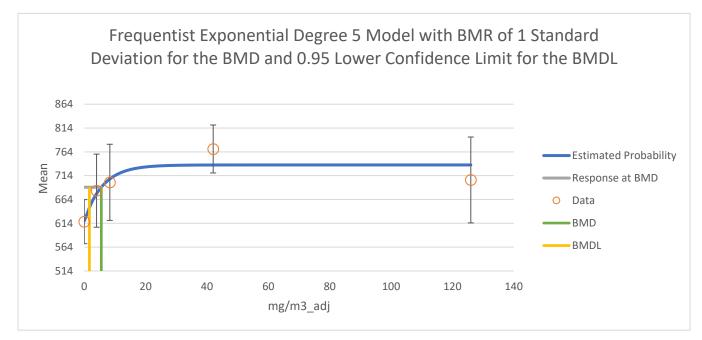


Figure 2-55. Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 5) for Increased LDH Levels in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months and BMR of 1SD (Constant Variance)

Benchmark Dose						
BMD	5.542740664					
BMDL	1.66153532					
BMDU	Infinity					
AIC	462.1616961					
Test 4 P-value	0.156276737					
D.O.F.	2					

rameters			
5			
Estimate	Std Error	Lower Conf	Upper Conf
619.0800415	24.60242104	570.860182	667.299901
0.166171746	9.54E-02	-0.0207616	0.35310507
1.18966716	4.58E-02	1.09996	1.27937432
Bounded	NA	NA	NA
8.516165337	2.24E-01	8.07790512	8.95442556
	5 Estimate 619.0800415 0.166171746 1.18966716 Bounded	5 Estimate Std Error 619.0800415 24.60242104 0.166171746 9.54E-02 1.18966716 4.58E-02 Bounded NA	5 Estimate Std Error Lower Conf 619.0800415 24.60242104 570.860182 0.166171746 9.54E-02 -0.0207616 1.18966716 4.58E-02 1.09996 Bounded NA NA

Goodness of Fit

Dose	Size	Estimated	Calc'd	Observed	Estimated	Calc'd	Observed	Scaled
Dose	3120	Median	Median	Mean	SD	SD	SD	Residual
0	8	619.0800415	617.5	617.5	70.6743473	47.12	47.12	-0.063234151
4	8	676.094728	682.5	682.5	70.6743473	78.15	78.15	0.256342587
8.3	8	706.9361662	700	700	70.6743473	81.4	81.4	-0.277589271
42	8	736.3898734	770	770	70.6743473	51.28	51.28	1.345096167
126	8	736.4991947	705	705	70.6743473	91.81	91.81	-1.260615487

Likelihood	s of Interest		
		# of	
Model	Log Likelihood*	Parameters	AIC
A1	-225.2247211	6	462.449442
A2	A2 -222.6287127		465.257425
A3	-225.2247211	6	462.449442
fitted	-227.080848	4	462.161696
R	-233.6433119	2	471.286624

Test	Tests of Interest		
-2*Log(Likelihood			
Test	Ratio)	Test df	p-value
1	22.0291984	8	0.00486206
2	5.192016838	4	0.26815665
3	5.192016838	4	0.26815665
4	3.712253773	2	0.15627674

Figure 2-56. Details Regarding the Selected Model (Exponential 5) for Increased LDH Levels in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months

2.1.1.3.2 Renal Effects

EPA identified renal endpoints in a chronic inhalation study for BMD modeling (IRFMN, 1978). Modeled results are presented for BUN and serum potassium levels in male and female rats and serum calcium levels in male rats. Modeled results are not presented for serum calcium in female rats or serum uric acid in male or female rats (IRFMN, 1978) because neither the constant nor nonconstant variance models provided adequate fit to the variance data or because none of the models provided adequate fits to the means (test 4 p-value < 0.1) assuming either constant or nonconstant variance.

2.1.1.3.2.1 Blood Urea Nitrogen (BUN) Levels in Male Sprague-Dawley Rats – 12-Month Inhalation Exposure

Serum BUN levels were significantly increased in male rats exposed to 1,2-dichloroethane by inhalation for 12 months (seven hours per day, 5 days per week) (IRFMN, 1978). The exposure concentrations (reported in ppm) were converted to units of mg/m³ and duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day and 7 days per week. The concentration and response data used for the modeling are presented in Table 2-47. Continuous models were fit to the dose-response data.

A BMR of one SD was chosen according to EPA's BMD Technical Guidance (U.S. EPA, 2012).

Adjusted Concentration (mg/m ³)	Number of Animals	Mean (mg%)	SD (mg%)
0	8	10.29	0.82
4	8	11.00	1.50
8.3	8	10.25	1.27
42	8	10.63	1.41
126	8	15.50	2.06

Table 2-47. BUN Levels in Male Rats and Associated Concentrations Selected for Dose-Response
Modeling for 1,2-Dichloroethane from a 12-Month Inhalation Exposure Study

The BMD modeling results for increased serum BUN levels in male rats are summarized in Table 2-48. The constant variance model provided an adequate fit to the variance data. With the constant variance model applied, all models, except for the Linear model, provided adequate fit to the means (test 4 p-value > 0.1). The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC (Polynomial 3-degree) was selected.

Table 2-48. Summary of BMD Modeling Results for Increased BUN Levels in Male Rats
Following Inhalation Exposure to 1,2-Dichloroethane for 12 Months (Constant Variance) ^{<i>a</i>}

Model	Goodness of Fit (Means)		BMD 1SD	BMDL	Basis for Model Selection	
Model	Test 4 p-value	AIC	(mg/m^3)	1SD (mg/m ³)	Dasis for Woder Selection	
Exponential 3	0.4759	148.3	89	50		
Exponential 5	0.2232	150.3	52	43	All models, except for the Linear	
Hill	0.2232	150.3	68	43	model, provided adequate fit to the	
Polynomial Degree 3	0.6821	146.4	82	50	means (test 4 p-value > 0.1). BMDLs for the fit models differed by < 3 -	
Polynomial Degree 2	0.5522	147.0	67	47	fold; therefore, EPA chose the model	
Power	0.4760	148.3	87	50	with the lowest AIC.	
Linear	0.0473	152.8	38	30		
^{<i>a</i>} Selected model in bold.						

A plot of the Polynomial 3-degree model with a BMR of one SD is shown in Figure 2-57. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-58.

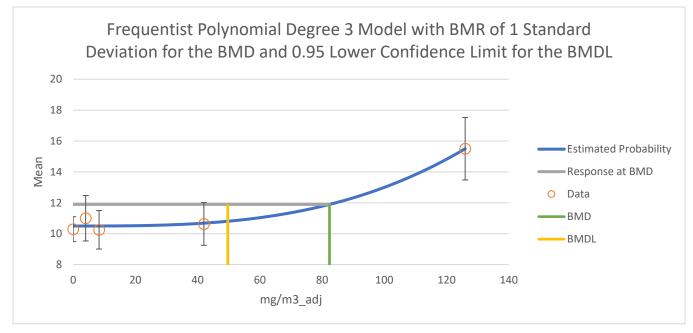


Figure 2-57. Plot of Response by Dose with Fitted Curve for the Selected Model (Polynomial 3-Degree) for Increased BUN Levels in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months and BMR of 1SD (Constant Variance)

Benchmark Dose					
BMD	82.38167775				
BMDL	49.68477751				
BMDU	90.9704127				
AIC	146.3563545				
Test 4 P-value	0.682130008				
D.O.F.	3				

Model Parameters			
5			
Estimate	Std Error	Lower Conf	Upper Conf
10.49575203	0.249598752	10.0065475	10.9849566
Bounded	NA	NA	NA
Bounded	NA	NA	NA
2.5017E-06	2.79E-07	1.9552E-06	3.0482E-06
1.956385162	8.56E-01	0.27882579	3.63394453
	5 Estimate 10.49575203 Bounded Bounded 2.5017E-06	5 Estimate Std Error 10.49575203 0.249598752 Bounded NA Bounded NA 2.5017E-06 2.79E-07	5 Estimate Std Error Lower Conf 10.49575203 0.249598752 10.0065475 Bounded NA NA Bounded NA NA 2.5017E-06 2.79E-07 1.9552E-06

Goodness o	of Fit							
Dose	Size	Estimated	Calc'd	Observed	Estimated SD	Calc'd	Observed	Scaled
Dose	5120	Median	Median	Mean	Estimated SD	SD	SD	Residual
0	8	10.49575203	10.29	10.29	1.39870839	0.82	0.82	-0.416065723
4	8	10.49591214	11	11	1.39870839	1.5	1.5	1.019351707
8.3	8	10.49718247	10.25	10.25	1.39870839	1.27	1.27	-0.499845144
42	8	10.681098	10.63	10.63	1.39870839	1.41	1.41	-0.10332888
126	8	15.50009328	15.5	15.5	1.39870839	2.06	2.06	-0.000188621

Likelihoods	of Interest		
		# of	
Model	Log Likelihood*	Parameters	AIC
A1	-69.42787324	6	150.855746
A2	-66.18552753	10	152.371055
A3	-69.42787324	6	150.855746
fitted	-70.17817725	3	146.356355
R	-92.22187689	2	188.443754

Tests of	f Interest		
	-2*Log(Likelihood		
Test	Ratio)	Test df	p-value
1	52.07269871	8	<0.0001
2	6.484691423	4	0.16575751
3	6.484691423	4	0.16575751
4	1.500608017	3	0.68213001

Figure 2-58. Details Regarding the Selected Model (Polynomial 3-Degree) for Increased BUN Levels in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months

2.1.1.3.2.2 Blood Urea Nitrogen (BUN) in Female Sprague-Dawley Rats – 12-Month Inhalation Exposure

Serum BUN levels were significantly increased in female rats exposed to 1,2-dichloroethane by inhalation for 12 months (seven hours per day, 5 days per week) (<u>IRFMN, 1978</u>). The exposure concentrations (reported in ppm) were converted to units of mg/m³ and duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day and 7 days per week. The concentration and response data used for the modeling are presented in Table 2-49. Continuous models were fit to the dose-response data.

A BMR of one SD was chosen according to EPA's BMD Technical Guidance (U.S. EPA, 2012).

Adjusted Concentration (mg/m ³)	Number of Animals	Mean (mg%)	SD (mg%)
0	8	10.50	0.93
4	8	10.88	0.99
8.3	8	10.75	1.50
42	8	10.72	2.04
126	8	15.25	2.38

 Table 2-49. BUN Levels in Female Rats and Associated Concentrations Selected for Dose

 Response Modeling for 1,2-Dichloroethane from a 12-Month Inhalation Exposure Study

The BMD modeling results for increased serum BUN levels in female rats are summarized in Table 2-50. The constant variance model did not provide adequate fit to the variance data. With the nonconstant variance model applied, all models provided an adequate fit to the means (test 4 p-value > 0.1). The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC (Polynomial 2-degree) was selected.

Model	Goodness of Fit (Means)		BMD 1SD	BMDL 1SD	Basis for Model Selection
	Test 4 p-value	AIC	(mg/m^3)	(mg/m ³)	
Exponential 3	0.7765	155.2	74	32	
Exponential 5	0.4750	157.2	73	64	All models provided an
Hill	0.4748	157.2	73	24	adequate fit to the means (test 4
Polynomial Degree 3	0.8080	155.1	76	29	p-value > 0.1). BMDLs differed by < 3-fold; therefore, EPA
Polynomial Degree 2	0.9064	153.2	67	29	chose the model with the lowest
Power	0.7748	155.2	73	29	AIC.
Linear	0.5460	154.8	38	25	
^{<i>a</i>} Selected model in bold.					

 Table 2-50. Summary of BMD Modeling Results for Increased BUN Levels in Female Rats

 Following Inhalation Exposure to 1,2-Dichloroethane for 12 Months (Nonconstant Variance)^a

A plot of the Polynomial 2-degree model with a BMR of one SD is shown in Figure 2-59. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-60.

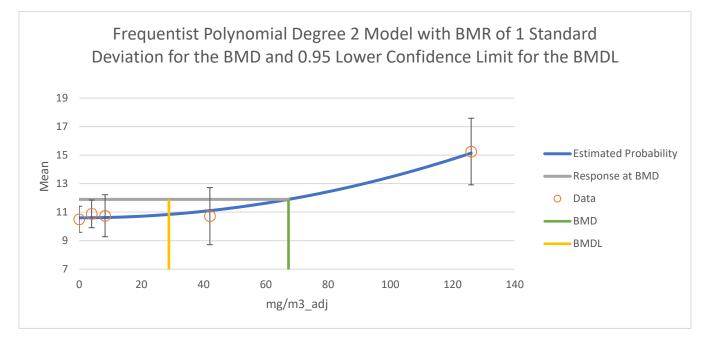


Figure 2-59. Plot of Response by Dose with Fitted Curve for the Selected Model (Polynomial 2-Degree) for Increased BUN Levels in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months and BMR of 1SD (Nonconstant Variance)

Benchmark Dose					
BMD 67.27795923					
BMDL	28.82214651				
BMDU	84.94460652				
AIC	153.2223286				
Test 4 P-value	0.906394034				
D.O.F.	3				

Model Pa	rameters			
# of Parameters	5			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	10.60180857	0.240171167	10.1310817	11.0725354
beta	Bounded	NA	NA	NA
beta2	0.00028596	5.57E-05	0.00017677	0.00039515
rho	3.413973354	1.87E+00	-0.2537519	7.08169862
alpha	0.000529032	1.28E-06	0.00052652	0.00053154

Goodness of Fit

Goodiic33	Goodiess of the							
Dece	Size	Estimated	Calc'd	Observed	Estimated	Calc'd	Observed	Scaled
Dose	3120	Median	Median	Mean	SD	SD	SD	Residual
0	8	10.60180857	10.5	10.5	1.29434746	0.93	0.93	-0.222473594
4	8	10.60638393	10.88	10.88	1.29530112	0.99	0.99	0.597469648
8.3	8	10.62150836	10.75	10.75	1.29845562	1.5	1.5	0.279893469
42	8	11.10624197	10.72	10.72	1.40123221	2.04	2.04	-0.779640423
126	8	15.14170917	15.25	15.25	2.37839389	2.38	2.38	0.128781329

Likelihoods	of Interest		
		# of	
Model	Log Likelihood*	Parameters	AIC
A1	-74.56612506	6	161.13225
A2	-69.31006848	10	158.620137
A3	-72.33309109	7	158.666182
fitted	-72.61116432	4	153.222329
R	-91.72530575	2	187.450612

Tests o	f Interest		
	-2*Log(Likelihood		
Test	Ratio)	Test df	p-value
1	44.83047455	8	<0.0001
2	10.51211316	4	0.03263054
3	6.046045235	3	0.10939139
4	4 0.556146456		0.90639403

Figure 2-60. Details Regarding the Selected Model (Polynomial 2-Degree) for Increased BUN Levels in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months

2.1.1.3.2.3 Calcium Levels in Male Sprague-Dawley Rats – 12-Month Inhalation Exposure

Serum calcium levels were significantly decreased in male rats exposed to 1,2-dichloroethane by inhalation for 12 months (seven hours per day, 5 days per week) (<u>IRFMN, 1978</u>). The exposure concentrations (reported in ppm) were converted to units of mg/m³ and duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day and 7 days per week. The concentration and response data used for the modeling are presented in Table 2-51. Continuous models were fit to the dose-response data.

A BMR of one SD was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). A BMR of 10 percent RD was also selected because EPA considers a 10 percent change in serum calcium levels to be biologically relevant.

Table 2-51. Serum Calcium Levels in Male Rats and Associated Concentrations Selected for Dose-
Response Modeling for 1,2-Dichloroethane from a 12-Month Inhalation Exposure Study

Adjusted Concentration (mg/m ³)	Number of Animals	Mean (mg%)	SD (mg%)
0	8	9.98	0.37
4	8	9.63	0.31
8.3	8	9.48	0.31
42	8	8.95	0.14
126	8	8.73	0.37

The BMD modeling results for decreased serum calcium levels in male rats are summarized in Table 2-52. The constant variance model provided an adequate fit to the variance data. With the constant variance model applied, the Exponential 5 and Hill models provided adequate fit to the means (test 4 p-value > 0.1). The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC (Hill model) was selected.

Madal			(Means) E		BMDL 10%RD	Basis for Model			
Model	Test 4 p- value	AIC	1SD (mg/m ³)	(mg/m^3)	(mg/m^3)	(mg/m^3)	Selection		
Exponential 3	0.0004	39.30	42	32	110	91			
Exponential 5	0.5273	24.18	5.2	2.6	34	16	The Exponential 5 and Hill models provided adequate fit to the means (test 4 p-value > 0.1). BMDLs for the fit models differed by < 3-fold; therefore, EPA chose the model with the lowest AIC.		
Hill	0.9146	23.08	3.8	2.0	38	18			
Polynomial Degree 3	0.0003	39.91	44	34	120	94			
Polynomial Degree 2	0.0003	39.91	44	34	120	94			
Power	0.0003	39.91	44	34	120	94			
Linear	0.0003	39.91	44	34	120	94	1		
^a Selected model in	n bold.								

 Table 2-52. Summary of BMD Modeling Results for Decreased Serum Calcium Levels in Male

 Rats Following Inhalation Exposure to 1,2-Dichloroethane for 12 Months (Constant Variance)^a

Plots of the Hill model with BMRs of one SD and 10 percent RD are shown in Figure 2-61 and Figure 2-62, respectively. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-63 (BMD and BMDL shown are for BMR of one SD; the rest is applicable to both BMRs).

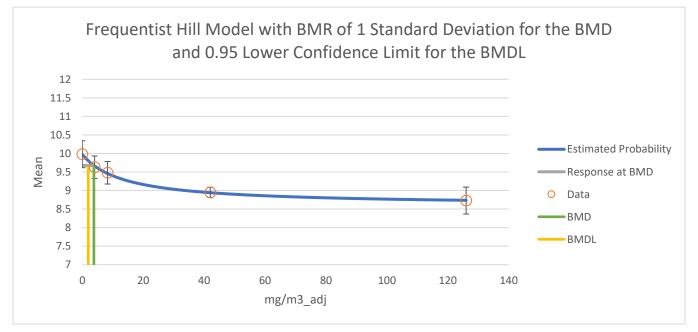


Figure 2-61. Plot of Response by Dose with Fitted Curve for the Selected Model (Hill) for Decreased Serum Calcium Levels in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months and BMR of 1SD (Constant Variance)

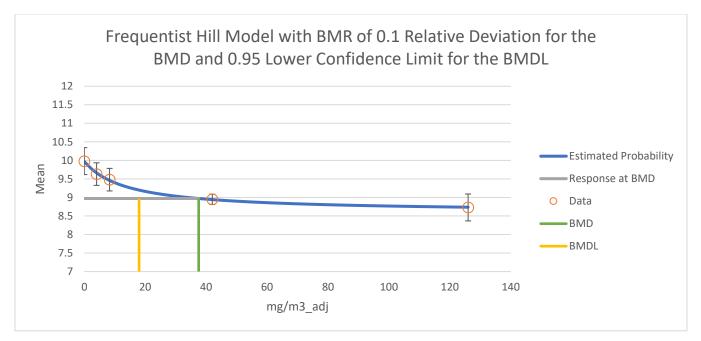


Figure 2-62. Plot of Response by Dose with Fitted Curve for the Selected Model (Hill) for Decreased Serum Calcium Levels in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months and BMR of 10%RD (Constant Variance)

Benchmark Dose						
BMD	3.793853645					
BMDL	1.973102694					
BMDU	9.002210197					
AIC	23.07602981					
Test 4 P-value	0.916438367					
D.O.F.	2					

5 Estimate 9.968378751	Std Error 9.97E-02	Lower Conf 9.77293889	Upper Conf 10.1638186
9.968378751	9.97E-02	9.77293889	10 1638186
			10.1000100
-1.367698827	1.45E-01	-1.6527488	-1.0826488
13.96705849	6.12E+00	1.9724673	25.9616497
Bounded	NA	NA	NA
0.08535158	1.63E-03	0.0821589	0.08854426
	13.96705849 Bounded	13.96705849 6.12E+00 Bounded NA	13.96705849 6.12E+00 1.9724673 Bounded NA NA

Goodness	of Fit							
Dose	Size	Estimated	Calc'd	Observed	Estimated	Calc'd	Observed	Scaled
Dose	3120	Median	Median	Mean	SD	SD	SD	Residual
0	8	9.968378751	9.98	9.98	0.29214993	0.37	0.37	0.112510234
4	8	9.663888435	9.63	9.63	0.29214993	0.31	0.31	-0.328088289
8.3	8	9.458571842	9.48	9.48	0.29214993	0.31	0.31	0.207455072
42	8	8.942000873	8.95	8.95	0.29214993	0.14	0.14	0.077442935
126	8	8.737160105	8.73	8.73	0.29214993	0.37	0.37	-0.069320011
					•			

Likelihoods	of Interest		
		# of	
Model	Log Likelihood*	Parameters	AIC
A1	-7.450754442	6	26.9015089
A2	-3.711046548	10	27.4220931
A3	-7.450754442	6	26.9015089
fitted	-7.538014904	4	23.0760298
R	-32.1569544	2	68.3139088

Tests of	Interest		
	-2*Log(Likelihood		
Test	Ratio)	Test df	p-value
1	56.89181569	8	<0.0001
2	7.479415788	4	0.1126204
3	7.479415788	4	0.1126204
4	0.174520924	2	0.91643837

Figure 2-63. Details Regarding the Selected Model (Hill) for Increased Serum Calcium Levels in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months

2.1.1.3.2.4 Serum Potassium Levels in Male Sprague-Dawley Rats – 12-Month Inhalation Exposure

Serum potassium levels were significantly increased in male rats exposed to 1,2-dichloroethane by inhalation for 12 months (seven hours per day, 5 days per week) (<u>IRFMN, 1978</u>). The exposure concentrations (reported in ppm) were converted to units of mg/m³ and duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day and 7 days per week. The concentration and response data used for the modeling are presented in Table 2-53. Continuous models were fit to the dose-response data.

A BMR of one SD was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). A BMR of 10 percent RD was also selected because EPA considers a 10 percent change in serum potassium levels to be biologically relevant.

Dose-Response Modeling for 1,2-Dichloroethane from a 12-Month Inhalation Exposure Study								
Adjusted Concentration (mg/m ³)	Number of Animals	Mean (mg%)	SD (mg%)					
0	8	4.91	0.57					
4	8	5.34	0.48					

6.44

6.08

6.26

0.71

0.71

0.59

8

8

8

8.3

42

126

 Table 2-53. Serum Potassium Levels in Male Rats and Associated Concentrations Selected for

 Dose-Response Modeling for 1,2-Dichloroethane from a 12-Month Inhalation Exposure Study

The BMD modeling results for increased serum potassium levels in male rats are summarized in Table 2-54. The constant variance model provided an adequate fit to the variance data. With the constant variance model applied, the Exponential 5 and Hill models provided adequate fit to the means (test 4 p-value > 0.1). The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC (Hill) was selected.

Table 2-54. Summary of BMD Modeling Results for Increased Serum Potassium Levels in Male
Rats Following Inhalation Exposure to 1,2-Dichloroethane for 12 Months (Constant Variance) ^a

Model	Goodness (Mear		BMD 1SD	BMDL 1SD	BMD 10%RD	BMDL 10%RD	Basis for Model
Model	Test 4 p- value	AIC	(mg/m^3)	(mg/m^3)	(mg/m^3)	(mg/m^3)	Selection
Exponential 3	-	-	-	-	-	-	The Evenencial 5 and
Exponential 5	0.2176	81.23	4.1	3.0	4.0	3.8	The Exponential 5 and Hill models provided adequate fit to the means (test 4 p-value > 0.1). BMDLs for the fit models differed by < 3- fold; therefore, EPA chose the model with the lowest AIC
Hill	0.4676	79.23	4.1	3.6	4.0	3.8	
Polynomial Degree 3	< 0.0001	97.90	119	71	87	51	
Polynomial Degree 2	< 0.0001	97.90	119	71	87	51	
Power	< 0.0001	97.90	119	71	87	51	lowest AIC.

Model	Goodness of Fit (Means)		BMD	BMDL 1SD	BMD 10%RD	BMDL	Basis for Model	
Model	Test 4 p- value	AIC	1SD (mg/m ³)	(mg/m^3)	(mg/m^3)	10%RD (mg/m ³)	Selection	
Linear	< 0.0001	97.90	119	71	87	51		
^a Selected model in bold.								

Plots of the Hill model with BMRs of one SD and 10 percent RD are shown in Figure 2-64 and Figure 2-65, respectively. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-66 (BMD and BMDL shown are for BMR of one SD; the rest is applicable to both BMRs).

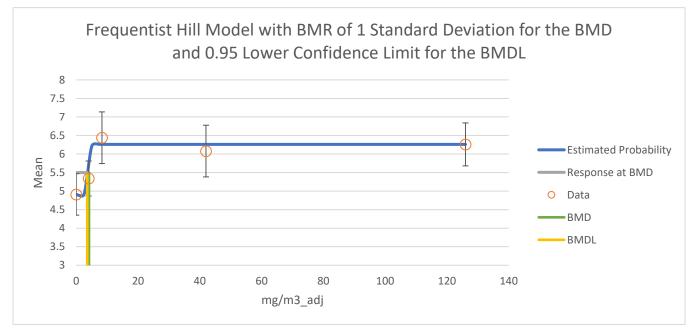


Figure 2-64. Plot of Response by Dose with Fitted Curve for the Selected Model (Hill) for Increased Serum Potassium Levels in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months and BMR of 1SD (Constant Variance)

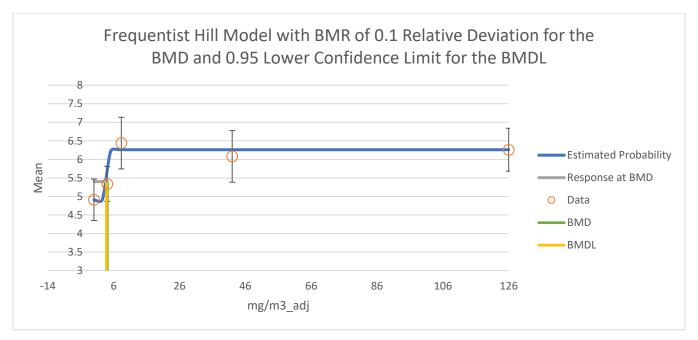


Figure 2-65. Plot of Response by Dose with Fitted Curve for the Selected Model (Hill) for Increased Serum Potassium Levels in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months and BMR of 10%RD (Constant Variance)

Benchmark Dose					
BMD	4.113998297				
BMDL	3.556136042				
BMDU	6.037422863				
AIC	79.23435408				
Test 4 P-value	0.467568201				
D.O.F.	2				

rameters			
5			
Estimate	Std Error	Lower Conf	Upper Conf
4.909998383	0.208411252	4.50151983	5.31847693
1.350002887	0.240652145	0.87833335	1.82167243
4.172638129	0.201800737	3.77711595	4.56816031
Bounded	NA	NA	NA
0.347490412	0.026999944	0.29457149	0.40040933
	5 Estimate 4.909998383 1.350002887 4.172638129 Bounded	5 Estimate Std Error 4.909998383 0.208411252 1.350002887 0.240652145 4.172638129 0.201800737 Bounded NA	5 Estimate Std Error Lower Conf 4.909998383 0.208411252 4.50151983 1.350002887 0.240652145 0.87833335 4.172638129 0.201800737 3.77711595 Bounded NA NA

Goodness of Fit

doouness	01110							
Doco	Size	Estimated	Calc'd	Observed	Estimated	Calc'd	Observed	Scaled
Dose	3120	Median	Median	Mean	SD	SD	SD	Residual
0	8	4.909998383	4.91	4.91	0.58948317	0.57	0.57	7.76078E-06
4	8	5.340003496	5.34	5.34	0.58948317	0.48	0.48	-1.67735E-05
8.3	8	6.25999559	6.44	6.44	0.58948317	0.71	0.71	0.863687681
42	8	6.26000127	6.08	6.08	0.58948317	0.71	0.71	-0.863672616
126	8	6.26000127	6.26	6.26	0.58948317	0.59	0.59	-6.09342E-06

Likelihoods	of Interest		
		# of	
Model	Log Likelihood*	Parameters	AIC
A1	-34.85696698	6	81.713934
A2	-34.01730185	10	88.0346037
A3	-34.85696698	6	81.713934
fitted	-35.61717704	4	79.2343541
R	-48.90125201	2	101.802504

Tests of	f Interest		
	-2*Log(Likelihood		
Test	Ratio)	Test df	p-value
1	29.76790032	8	0.0002323
2	1.679330262	4	0.79446879
3	1.679330262	4	0.79446879
4	4 1.520420112		0.4675682

Figure 2-66. Details Regarding the Selected Model (Hill) for Increased Serum Potassium Levels in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months

2.1.1.3.2.5 Serum Potassium Levels in Female Sprague-Dawley Rats – 12-Month Inhalation Exposure

Serum potassium levels were significantly increased in female rats exposed to 1,2-dichloroethane by inhalation for 12 months (seven hours per day, 5 days per week) (<u>IRFMN, 1978</u>). The exposure concentrations (reported in ppm) were converted to units of mg/m³ and duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day and 7 days per week. The concentration and response data used for the modeling are presented in Table 2-55. Continuous models were fit to the dose-response data.

A BMR of one SD was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). A BMR of 10 percent RD was also selected because EPA considers a 10 percent change in serum potassium levels to be biologically relevant.

 Table 2-55. Serum Potassium Levels in Female Rats and Associated Concentrations Selected for

 Dose-Response Modeling for 1,2-Dichloroethane from a 12-Month Inhalation Exposure Study

Adjusted Concentration (mg/m ³)	Number of Animals	Mean (mg%)	SD (mg%)
0	8	4.97	0.76
4	8	5.61	1.10
8.3	8	6.64	0.74
42	8	6.19	0.57
126	8	6.10	0.71

The BMD modeling results for increased serum potassium levels in female rats are summarized in Table 2-56. The constant variance model provided an adequate fit to the variance data. With the constant variance model applied, the Exponential 5 and Hill models provided adequate fit to the means (test 4 p-value > 0.1). At a BMR of one SD, the BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC (Hill) was selected. At a BMR of 10 percent RD, the BMDLs for the fit models were not sufficiently close (differed by > 3-fold); therefore, BMDS recommended the model with the lowest BMDL (Exponential 5). The Hill model was selected, however, because it has a lower AIC, has an estimated BMD/BMDL ratio within 3-fold, BMDL within 3-fold of lowest non-zero concentration, and is consistent with the selection for the one SD BMR.

M	Goodness of Fit (Means)		BMD 1SD	BMDL	BMD	BMDL	
Model	Test 4 p- value	AIC	15D (mg/m ³)	1SD (mg/m ³)	10%RD (mg/m ³)	10%RD (mg/m ³)	Basis for Model Selection
Exponential 3	-	-	-	-	-	-	The Exponential 5 and
Exponential 5	0.1254	102.2	4.2	1.9	3.7	1.0	Hill models provided adequate fit to the means
Hill	0.3091	100.2	4.1	3.2	3.9	3.6	(test 4 p-value > 0.1). At a
Polynomial Degree 3	0.0007	112.8	250	100	160	63	BMR of one SD, BMDLs for the fit models differed by < 3-fold; therefore, the
Polynomial Degree 2	0.0007	112.8	250	100	160	63	model with the lowest AIC was selected (Hill). At a BMR of 10 percent RD, the BMDLs for the fit
Power	0.0007	112.8	250	100	150	63	
Linear	0.0007	112.8	250	100	150	63	models differed by > 3- fold; therefore, BMDS recommended the model with the lowest BMDL (Exponential 5). The Hill model was selected, however, because it has a lower AIC, has a BMD/BMDL ratio within 3-fold, BMDL within 3-fold of lowest non-zero concentration, and is consistent with the selection for the one SD BMR.
^{<i>a</i>} Selected model i	in bold.		<u> </u>	<u> </u>	<u> </u>	<u> </u>	

 Table 2-56. Summary of BMD Modeling Results for Increased Serum Potassium Levels in Female

 Rats Following Inhalation Exposure to 1,2-Dichloroethane for 12 Months^a

Plots of the Hill model with BMRs of one SD and 10 percent RD are shown in Figure 2-67 and Figure 2-68, respectively. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-69 (BMD and BMDL shown are for BMR of one SD; the rest is applicable to both BMRs).

Figure 2-67. Plot of Response by Dose with Fitted Curve for the Selected Model (Hill) for Increased Serum Potassium Levels in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months and BMR of 1SD (Constant Variance)

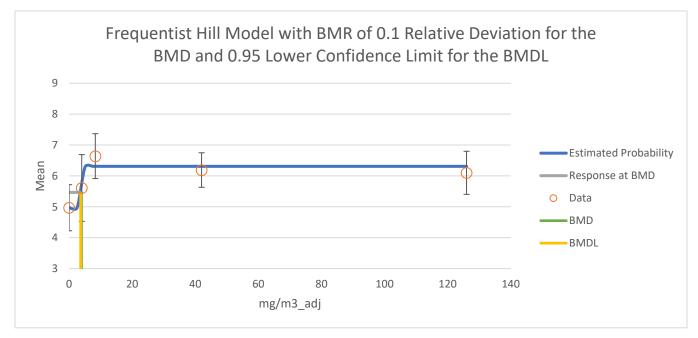


Figure 2-68. Plot of Response by Dose with Fitted Curve for the Selected Model (Hill) for Increased Serum Potassium Levels in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months and BMR of 10%RD (Constant Variance)

Benchmark Dose					
BMD	4.085130438				
BMDL	3.209977644				
BMDU	5.384570286				
AIC	100.2205383				
Test 4 P-value	0.309094341				
D.O.F.	2				

rameters			
5			
Estimate	Std Error	Lower Conf	Upper Conf
4.969999172	0.270915253	4.43901503	5.50098332
1.340001086	0.312822339	0.72688056	1.95312161
4.01996137	0.210192831	3.60799099	4.43193175
Bounded	NA	NA	NA
0.587215363	7.71E-02	0.43611298	0.73831774
	5 Estimate 4.969999172 1.340001086 4.01996137 Bounded	5 Estimate Std Error 4.969999172 0.270915253 1.340001086 0.312822339 4.01996137 0.210192831 Bounded NA	5 Estimate Std Error Lower Conf 4.969999172 0.270915253 4.43901503 1.340001086 0.312822339 0.72688056 4.01996137 0.210192831 3.60799099 Bounded NA NA

Goodness	s of Fit							
Dose	Size	Estimated	Calc'd	Observed	Estimated	Calc'd	Observed	Scaled
Dose	5120	Median	Median	Mean	SD	SD	SD	Residual
0	8	4.969999172	4.97	4.97	0.76629979	0.76	0.76	3.05499E-06
4	8	5.610002828	5.61	5.61	0.76629979	1.1	1.1	-1.04376E-05
8.3	8	6.309997376	6.64	6.64	0.76629979	0.74	0.74	1.218045977
42	8	6.310000258	6.19	6.19	0.76629979	0.57	0.57	-0.442923242
126	8	6.310000258	6.1	6.1	0.76629979	0.71	0.71	-0.775114958

Likelihoods	of Interest		
		# of	
Model	Log Likelihood*	Parameters	AIC
A1	-44.93616041	6	101.872321
A2	-43.00818559	10	106.016371
A3	-44.93616041	6	101.872321
fitted	-46.11026914	4	100.220538
R	-54.15242891	2	112.304858

Tests of	f Interest		
	-2*Log(Likelihood		
Test	Ratio)	Test df	p-value
1	22.28848664	8	0.00440857
2	3.855949636	4	0.42585182
3	3.855949636	4	0.42585182
4	2.348217473	2	0.30909434

Figure 2-69. Details Regarding the Selected Model (Hill) for Increased Serum Potassium Levels in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation for 12 Months

2.1.1.4 Developmental

2.1.1.4.1 Developmental Effects

Male pup weight at weaning (~21 days of age) was nonsignificantly decreased by \geq 5 percent at the highest tested concentration in a one-generation reproduction study of 1,2-dichloroethane inhalation in rats when the data were limited to a very small subset of available pups (five pups from different F1b litters selected for organ weight measurements) (Rao et al., 1980). There was no decrease relative to controls in the corresponding selected F1b female pups. Overall, pup body weight data from all pups of both sexes in F1a and F1b litters recorded from birth through weaning were reported by the study authors not to show any differences from controls (data for whole group were not presented in the study).

2.1.1.4.1.1 Body Weight in Male Weanling F1b Rats

The data for body weight at weaning of the selected male F1b pups were modeled (Rao et al., 1980). The parental exposure concentrations (reported in ppm) were converted to units of mg/m³ and duration adjusted to estimate an equivalent time-weighted average (TWA) inhalation concentration for parental animals (exposure was 6 hours per day, 5 days per week for 60 days prior to mating and then 7 days per week for 116 days, except that maternal exposure was stopped to allow for delivery and rearing of the young from GD 21 to postnatal day 4). The concentration and response data used for the modeling are presented in Table 2-57. Continuous models were fit to the dose-response data.

A BMR of one SD was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). BMRs of five percent and 10 percent RD were also selected because EPA considers these BMRs to be biologically relevant for pup body weight change in a reproduction study.

 Table 2-57. Body Weight of Selected F1b Male Weanling Rats and Associated Concentrations

 Selected for Dose-Response Modeling for 1,2-Dichloroethane from a One-Generation

 Developmental Study^a

TWA Concentration (mg/m ³)	Number of Animals	Mean (g)	SD (g)				
0	5	42	9				
23	5	42	6				
68	5	40	5				
137	5	36	6				
^a Weanling body weight data presented are only for the small subset limited to male weanlings from F1B litters that were							

^{*a*} Weanling body weight data presented are only for the small subset limited to male weanlings from F1B litters that were selected for organ weight measurements.

The BMD modeling results for body weight of selected F1b male rats at weaning are summarized in Table 2-58. The test for significant difference in responses and variances failed (test 1 p-value > 0.05), indicating that there is no clear dose-response present in the data. This means the additional modeling results presented here are suspect and should be interpreted with caution. The constant variance model provided an adequate fit to the variance data. With the constant variance model applied, all models, except for the Exponential 5 and Hill models, provided adequate fit to the means (test 4 p-value < 0.1). The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC (Linear model) was selected.

Goodness of Fit (Means)		BMD	BMDL	BMD	BMDL	BMD	BMDL			
Test 4 p- value	AIC	(mg/m^3)	(mg/m^3)	5%RD (mg/m ³)	5%KD (mg/m ³)	(mg/m^3)	10%RD (mg/m ³)	Basis for Model Selection		
0.9195	136.2	130	110	69	23	110	46	All models, except for the		
NA	138.2	95	35	69	2	78	10	Exponential 5 and Hill models, provided adequate fit to the		
NA	138.2	130	24	69	16	82	21	means (test 4 p-value > 0.1).		
0.8615	136.2	130	67	70	25	110	51	 BMDLs for the fit models differed by < 3-fold; therefore, EPA chose the model with the lowest AIC. NOTE: This data set (small subset of the available data) is not 		
0.8932	136.2	130	67	71	25	110	51			
0.9144	136.2	130	67	69	25	110	51			
0.9366	134.3	130	67	46	25	93	50	representative of larger results in this study and BMD modeling no showed no clear dose-response present in these selected data. Although BMDs and BMDLs are presented here, they are suspect and should be interpreted with caution.		
	(Mea Test 4 p- value 0.9195 NA 0.8615 0.8932 0.9144	(Measure) Test 4 p- value AIC 0.9195 136.2 NA 138.2 NA 138.2 0.8615 136.2 0.8932 136.2 0.9144 136.2	(Means) BMD 1SD (mg/m³) Test 4 p- value AIC 0.9195 136.2 NA 138.2 NA 138.2 0.8615 136.2 0.8932 136.2 0.9144 136.2	(Means) BMD 1SD (mg/m ³) BMDL 1SD (mg/m ³) Test 4 p- value AIC 1SD (mg/m ³) 1SD (mg/m ³) 0.9195 136.2 130 110 NA 138.2 95 35 NA 138.2 130 24 0.8615 136.2 130 67 0.8932 136.2 130 67 0.9144 136.2 130 67	(Means)BMD 1SD (mg/m3)BMDL 1SD (mg/m3)BMD 5%RD (mg/m3)Test 4 p valueAIC1SD (mg/m3)BMDL 1SD (mg/m3)BMD 5%RD (mg/m3) 0.9195 136.213011069NA138.2953569NA138.213024690.8615136.213067700.8932136.213067710.9144136.21306769	(Mex)BMD 1SD (mg/m³)BMDL 1SD (mg/m³)BMD 5%RD (mg/m³)BMDL 5%RD (mg/m³)BMDL 5%RD (mg/m³)BMDL 5%RD (mg/m³)0.9195136.213011069230.9195136.21301106923NA138.29535692NA138.21302469160.8615136.21306770250.8932136.21306771250.9144136.2130676925	$(Me \to N)$ BMD $1SD$ mg/m^3 BMDL $1SD$ (mg/m^3) BMD $5\% RD$ (mg/m^3) BMDL $5\% RD$ (mg/m^3) BMDL $10\% RD$ (mg/m^3) BMDL 	(Mean BMD ISD (mg/m ³) BMDL ISD (mg/m ³) BMD ISD (mg/m ³) BMD S%RD (mg/m ³) BMDL S%RD (mg/m ³) BMDL S%RD (mg/m ³) BMDL 10%RD (mg/m ³) BMDL 10%RD (mg/m ³) 0.9195 136.2 130 110 69 23 110 46 NA 138.2 95 35 69 2 78 10 NA 138.2 95 35 69 2 78 10 NA 138.2 130 24 69 16 82 21 0.8615 136.2 130 67 70 25 110 51 0.8932 136.2 130 67 71 25 110 51 0.9144 136.2 130 67 69 25 110 51		

Table 2-58. Summary of BMD Modeling Results for Decreased Body Weight of Selected F1b Male Weanling Rats Following Inhalation Exposure to 1,2-Dichloroethane in a One-Generation Reproduction Study (Constant Variance)^{*a*}

Plots of the Linear model with BMRs of one SD, five percent RD, and 10 percent RD are shown in Figure 2-70, Figure 2-71, and Figure 2-72, respectively. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-73 (BMD and BMDL shown are for BMR of one SD; the rest is applicable to all BMRs).

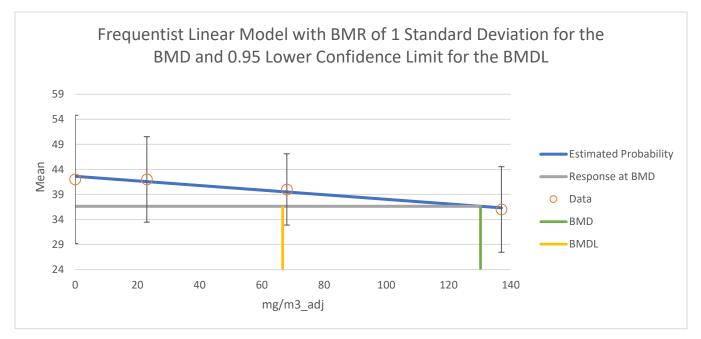


Figure 2-70. Plot of Response by Dose with Fitted Curve for the Selected Model (Linear) for Decreased Body Weight of Selected F1B Male Weanling Rats Exposed to 1,2-Dichloroethane Via Inhalation in a One-Generation Reproduction Study and BMR of 1SD (Constant Variance)

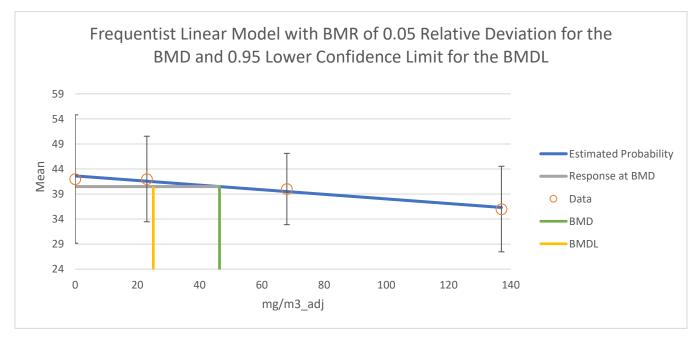


Figure 2-71. Plot of Response by Dose with Fitted Curve for the Selected Model (Linear) for Decreased Body Weight of Selected F1B Male Weanling Rats Exposed to 1,2-Dichloroethane Via Inhalation in a One-Generation Reproduction Study and BMR of 5%RD (Constant Variance)

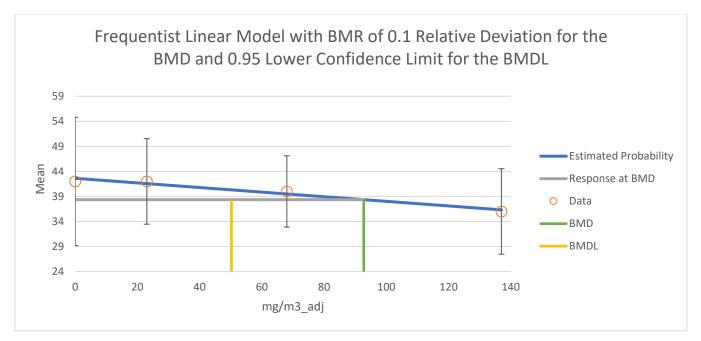


Figure 2-72. Plot of Response by Dose with Fitted Curve for the Selected Model (Linear) for Decreased Body Weight of Selected F1B Male Weanling Rats Exposed to 1,2-Dichloroethane Via Inhalation in a One-Generation Reproduction Study and BMR of 10%RD (Constant Variance)

Model Results										
B										
BMD		130.2879275								
BMDL		66.67084085								
BMDU		2727.30983								
AIC		134.3353986								
Test 4 P-valu	ie	0.936625044								
D.O.F.		2								
	ľ									
M	odel Par	ameters								
# of Parame	ters	3								
Variable Estimate		Std Erro	or	Lowe	r Conf	Upper	Conf			
g		42.61889064	1.980363222 38.73		3745	46.500	3313			
beta		-0.045945453	2.56E-0)2	-0.09	96131	0.0042	4011		
alpha 35.83384612		4.06E+0	4.06E+02 -760.01881 831			831.68	6503			
Goodness	of Fit									
Dese	Cine	Estimated	Calc'd	Obse	erved	Estin	nated	Calc'd	Observed	Scaled
Dose	Size	Median	Median M		ean	SD		SD	SD	Residual
0	5	42.61889064	42	42		5.98613783		9	9	-0.231181035
23	5	41.56214522	42	42		5.98613783		6	6	0.163556716
68	5	39.49459984	40	40		5.98613783		5	5	0.188787687
137	5	36.32436359	36	36		5.98613783		6	6	-0.121163103
				-						

of Interact		
Likelihoods of Interest		
Log Likelihood*	Parameters	AIC
-64.10222704	5	138.204454
-63.09824229	8	142.196485
-64.10222704	5	138.204454
-64.16769929	3	134.335399
-65.65977234	2	135.319545
	_	
Interest		
-2*Log(Likelihood		
Ratio)	Test df	p-value
5.123060089	6	0.52812954
2.007969501	3	0.57075425
2.007969501	3	0.57075425
0.130944487	2	0.93662504
	Log Likelihood* -64.10222704 -63.09824229 -64.10222704 -64.16769929 -65.65977234 Interest -2*Log(Likelihood Ratio) 5.123060089 2.007969501 2.007969501	# of Log Likelihood* Parameters -64.10222704 5 -63.09824229 8 -64.10222704 5 -64.16769929 3 -65.65977234 2 Interest -2*Log(Likelihood Ratio) Test df 5.123060089 6 2.007969501 3 2.007969501 3

Figure 2-73. Details Regarding the Selected Model (Linear) for Decreased Body Weight of Selected F1B Male Weanling Rats Exposed to 1,2-Dichloroethane Via Inhalation in a One-Generation Reproduction Study

2.1.2 Oral Data

2.1.2.1 Acute

2.1.2.1.1 Mortality

Storer et al. (1984) provided data showing increased mortality in male mice following an acute oral exposure to 1,2-dichloroethane.

2.1.2.1.1.1 Mortality in Male B6C3F1 Mice – Single Oral Gavage

There was an increased incidence of mortality in male mice exposed to 1,2-dichloroethane following a single oral gavage exposure in an acute toxicity study by <u>Storer et al. (1984)</u>. The dose and response data used for the modeling are presented in Table 2-59. Dichotomous models were fit to the dose-response data.

A BMR of 10 percent ER was chosen according to *BMD Technical Guidance* (U.S. EPA, 2012). A BMR of one percent ER was selected due to severity of the endpoint and a BMR of 20 percent ER was selected because it is near the low end of the observable range in the study.

Dose (mg/kg)	Number of Animals	Incidence
0	5	0
200	5	0
300	5	0
400	5	2
500	5	4
600	5	4

 Table 2-59. Incidence of Mortality in Male Mice and Associated Doses Selected for Dose-Response

 Modeling for 1,2-Dichloroethane from an Acute Oral Exposure Study

The BMD modeling results for increased incidence of mortality in male rats are summarized in Table 2-60. With the BMRs of 10 and 20 percent applied, all models provided adequate fit to the data (chi-square p-value > 0.1). Despite the overall adequate fit, the Multistage 1-degree model was not considered further because this model provided poor fit in the lower portion of the dose-response curve, with scaled residuals of -1.3 and -1.6 at the two lowest doses. The BMDLs for the remaining models differed by < 3-fold and were considered sufficiently close; therefore, the model with the lowest AIC (Multistage 3-degree) was selected. Model outputs could not be generated by the BMDS using a BMR of one percent ER.

Madal	Goodness of Fit		BMD 10%ER	BMDL 10%ER	BMD 20%ER	BMDL 20%ER			
Model	p- value	AIC	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Basis for Model Selection		
Dichotomous Hill	0.9999	20.79	360	257	377	303	All models provided adequate fit to the data (chi-square		
Gamma	0.8556	22.30	323	216	363	273	p-value > 0.1). Despite the overall adequate fit, the		
Log-Logistic	0.8800	22.15	325	222	364	277	Multistage 1-degree model was		
Multistage 3	0.9027	20.21	239	129	307	224	not considered further because this model provided poor fit in		
Multistage 2	0.5828	24.55	174	90.9	254	170	the lower portion of the dose- response curve, with scaled residuals of -1.3 and -1.6 at the two lowest doses. The		
Multistage 1	0.2148	28.84	74.6	45.6	158	96.5			
Weibull	0.8616	21.17	301	184	356	254			
Logistic	0.7493	22.94	316	199	366	275	BMDLs for the remaining models differed by less than 3-		
Log-Probit	0.8880	22.07	326	227	363	277	fold and were considered		
Probit	0.7659	22.86	318	195	365	270	sufficiently close; therefore, EPA chose the model with the		
Quantal Linear	0.2148	28.84	74.6	45.6	158	96.5	lowest AIC (Multistage 3- degree).		
^{<i>a</i>} Selected model in bold.									

Table 2-60. Summary of BMD Modeling Results for Increased Incidence of Mortality in MaleMice Following a Single Oral Exposure to 1,2-Dichloroethane Using BMR of 10%ER or 20%ER^a

Plots of the Multistage 3-degree model with BMRs of 10 percent ER and 20 percent ER are shown in Figure 2-74 and Figure 2-75, respectively. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-76 (BMD and BMDL shown are for BMR of 10 percent RD; the rest is applicable to both BMRs).

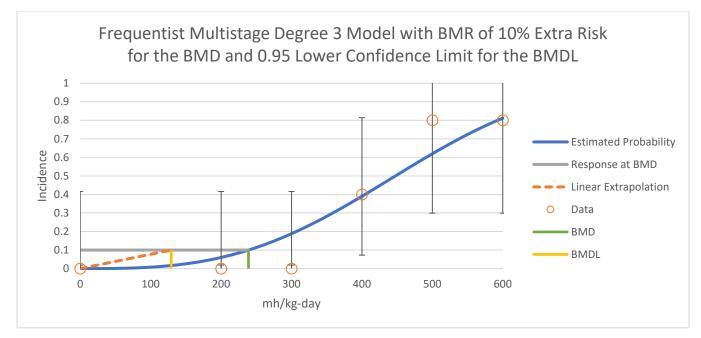


Figure 2-74. Plot of Response by Dose with Fitted Curve for the Selected Model (Multistage 3-Degree) for Incidence of Mortality in Male Mice Exposed to 1,2-Dichloroethane Via Oral Gavage in an Acute Toxicity Study and BMR of 10%ER

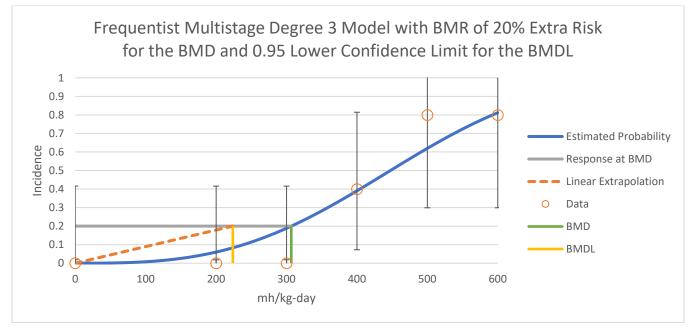


Figure 2-75. Plot of Response by Dose with Fitted Curve for the Selected Model (Multistage 3-Degree) for Incidence of Mortality in Male Mice Exposed to 1,2-Dichloroethane Via Oral Gavage in an Acute Toxicity Study and BMR of 20%ER

Benchmark Dose					
BMD	238.9043391				
BMDL	129.2249981				
BMDU	291.4737157				
AIC	20.20936618				
P-value	0.902688778				
D.O.F.	6				
Chi ²	2.177325909				
Slope Factor	0.000773844				

Model Para	imeters			
# of Parameters	4			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	Bounded	NA	NA	NA
b1	Bounded	NA	NA	NA
b2	Bounded	NA	NA	NA
b3	Bounded	NA	NA	NA

Goodness of Fit					
Dose	Estimated Probability	Expected	Observed	Size	Scaled Residual
0	1.523E-08	7.61499E-08	0	5	-0.000276
200	0.059943491	0.299717454	0	5	-0.56465
300	0.188301704	0.941508522	0	5	-1.076998
400	0.390137775	1.950688873	2	5	0.0452101
500	0.619345703	3.096728513	4	5	0.8319579
600	0.811566932	4.057834662	4	5	-0.06614

Analysis of Deviance					
Model	Log Likelihood	# of Parameters	Deviance	Test d.f.	P Value
Full Model	-8.36908257	6	-	-	NA
Fitted Model	-10.10468309	0	3.47120104	6	0.7477972
Reduced Model	-19.09542505	1	21.452685	5	0.0006651

Figure 2-76. Details Regarding the Selected Model (Multistage 3-Degree) for Increased Incidence of Mortality in Male Mice Exposed to 1,2-Dichloroethane Via Oral Gavage in an Acute Toxicity Study

2.1.2.1.2 Hepatic Effects

EPA identified hepatic endpoints in an acute oral gavage study in male mice for BMD modeling (<u>Storer</u> et al., 1984). Modeled results are presented for relative liver weight. Modeled results are not presented for serum ALT or LDH because neither the constant nor nonconstant variance models provided adequate fit to the variance data or because none of the models provided adequate fits to the means (test 4 p-value < 0.1) and viable results assuming either constant or nonconstant variance.

2.1.2.1.2.1 Relative Liver Weight in Male B6C3F1 Mice – Single Oral Gavage

Relative liver weights were significantly increased in male mice exposed to 1,2-dichloroethane following a single oral gavage exposure in an acute toxicity study by <u>Storer et al. (1984)</u>. The dose and response data used for the modeling are presented in Table 2-61. Continuous models were fit to the dose-response data.

A BMR of one SD was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). A BMR of 10 percent RD was also selected because EPA considers a 10 percent change in relative liver weight to be biologically significant.

Table 2-61. Relative Liver Weight in Male Mice and Associated Doses Selected for Dose-Response
Modeling for 1,2-Dichloroethane from an Acute Oral Exposure Study

Dose (mg/kg)	Number of Animals	Mean (Liver Weight/100 g Body Weight)	SD (Liver Weight/100 g Body Weight)
0	5	4.26	0.14
200	5	4.21	0.27
300	5	4.47	0.20
400	3	5.10	0.58

The BMD modeling results for increased relative liver weight in male mice are summarized in Table 2-62. The constant variance model did not provide adequate fit to the variance data, but the nonconstant variance model applied and using a BMR of one SD, the Exponential 3, Exponential 5, and Power models provided an adequate fit to the means (test 4 p-value > 0.1). BMD computations failed for the Polynomial 2- and 3-degree and Linear models. The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC was selected (Exponential 5). When a BMR of 10 percent RD was applied, the same models plus the Polynomial 3-degree provided an adequate fit to the means (test 4 p-value > 0.1). The BMDLs among these models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC was selected (Polynomial 3-degree).

 Table 2-62. Summary of BMD Modeling Results for Increased Relative Liver Weight in Male

 Mice Following a Single Oral Exposure to 1,2-Dichloroethane (Nonconstant Variance)^a

	Goodnes	s of Fit	BMD	BMDL	BMD	BMDL	
Model	Test 4 p-value	AIC	1SD (mg/kg)	1SD (mg/kg)	10%R D (mg/kg)	10%R D (mg/kg)	Basis for Model Selection
Exponential 3	0.7631	7.354	290	220	345	300	Using a BMR of one SD,
Exponential 5	0.9858	7.263	297	272	315	298	the Exponential 3, Exponential 5, and Power
Hill	NA	9.263	297	278	319	310	models provided an
Polynomial Degree 3	0.6308	4.991	-	-	326	285	adequate fit to the means (test 4 p-value > 0.1). BMDLs for the fit models differed by < 3-fold; therefore, EPA chose the model with the lowest AIC (Exponential 5). Using a BMR of 10 percent RD, the same models plus the Polynomial 3-degree provided an adequate fit to the means (test 4 p-value > 0.1). BMDLs among these models differed by < 3-fold; therefore, the EPA chose the model with the lowest AIC (Polynomial 3-degree).
Polynomial Degree 2	0.0965	9.939	-	-	313	259	
Power	0.7732	7.346	290	252	345	300	
Linear	0.0073	15.10	-	-	307	209	

A Plot of the Exponential 5 model with a BMR of one SD is shown in Figure 2-77 and a plot of the Polynomial 3-degree model with a BMR of 10 percent RD is shown in Figure 2-78. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood for the Exponential 5 model with BMR of one SD are shown in Figure 2-79 and additional modeling details for the Polynomial 3-degree model with BMR of 10 percent RD are shown in Figure 2-80.

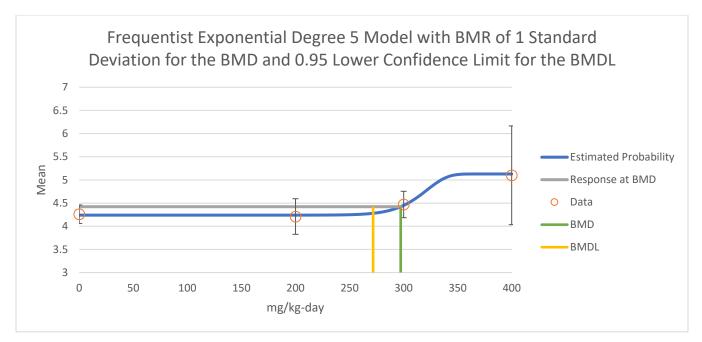


Figure 2-77. Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 5) for Increased Relative Liver Weight in Male Mice Exposed to 1,2-Dichloroethane Via Oral Gavage in an Acute Toxicity Study and BMR of 1SD (Nonconstant Variance)

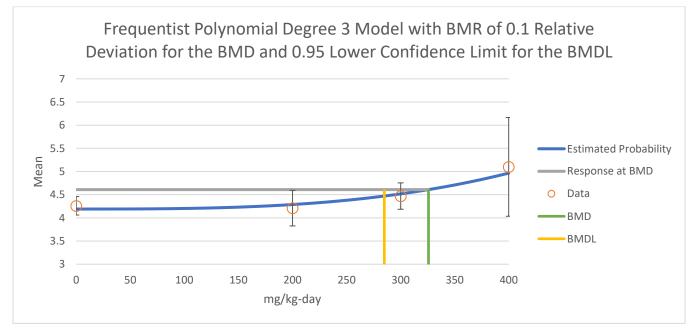


Figure 2-78. Plot of Response by Dose with Fitted Curve for the Selected Model (Polynomial 3-Degree) for Increased Relative Liver Weight in Male Mice Exposed to 1,2-Dichloroethane Via Oral Gavage in an Acute Toxicity Study and BMR of 10%RD (Nonconstant Variance)

Benchmark Dose					
BMD	297.3046064				
BMDL	271.7913769				
BMDU	334.4904423				
AIC	7.263445078				
Test 4 P-value	0.985787525				
D.O.F.	1				

Model Pa	rameters			
# of Parameters	6			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
а	4.239995767	5.76E-02	4.12701127	4.35298026
b	0.003099096	1.10E-04	0.00288322	0.00331498
С	1.209416148	5.05E-02	1.11038106	1.30845124
d	Bounded	NA	NA	NA
rho	9.32012481	5.00E+00	-0.4827733	19.123023
log-alpha	-16.87383537	7.44E+00	-31.448574	-2.2990966

Goodness of Fit

	Dece	Size	Estimated	Calc'd	Observed	Estimated	Calc'd	Observed	Scaled
	Dose	3120	Median	Median	Mean	SD	SD	SD	Residual
	0	5	4.239995767	4.26	4.26	0.18174197	0.14	0.14	0.246122706
	200	5	4.240157615	4.21	4.21	0.1817743	0.27	0.27	-0.370979159
	300	5	4.449696613	4.47	4.47	0.22759008	0.2	0.2	0.199480371
I	400	3	5.127919347	5.1	5.1	0.44082218	0.58	0.58	-0.109698943
1									

Likelihoods	of Interest		
		# of	
Model	Log Likelihood*	Parameters	AIC
A1	-1.189417326	5	12.3788347
A2	2.79948267	8	10.4010347
A3	1.368436124	6	9.26312775
fitted	1.368277461	5	7.26344508
R	-9.233982277	2	22.4679646

Tests of	fInterest		
	-2*Log(Likelihood		
Test	Ratio)	Test df	p-value
1	24.06692989	6	0.00050766
2	7.977799991	3	0.04647275
3	2.862093091	2	0.23905861
4	0.000317326	1	0.98578752

Figure 2-79. Details Regarding the Selected Model (Exponential 5) for Increased Relative Liver Weight in Male Mice Exposed to 1,2-Dichloroethane Via Oral Gavage in an Acute Toxicity Study with a BMR of 1SD

Benchmark Dose					
BMD	325.7980347				
BMDL	284.922869				
BMDU	377.6371666				
AIC	4.990841016				
Test 4 P-value	0.630790181				
D.O.F.	3				
D.O.F.	3				

Model Pa	rameters			
# of Parameters	6			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	4.190234558	0.058404416	4.07576401	4.30470511
beta	Bounded	NA	NA	NA
beta2	Bounded	NA	NA	NA
beta3	Bounded	NA	NA	NA
rho	10.15179628	0.240897127	9.67964658	10.623946
alpha	1.523E-08	1.83E-20	1.523E-08	1.523E-08

Goodness of Fit

coounce								
Dece	Sizo	Estimated	Calc'd	Observed	Estimated	Calc'd	Observe	Scaled
Dose Size		Median	Median	Mean	SD	SD	d SD	Residual
0	5	4.190234558	4.26	4.26	0.177733	0.14	0.14	0.877722612
200	5	4.287170082	4.21	4.21	0.1996107	0.27	0.27	-0.864470458
300	5	4.517391953	4.47	4.47	0.26031146	0.2	0.2	-0.407095508
400	3	4.965718753	5.1	5.1	0.42080801	0.58	0.58	0.552703217

Likelihoods	of Interest		
		# of	
Model	Log Likelihood*	Parameters	AIC
A1	-1.189417326	5	12.3788347
A2	2.79948267	8	10.4010347
A3	1.368436124	6	9.26312775
fitted	0.504579492	3	4.99084102
R	-9.233982277	2	22.4679646

Tests o	f Interest		
	-2*Log(Likelihood		
Test	Ratio)	Test df	p-value
1	24.06692989	6	0.00050766
2	7.977799991	3	0.04647275
3	2.862093091	2	0.23905861
4	1.727713264	3	0.63079018

Figure 2-80. Details Regarding the Selected Model (Polynomial 3-Degree) for Increased Relative Liver Weight in Male Mice Exposed to 1,2-Dichloroethane Via Oral Gavage in an Acute Toxicity Study with a BMR of 10%RD

2.1.2.1.3 Renal Effects

For acute oral exposure, EPA selected two renal endpoints for quantitative dose-response analysis with BMDS, including relative kidney weights and BUN levels following a single oral gavage exposure in male mice (Storer et al., 1984). For both data sets, only data for the control and three lowest doses (0, 200, 300, and 400 mg/kg) were modeled due to high mortality (four of five) at the two highest tested doses (500 and 600 mg/kg). EPA modeled relative kidney weight change because a statistically and biologically significant change was identified. Though not statistically significant, EPA modeled BUN in male mice from the acute oral Storer et al. (1984) study because a dose-related trend was evident in the data.

2.1.2.1.3.1 Relative Kidney Weight in Male B6C3F1 Mice – Single Oral Gavage

Relative kidney weight was significantly increased in male mice exposed to 1,2-dichloroethane following a single oral gavage exposure in an acute toxicity study by <u>Storer et al. (1984)</u>. The dose and response data used for the modeling are presented in Table 2-63. Continuous models were fit to the dose-response data.

A BMR of one SD was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). A BMR of 10 percent RD was also selected because EPA considers a 10 percent change in relative kidney weight to be biologically significant.

Dose-Response Modeling	g for 1,2-Dichloroethane	from an Oral Exposure S	otudy
Dose (mg/kg)	Number of Animals	Mean (Kidney Weight/100 g Body Weight)	SD (Kidney Weight/100 g Body Weight)
0	5	1.50	0.09
200	5	1.58	0.19
300	5	1.69	0.09
400	3	1 75	0.08

Table 2-63. Increased Relative Kidney Weight in Male Mice and Associated Doses Selected for Dose-Response Modeling for 1,2-Dichloroethane from an Oral Exposure Study

The BMD modeling results for increased relative kidney weight in male mice are summarized in Table 2-64. The constant variance model provided an adequate fit to the variance data. With the constant variance model applied, all models except Exponential 5 and Hill provided adequate fit to the means (test 4 p-value > 0.1). The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC (Polynomial 2-degree) was selected.

	Goodness of Fit		BMD	BMDL	BMD	BMDL	De ete fere Medal
Model	Test 4 p- value	AIC	1SD (mg/kg)	1SD (mg/kg)	10%RD (mg/kg)	10%RD (mg/kg)	Basis for Model Selection
Exponential 3	0.6040	-19.77	221	124	271	162	
Exponential 5	NA	-18.04	228	94.9	262	128	All models except Exponential 5 and Hill
Hill	NA	-18.04	226	89.1	260	124	provided adequate fit to the means (test 4 p- value > 0.1). BMDLs for the fit models differed by < 3-fold; therefore, EPA chose the model with the lowest AIC.
Polynomial Degree 3	0.8476	-21.71	217	117	270	153	
Polynomial Degree 2	0.8641	-21.74	219	117	270	153	
Power	0.6148	-19.78	222	118	271	154	
Linear	0.7377	-21.43	179	115	235	150	
^a Selected model	in bold.						

Table 2-64. Summary of BMD Modeling Results for Increased Relative Kidney Weight in Male Mice Following a Single Oral Exposure to 1,2-Dichloroethane (Constant Variance)^{*a*}

Plots of the Polynomial 2-degree model with BMRs of one SD and 10 percent RD are shown in Figure 2-81 and Figure 2-82, respectively. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-83 (BMD and BMDL shown are for BMR of 10 percent RD; the rest is applicable to both BMRs).

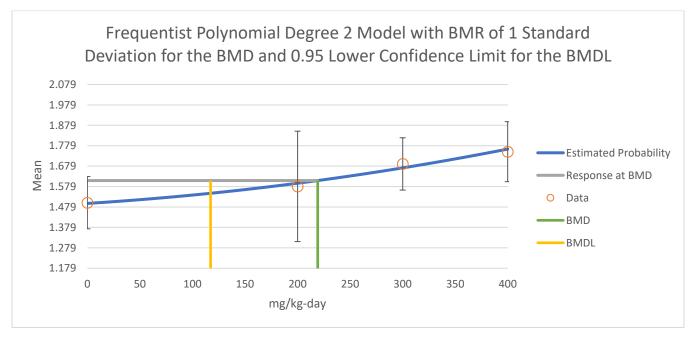


Figure 2-81. Plot of Response by Dose with Fitted Curve for the Selected Model (Polynomial 2-Degree) for Increased Relative Kidney Weight in Male Mice Exposed to 1,2-Dichloroethane Via Oral Gavage in an Acute Toxicity Study and BMR of 1SD (Constant Variance)

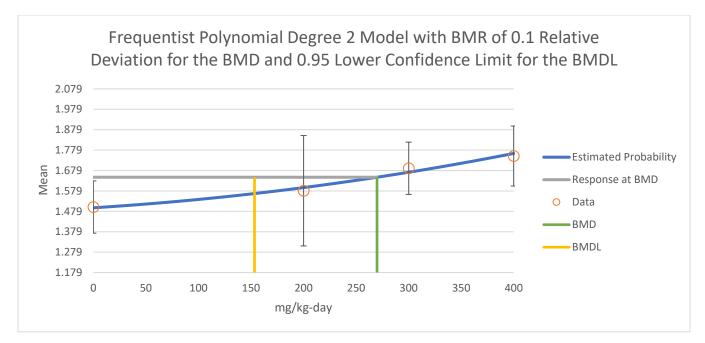


Figure 2-82. Plot of Response by Dose with Fitted Curve for the Selected Model (Polynomial 2-Degree) for Increased Relative Kidney Weight in Male Mice Exposed to 1,2-Dichloroethane Via Oral Gavage in an Acute Toxicity Study and BMR of 10%RD (Constant Variance)

_		-							
	hmark								
BMD		219.1614151							
BMDL		117.214416							
BMDU		380.6486941							
AIC		-21.74414133							
est 4 P-value		0.8640863							
D.O.F.		2							
Mode	el Param	neters							
of Parameters	s	4				•			
Variable		Estimate	Std Error Lower C		r Conf	onf Upper Conf			
g		1.496455497	4.99E-02	1.398	71499	499 1.594196			
beta		0.000323664	5.94E-04	-0.00	-0.0008398 0.00148709		8709		
beta2		Bounded	NA	1	IA	NA	λ		
alpha		0.012545321	5.25E-05 0.01244245 0.01264819						
Goodness of	f Fit								
Dose	Size	Estimated	Calc'd	Observe	d Est	timated	Calc'd	Observed	Scaled
Dose	5120	Median	Median	Mean		SD	SD	SD	Residual
0	5	1.496455497	1.5	1.5	0.1	.120059	0.09	0.09	0.070761898
200	5	1.59539172	1.58	1.58	0.1	120059	0.19	0.19	-0.30727786
300	5	1.67051238	1.69	1.69	0.1	120059	0.09	0.09	0.389047757
400	3	1.762734739	1.75	1.75	0.1	120059	0.08	0.08	-0.196929058

Likelihoods of Interest			
		# of	
Model	Log Likelihood*	Parameters	AIC
A1	14.0181533	5	-18.036307
A2	16.70117875	8	-17.402358
A3	14.0181533	5	-18.036307
fitted	13.87207067	3	-21.744141
R	9.252043047	2	-14.504086
Tests o	f Interest		
Tests o	f Interest -2*Log(Likelihood		
Tests o		Test df	p-value
	-2*Log(Likelihood		p-value 0.02106286
Test	-2*Log(Likelihood Ratio)	Test df	· ·
Test 1	-2*Log(Likelihood Ratio) 14.89827141	Test df 6	0.02106286

Figure 2-83. Details Regarding the Selected Model (Polynomial 2-Degree) for Increased Relative Kidney Weight in Male Mice Exposed to 1,2-Dichloroethane Via Oral Gavage in an Acute Toxicity Study

2.1.2.1.3.2 Blood Urea Nitrogen in Male B6C3F1 Mice – Single Oral Gavage

BUN levels appeared to show a dose-related increasing trend (not statistically significant) in male mice exposed to 1,2-dichloroethane following a single oral gavage exposure in an acute toxicity study by <u>Storer et al. (1984)</u>. The doses and response data used for the modeling are presented in Table 2-65. Continuous models were fit to the dose-response data.

A BMR of one SD was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). A BMR of 10 percent RD was also selected.

Dose Number of (mg/kg) Animals		Mean (mg urea nitrogen/100 mL serum)	SD (mg urea nitrogen/100 mL serum)		
0	5	13.4	2.3		
200	5	16.6	15.1		
300	5	18.5	10.3		
400	3	26.2	21.8		

Table 2-65. Blood Urea Nitrogen in Male Mice and Associated Doses Selected for Dose-Response
Modeling for 1,2-Dichloroethane from an Oral Exposure Study

The BMD modeling results for increased BUN levels in male mice are summarized in Table 2-66. The constant variance model did not provide adequate fit to the variance data, but the nonconstant variance model applied and using a BMR of one SD, only the Power model provided adequate fit to the means (test 4 p-value > 0.1) and a viable result; this model was selected for the one SD BMR. When a BMR of 10 percent RD was applied, all models, except for the Exponential 3 model, provided an adequate fit to the means (test 4 p-value > 0.1); however, the BMDL computation failed for the Hill model and BMDs and BMDLs for the Exponential 5 model were 10 times lower than the lowest non-zero dose and, therefore, not considered viable. The BMDLs for the

remaining fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC was selected for the 10 percent RD BMR (Linear).

	Goodness of Fit		BMD BMDL	BMD	BMDL		
Model	Test 4 p- value	Test 4 1SD 1SD 10% R 10% R p- AIC (mg/kg) (mg/kg) D D		10%R D (mg/kg)	Basis for Model Selection		
Exponential 3	0.0642	138.0	156	70.9	68.0	37.7	Using a BMR of one SD, only the Power model provided
Exponential 5	0.3474	134.6	35.4	0.814	19.1	0.712	adequate fit to the means (test 4 p-value > 0.1) and a viable result; this model was
Hill	0.1560	136.5	24.7	0	12.7	0	selected for the one SD BMR.
Polynomial Degree 3	0.1170	136.824	-	-	54.3	25.8	With a BMR of 10 percent RD, all models, except for the Exponential 3 model,
Polynomial Degree 2	0.1168	136.827	-	-	53.9	25.8	provided an adequate fit to the means (test 4 p-value > 0.1);
Power	0.1072	136.999	106	42.8	46.6	25.3	however, the Hill and Exponential 5 models were
Linear	0.1171	136.822	-	-	54.9	25.8	Exponential 5 models were not viable. The BMDLs for the remaining viable models differed by < 3-fold; therefore, the model with the lowest AIC was selected for the 10 percent RD BMR (Linear).

 Table 2-66. Summary of BMD Modeling Results for Increased Blood Urea Nitrogen in Male Mice

 Following a Single Oral Exposure to 1,2-Dichloroethane (Nonconstant Variance)^a

A plot of the Power model with a BMR of one SD is shown in Figure 2-84 and a plot of the Linear model with a BMR of 10 percent RD is shown in Figure 2-85. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood for the Power model with BMR of one SD are shown in Figure 2-86 and additional modeling details for the Linear model with BMR of 10 percent RD are shown in Figure 2-87.

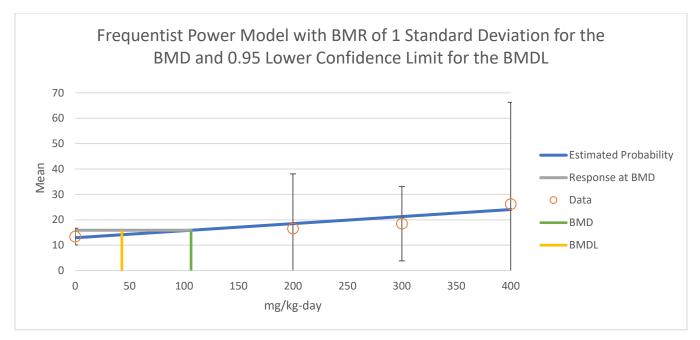


Figure 2-84. Plot of Response by Dose with Fitted Curve for the Selected Model (Power) for Increased Blood Urea Nitrogen in Male Mice Exposed to 1,2-Dichloroethane Via Oral Gavage in an Acute Toxicity Study and BMR of 1SD (Nonconstant Variance)

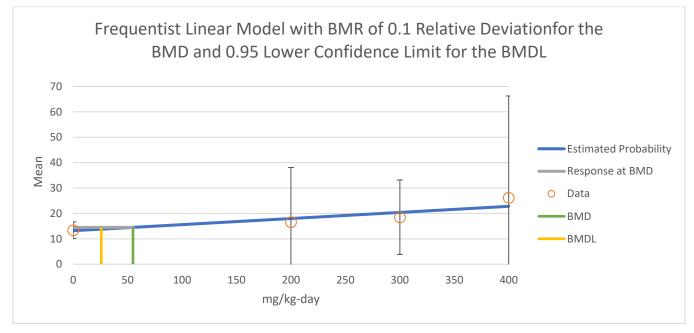


Figure 2-85. Plot of Response by Dose with Fitted Curve for the Selected Model (Linear) for Increased Blood Urea Nitrogen in Male Mice Exposed to 1,2-Dichloroethane Via Oral Gavage in an Acute Toxicity Study and BMR of 10%RD (Nonconstant Variance)

Benchmark Dose						
106.3910977						
42.83193912						
108.5933934						
136.9992953						
0.107170237						
2						

rameters			
5			
Estimate	Std Error	Lower Conf	Upper Conf
12.93552585	1.295836951	10.3957321	15.4753196
0.02778794	1.24E-02	0.00350199	0.05207389
Bounded	NA	NA	NA
6.354251024	2.97E+00	0.54176928	12.1667328
7.533E-07	4.75E-12	7.5329E-07	7.5331E-07
	5 Estimate 12.93552585 0.02778794 Bounded 6.354251024	5 Estimate Std Error 12.93552585 1.295836951 0.02778794 1.24E-02 Bounded NA 6.354251024 2.97E+00	5 Estimate Std Error Lower Conf 12.93552585 1.295836951 10.3957321 0.02778794 1.24E-02 0.00350199 Bounded NA NA 6.354251024 2.97E+00 0.54176928

Goodness	of Fit							
Dose	Size	Estimated	Calc'd	Observed	Estimated	Calc'd	Observed	Scaled
Dose	5120	Median	Median	Mean	SD	SD	SD	Residual
0	5	12.93552585	13.4	13.4	2.95638946	2.3	2.3	0.351305461
200	5	18.49311389	16.6	16.6	9.2030968	15.1	15.1	-0.459968144
300	5	21.27190791	18.5	18.5	14.3579284	10.3	10.3	-0.431690029
400	3	24.05070193	26.2	26.2	21.2080278	21.8	21.8	0.175532279

Likelihoods	of Interest		
		# of	
Model	Log Likelihood*	Parameters	AIC
A1	-69.2249334	5	148.449867
A2	-61.90358802	8	139.807176
A3	-62.26631094	6	136.532622
fitted	-64.49964765	4	136.999295
R	-70.38699059	2	144.773981

Tests			
	-2*Log(Likelihood		
Test	Ratio)	Test df	p-value
1	16.96680515	6	0.00940602
2	14.64269077	3	0.00214891
3	0.725445834	2	0.6957792
4	4.466673423	2	0.10717024

Figure 2-86. Details Regarding the Selected Model (Power) for Increased BUN Levels in Male Mice Exposed to 1,2-Dichloroethane Via Oral Gavage in an Acute Toxicity Study (BMR of 1SD)

Benchmark Dose						
BMD	54.86685634					
BMDL	25.80392856					
BMDU	112.6650676					
AIC	136.8221271					
Test 4 P-value	0.117097004					
D.O.F.	2					

Model Pa	rameters			
# of Parameters	4			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	13.17889964	1.067007319	11.0876037	15.2701956
beta	0.024019782	8.14E-03	0.0080685	0.03997107
rho	7.756854984	3.18E-01	7.1330916	8.38061837
alpha	1.523E-08	1.81E-20	1.523E-08	1.523E-08

Goodne	Goodness of Fit							
Dose	Size	Estimated	Calc'd	Observed	Estimated	Calc'd	Observed	Scaled
Dose	5120	Median	Median	Mean	SD	SD	SD	Residual
0	5	13.17889964	13.4	13.4	2.72094491	2.3	2.3	0.181699903
200	5	17.98285606	16.6	16.6	9.08297293	15.1	15.1	-0.340434809
300	5	20.38483427	18.5	18.5	14.7707533	10.3	10.3	-0.285335316
400	3	22.78681248	26.2	26.2	22.7523877	21.8	21.8	0.259832695

Likelihoods	of Interest		
		# of	
Model	Log Likelihood*	Parameters	AIC
A1	-69.2249334	5	148.449867
A2	-61.90358802	8	139.807176
A3	-62.26631094	6	136.532622
fitted	-64.41106353	4	136.822127
R	-70.38699059	2	144.773981

Tests o	of Interest		
	-2*Log(Likelihood		
Test	Ratio)	Test df	p-value
1	16.96680515	6	0.00940602
2	14.64269077	3	0.00214891
3	0.725445834	2	0.6957792
4	4.289505196	2	0.117097

Figure 2-87. Details Regarding the Selected Model (Linear) for Increased BUN Levels in Male Mice Exposed to 1,2-Dichloroethane Via Oral Gavage in an Acute Toxicity Study (BMR of 10%RD)

2.1.2.2 Short-term/Intermediate

2.1.2.2.1 Mortality

<u>NTP (1991)</u> provided data showing increased mortality in rats following intermediate oral exposure to 1,2-dichloroethane.

2.1.2.2.1.1 Mortality in F344 Male Rats – 13-Week Gavage

There was an increased incidence of mortality in male rats exposed to 1,2-dichloroethane by gavage for 13 weeks (5 days per week) (NTP, 1991). The administered doses were duration adjusted to estimate an equivalent oral dose for animals exposed for 7 days per week. The dose and response data used for the modeling are presented in Table 2-67. Dichotomous models were used to fit dose-response data.

A BMR of 10 percent ER was chosen according to *BMD Technical Guidance* (U.S. EPA, 2012). BMRs of five and one percent ER were also selected due to severity of the endpoint.

Table 2-67. Incidence of Mortality in Male Rats and Associated Doses Selected for Dose-Response Modeling for 1,2-Dichloroethane from a 13-Week Oral Exposure Study

Adjusted Dose (mg/kg-day)	Number of Animals	Incidence
0	10	0
21	10	0
43	10	0
86	10	0
171	10	10
343	10	10

The BMD modeling results for mortality in male rats are summarized in Table 2-68. All models provided adequate fit to the data (chi-square p-value > 0.1) except for the Multistage 1-degree/Quantal Linear model. The BMD computation failed for the Weibull model because the lower limit included zero; therefore, this model was unusable. With a BMR of 10 percent ER applied, the BMDLs for the remaining models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC (Logistic) was selected. With BMRs of five and one percent ER applied (below the observable range in the study), model uncertainty increased and the BMDLs of the fit models were not sufficiently close (differed by > 3-fold); therefore, the lowest BMDL (Multistage 2-degree).

This data set is not well suited for BMD modeling; there are no data points with incidence between 0 and 100 percent, and no data to inform the shape of the curve at the region of interest, as defined by the BMR. As a result, the different models provide a broad range of BMD and BMDL estimates. For the five and one percent ER BMRs, selection of the low end of the range to represent the BMDL is not among the more realistic possibilities and involves extrapolation below the observable range in the study (1/10 = 10 percent) to generate BMD estimates well below the lowest tested dose where any mortality was observed.

Madal	Goodnes (Mea		BMD 1%ER	BMDL 1%ER	BMD 5%ER	BMDL 5%ER	BMD 10%ER	BMDL 10%ER	Desis for Model Selection
Model	p- value	AIC	(mg/kg- day)	(mg/kg- day)	(mg/kg- day)	(mg/kg- day)	(mg/kg- day)	(mg/kg- day)	Basis for Model Selection
Dichotomous Hill	0.9997	4.099	95	64	100	78	110	84	All models provided adequate fit to the data (chi-square p-value > 0.1) except for the
Gamma	0.9010	5.080	66	51	80	65	88	73	Multistage 1-degree/Quantal Linear model. The BMD computation failed for the
Log-Logistic	0.9997	4.099	95	64	100	78	110	84	Weibull model. With a BMR of 10 percent
Multistage 3	0.5659	8.699	29	9.0	50	34	63	50	ER applied, BMDLs for the remaining models differed by < 3-fold; therefore, EPA
Multistage 2	0.1217	17.01	14	6.0	32	22	47	35	chose the model with the lowest AIC
Multistage 1	0.0028	31.61	1.7	1.2	8.7	5.9	18	12	(Logistic). With BMRs of five and one percent ER applied, BMDLs of the fit
Weibull	0.9101	4.941	57	0	78	0	90	0	models differed by $>$ 3-fold; therefore, EF chose the model with the lowest BMDL (Multistage 2-degree) for this BMR.
Logistic	1.000	2.098	94	51	100	74	110	83	
Log-Probit	1.000	4.000	110	68	110	79	120	84	
Probit	0.9922	4.518	84	54	97	72	100	81	NOTE: This data set is not well suited for BMD modeling and the results for BMR =
Quantal Linear	0.0028	31.61	1.7	1.2	8.7	5.9	18	12	five percent ER and one percent ER are highly unrealistic.

Table 2-68. Summary of BMD Modeling Results for Increased Incidence of Mortality in Male Rats Following Oral Exposure to 1,2-Dichloroethane for 13 Weeks^a

^{*a*} Selected model in bold.

A plot of the Logistic model with a BMR of 10 percent ER is shown in Figure 2-88 and plots of the Multistage (2-degree) model for BMRs of five percent ER and five percent ER are shown in Figure 2-89 and Figure 2-90, respectively. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood for the Logistic model with BMR of 10 percent ER are shown in Figure 2-91; additional modeling details for the Multistage 2-degree model are shown in Figure 2-92 (BMD and BMDL shown are for BMR of five percent ER; the rest is applicable to both BMRs).

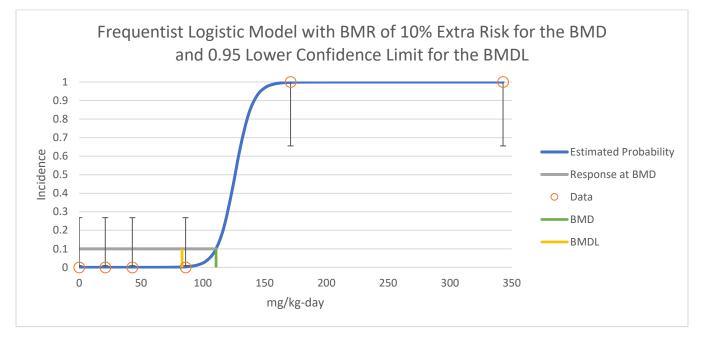


Figure 2-88. Plot of Response by Dose with Fitted Curve for the Selected Model (Logistic Model) for Mortality in Male Rats Exposed to 1,2-Dichloroethane Via Oral Gavage for 13 Weeks and BMR of 10%ER

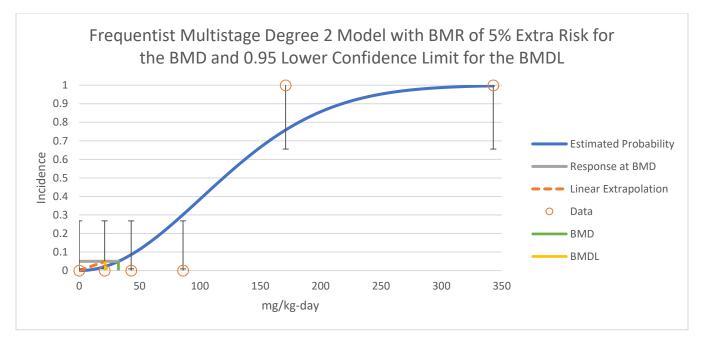


Figure 2-89. Plot of Response by Dose with Fitted Curve for the Selected Model (Multistage 2-Degree) for Mortality in Male Rats Exposed to 1,2-Dichloroethane Via Oral Gavage for 13 Weeks and BMR of 5%ER

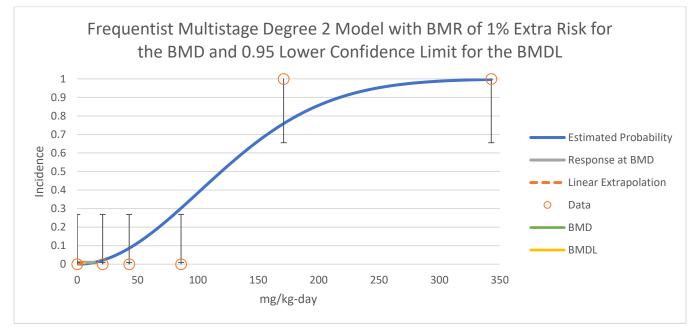


Figure 2-90. Plot of Response by Dose with Fitted Curve for the Selected Model (Multistage 2-Degree) for Mortality in Male Rats Exposed to 1,2-Dichloroethane Via Oral Gavage for 13 Weeks and BMR of 1%ER

Benchmark Dose					
110.6991871					
83.20918801					
135.7943266					
2.098271204					
0.999971933					
5					
0.049202422					

Model Para	imeters			
# of Parameters	2			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
а	Bounded	NA	NA	NA
b	0.142754215	3.73E-02	0.06967734	0.21583109

Goodness	s of Fit				
Dose	Estimated	Exported	Observed	Size	Scaled
Dose	Probability	Expected	Observed	5120	Residual
0	1.523E-08	1.523E-07	0	10	-0.00039
21	3.05242E-07	3.05242E-06	0	10	-0.001747
43	7.0564E-06	7.0564E-05	0	10	-0.0084
86	0.003258783	0.032587826	0	10	-0.180816
171	0.998359268	9.983592681	10	10	0.1281963
343	1	10	10	10	5.972E-07
Analysis of I	Deviance				
Model	Log Likelihood	# of Parameters	Deviance	Test d.f.	P Value
Full Model	4.44089E-16	6	-	-	NA
Fitted Model	-0.049135602	1	0.0982712	5	0.9998445
Reduced Model	-38.1908501	1	76.283429	5	< 0.0001

Figure 2-91. Details Regarding the Selected Model (Logistic) for Mortality in Male Rats Exposed to 1,2-Dichloroethane Via Oral Gavage for 13 Weeks

Benchmark Dose					
BMD	32.47950141				
BMDL	21.58183101				
BMDU	42.58707132				
AIC	17.00744744				
P-value	0.121722096				
D.O.F.	5				
Chi ²	8.698255892				
Slope Factor	0.002316764				

Model Parameters				
# of Parameters	3			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	Bounded	NA	NA	NA
b1	Bounded	NA	NA	NA
b2	4.8623E-05	1.850501141	-3.626867	3.62696424

Goodness of Fit					
Dose	Estimated Probability	Expected	Observed	Size	Scaled Residual
0	1.523E-08	1.523E-07	0	10	-0.00039
21	0.021214505	0.212145047	0	10	-0.465557
43	0.085981052	0.859810517	0	10	-0.969893
86	0.302055617	3.020556174	0	10	-2.080334
171	0.758717227	7.587172269	10	10	1.783295
343	0.996721763	9.967217631	10	10	0.1813565

Analysis of [Deviance				
Model	Log Likelihood	# of Parameters	Deviance	Test d.f.	P Value
Full Model	4.44089E-16	6	-	-	NA
Fitted Model	-7.503723719	1	15.0074474	5	0.0103306
Reduced Model	-38.1908501	1	61.3742528	5	< 0.0001

Figure 2-92. Details Regarding the Selected Model (Multistage 2-Degree) for Mortality in Male Rats Exposed to 1,2-Dichloroethane Via Oral Gavage for 13 Weeks

2.1.2.2.1.2 Mortality in F344 Female Rats – 13-Week Gavage

There was an increased incidence of mortality in female rats exposed to 1,2-dichloroethane by gavage for 13 weeks (5 days per week) (NTP, 1991). The administered doses were duration adjusted to estimate an equivalent oral dose for animals exposed for 7 days per week. The dose and response data used for the modeling are presented in Table 2-69. Dichotomous models were used to fit dose-response data.

A BMR of 10 percent ER was chosen according to *BMD Technical Guidance* (U.S. EPA, 2012). BMRs of five and one percent ER were also selected due to severity of the endpoint.

Adjusted Dose (mg/kg-day)	Number of Animals	Incidence
0	10	0
13	10	0
26	10	0
54	10	0
107	10	0
214	10	9

Table 2-69. Incidence of Mortality in Female Rats and Associated Doses Selected for Dose-
Response Modeling for 1,2-Dichloroethane from a 13-Week Oral Exposure Study

The BMD modeling results for increased mortality in female rats are summarized in Table 2-70. All models provided adequate fit to the data (chi-square p-value > 0.1) except for the Multistage 1-degree/Quantal Linear model. With a BMR of 10 percent ER applied, the BMDLs were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC (Weibull) was selected. With BMRs of five and one percent ER applied (below the observable range in the study), model uncertainty increased and the BMDLs of the fit models were not sufficiently close (differed by > 3-fold); therefore, the BMDL sufficiently close (differed by > 3-fold); therefore, the BMDLs were not sufficiently close (differed by > 3-fold); therefore, the BMDL sufficiently close (differed by > 3-fold); therefore, the BMDL sufficiently close (differed by > 3-fold); therefore, the BMDL sufficiently close (differed by > 3-fold); therefore, the BMDL sufficiently close (differed by > 3-fold); therefore, the BMDL sufficiently close (differed by > 3-fold); therefore, the BMDL sufficiently close (differed by > 3-fold); therefore, the BMDL sufficiently close (differed by > 3-fold); therefore, the BMDL sufficiently close (differed by > 3-fold); therefore, the BMDL sufficiently close (differed by > 3-fold); therefore, the BMDL sufficiently close (differed by > 3-fold); therefore, the BMDL sufficiently close (differed by > 3-fold); therefore, the BMDL sufficiently close (differed by > 3-fold); therefore, the BMDL sufficiently close (differed by > 3-fold); therefore, the BMDL sufficiently close (differed by > 3-fold); therefore, the BMDL sufficiently close (differed by > 3-fold); therefore, the BMDL sufficiently close (differed by > 3-fold); therefore, the BMDL sufficiently close (differed by > 3-fold); therefore, the BMDL sufficiently close (differed by > 3-fold); the sufficiently close (differed by > 3-fold); the

This data set is not well suited for BMD modeling; there are no data points with incidence between 0 and 90 percent, and there are no data to inform the shape of the curve at the region of interest, as defined by the BMR. As a result, the different models provide a broad range of BMD and BMDL estimates. For the five and one percent ER BMRs, selection of the low end of the range to represent the BMDL is not among the more realistic possibilities and involves extrapolation below the range of observation in the study (1/10 = 10 percent) to generate a BMD estimate well below the lowest tested dose where any mortality was observed.

Model	Goodnes (Mea		BMD 1%RD	BMDL 1%RD	BMD 5%RD	BMDL 5%RD	BMD 10%RD	BMDL 10%RD	Basis for Model Selection
Model	p- value	AIC	(mg/kg- day)	(mg/kg- day)	(mg/kg- day)	(mg/kg- day)	(mg/kg- day)	(mg/kg- day)	Basis for Model Selection
Dichotomous Hill	1.000	8.502	150	67	160	90	168	103	All models provided adequate fit to the data
Gamma	0.9903	9.462	91	62	110	83	121	95.9	(chi-square p-value > 0.1) except for the Multistage 1-degree/Quantal Linear model.
Log-Logistic	1.000	8.502	150	67	160	90	168	103	With a BMR of 10 percent ER applied,
Multistage 3	0.7864	11.83	40	12	69	46	87.4	68.3	BMDLs differed by < 3-fold; therefore, EPA chose the model with the lowest AIC
Multistage 2	0.2605	19.79	20	8.3	46	30	65.5	48.3	(Weibull). With BMRs of five and one
Multistage 1	0.0146	28.73	3.4	2.1	18	10	36.0	21.6	percent ER applied, BMDLs of the fit models differed by > 3-fold; therefore, the
Weibull	1.000	8.502	160	58	170	86	180	102	BMDS recommended the model with the
Logistic	1.000	8.509	140	48	160	87	167	105	lowest BMDL (Multistage 2-degree).
Log-Probit	1.000	10.50	170	75	180	92	185	103	NOTE: This data set is not well suited for
Probit	1.000	10.50	160	56	170	87	174	103	BMD modeling and the results for BMR = five percent ER and one percent ER are
Quantal Linear	0.0146	28.73	3.4	2.1	18	10	36.0	21.6	highly unrealistic.
^a Selected model	in bold.		•	•	•	•	•		·

Table 2-70. Summary of BMD Modeling Results for Increased Incidence of Mortality in Female Rats Following Oral Exposure to 1,2-Dichloroethane for 13 Weeks^a

A plot of the Weibull model with a BMR of 10 percent ER is shown in Figure 2-93 and plots of the Multistage (2-degree) model with a BMR of five percent ER and one percent ER are shown in Figure 2-94 and Figure 2-95, respectively. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood for the Weibull model with BMR of 10 percent ER are shown in Figure 2-96; additional modeling details for the Multistage 2-degree model are shown in Figure 2-97 (BMD and BMDL shown are for BMR of five percent ER; the rest is applicable to both BMRs).

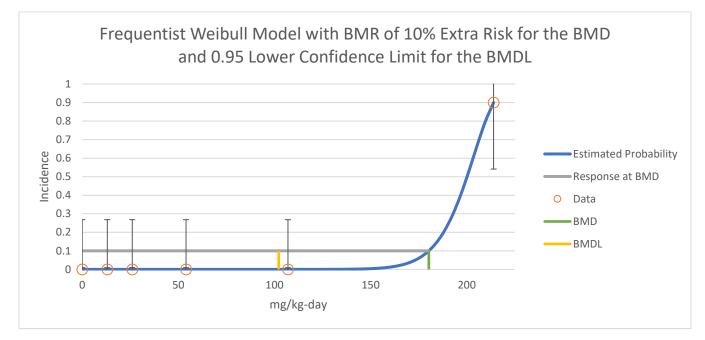


Figure 2-93. Plot of Response by Dose with Fitted Curve for the Selected Model (Weibull) for Mortality in Female Rats Exposed to 1,2-Dichloroethane Via Oral Gavage for 13 Weeks and BMR of 10%ER

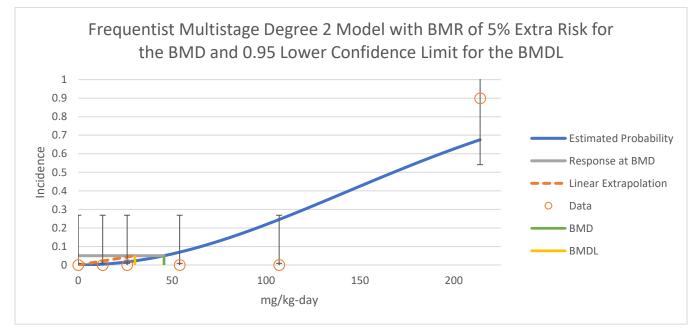


Figure 2-94. Plot of Response by Dose with Fitted Curve for the Selected Model (Multistage 2-Degree) for Mortality in Female Rats Exposed to 1,2-Dichloroethane Via Oral Gavage for 13 Weeks and BMR of 5%ER

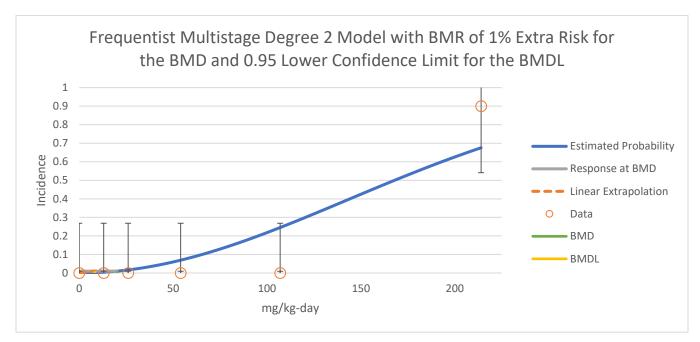


Figure 2-95. Plot of Response by Dose with Fitted Curve for the Selected Model (Multistage 2-Degree) for Mortality in Female Rats Exposed to 1,2-Dichloroethane Via Oral Gavage for 13 Weeks and BMR of 1%ER

Benchmark Dose					
BMD	180.2998504				
BMDL	102.2067187				
BMDU	187.4610082				
AIC	8.501836664				
P-value	1				
D.O.F.	5				
Chi ²	8.8597E-05				

Model Para	imeters			
# of Parameters				
				Upper
Variable	Estimate	Std Error	Lower Conf	Conf
g	Bounded	NA	NA	NA
а	Bounded	NA	NA	NA
b	2.59873E-42	0.948650386	-1.8593206	1.8593206

Goodness of Fit					
Dose	Estimated	Expected	Observed	Size	Scaled
	Probability	Expected	Observed	5120	Residual
0	1.523E-08	1.523E-07	0	10	-0.00039
13	1.523E-08	1.523E-07	0	10	-0.00039
26	1.523E-08	1.523E-07	0	10	-0.00039
54	1.52696E-08	1.52696E-07	0	10	-0.000391
107	8.79873E-06	8.79873E-05	0	10	-0.00938
214	0.899996567	8.999965671	9	10	3.618E-05

Analysis of Deviance					
Model	Log Likelihood	# of Parameters	Deviance	Test d.f.	P Value
Full Model	-3.250829734	6	-	-	NA
Fitted Model	-3.250918332	1	0.0001772	5	1
Reduced Model	-25.36254527	1	44.2232539	5	< 0.0001

Figure 2-96. Details Regarding the Selected Model (Weibull) for Mortality in Female Rats Exposed to 1,2-Dichloroethane Via Oral Gavage for 13 Weeks

Benchmark Dose						
BMD	45.67835414					
BMDL	30.17422595					
BMDU	62.50104948					
AIC	18.78831282					
P-value	0.260531164					
D.O.F.	5					
Chi ²	6.500319411					
Slope Factor	0.001657043					

Model Para	imeters			
# of Parameters	3			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	Bounded	NA	NA	NA
b1	Bounded	NA	NA	NA
b2	2.45833E-05	0.395402699	-0.7749505	0.77499964

Goodness of Fit]			
Dose	Estimated	Expected	Observed	Size	Scaled
	Probability	Expected	Observed	3120	Residual
0	1.523E-08	1.523E-07	0	10	-0.00039
13	0.00414597	0.041459704	0	10	-0.20404
26	0.016480987	0.164809869	0	10	-0.409355
54	0.069175797	0.691757972	0	10	-0.862071
107	0.245314319	2.453143191	0	10	-1.802928
214	0.675612239	6.756122394	9	10	1.5157172

Analysis of Deviance					
Model	Log Likelihood	# of Parameters	Deviance	Test d.f.	P Value
Full Model	-3.250829734	6	-	-	NA
Fitted Model	-8.394156409	1	10.2866533	5	0.0675087
Reduced Model	-25.36254527	1	44.2234311	5	< 0.0001

Figure 2-97. Details Regarding the Selected Model (Multistage 2-Degree) for Mortality in Female Rats Exposed to 1,2-Dichloroethane Via Oral Gavage for 13 Weeks

2.1.2.2.2 Body Weight Effects

One short-term/intermediate-duration inhalation study was identified for BMD modeling that showed significant changes in maternal absolute body weight gain in mice (<u>Payan et al., 1995</u>).

2.1.2.2.1 Maternal Absolute Weight Gain in Female Rats – Oral Gavage, GD 6 to 20

Absolute body weight gain was significantly increased in maternal rats exposed to 1,2-dichloroethane by gavage on GD 6 to 20 (Payan et al., 1995). Doses were reported in mmol/kg/day and converted to units of mg/kg-day. The dose and response data used for the modeling are presented in Table 2-71. Continuous models were used to fit dose-response data.

A BMR of one SD was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). A BMR of 10 percent RD was also selected.

Dose (mg/kg-day)	Number of Animals	Mean (g)	SD (g)
0	26	43	10
119	26	39	15
158	25	33	20
198	26	30	20
238	26	22	25

 Table 2-71. Maternal Absolute Weight Gain in Female Mice and Associated Doses Selected for

 Dose-Response Modeling for 1,2-Dichloroethane from an Oral Gestational Exposure Study

The BMD modeling results for decreased maternal absolute weight gain in female rats are summarized in Table 2-72. The constant variance model did not provide adequate fit to the variance data, but the nonconstant variance model did. With the nonconstant variance model applied, only the Hill model provided an adequate fit to the means (test 4 p-value > 0.1); therefore, this model was selected.

Table 2-72. Summary of BMD Modeling Results for Decreased Maternal Absolute Weight Gain in Female Rats Following Oral Exposure to 1,2-Dichloroethane on GD 6 to 20 (Nonconstant Variance)^a

	Goodness	of Fit	BMD	BMDL	BMD	BMDL	
Model	test 4 p- value	AIC	1SD (mg/kg- day)	1SD (mg/kg- day)	10%RD (mg/kg- day)	10%RD (mg/kg- day)	Basis for Model Selection
Exponential 3	0.0002	1125	224	176	118	52.7	
Exponential 5	< 0.0001	1127	224	176	118	52.7	Only the Hill model
Hill	0.3438	1109	154	111	99.1	41.8	provided an adequate
Polynomial Degree 3	0.0005	1123	224	178	113	48.5	fit to the means (test 4 p -value > 0.1); therefore, this model
Polynomial Degree 2	0.0005	1123	223	178	108	48.4	was selected.
Power	0.0002	1125	224	177	114	48.5	
Linear	0.0002	1125	221	158	54.2	42.6	
^a Selected mode	el in bold.				•	•	

Plots of the Hill model with BMRs of one SD and 10 percent RD are shown in Figure 2-98 and Figure 2-99, respectively. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-100 (BMD and BMDL shown are for BMR of one SD; the rest is applicable to both BMRs).

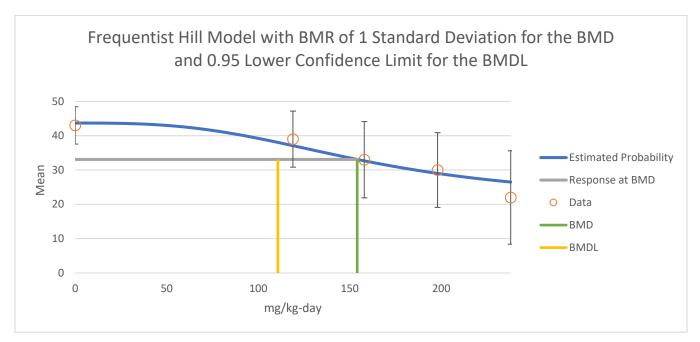


Figure 2-98. Plot of Response by Dose with Fitted Curve for the Selected Model (Hill) for Decreased Maternal Absolute Weight Gain in Female Rats Exposed to 1,2-Dichloroethane Via Oral Gavage GD 6 to 20 and BMR of 1SD (Nonconstant Variance)

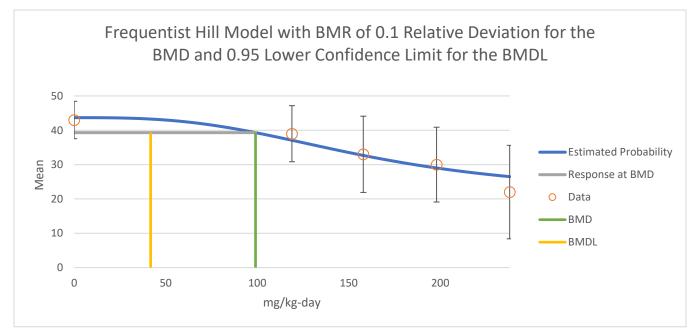


Figure 2-99. Plot of Response by Dose with Fitted Curve for the Selected Model (Hill) for Decreased Maternal Absolute Weight Gain in Female Rats Exposed to 1,2-Dichloroethane Via Oral Gavage GD 6 to 20 and BMR of 10%RD (Nonconstant Variance)

Benchmark Dose						
BMD	154.0869579					
BMDL	110.7483035					
BMDU	189.773709					
AIC	1109.497668					
Test 4 P-value	0.343844647					
D.O.F.	1					
D.O.F.	1					

Model Pa	rameters			
# of Parameters	6			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	43.68213907	1.959630152	39.8413345	47.5229436
v	-22.53459618	19.65018267	-61.048247	15.9790544
k	160.4215626	105.8714667	-47.082701	367.925826
n	2.957753882	3.483418283	-3.8696205	9.78512831
rho	-3.482162919	1.383320231	-6.1934208	-0.7709051
alpha	57829944.68	1.66E+16	-3.252E+16	3.2521E+16

Goodness of Fit

Goodne	ss of Fit							
Dose	Size	Estimated	Calc'd	Observed	Estimated	Calc'd	Observed	Scaled
Dose	3120	Median	Median	Mean	SD	SD	SD	Residual
0	26	43.68213907	43	43	10.5967743	10	10	-0.328235774
119	26	37.09148674	39	39	14.0877651	15	15	0.690779997
158	25	32.66824306	33	33	17.5735729	20	20	0.094390862
198	26	29.01694655	30	30	21.6013361	20	20	0.232050864
238	26	26.49829695	22	22	25.3010171	25	25	-0.906560548

Likelihoods	of Interest		
		# of	
Model	Log Likelihood*	Parameters	AIC
A1	-558.2556686	6	1128.51134
A2	-547.2429538	10	1114.48591
A3	-548.3008121	7	1110.60162
fitted	-548.7488342	6	1109.49767
R	-567.776198	2	1139.5524

Tests of Interest					
-2*Log(Likelihood					
Ratio)	Test df	p-value			
41.06648838	8	<0.0001			
22.02542948	4	0.0001981			
2.11571657	3	0.54873974			
0.896044122	1	0.34384465			
	-2*Log(Likelihood Ratio) 41.06648838 22.02542948 2.11571657	-2*Log(Likelihood Ratio) Test df 41.06648838 8 22.02542948 4 2.11571657 3			

Figure 2-100. Details Regarding the Selected Model (Hill) for Decreased Maternal Absolute Weight Gain in Female Rats Exposed to 1,2-Dichloroethane Via Oral Gavage GD 6 to 20

2.1.2.2.3 Renal Effects

Data sets for changes in absolute and relative kidney weight in male and female rats orally exposed for 13 weeks were identified for BMD modeling (NTP, 1991).

Modeled results were not presented for the absolute or relative kidney weight data in female rats because neither the constant nor nonconstant variance models provided adequate fit to the variance data.

2.1.2.2.3.1 Absolute Kidney Weight in F344 Male Rats – 13-Week Gavage

Absolute kidney weight was significantly increased in male rats exposed to 1,2-dichloroethane by gavage for 13 weeks (5 days per week) (<u>NTP, 1991</u>). The administered doses were duration adjusted to estimate an equivalent oral dose for animals exposed for 7 days per week. The dose and response data used for the modeling are presented in Table 2-73. Continuous models were used to fit dose-response data.

A BMR of one SD was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). A BMR of 10 percent RD was also selected because EPA considers a 10 percent change in kidney weight to be biologically significant.

Adjusted Dose (mg/kg-day)	Number of Animals	Mean (mg)	SD (mg)
0	10	1324	92
21	10	1441	82
43	10	1600	171
86	10	1653	149

 Table 2-73. Absolute Kidney Weight in Male Rats and Associated Doses Selected for Dose

 Response Modeling for 1,2-Dichloroethane from a 13-Week Oral Exposure Study

The BMD modeling results for increased absolute kidney weight in male rats are summarized in Table 2-74. Both the constant and nonconstant variance models provide adequate fit to the variance data. With the constant variance model applied, none of the models provided adequate fit to the means (test 4 p-value < 0.1). With the nonconstant variance model applied, only the Exponential 5 model provided adequate fit to the means (test 4 p-value > 0.1); therefore, this model was selected.

Table 2-74. Summary of BMD Modeling Results for Increased Absolute Kidney Weight in Male
Rats Following Oral Exposure to 1,2-Dichloroethane for 13 Weeks (Nonconstant Variance) ^a

	Goodnes	s of Fit	BMD	BMDL	BMD	BMDL	
Model	test 4 p- value	AIC	1SD (mg/kg- day)	1SD (mg/kg- day)	10%RD (mg/kg- day)	10%RD (mg/kg- day)	Basis for Model Selection
Exponential 3	0.0388	507.1	27	17	35	27	
Exponential 5	0.3660	503.5	19	12	23	14	Only the Exponential 5 model provided adequate fit to the means (test 4 p-
Hill	NA	505.5	19	13	23	19	ne to the means (test + p

	Goodnes	s of Fit	BMD	BMDL	BMD	BMDL	
Model	test 4 p- value	AIC	1SD (mg/kg- day)	1SD (mg/kg- day)	10%RD (mg/kg- day)	10%RD (mg/kg- day)	Basis for Model Selection
Polynomial Degree 3	0.0268	507.9	-	-	31	0	value > 0.1); therefore, this model was selected.
Polynomial Degree 2	0.0268	507.9	-	-	31	0	
Power	0.0268	507.9	23	14	31	24	
Linear	0.0268	507.9	-	-	31	24	
^a Selected model	in bold.						

Plots of the Exponential 5 model with BMRs of one SD and 10 percent RD are shown in Figure 2-101 and Figure 2-102, respectively. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-103 (BMD and BMDL shown are for BMR of one SD; the rest is applicable to both BMRs).

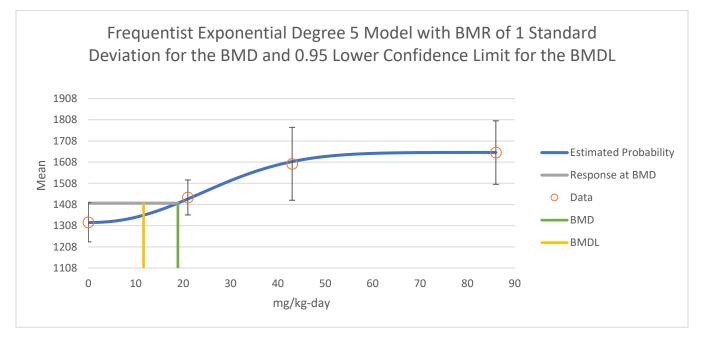


Figure 2-101. Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 5) for Increased Absolute Kidney Weight in Male Rats Exposed to 1,2-Dichloroethane Via Oral Gavage for 13 Weeks and BMR of 1SD (Nonconstant Variance)

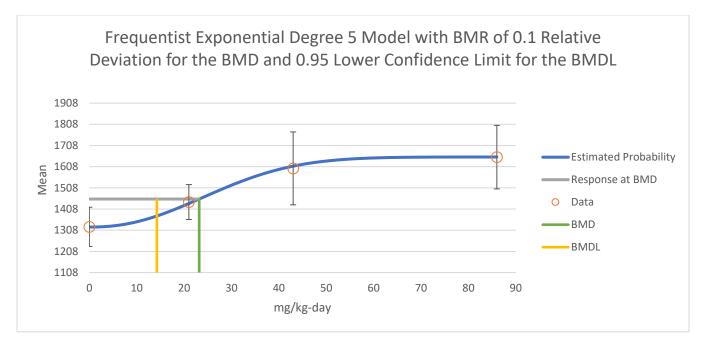


Figure 2-102. Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 5) for Increased Absolute Kidney Weight in Male Rats Exposed to 1,2-Dichloroethane Via Oral Gavage for 13 Weeks and BMR of 10%RD (Nonconstant Variance)

Model Resul	lts								
Be	nchmark	Dose							
BMD		18.89503404							
BMDL		11.64401146							
BMDU		25.54732985							
AIC		503.4998688							
Test 4 P-value	è	0.366027487							
D.O.F.		1							
		-							
	del Param								
# of Paramete		6		Lawar	Conf	Linnar	ant		
Variable		Estimate	Std Error						
a		1322.943197	28.5275124				78.85609		
b		0.031943071	6.44E-03						
C		1.250041712	3.38E-02	1.1837					
d		2.234728895	9.38E-01	0.3970		-			
rho		3.760841847	3.12E-02	3.6997		3.82195			
log-alpha		Bounded	NA	N	4	NA			
Goodness	of Fit								
Dece	Sizo	Estimated	Calc'd	Observed	Est	imated	Calc'd	Observe	Scaled
Dose	Size	Median	Median	Mean		SD	SD	d SD	Residual
0	10	1322.943197	1324	1324	91.4	452272	92	92	0.036545426
21	10	1434.143559	1441	1441	106.	432064	82	82	0.203716537
43	10	1610.401275	1600	1600	132.	353569	171	171	-0.248514042
86	10	1653.711018	1653	1653	139.	126056	149	149	-0.016161145

Model A1		# of	
		# 01	
Δ1	Log Likelihood*	Parameters	AIC
A1	-249.0626479	5	508.125296
A2	-245.3915079	8	506.783016
A3	-246.3413811	6	504.682762
fitted	-246.7499344	5	503.499869
R	-264.1885774	2	532.377155
T	6 last	1	
lests o	of Interest		1
	-2*Log(Likelihood		
Test	Ratio)	Test df	p-value
1	37.59413899	6	< 0.0001
2	7.342280042	3	0.06175249
3	1.899746393	2	0.38679007
4	0.817106605	1	0.36602749

Figure 2-103. Details Regarding the Selected Model (Exponential 5) for Increased Absolute Kidney Weight in Male Rats Exposed to 1,2-Dichloroethane Via Oral Gavage for 13 Weeks

2.1.2.2.3.2 Relative Kidney Weight in F344 Male Rats – 13-Week Gavage

Relative kidney weight was significantly increased in male rats exposed to 1,2-dichloroethane by gavage for 13 weeks (5 days per week) (NTP, 1991). The administered doses were duration adjusted to estimate an equivalent oral dose for animals exposed for 7 days per week. The dose and response data used for the modeling are presented in Table 2-75. Continuous models were used to fit dose-response data.

A BMR of one SD was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). A BMR of 10 percent RD was also selected because EPA considers a 10 percent change in relative kidney weight to be biologically significant.

Adjusted Dose (mg/kg-day)	Number of Animals	Mean (Organ weight to body weight)	SD (Organ weight to body weight)
0	10	3.9	0.19
21	10	4.1	0.32
43	10	4.5	0.25
86	10	4.9	0.22

Table 2-75. Relative Kidney Weight in Male Rats and Associated Doses Selected for Dose-Response Modeling for 1,2-Dichloroethane from a 13-Week Oral Exposure Study

The BMD modeling results for increased relative kidney weight in male rats are summarized in Table 2-76. The constant variance model provided an adequate fit to the variance data. With the constant variance model applied, the goodness-of-fit p-values for the means (test 4) could not be derived for the Exponential 5 and Hill models because the models were saturated (degrees of freedom = 0). The remaining models provided adequate fit to the means (test 4 p-value > 0.1). The BMDLs for the fit

models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC (Power) was selected.

	Goodne	ss of Fit	BMD	BMDL	BMD	BMDL		
Model	test 4 p- value	AIC	1SD (mg/kg- day)	1SD (mg/kg- day)	10%R D (mg/kg- day)	10%R D (mg/kg- day)	Basis for Model Selection	
Exponential 3	0.2945	6.746	23	18	36	30	Goodness-of-fit p-values could not be derived for the	
Exponential 5	NA	8.301	23	13	32	21	Exponential 5 and Hill models because the models were saturated (degrees of freedom = 0). The remaining models	
Hill	NA	8.301	23	13	31	21		
Polynomial Degree 3	0.3915	6.1763	20	16	33	27	provided adequate fit to the means (test 4 p-value > 0.1).	
Polynomial Degree 2	0.3908	6.180	20	16	33	27	BMDLs for the fit models differed by < 3-fold; therefore EPA chose the model with the	
Power	0.3916	6.1758	20	16	33	27	lowest AIC.	
Linear	0.3916	6.1758	20	16	33	27		
^a Selected mode	l in bold.							

Table 2-76. Summary of BMD Modeling Results for Increased Relative Kidney Weight in Male
Rats Following Oral Exposure to 1,2-Dichloroethane for 13 Weeks (Constant Variance) ^a

Plots of the Power model with BMRs of one SD and 10 percent RD are shown in Figure 2-104 and Figure 2-105, respectively. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-106 (BMD and BMDL shown are for BMR of one SD; the rest is applicable to both BMRs).

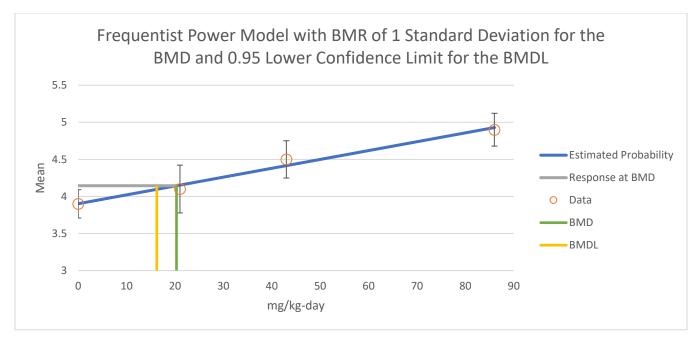


Figure 2-104. Plot of Response by Dose with Fitted Curve for the Selected Model (Power) for Increased Absolute Kidney Weight in Male Rats Exposed to 1,2-Dichloroethane Via Oral Gavage for 13 Weeks and BMR of 1SD (Constant Variance)

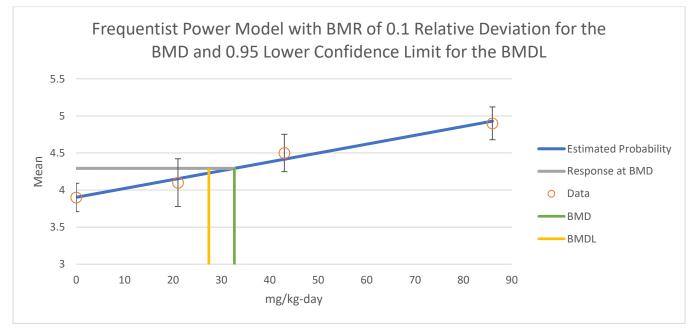


Figure 2-105. Plot of Response by Dose with Fitted Curve for the Selected Model (Power) for Increased Absolute Kidney Weight in Male Rats Exposed to 1,2-Dichloroethane Via Oral Gavage for 13 Weeks and BMR of 10%RD (Constant Variance)

Model Results

Benchmark Dose							
BMD	20.30524804						
BMDL	16.22947938						
BMDU	31.96250624						
AIC	6.175774284						
Test 4 P-value	0.391649386						
D.O.F.	2						

Model Pa	rameters			
# of Parameters	4			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	3.902142333	0.059216216	3.78608068	4.01820398
v	0.011942871	1.20E-03	0.00958432	0.01430142
n	Bounded	NA	NA	NA
alpha	0.058807687	7.73E-04	0.05729203	0.06032334

Goodne	ess of Fit							
Dose	Deen		Calc'd	Observed	Estimated	Calc'd	Observed	Scaled
Dose	Size	Median	Median	Mean	SD	SD	SD	Residual
0	10	3.902142333	3.9	3.9	0.24250296	0.19	0.19	-0.027936363
21	10	4.152942628	4.1	4.1	0.24250296	0.32	0.32	-0.690380391
43	10	4.415685794	4.5	4.5	0.24250296	0.25	0.25	1.099470812
86	10	4.929229256	4.9	4.9	0.24250296	0.22	0.22	-0.381154207

Likelihoods	of Interest		
		# of	
Model	Log Likelihood*	Parameters	AIC
A1	0.849501122	5	8.30099776
A2	2.355544823	8	11.2889104
A3	0.849501122	5	8.30099776
fitted	-0.087887142	3	6.17577428
R	-24.92705487	2	53.8541097

		l	
Tests of	Interest		
	-2*Log(Likelihood		
Test	Ratio)	Test df	p-value
1	54.56519938	6	<0.0001
2	3.012087401	3	0.38976529
3	3.012087401	3	0.38976529
4	1.874776528	2	0.39164939

Figure 2-106. Details Regarding the Selected Model (Power) for Increased Relative Kidney Weight in Male Rats Exposed to 1,2-Dichloroethane Via Oral Gavage for 13 Weeks

2.1.2.2.4 Immune Effects

Data sets identified for BMD modeling for immune effects in a 14-day gavage study (<u>Munson et al.</u>, <u>1982</u>) include changes in leukocyte count, antibody-forming cells/spleen, and antibody-forming

cells/ 10^6 cells in male mice. Data sets for the incidence of thymus necrosis in male and female rats in a 13-week gavage study (<u>NTP, 1991</u>) were also identified for BMD modeling.

Modeled results were not presented for the antibody-forming cells/spleen or antibody-forming cells/ 10^6 cells in male mice data sets (<u>Munson et al., 1982</u>) because none of the models provided adequate fits to the means (test 4 p-value < 0.1) either assuming constant or nonconstant variance.

2.1.2.2.4.1 Leukocyte Count in CD-1 Male Mice – 14-day Gavage Study

Leukocyte counts were significantly decreased in male mice exposed to 1,2-dichloroethane by gavage daily for 14 days (<u>Munson et al., 1982</u>). The dose and response data used for the modeling are presented in Table 2-77. Continuous models were used to fit the dose-response data.

A BMR of one SD was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). A BMR of 10 percent RD was also selected because EPA considers a 10 percent change in leukocyte counts to be biologically relevant.

 Table 2-77. Leukocytes in Male Mice and Associated Doses Selected for Dose-Response Modeling for 1,2-Dichloroethane from a 14-Day Oral Exposure Study

Dose (mg/kg-day)	Number of Animals	Mean	SD
0	12	8.24	3.26
4.89	10	7.60	1.64
48.9	10	5.76	1.55

The BMD modeling results for decreased leukocyte count in male mice are summarized in Table 2-78. The constant variance model did not provide adequate fit to the variance data, but the nonconstant variance model applied, all models except the Exponential 5 and Hill models provided adequate fit to the means (test 4 p-value < 0.1). The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC (Exponential 3) was selected.

Table 2-78. Summary of BMD Modeling Results for Decreased Leukocytes in Male Mice									
Following Oral Exposure to 1,2-Dichloroethane for 14 Days (Nonconstant Variance) ^a									
	G	1	e						

	Goodn Fi		BMD 1SD	BMDL 1SD	BMD 10%RD	BMDL 10%RD	
Model	test 4 p- value	AIC	(mg/kg -day)	(mg/kg -day)	(mg/kg- day)	(mg/kg- day)	Basis for Model Selection
Exponential 3	0.1556	146.8	56.1	30.9	15.2	9.75	All models except the Exponential 5 and Hill models
Exponential 5	NA	148.8	-	-	3.69	0.980	provided adequate fit to the
Hill	NA	148.8	-	-	3.14	0.480	means (test 4 p-value < 0.1). BMDLs for the fit models
Polynomial Degree 2	0.1435	147.0	55.4	34.0	17.2	12.0	differed by < 3-fold; therefore, EPA chose the model with the
Power	0.1435	147.0	55.8	34.0	17.3	12.0	lowest AIC.

	Goodness of Fit		Fit BMD BMDL BMD BMD		BMDL			
Model	test 4 p- value	AIC	1SD (mg/kg -day)	(mg/kg -day)	(mg/kg- day)	10%RD (mg/kg- day)	Basis for Model Selection	
Linear	0.1435	147.0	55.4	34.0	17.2	12.0		
^a Selected model in bold.								

Plots of the Exponential 3 model with BMRs of one SD and 10 percent RD are shown in Figure 2-107 and Figure 2-108, respectively. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-109 (BMD and BMDL shown are for BMR of one SD; the rest is applicable to both BMRs).

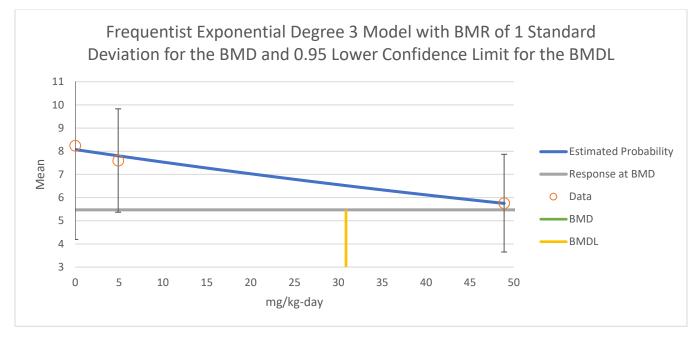


Figure 2-107. Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 3) for Decreased Leukocytes in Male Mice Exposed to 1,2-Dichloroethane Via Oral Gavage for 14 Days and BMR of 1SD (Nonconstant Variance)

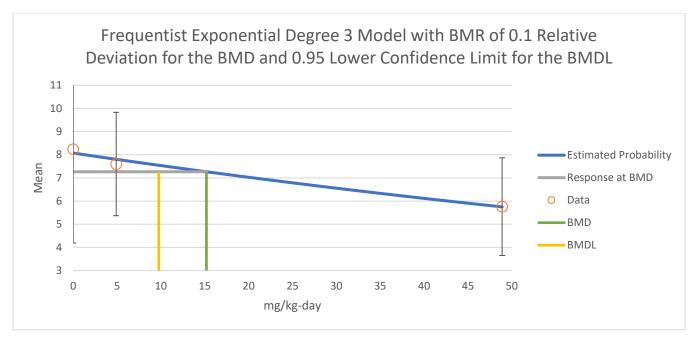


Figure 2-108. Plot of Response by Dose with Fitted Curve for the Selected Model (Exponential 3) for Decreased Leukocytes in Male Mice Exposed to 1,2-Dichloroethane Via Oral Gavage for 14 Days and BMR of 10%RD (Nonconstant Variance)

Model Results

ark Dose							
56.08674721							
30.86793476							
149.2332182							
146.8344073							
0.155640847							
1							

Model Pa	rameters			
# of Parameters	5			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
а	8.073279139	0.575470972	6.94537675	9.20118153
b	0.006937773	2.22E-03	0.00257845	0.0112971
d	Bounded	NA	NA	NA
rho	3.534193135	1.97E+00	-0.3223061	7.39069233
log-alpha	-5.468519023	3.87E+00	-13.048931	2.11189326

Goodness of Fit

Dose	Size	Estimated	Calc'd	Observed	Estimated	Calc'd	Observed	Scaled
Dose	5120	Median	Median	Mean	SD	SD	SD	Residual
0	12	8.073279139	8.24	8.24	2.60238213	3.26	3.26	0.221926671
4.89	10	7.803981293	7.6	7.6	2.45095372	1.64	1.64	-0.263181422
48.9	10	5.750590964	5.76	5.76	1.42893177	1.55	1.55	0.020822538

Likelihoods	of Interest		
		# of	
Model	Log Likelihood*	Parameters	AIC
A1	-71.42798259	4	150.855965
A2	-67.34059772	6	146.681195
A3	-68.40916542	5	146.818331
fitted	-69.41720367	4	146.834407
R	-74.55945884	2	153.118918

Teste	finterest		
Tests d	f Interest		
	-2*Log(Likelihood		
Test	Ratio)	Test df	p-value
1	14.43772225	4	0.00602144
2	8.174769753	2	0.01678307
3	2.137135415	1	0.14377013
4	2.016076497	1	0.15564085

Figure 2-109. Details Regarding the Selected Model (Exponential 3) for Decreased Leukocytes in Male Mice Exposed to 1,2-Dichloroethane Via Oral Gavage for 14 Days

2.1.2.2.4.2 Thymus Necrosis in F344 Male Rats – One Time per Day, 5 days per Week

There was an increased incidence of thymus necrosis in male rats exposed to 1,2-dichloroethane by gavage for 13 weeks (5 days per week) (NTP, 1991). The administered doses were duration adjusted to estimate an equivalent oral dose for animals exposed for 7 days per week. The dose and response data used for the modeling are presented in Table 2-79. Dichotomous models were used to fit dose-response data.

A BMR of 10 percent ER was chosen according to BMD Technical Guidance (U.S. EPA, 2012).

Table 2-79. Incidence of Thymus Necrosis in Male Rats and Associated Doses Selected for Dose-
Response Modeling for 1,2-Dichloroethane from a 13-Week Oral Exposure Study

Adjusted Dose (mg/kg-day)	Number of Animals	Incidence
0	10	0
86	10	0
171	10	4
343	10	10

The BMD modeling results for increased incidence of thymus necrosis in male rats are summarized in Table 2-80. All models provided adequate fit to the data (chi-square p-value > 0.1) except for the Multistage 1-degree/Quantal Linear model. The BMD computation failed for the Weibull model because the lower limit included zero; therefore, this model was unusable. BMDLs for the remaining models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC was selected (Multistage 3-degree).

 Table 2-80. Summary of BMD Modeling Results for Increased Incidence of Thymus Necrosis in

 Male Rats Following Oral Exposure to 1,2-Dichloroethane for 13 Weeks^a

	Goodne	ess of Fit	BMD	BMDL	
Model	p- value	AIC	10%ER (mg/kg- day)	10%ER (mg/kg-day)	Basis for Model Selection
Dichotomous Hill	1.000	15.46	160	100	
Gamma	0.9979	15.54	130	92	
Log-Logistic	1.000	15.46	160	100	
Multistage 3	0.9335	15.09	100	59	All models provided adequate fit to the data (chi-square p-value > 0.1) except for
Multistage 2	0.4338	20.47	71	44	the Multistage 1-degree/Quantal Linear
Multistage 1	0.0490	28.56	27	17	model. The BMD computation failed for the Weibull model and was unusable.
Weibull	0.9988	15.52	140	0	BMDLs differed by < 3-fold; therefore,
Logistic	1.000	15.46	150	93	EPA chose the model with the lowest AIC (Multistage Degree 3).
Log-Probit	1.000	17.46	160	97	The (manustage Degree 5).
Probit	1.000	17.46	150	87	
Quantal Linear	0.0490	28.56	27	17	
^a Selected model	l in bold.				

A plot of the Multistage 3-degree model with a BMR of 10 percent ER is shown in Figure 2-110. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-111.

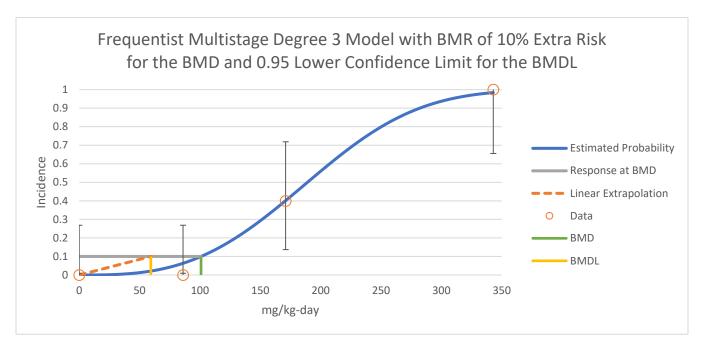


Figure 2-110. Plot of Response by Dose with Fitted Curve for the Selected Model (Multistage 3-Degree) for Increased Incidence of Thymus Necrosis in Male Rats Exposed to 1,2-Dichloroethane Via Oral Gavage for 13 Weeks and BMR of 10%ER

Model Results

Benchmar	k Dose
BMD	100.8873865
BMDL	59.30171288
BMDU	124.622876
AIC	15.08642199
P-value	0.933531247
D.O.F.	4
Chi ²	0.836191799
Slope Factor	0.001686292
P-value D.O.F. Chi ²	0.933531247 4 0.836191799

Model Para	ameters			
# of Parameters	2			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	Bounded	NA	NA	NA
b1	Bounded	NA	NA	NA
b2	Bounded	NA	NA	NA
b3	Bounded	NA	NA	NA

Goodnes	s of Fit				
Dose	Estimated Probability	Expected	Observed	Size	Scaled Residual
0	1.523E-08	1.523E-07	0	10	-0.00039
86	0.063178343	0.631783434	0	10	-0.821213
171	0.401330243	4.013302431	4	10	-0.008582
343	0.984084626	9.840846256	10	10	0.4021538

Analysis of I	Deviance				
Model	Log Likelihood	# of Parameters	Deviance	Test d.f.	P Value
Full Model	-6.73011667	4	-	-	NA
Fitted Model	-7.543210994	0	1.62618865	4	0.8040777
Reduced Model	-25.89786556	1	38.3354978	3	< 0.0001

Figure 2-111. Details Regarding the Selected Model (Multistage 3-Degree) for Increased Incidence of Thymus Necrosis in Male Rats Exposed to 1,2-Dichloroethane Via Oral Gavage for 13 Weeks

2.1.2.2.4.3 Thymus Necrosis in F344 Female Rats – 13-Week Gavage

There was an increased incidence of thymus necrosis in female rats exposed to 1,2-dichloroethane by gavage for 13 weeks (5 days per week) (<u>NTP, 1991</u>). The administered doses were duration adjusted to estimate an equivalent oral dose for animals exposed for 7 days per week. The dose and response data used for the modeling are presented in Table 2-81. Dichotomous models were used to fit the dose-response data.

A BMR of 10 percent ER was chosen according to BMD Technical Guidance (U.S. EPA, 2012).

Adjusted Dose (mg/kg-day)	Number of Animals	Incidence
0	10	0
107	10	0
214	10	5

 Table 2-81. Increased Incidence of Thymus Necrosis in Female Rats and Associated Doses Selected for Dose-Response Modeling for 1,2-Dichloroethane from a 13-Week Oral Exposure Study

The BMD modeling results for increased incidence of thymus necrosis in female rats are summarized in Table 2-82. All models provided adequate fit to the data (chi-square p-value > 0.1). BMDLs were not sufficiently close (differed by > 3-fold); therefore, the model with the lowest BMDL was selected (Multistage 1-degree).

This data set is not well suited for BMD modeling; there is a single non-zero data point and no data to inform the shape of the curve at the region of interest, as defined by the BMR. As a result, the different models provide a broad range of BMD and BMDL estimates. Selection of the low end of the range to represent the BMDL is not among the more realistic possibilities and in this case involves extrapolation below the range of observation to generate a BMD estimate well below the lowest tested dose.

	Goodnes	s of Fit	BMD	BMDL	Basis for Model
Model	p-value	AIC	10%ER (mg/kg-day)	10%ER (mg/kg-day)	Selection
Dichotomous Hill	1.000	15.86	189	97.1	All models provided
Gamma	0.9780	15.95	156	95.7	All models provided adequate fit to the data
Log-Logistic	1.000	15.86	189	97.1	(chi-square p-value >
Multistage 2	0.4109	18.83	97.2	41.9	0.1). BMDLs differed by > 3-fold; therefore, EPA
Multistage 1	0.1740	21.10	55.6	28.7	chose the model with the
Weibull	1.000	15.86	193	96.1	lowest BMDL.
Logistic	0.9994	15.87	188	107	NOTE: This data set is
Log-Probit	0.9996	17.86	199	98.2	not well suited for BMD modeling and the results
Probit	1.000	17.86	193	102	should be interpreted
Quantal Linear	0.1740	21.10	55.6	28.7	with caution.
^{<i>a</i>} Selected model in bo	ld.				•

 Table 2-82. Summary of BMD Modeling Results for Increased Incidence of Thymus Necrosis in

 Female Rats Following Oral Exposure to 1,2-Dichloroethane for 13 Weeks^a

A plot of the Multistage 1-degree model with a BMR of 10 percent ER is shown in Figure 2-112. Additional modeling details, including model parameters, goodness of fit at each dose, and log likelihood are shown in Figure 2-113.

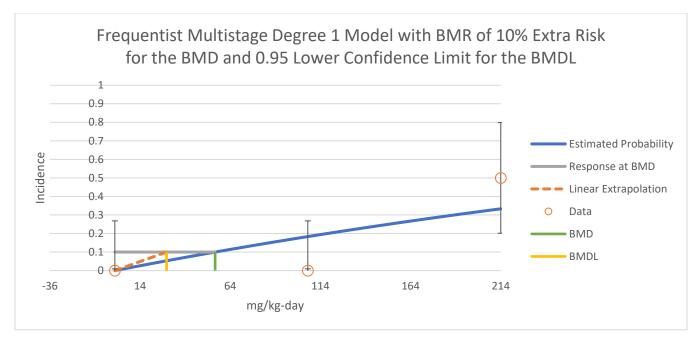


Figure 2-112. Plot of Response by Dose with Fitted Curve for the Selected Model (Quantal Linear) for Increased Incidence of Thymus Necrosis in Female Rats Exposed to 1,2-Dichloroethane Via Oral Gavage for 13 Weeks and BMR of 10%ER

Model Results	
Double	
	mark Dose
BMD	55.60812223
BMDL	28.68887964
BMDU	129.2673929
AIC	21.09542551
P-value	0.173995734
D.O.F.	2
Chi ²	3.49744899
Slope Factor	0.003485671
Model F	Parameters

Model Para	ameters			
# of Parameters	2			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	Bounded	NA	NA	NA
b1	0.001894697	0.182567022	-0.3559301	0.35971949

s of Fit				
Estimated	Expected	Observed	ed Size	Scaled
Probability				Residual
1.523E-08	1.523E-07	0	10	-0.00039
0.183503423	1.835034229	0	10	-1.499149
0.333333329	3.333333294	5	10	1.118034
-	Estimated Probability 1.523E-08 0.183503423	Estimated Probability Expected 1.523E-08 1.523E-07 0.183503423 1.835034229	Estimated Probability Expected Observed 1.523E-08 1.523E-07 0 0.183503423 1.835034229 0	Estimated Probability Expected Observed Size 1.523E-08 1.523E-07 0 10 0.183503423 1.835034229 0 10

Analysis of I	Deviance				
Model	Log Likelihood	# of Parameters	Deviance	Test d.f.	P Value
Full Model	-6.931471806	3	-	-	NA
Fitted Model	-9.547712753	1	5.23248189	2	0.073077
Reduced Model	-13.51683627	1	13.1707289	2	0.0013804

Figure 2-113. Details Regarding the Selected Model (Quantal Linear) for Increased Incidence of Thymus Necrosis in Female Rats Exposed to 1,2-Dichloroethane Via Oral Gavage for 13 Weeks

2.2 Cancer Endpoints – 1,2-Dichloroethane

EPA used the oral cancer slope factors from 1,2-dichloroethane, based on hepatocellular carcinomas in male mice (NTP (1978) as cited in the IRIS 1987 assessment on 1,2-dichloroethane), for read across to 1,1-dichloroethane, and no additional modeling was performed for the oral route. The inhalation unit risk for 1,1-dichloroethane was based on read-cross from an inhalation study for 1,2-dichloroethane by Nagano et al. (2006). EPA conducted BMD modeling on these data as described below.

The BMD modeling of cancer incidence data was conducted with the EPA's BMD software (BMDS, version 3.3). Modeled concentrations were in units of ppm. For these data, the Multistage model was fit to the incidence data using a BMR of 10 percent ER. The Multistage cancer model was run for all polynomial degrees up to n-1 (where n is the number of dose groups including control). Adequacy of model fit was judged based on the chi-square goodness-of-fit p-value (p > 0.1), magnitude of scaled residuals in the vicinity of the BMR, and visual inspection of the model fit. Among all models providing adequate fit, the BMDL from the model with the lowest AIC was selected if the BMDLs were

sufficiently close (< 3-fold); if the BMDLs were not sufficiently close (> 3-fold), model-dependence is indicated, and the model with the lowest reliable BMDL was selected.

Where applicable, the MS Combo model was used to evaluate the combined cancer risk of tumors observed in multiple tissues in a test group, assuming that the tumors in the different tissues occurred independently. MS Combo was run using the incidence data for the individual tumors and the polydegrees identified in the model runs for the individual tumors.

2.2.1 Rat Data

2.2.1.1 Tumor Incidence in Male Rats

2.2.1.1.1 Subcutaneous Fibromas in Male Rats

Male rats exhibited a significantly increased trend for the incidence of subcutaneous fibromas in a 2year inhalation toxicity study of 1,2-dichloroethane (<u>Nagano et al., 2006</u>). For BMD modeling, the exposure concentrations were first duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day, 7 days per week rather than 6 hours per day, 5 days per week. Then, the Multistage cancer models were fit to the dose-response data.

A BMR of 10 percent ER was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). The concentration and response data used for the modeling are presented in Table 2-83.

Table 2-83. Increased Incidence of Subcutaneous Fibromas in Male Rats and AssociatedConcentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane from a 2-YearChronic Bioassay

Adjusted Concentration (ppm)	Number of Animals	Incidence
0	50	6
2	50	9
7	50	12
29	50	15

The BMD modeling results for subcutaneous fibromas in male rats are summarized in Table 2-84. All Multistage models provided an adequate fit (chi-square p-value > 0.1) to the data. The Multistage 2- and 3-degree models converged on the 1-degree model; therefore, the 1-degree Multistage model was selected as the more parsimonious choice. A plot of the Multistage 1 model with a BMR of 10 percent ER is shown in Figure 2-114. Additional modeling details, including model parameters, goodness of fit at each concentration, and log likelihood are shown in Figure 2-115.

Table 2-84. Summary of BMD Modeling Results for Increased Incidence of SubcutaneousFibromas in Male Rats Following Inhalation Exposure to 1,2-Dichloroethane in a 2-Year ChronicBioassay^a

	Goodnes	s of Fit	BMD	BMDL	Slope	
Model		10%ER (ppm)	10%ER (ppm)	Factor (per ppm)	Basis for Model Selection	
Multistage 3	0.6229	205.2	14	7.3	0.014	

	Goodnes	s of Fit	BMD	BMDL	Slope	
Model	p-value	AIC	10%ER (ppm)	10%ER (ppm)	Factor (per ppm)	Basis for Model Selection
Multistage 2	0.6229	205.2	14	7.3	0.014	All the Multistage models provided
Multistage 1	0.6229	205.2	14	7.3	0.014	adequate fit (chi-square p-value > 0.1). The 2- and 3-degree models converged on the 1-degree model; therefore, EPA chose the 1-degree Multistage model.
^a Selected mode	l in bold.		•			

Figure 2-114. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage 1-Degree) for the Increased Incidence of Subcutaneous Fibromas in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

Benchmark Dose				
BMD	14.31033134			
BMDL	7.324332663			
BMDU	Infinity			
AIC	205.197232			
P-value	0.622942744			
D.O.F.	2			
Chi ²	0.946601335			
Slope Factor	0.013653121			

Model Parameters				
# of Parameters	2			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	0.155527448	1.70E-02	0.122295876	0.188759019
b1	0.007362549	0.108083178	-0.204476589	0.219201687

Goodness of Fit					
Dose	Estimated	Expected	Observed	Size	Scaled
	Probability				Residual
0	0.155527448	7.776372388	6	50	-0.637008884
2	0.167871284	8.393564185	9	50	0.209320438
7	0.19794724	9.89736201	12	50	0.668351272
29	0.317884967	15.89424837	15	50	-0.224304589

Analysis of [Deviance				
	Log	# of			
Model	Likelihood	Parameters	Deviance	Test d.f.	P Value
Full Model	-100.0131354	4	-	-	NA
Fitted Model	-100.598616	2	1.170961199	2	0.556838181
Reduced Model	-102.7913341	1	4.385436226	3	0.222739593

Figure 2-115. Details Regarding the Selected Model (Multistage 1-Degree) for the Increased Incidence of Subcutaneous Fibromas in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

2.2.1.1.2 Mammary Gland Fibroadenomas in Male Rats

Male rats exhibited significantly increased incidences of mammary gland fibroadenomas in a 2-year inhalation toxicity study of 1,2-dichloroethane (Nagano et al., 2006). For BMD modeling, the exposure concentrations were first duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day, 7 days per week rather than 6 hours per day, 5 days per week. Then, the Multistage cancer models were fit to the dose-response data.

A BMR of 10 percent ER was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). The concentration and response data used for the modeling are presented in Table 2-85.

Table 2-85. Increased Incidence of Mammary Gland Fibroadenomas in Male Rats and AssociatedConcentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane from a 2-YearChronic Bioassay

Adjusted Concentration (ppm)	Number of Animals	Incidence
0	50	0
2	50	0
7	50	1
29	50	5

The BMD modeling results for mammary gland fibroadenomas in male rats are summarized in Table 2-86. All Multistage models provided an adequate fit (chi-square p-value > 0.1) to the data. The Multistage 3-degree model converged on the 2-degree model. The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC was selected (Multistage 1-degree). A plot of the Multistage 1-degree model with a BMR of 10 percent ER is shown in Figure 2-116. Additional modeling details, including model parameters, goodness of fit at each concentration, and log likelihood are shown in Figure 2-117.

Table 2-86. Summary of BMD Modeling Results for Increased Incidence of Mammary Gland
Fibroadenomas in Male Rats Following Inhalation Exposure to 1,2-Dichloroethane in a 2-Year
Chronic Bioassay ^a

	Goodness	s of Fit	BMD	BMDL	Slope	
Model	p-value	AIC	10%ER (ppm)	10%ER (ppm)	Factor (per ppm)	Basis for Model Selection
Multistage 3	0.8739	46.8	29	18	0.0056	All the Multistage models provided
Multistage 2	0.8739	46.8	29	18	0.0056	adequate fit (chi-square p-value > 0.1). The 3-degree model
Multistage 1	0.9425	45.0	32	17	0.0057	converged on the 2-degree model. The BMDLs were sufficiently close (differed by < 3-fold); therefore, EPA chose the 1-degree Multistage model, which had the lowest AIC.
^a Selected model	l in bold.		L			

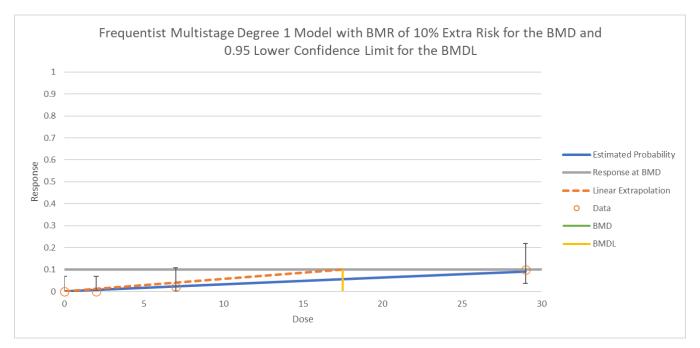


Figure 2-116. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage 1-Degree) for the Increased Incidence of Mammary Gland Fibroadenomas in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

Benchmark Dose					
BMD	32.00911617				
BMDL	17.49222195				
BMDU	68.22514663				
AIC	45.03571882				
P-value	0.942486739				
D.O.F.	3				
Chi ²	0.389090832				
Slope Factor	0.005716827				

Model Para	meters			
# of Parameters	2			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	Bounded	NA	NA	NA
b1	0.003291578	3.90E-02	-0.073102918	0.079686075

Goodness of Fit					
Dese	Estimated	Expected	Observed	Size	Scaled
Dose	Probability	Expected	Observed	5120	Residual
0	1.523E-08	7.61499E-07	0	50	-0.001
2	0.00656155	0.328077513	0	50	-0.573
7	0.022777645	1.138882259	1	50	-0.130
29	0.091041451	4.55207255	5	50	0.210

Analysis of Deviance					
	Log	# of			
Model	Likelihood	Parameters	Deviance	Test d.f.	P Value
Full Model	-21.15610433	4	-	-	NA
Fitted Model	-21.51785941	1	0.723510151	3	0.867660684
Reduced Model	-26.94843364	1	10.86114845	3	0.012500888

Figure 2-117. Details Regarding the Selected Model (Multistage 1-Degree) for the Increased Incidence of Mammary Gland Fibroadenomas in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

2.2.1.1.3 Mammary Gland Adenomas and Fibroadenomas (Combined) in Male Rats

Male rats exhibited significantly increased incidences of mammary gland adenomas and fibroadenomas (combined) in a 2-year inhalation toxicity study of 1,2-dichloroethane (<u>Nagano et al., 2006</u>). For BMD modeling, the exposure concentrations were first duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day, 7 days per week rather than 6 hours per day, 5 days per week. Then, the Multistage cancer models were fit to the dose-response data.

A BMR of 10 percent ER was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). The concentration and response data used for the modeling are presented in Table 2-87.

Table 2-87. Increased Incidence of Mammary Gland Adenomas and Fibroadenomas (Combined)in Male Rats and Associated Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane from a 2-Year Chronic Bioassay

Adjusted Concentration (ppm)	Number of Animals	Incidence
0	50	1
2	50	2
7	50	1
29	50	7

The BMD modeling results for mammary gland adenomas and fibroadenomas (combined) in male rats are summarized in Table 2-88. All Multistage models provided an adequate fit (chi-square p-value > 0.1) to the data. The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC was selected (Multistage 3-degree). A plot of the Multistage 3-degree model with a BMR of 10 percent ER is shown in Figure 2-118. Additional modeling details, including model parameters, goodness of fit at each concentration, and log likelihood are shown in Figure 2-119.

 Table 2-88. Summary of BMD Modeling Results for Increased Incidence of Mammary Gland

 Adenomas and Fibroadenomas (Combined) in Male Rats Following Inhalation Exposure to 1,2

 Dichloroethane in a 2-Year Chronic Bioassay^a

	Goodnes	ss of Fit	BMD	BMDL	Slope		
Model	p-value	AIC	10%ER (ppm)	10%ER (ppm)	Factor (per ppm)	Basis for Model Selection	
Multistage 3	0.7617	81.43	27	15	0.0065	All the Multistage models provided	
Multistage 2	0.7116	81.58	27	15	0.0066	adequate fit (chi-square p-value > 0.1). The BMDLs were	
Multistage 1	0.5722	82.24	27	14	0.0072	 > 0.1). The BMDLs were sufficiently close (differed by < 3-fold); therefore, EPA chose the 3-degree Multistage model, which had the lowest AIC. 	
^a Selected model	l in bold.		•	1	•		

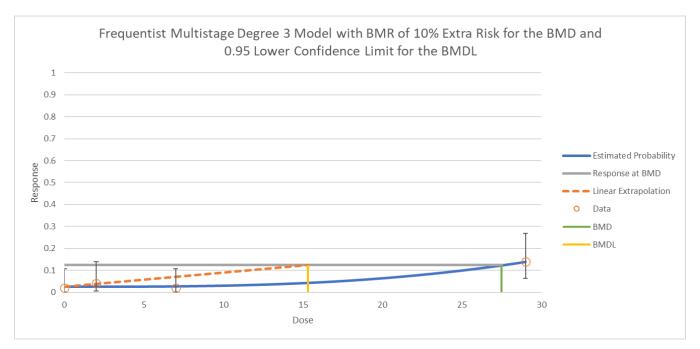


Figure 2-118. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage 3-Degree) for the Increased Incidence of Mammary Gland Adenomas and Fibroadenomas (Combined) in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

Benchmark Dose				
BMD	27.49900097			
BMDL	15.31882395			
BMDU	61.22780582			
AIC	81.42793799			
P-value	0.761735667			
D.O.F.	2			
Chi ²	0.544311354			
Slope Factor	0.006527916			

Model Para	meters			
# of Parameters	4			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	0.026277252	3.23E-02	-0.036979536	0.089534039
b1	Bounded	NA	NA	NA
b2	Bounded	NA	NA	NA
b3	5.06672E-06	5.86E-02	-0.114805797	0.11481593

Goodness of Fit					
Dece	Estimated	Expected	Observed	Cino	Scaled
Dose	Probability	Expected	Observed	Size	Residual
0	0.026277252	1.313862577	1	50	-0.273819621
2	0.026316719	1.31583597	2	50	0.596429835
7	0.027968001	1.398400056	1	50	-0.336902066
29	0.13946499	6.973249521	7	50	0.010130105

Analysis of D	Deviance				
	Log	# of			
Model	Likelihood	Parameters	Deviance	Test d.f.	P Value
Full Model	-38.44929297	4	-	-	NA
Fitted Model	-38.71396899	2	0.529352051	2	0.767454546
Reduced Model	-42.59643946	1	7.764940939	3	0.051127864

Figure 2-119. Details Regarding the Selected Model (Multistage 3-Degree) for the Increased Incidence of Mammary Gland Adenomas and Fibroadenomas (Combined) in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

2.2.1.1.4 Peritoneal Mesothelioma in Male Rats

Male rats exhibited a significantly increased trend for incidence of peritoneal mesothelioma in a 2-year inhalation toxicity study of 1,2-dichloroethane (<u>Nagano et al., 2006</u>). For BMD modeling, the exposure concentrations were first duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day, 7 days per week rather than 6 hours per day, 5 days per week. Then, the Multistage cancer models were fit to the dose-response data.

A BMR of 10 percent ER was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). The concentrations and response data used for the modeling are presented in Table 2-89.

Table 2-89. Increased Incidence of Peritoneal Mesothelioma in Male Rats and AssociatedConcentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane from a 2-YearChronic Bioassay

Adjusted Concentration (ppm)	Number of Animals	Incidence
0	50	1
2	50	1
7	50	1
29	50	5

The BMD modeling results for peritoneal mesothelioma in male rats are summarized in Table 2-90. All Multistage models provided an adequate fit (chi-square p-value > 0.1) to the data. The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC was selected (Multistage 3-degree). A plot of the Multistage 3-degree model with a BMR of 10 percent ER is shown in Figure 2-120. Additional modeling details, including model parameters, goodness of fit at each concentration, and log likelihood are shown in Figure 2-121.

 Table 2-90. Summary of BMD Modeling Results for Increased Incidence of Peritoneal

 Mesothelioma in Male Rats Following Inhalation Exposure to 1,2-Dichloroethane in a 2-Year

 Chronic Bioassay^a

	Goodness of Fit			BMDL Slope	-			
Model	p-value	AIC	10%ER (ppm)	10%ER (ppm)	Factor (per ppm)	Basis for Model Selection		
Multistage 3	0.9989	65.92	31	19	0.0052	All the Multistage models provided		
Multistage 2	0.9830	65.96	32	19	0.0052	adequate fit (chi-square p-value > 0.1). The BMDLs were sufficient close (differed by < 3-fold); therefore, EPA chose the 3-degree Multistage model, which had the lowest AIC.		
Multistage 1	0.8132	66.39	38	18	0.0055			

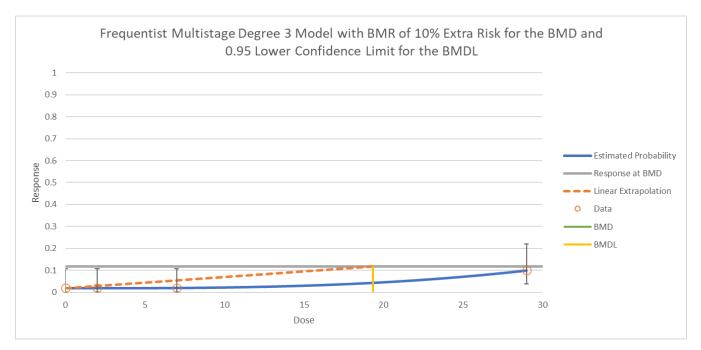


Figure 2-120. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage 3-Degree) for the Increased Incidence of Peritoneal Mesothelioma in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

Benchmark Dose					
BMD	31.09224433				
BMDL	19.32721096				
BMDU	Infinity				
AIC	65.92230974				
P-value	0.998892256				
D.O.F.	2				
Chi ²	0.002216716				
Slope Factor	0.005174052				

Model Para	meters			
# of Parameters	4			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	0.019616475	3.73E-02	-0.053527977	0.092760928
b1	Bounded	NA	NA	NA
b2	Bounded	NA	NA	NA
b3	3.50527E-06	4.87E-02	-0.095482039	0.095489049

Goodness	of Fit				
Doco	Estimated	Expected	Observed	Size	Scaled
Dose	Probability	Expected			Residual
0	0.019616475	0.980823761	1	50	0.01936279
2	0.019643967	0.982198346	1	50	0.017962251
7	0.02079449	1.039724502	1	50	-0.038958239
29	0.099946886	4.997344318	5	50	0.001187972

Analysis of Deviance					
	Log	# of			
Model	Likelihood	Parameters	Deviance	Test d.f.	P Value
Full Model	-30.96001566	4	-	-	NA
Fitted Model	-30.96115487	2	0.002278419	2	0.998861439
Reduced Model	-33.58882955	1	5.255349352	3	0.154026085

Figure 2-121. Details Regarding the Selected Model (Multistage 3-Degree) for the Increased Incidence of Peritoneal Mesothelioma in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

2.2.1.1.5 Combined Mammary Gland, Subcutaneous, and Peritoneal Tumors in Male Rats

Male rats exhibited significantly increased incidences of subcutaneous fibromas, mammary gland adenomas and fibroadenomas, and peritoneal mesothelioma in a 2-year inhalation toxicity study of 1,2-dichloroethane (Nagano et al., 2006). The MS Combo model was applied to the incidence data for the individual tumors and polydegrees identified for the individual tumor models, shown above (Sections 2.2.1.1.1 through 2.2.1.1.4), using a BMR of 10 percent ER.

The BMD Multistage Cancer/Multi-tumor modeling results for combined subcutaneous fibromas, mammary gland adenomas and fibroadenomas, and peritoneal mesothelioma in male rats are summarized in Table 2-91. A plot of the dose-response curves for the incidence of individual tumor types with a BMR of 10 percent ER is shown in Figure 2-122. Additional modeling details, including the cancer slope factor and log likelihood are shown in Figure 2-123.

Table 2-91. Summary of BMD Multi-Tumor (MS Combo) Modeling Results for Increased Incidence of Subcutaneous Fibromas, Mammary Gland Adenomas and Fibroadenomas, and Peritoneal Mesothelioma (Combined) in Male Rats Following Inhalation Exposure to 1,2-Dichloroethane in a 2-Year Chronic Bioassay

Model	BMD 10%ER (ppm)	BMDL 10%ER (ppm)	Slope Factor (per ppm)
Multi-tumor (MS Combo)	12	5.3	0.019
Subcutaneous fibroma Multistage 1	14	7.3	0.014
Mammary gland adenoma and fibroadenoma Multistage 3	27	15	0.0065
Peritoneal mesothelioma Multistage 3	31	19	0.0052

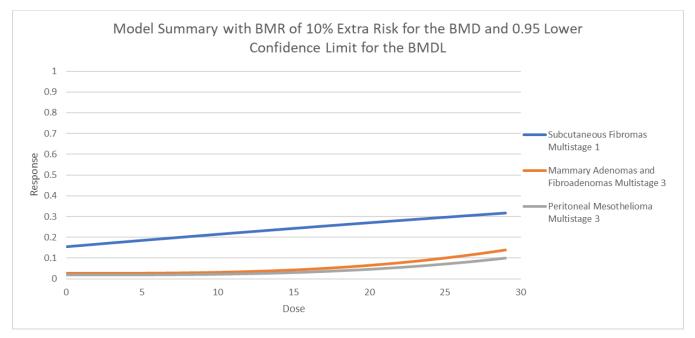


Figure 2-122. Plot of Response by Concentration with Fitted Curve for Selected Models used for the Multi-Tumor (MS Combo) Model for Increased Incidence of Subcutaneous Fibromas, Mammary Gland Adenomas and Fibroadenomas, and Peritoneal Mesothelioma (Combined) in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

l	Jser Input	Model	Results
Info		Benchmark	Dose
Model	frequentist Multi-tumor v1.0	BMD	12.19749412
		BMDL	5.303369371
Model Options		BMDU	21.35824384
Risk Type	Extra Risk	Slope Factor	0.018855937
BMR	0.1	Combined Log-	
Confidence Level	0.95	Likelihood	-170.2737399
Background		Combined Log-	
		Likelihood Constant	151.8443229

Figure 2-123. Details Regarding the Multi-Tumor (MS Combo) Model for the Increased Incidence of Subcutaneous Fibromas, Mammary Gland Adenomas and Fibroadenomas, and Peritoneal Mesothelioma (Combined) in Male Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

2.2.1.2 Tumor Incidence in Female Rats

2.2.1.2.1 Subcutaneous Fibromas in Female Rats

Female rats exhibited significantly increased incidences of subcutaneous fibromas in a 2-year inhalation toxicity study of 1,2-dichloroethane (Nagano et al., 2006). For BMD modeling, the exposure concentrations were first duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day, 7 days per week rather than 6 hours per day, 5 days per week. Then, the Multistage cancer models were fit to the dose-response data.

A BMR of 10 percent ER was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). The concentration and response data used for the modeling are presented in Table 2-92.

Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane from a 2-Yea	ır
Chronic Bioassay	

Adjusted Concentration (ppm)	Number of Animals	Incidence
0	50	0
2	50	0
7	50	1
29	50	5

The BMD modeling results for subcutaneous fibromas in female rats are summarized in Table 2-93. All Multistage models provided an adequate fit (chi-square p-value > 0.1) to the data. The Multistage 3-degree model converged on the 2-degree model. The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC was selected (Multistage 1-degree). A plot of the Multistage 1-degree model with a BMR of 10 percent ER is shown in Figure 2-124. Additional modeling details, including model parameters, goodness of fit at each concentration, and log likelihood are shown in Figure 2-125.

 Table 2-93. Summary of BMD Modeling Results for Increased Incidence of Subcutaneous

 Fibromas in Female Rats Following Inhalation Exposure to 1,2-Dichloroethane in a 2-Year

 Chronic Bioassay^a

	Goodnes	ss of Fit	BMD	BMDL	Slope		
Model	p-value	AIC	10%ER (ppm)	10%ER (ppm)	Factor (per ppm)	Basis for Model Selection	
Multistage 3	0.8739	46.75	29	18	0.0056	All the Multistage models	
Multistage 2	0.8739	46.75	29	18	0.0056	provided adequate fit (chi-squar p -value > 0.1). The 3-degree	
Multistage 1	0.9425	45.04	32	17	0.0057	p-value > 0.1). The 3-degree model converged on the 2-degree model. The BMDLs were sufficiently close (differed by < 3-fold); therefore, EPA chose the 1-degree Multistage model, which had the lowest AIC.	
^{<i>a</i>} Selected model	l in bold.						

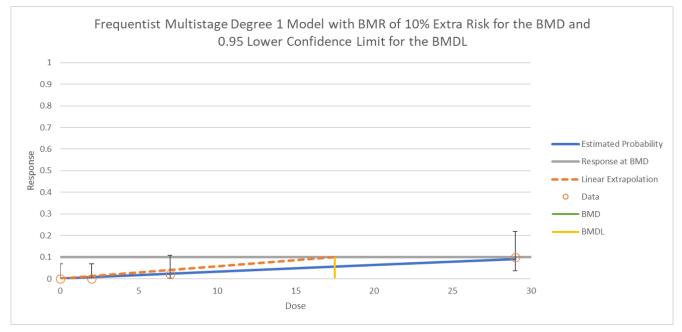


Figure 2-124. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage 1-Degree) for the Increased Incidence of Subcutaneous Fibromas in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

Benchmark Dose						
BMD	32.00911617					
BMDL	17.49222195					
BMDU	68.22514663					
AIC	45.03571882					
P-value	0.942486739					
D.O.F.	3					
Chi ²	0.389090832					
Slope Factor	0.005716827					

Model Para	meters			
# of Parameters	2			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	Bounded	NA	NA	NA
b1	0.003291578	3.90E-02	-0.073102918	0.079686075

Goodness of Fit					
Dose	Estimated	Expected	Observed	Size	Scaled
Dose	Probability	Expected			Residual
0	1.523E-08	7.61499E-07	0	50	-0.000872639
2	0.00656155	0.328077513	0	50	-0.572780511
7	0.022777645	1.138882259	1	50	-0.130138968
29	0.091041451	4.55207255	5	50	0.209943818

Analysis of Deviance					
	Log	# of			
Model	Likelihood	Parameters	Deviance	Test d.f.	P Value
Full Model	-21.15610433	4	-	-	NA
Fitted Model	-21.51785941	1	0.723510151	3	0.867660684
Reduced Model	-26.94843364	1	10.86114845	3	0.012500888

Figure 2-125. Details Regarding the Selected Model (Multistage 1-Degree) for the Increased Incidence of Subcutaneous Fibromas in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

2.2.1.2.2 Mammary Gland Adenomas in Female Rats

Female rats exhibited significantly increased incidences of mammary gland adenomas in a 2-year inhalation toxicity study of 1,2-dichloroethane (Nagano et al., 2006). For BMD modeling, the exposure concentrations were first duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day, 7 days per week rather than 6 hours per day, 5 days per week. Then, the Multistage cancer models were fit to the dose-response data.

A BMR of 10 percent ER was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). The concentration and response data used for the modeling are presented in Table 2-94.

Table 2-94. Increased Incidence of Mammary Gland Adenomas in Female Rats and AssociatedConcentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane from a 2-YearChronic Bioassay

Adjusted Concentration (ppm)	Number of Animals	Incidence
0	50	3
2	50	5
7	50	5
29	50	11

The BMD modeling results for mammary gland adenomas in female rats are summarized in Table 2-95. All Multistage models provided an adequate fit (chi-square p-value > 0.1) to the data. The Multistage 3-degree model converged on the 1-degree model. The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC was selected. The 1-degree Multistage model was selected as the more parsimonious choice. A plot of the Multistage 1-degree model with a BMR of 10 percent ER is shown in Figure 2-126. Additional modeling details, including model parameters, goodness of fit at each concentration, and log likelihood are shown in Figure 2-127.

 Table 2-95. Summary of BMD Modeling Results for Increased Incidence of Mammary Gland

 Adenomas in Female Rats Following Inhalation Exposure to 1,2-Dichloroethane in a 2-Year

 Chronic Bioassay^a

	Goodnes	s of Fit	BMD	BMDL	Slope	
Model	p-value	AIC	10%ER (ppm)	10%ER (ppm)	Factor (per ppm)	Basis for Model Selection
Multistage 3	0.8523	144.7	18	9.4	0.011	All the Multistage models provided
Multistage 2	0.5709	146.7	18	9.4	0.011	adequate fit (chi-square p-value > 0.1). The 3-degree model
Multistage 1	0.8516	144.7	18	9.4	0.011	converged on the 1-degree model. The BMDLs were sufficiently close (differed by < 3-fold); therefore, EPA chose the 1-degree Multistage model, which had the lowest AIC and was the more parsimonious choice.
^a Selected model	in bold.					

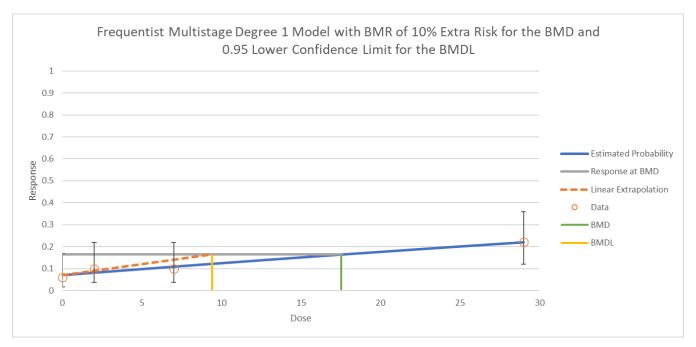


Figure 2-126. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage 1-Degree) for the Increased Incidence of Mammary Gland Adenomas in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

Benchmark Dose					
BMD	17.53354728				
BMDL	9.407667481				
BMDU	58.29776202				
AIC	144.7453231				
P-value	0.851617435				
D.O.F.	2				
Chi ²	0.321235746				
Slope Factor	0.010629627				

Model Para	meters			
# of Parameters	2			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	0.070489692	2.44E-02	0.022654769	0.118324615
b1	0.006009082	7.59E-02	-0.142761504	0.154779667

Goodness of Fit					
Dece	Estimated	Expected	Observed	Size	Scaled
Dose	Probability	Expected			Residual
0	0.070489692	3.524484591	3	50	-0.279373318
2	0.081593839	4.079691958	5	50	0.455637574
7	0.108777313	5.438865655	5	50	-0.188181718
29	0.219141052	10.95705262	11	50	0.012974475

Analysis of Deviance					
	Log	# of			
Model	Likelihood	Parameters	Deviance	Test d.f.	P Value
Full Model	-70.20207154	4	-	-	NA
Fitted Model	-70.37266157	2	0.341180063	2	0.843167175
Reduced Model	-73.38499825	1	6.024673375	3	0.110415963

Figure 2-127. Details Regarding the Selected Model (Multistage 1-Degree) for the Increased Incidence of Mammary Gland Adenomas in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

2.2.1.2.3 Mammary Gland Fibroadenomas in Female Rats

Female rats exhibited significantly increased incidences of mammary gland fibroadenomas in a 2-year inhalation toxicity study of 1,2-dichloroethane (Nagano et al., 2006). For BMD modeling, the exposure concentrations were first duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day, 7 days per week rather than 6 hours per day, 5 days per week. Then, the Multistage cancer models were fit to the dose-response data.

A BMR of 10 percent ER was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). The concentration and response data used for the modeling are presented in Table 2-96.

Table 2-96. Increased Incidence of Mammary Gland Fibroadenomas in Female Rats andAssociated Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane from a 2-Year Chronic Bioassay

Adjusted Concentration (ppm)	Number of Animals	Incidence
0	50	4
2	50	1
7	50	6
29	50	13

The BMD modeling results for mammary gland fibroadenomas in female rats are summarized in Table 2-97. All Multistage models provided an adequate fit (chi-square p-value > 0.1) to the data. The Multistage 3-degree model converged on the 2-degree model. The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC was selected (Multistage 1-degree). A plot of the Multistage 1-degree model with a BMR of 10 percent ER is shown in Figure 2-128. Additional modeling details, including model parameters, goodness of fit at each concentration, and log likelihood are shown in Figure 2-129.

Table 2-97. Summary of BMD Modeling Results for Increased Incidence of Mammary Gland
Fibroadenomas in Female Rats Following Inhalation Exposure to 1,2-Dichloroethane in a 2-Year
Chronic Bioassay ^a

	Goodnes	s of Fit	BMD	BMDL	Slope	
Model	p-value	AIC	10%ER (ppm)	10%ER (ppm)	Factor (per ppm)	Basis for Model Selection
Multistage 3	0.1157	140.8	15	7.8	0.013	All the Multistage models provided
Multistage 2	0.1157	140.8	15	7.8	0.013	adequate fit (chi-square p-value > 0.1). The 3-degree model
Multistage 1	0.2797	138.9	13	7.7	0.013	converged on the 2-degree model. The BMDLs were sufficiently close (differed by < 3-fold); therefore, EPA chose the 1-degree Multistage model, which had the lowest AIC.
^{<i>a</i>} Selected mode	l in bold.				I	

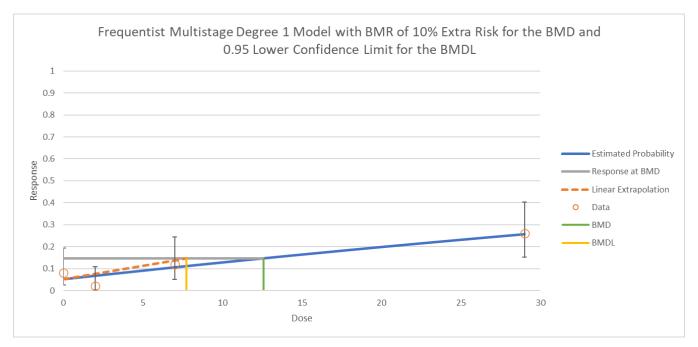


Figure 2-128. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage 1-Degree) for the Increased Incidence of Mammary Gland Fibroadenomas in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

Benchmark Dose					
BMD	12.58447242				
BMDL	7.741278443				
BMDU	26.11089254				
AIC	138.9247592				
P-value	0.279716095				
D.O.F.	2				
Chi ²	2.547960275				
Slope Factor	0.012917763				

Model Para	meters			
# of Parameters	2			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	0.051585929	2.83E-02	-0.003958966	0.107130823
b1	0.008372264	7.82E-02	-0.144863436	0.161607964

Goodness of Fit					
Dose	Estimated	Expected	Observed	Size	Scaled
	Probability				Residual
0	0.051585929	2.579296433	4	50	0.884612032
2	0.067334456	3.3667228	1	50	-1.289863384
7	0.105571164	5.278558204	6	50	0.314010118
29	0.256033853	12.80169265	13	50	0.055424925

Analysis of Deviance					
	Log	# of			
Model	Likelihood	Parameters	Deviance	Test d.f.	P Value
Full Model	-65.83951967	4	-	-	NA
Fitted Model	-67.46237958	2	3.245719818	2	0.197333535
Reduced Model	-73.38499825	1	11.84523735	3	0.007932559

Figure 2-129. Details Regarding the Selected Model (Multistage 1-Degree) for the Increased Incidence of Mammary Gland Fibroadenomas in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

2.2.1.2.4 Mammary Gland Adenomas and Fibroadenomas (Combined) in Female Rats

Female rats exhibited significantly increased incidences of mammary gland adenomas and fibroadenomas (combined) in a 2-year inhalation toxicity study of 1,2-dichloroethane (Nagano et al., 2006). For BMD modeling, the exposure concentrations were first duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day, 7 days per week rather than 6 hours per day, 5 days per week. Then, the Multistage cancer models were fit to the dose-response data.

A BMR of 10 percent ER was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). The concentration and response data used for the modeling are presented in Table 2-98.

Table 2-98. Increased Incidence of Mammary Gland Adenomas and Fibroadenomas (Combined)in Female Rats and Associated Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane from a 2-Year Chronic Bioassay

Adjusted Concentration (ppm)	Number of Animals	Incidence	
0	50	7	
2	50	6	
7	50	11	
29	50	22	

The BMD modeling results for mammary gland adenomas and fibroadenomas (combined) in female rats are summarized in Table 2-99. All Multistage models provided an adequate fit (chi-square p-value > 0.1) to the data. The Multistage 3-degree model converged on the 2-degree model. The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC was selected (Multistage 1-degree). A plot of the Multistage 1-degree model with a BMR of 10 percent ER is shown in Figure 2-130. Additional modeling details, including model parameters, goodness of fit at each concentration, and log likelihood are shown in Figure 2-131.

 Table 2-99. Summary of BMD Modeling Results for Increased Incidence of Mammary Gland

 Adenomas and Fibroadenomas (Combined) in Female Rats Following Inhalation Exposure to 1,2

 Dichloroethane in a 2-Year Chronic Bioassay^a

Model	Goodness of Fit		BMD 10%ER	BMDL 10%ER	Slope Factor	Basis for Model Selection	
	p-value	AIC	(ppm) (ppm)		(per ppm)		
Multistage 3	0.5222	205.0	7.5	4.5	0.022	All the Multistage models provided	
Multistage 2	0.5222	205.0	7.5	4.5	0.022	adequate fit (chi-square p-value > 0.1). The 3-degree model	
Multistage 1	0.8084	203.0	7.5	4.5	0.022	converged on the 2-degree model. The BMDLs were sufficiently close (differed by < 3-fold); therefore, EPA chose the 1-degree Multistage model, which had the lowest AIC.	
^a Selected model in bold.							

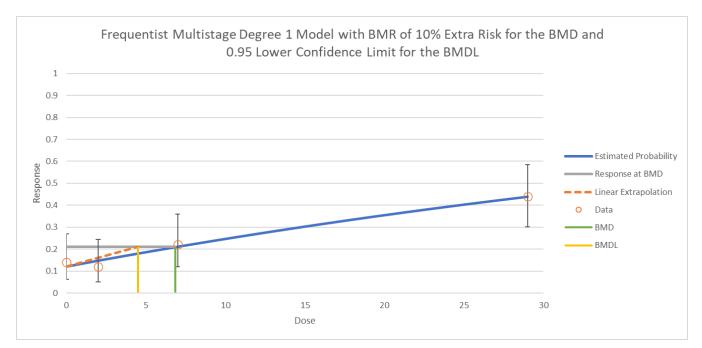


Figure 2-130. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage 1-Degree) for the Increased Incidence of Mammary Gland Adenomas and Fibroadenomas (Combined) in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

Benchmark Dose				
BMD	6.836211264			
BMDL	4.501066127			
BMDU	12.30383058			
AIC	202.9818151			
P-value	0.808367209			
D.O.F.	2			
Chi ²	0.425477713			
Slope Factor	0.022216959			

Model Para	meters			
# of Parameters	2			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	0.121858132	1.93E-02	0.083957729	0.159758535
b1	0.015412121	0.125543163	-0.230647959	0.261472202

Goodness of Fit					
Dasa	Estimated	Expected	Observed	Size	Scaled
Dose	Probability	Expected	Observed	5120	Residual
0	0.121858132	6.092906583	7	50	0.367485117
2	0.148513267	7.425663362	6	50	-0.523177864
7	0.211664854	10.5832427	11	50	0.12810729
29	0.438362491	21.91812455	22	50	0.017488478

Analysis of Deviance					
	Log	# of			
Model	Likelihood	Parameters	Deviance	Test d.f.	P Value
Full Model	-99.2363119	4	-	-	NA
Fitted Model	-99.49090755	2	0.509191289	2	0.775229903
Reduced Model	-107.8552683	1	16.72872151	3	0.000803582

Figure 2-131. Details Regarding the Selected Model (Multistage 1-Degree) for the Increased Incidence of Mammary Gland Adenomas and Fibroadenomas (Combined) in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

2.2.1.2.5 Mammary Gland Adenocarcinomas in Female Rats

Female rats exhibited a significantly increased trend for the incidence of mammary gland adenocarcinomas in a 2-year inhalation toxicity study of 1,2-dichloroethane (<u>Nagano et al., 2006</u>). For BMD modeling, the exposure concentrations were first duration adjusted to estimate an equivalent inhalation dose for animals exposed for 24 hours per day, 7 days per week rather than 6 hours per day, 5 days per week. Then, the Multistage cancer models were fit to the dose-response data.

A BMR of 10 percent ER was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). The concentration and response data used for the modeling are presented in Table 2-100.

Table 2-100. Increased Incidence of Mammary Gland Adenocarcinomas in Female Rats andAssociated Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane from a 2-Year Chronic Bioassay

Adjusted Concentration (ppm)	Number of Animals	Incidence
0	50	1
2	50	2
7	50	0
29	50	5

The BMD modeling results for mammary gland adenocarcinomas in female rats are summarized in Table 2-101. All Multistage models provided an adequate fit (chi-square p-value > 0.1) to the data. The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC was selected (Multistage 3-degree). A plot of the Multistage 3-degree model with a BMR of 10 percent ER is shown in Figure 2-132. Additional modeling details, including model parameters, goodness of fit at each concentration, and log likelihood are shown in Figure 2-133.

Table 2-101. Summary of BMD Modeling Results for Increased Incidence of Mammary GlandAdenocarcinomas in Female Rats Following Inhalation Exposure to 1,2-Dichloroethane in a 2-Year Chronic Bioassay^a

	Goodnes	s of Fit	BMD	BMDL	Slope		
Model	p-value	AIC	10%ER (ppm)	10%ER (ppm)	Factor (per ppm)	Basis for Model Selection	
Multistage 3	0.3593	66.04	31	23	0.0043	All the Multistage models provided	
Multistage 2	0.3371	66.36	33	22	0.0045	adequate fit (chi-square p-value > 0.1). The BMDLs were sufficiently close (differed by < 3-fold); therefore EPA chose the 3-degree Multistage model, which had the lowest AIC.	
Multistage 1	0.2854	67.32	44	20	0.0050		
^{<i>a</i>} Selected model	l in bold.	•	•				

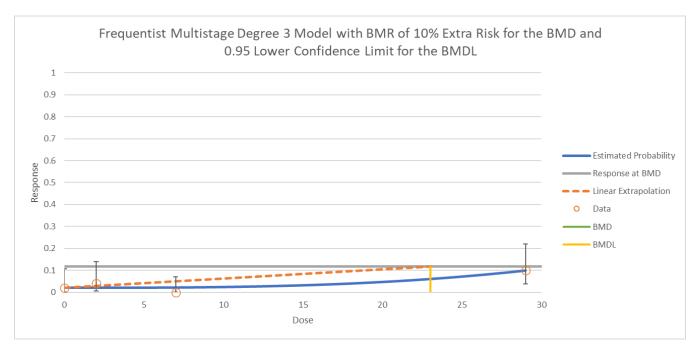


Figure 2-132. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage 3-Degree) for the Increased Incidence of Mammary Gland Adenocarcinomas in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

Benchmark Dose				
BMD	31.32763273			
BMDL	23.02143452			
BMDU	Infinity			
AIC	66.03592535			
P-value	0.35930595			
D.O.F.	2			
Chi ²	2.04716205			
Slope Factor	0.004343778			

Model Para	meters			
# of Parameters	4			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	0.020074114	3.65E-02	-0.051434256	0.091582483
b1	Bounded	NA	NA	NA
b2	Bounded	NA	NA	NA
b3	3.42685E-06	4.79E-02	-0.093905886	0.09391274

		•			
Goodnes	s of Fit				
	Estimated	Even entre d		C'	Scaled
Dose	Probability	Expected	Observed	Size	Residual
0	0.020074114	1.003705676	1	50	-0.003698829
2	0.020100978	1.005048882	2	50	0.992448894
7	0.021225251	1.061262562	0	50	-1.030175986
29	0.098644728	4.932236411	5	50	0.030512266

Analysis of Deviance					
	Log	# of			
Model	Likelihood	Parameters	Deviance	Test d.f.	P Value
Full Model	-29.55331172	4	-	-	NA
Fitted Model	-31.01796267	2	2.929301905	2	0.231158663
Reduced Model	-33.58882955	1	5.141733748	3	0.161708073

Figure 2-133. Details Regarding the Selected Model (Multistage 3-Degree) for the Increased Incidence of Mammary Gland Adenocarcinomas in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

2.2.1.2.6 Mammary Gland Adenomas, Fibroadenomas, and Adenocarcinomas (Combined) in Female Rats

Female rats exhibited significantly increased incidences of mammary gland adenomas, fibroadenomas, and adenocarcinomas (combined) in a 2-year inhalation toxicity study of 1,2-dichloroethane (<u>Nagano et al., 2006</u>). For BMD modeling, the exposure concentrations were first duration adjusted to estimate an equivalent inhalation dose for animals exposed for 24 hours per day, 7 days per week rather than 6 hours per day, 5 days per week. Then, the Multistage cancer models were fit to the dose-response data.

A BMR of 10 percent ER was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). The concentration and response data used for the modeling are presented in Table 2-102.

 Table 2-102. Increased Incidence of Mammary Gland Adenomas, Fibroadenomas, and

 Adenocarcinomas (Combined) in Female Rats and Associated Concentrations Selected for Dose

 Response Modeling for 1,2-Dichloroethane from a 2-Year Chronic Bioassay

Adjusted Concentration (ppm)	Number of Animals	Incidence
0	50	8
2	50	8
7	50	11
29	50	25

The BMD modeling results for mammary gland adenomas, fibroadenomas, and adenocarcinomas (combined) in female rats are summarized in Table 2-103. All Multistage models provided an adequate fit (chi-square p-value > 0.1) to the data. The Multistage 3-degree model converged on the 2-degree model. The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC was selected (Multistage 1-degree). A plot of the Multistage 1-degree model with a BMR of 10 percent ER is shown in Figure 2-134. Additional modeling details, including model parameters, goodness of fit at each concentration, and log likelihood are shown in Figure 2-135.

Table 2-103. Summary of BMD Modeling Results for Increased Incidence of Mammary GlandAdenomas, Fibroadenomas, and Adenocarcinomas (Combined) in Female Rats FollowingInhalation Exposure to 1,2-Dichloroethane in a 2-Year Chronic Bioassay^a

	Goodnes	s of Fit	BMD	BMDL	Slope	
Model	p-value	AIC	10%ER (ppm)	10%ER (ppm)	Factor (per ppm)	Basis for Model Selection
Multistage 3	0.8383	216.0	9.2	4.1	0.025	All the Multistage models provided
Multistage 2	0.8383	216.0	9.2	4.1	0.025	adequate fit (chi-square p-value > 0.1). The 3-degree model
Multistage 1	0.8714	214.3	5.9	4.0	0.025	converged on the 2-degree model. The BMDLs were sufficiently close (differed by < 3-fold); therefore, EPA chose the 1-degree Multistage model, which had the lowest AIC.
^{<i>a</i>} Selected mode	l in bold.				1	

Figure 2-134. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage 1-Degree) for the Increased Incidence of Mammary Gland Adenomas, Fibroadenomas, and Adenocarcinomas (Combined) in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

Benchmark Dose					
BMD	5.931093454				
BMDL	3.976641889				
BMDU	10.25361658				
AIC	214.2892161				
P-value	0.871412464				
D.O.F.	2				
Chi ²	0.275279724				
Slope Factor	0.025146846				

Model Para	meters			
# of Parameters	2			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	0.141490568	1.79E-02	0.106338916	0.176642219
b1	0.017764096	0.1380138	-0.252737984	0.288266175

Goodness	of Fit				
Dose	Estimated	Expected	Observed	Size	Scaled
	Probability	Expected			Residual
0	0.141490568	7.074528384	8	50	0.34794801
2	0.171456388	8.572819379	8	50	-0.195639194
7	0.241874456	12.09372282	11	50	-0.314504792
29	0.487121544	24.35607719	25	50	0.130475851

Analysis of Deviance					
	Log	# of			
Model	Likelihood	Parameters	Deviance	Test d.f.	P Value
Full Model	-104.969745	4	-	-	NA
Fitted Model	-105.1446081	2	0.349726056	2	0.839572011
Reduced Model	-114.6113834	1	18.93355072	3	0.000282186

Figure 2-135. Details Regarding the Selected Model (Multistage 1-Degree) for the Increased Incidence of Mammary Gland Adenomas, Fibroadenomas, and Adenocarcinomas (Combined) in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

2.2.1.2.7 Combined Mammary Gland and Subcutaneous Tumors in Female Rats Female rats exhibited significantly increased incidences of subcutaneous fibromas and mammary gland adenomas, fibroadenomas, and adenocarcinomas in a 2-year inhalation toxicity study of 1,2dichloroethane (Nagano et al., 2006). The MS Combo model was applied to the incidence data for the individual tumors and polydegrees identified for the individual tumor models, shown above (Sections 2.2.1.2.1 through 2.2.1.2.6), using a BMR of 10 percent ER.

The BMD Multistage Cancer/Multi-tumor modeling results for combined subcutaneous fibromas and mammary gland adenomas, fibroadenomas, and adenocarcinomas in female rats are summarized in

Table 2-104. A plot of the dose-response curves for the incidence of individual tumor types with a BMR of 10 percent ER is shown in Figure 2-136. Additional modeling details, including the cancer slope factor and log likelihood are shown in Figure 2-137.

Table 2-104. Summary of BMD Multi-Tumor (MS Combo) Modeling Results for Increased Incidence of Subcutaneous Fibromas and Mammary Gland Adenomas, Fibroadenomas, and Adenocarcinomas (Combined) in Female Rats Following Inhalation Exposure to 1,2-Dichloroethane in a 2-Year Chronic Bioassay

Model	BMD 10%ER (ppm)	BMDL 10%ER (ppm)	Slope Factor (per ppm)
Multi-tumor (MS Combo)	5.0	3.5	0.029
Subcutaneous fibroma Multistage 1	32	17	0.0057
Mammary gland adenoma, fibroadenoma, and adenocarcinoma Multistage 1	5.9	4.0	0.025

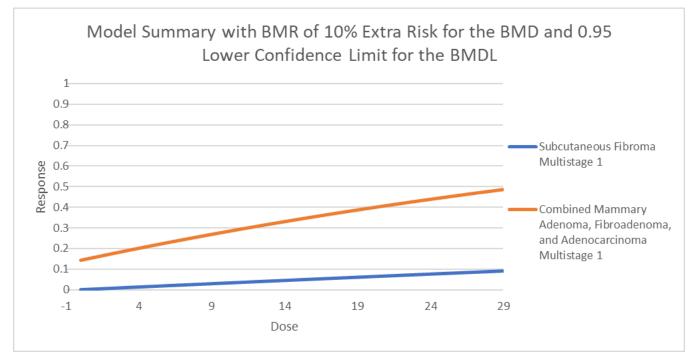


Figure 2-136. Plot of Response by Concentration with Fitted Curve for Selected Models Used for the Multi-Tumor (MS Combo) Model for Increased Incidence of Subcutaneous Fibromas and Mammary Gland Adenomas, Fibroadenomas, and Adenocarcinomas (Combined) in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

User Input		Mode	l Results
Info		Benchmar	k Dose
Model	frequentist Multi-tumor v1.0	BMD	5.003900592
		BMDL	3.50357935
Model Options		BMDU	7.943159365
Risk Type	Extra Risk	Slope Factor	0.028542239
BMR	0.1	Combined Log-	
Confidence Level	0.95	Likelihood	-126.6624659
Background		Combined Log-	
		Likelihood Constant	115.4951852

Figure 2-137. Details Regarding the Multi-Tumor (MS Combo) Model for the Increased Incidence of Subcutaneous Fibromas and Mammary Gland Adenomas, Fibroadenomas, and Adenocarcinomas (Combined) in Female Rats Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

2.2.2 Mouse Data

2.2.2.1 Bronchiolo-Alveolar Adenomas in Female Mice

Female mice exhibited a significantly increased trend for the incidence of bronchiolo-alveolar adenomas in a 2-year inhalation toxicity study of 1,2-dichloroethane (<u>Nagano et al., 2006</u>). For BMD modeling, the exposure concentrations were first duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day, 7 days per week rather than 6 hours per day, 5 days per week. Then, the Multistage cancer models were fit to the dose-response data.

A BMR of 10 percent ER was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). The concentration and response data used for the modeling are presented in Table 2-105.

Table 2-105. Increased Incidence of Bronchiolo-Alveolar Adenomas in Female Mice and
Associated Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane from a 2-
Year Chronic Bioassay

Adjusted Concentration (ppm)	Number of Animals	Incidence
0	49	4
2	50	1
5	50	3
16	50	8

The BMD modeling results for bronchiolo-alveolar adenomas in female mice are summarized in Table 2-106. All Multistage models provided an adequate fit (chi-square p-value > 0.1) to the data. The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC was selected (Multistage 3-degree). A plot of the Multistage 3-degree model with a BMR of 10 percent ER is shown in Figure 2-138. Additional modeling details, including model parameters, goodness of fit at each concentration, and log likelihood are shown in Figure 2-139.

 Table 2-106. Summary of BMD Modeling Results for Increased Incidence of Bronchiolo-Alveolar

 Adenomas in Female Mice Following Inhalation Exposure to 1,2-Dichloroethane in a 2-Year

 Chronic Bioassay^a

Goodnes	s of Fit	BMD	BMDL	Slope		
p-value	AIC	10%ER (ppm)	10%ER (ppm)	Factor (per ppm)	Basis for Model Selection	
0.4013	110.3	15	9.4	0.011	All the Multistage models provided	
0.3754	110.4	15	9.3	0.011	adequate fit (chi-square p-value > 0.1). The BMDLs were sufficiently	
0.2359	111.5	17	8.1	0.012	> 0.1). The BMDLs were sufficiently close (differed by < 3-fold); therefore EPA chose the 3-degree Multistage model, which had the lowest AIC.	
-	p-value 0.4013 0.3754	0.4013 110.3 0.3754 110.4	p-value AIC 10%ER (ppm) 0.4013 110.3 15 0.3754 110.4 15	p-value AIC 10%ER (ppm) 10%ER (ppm) 0.4013 110.3 15 9.4 0.3754 110.4 15 9.3	p-value AIC 10%ER (ppm) 10%ER (ppm) Factor (per ppm) 0.4013 110.3 15 9.4 0.011 0.3754 110.4 15 9.3 0.011	

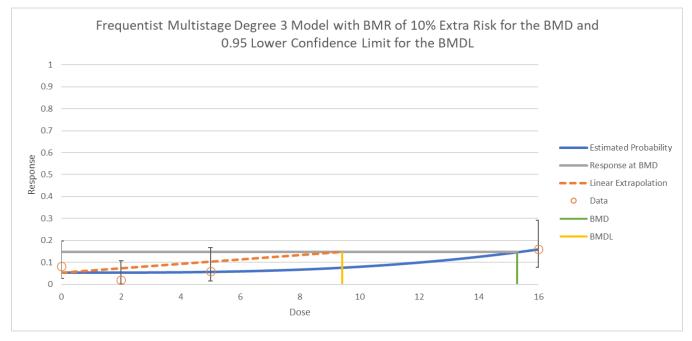


Figure 2-138. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage 3-Degree) for the Increased Incidence of Bronchiolo-Alveolar Adenomas in Female Mice Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

Benchmark Dose					
BMD	15.28951263				
BMDL	9.41161009				
BMDU	Infinity				
AIC	110.3012141				
P-value	0.401340961				
D.O.F.	2				
Chi ²	1.825887871				
Slope Factor	0.010625175				

Model Para	meters			
# of Parameters	4			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	0.052388509	2.35E-02	0.0063456	0.098431418
b1	Bounded	NA	NA	NA
b2	Bounded	NA	NA	NA
b3	2.94779E-05	6.54E-02	-0.128136264	0.12819522

Goodness	of Fit				
Dose	Estimated	Exported	Observed	Size	Scaled
	Probability	Expected			Residual
0	0.052388509	2.567036922	4	49	0.894373541
2	0.052611951	2.630597564	1	50	-1.005355325
5	0.055873787	2.793689339	3	50	0.123433378
16	0.160167058	8.00835292	8	50	-0.002951663

Analysis of Deviance					
	Log	# of			
Model	Likelihood	Parameters	Deviance	Test d.f.	P Value
Full Model	-52.08803088	4	-	-	NA
Fitted Model	-53.15060707	2	2.125152373	2	0.345564424
Reduced Model	-55.67027459	1	5.039335051	3	0.168939394

Figure 2-139. Details Regarding the Selected Model (Multistage 3-Degree) for the Increased Incidence of Bronchiolo-Alveolar Adenomas in Female Mice Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

2.2.2.2 Bronchiolo-Alveolar Carcinomas in Female Mice

Female mice exhibited a significantly increased trend for the incidence of bronchiolo-alveolar carcinomas in a 2-year inhalation toxicity study of 1,2-dichloroethane (<u>Nagano et al., 2006</u>). For BMD modeling, the exposure concentrations were first duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day, 7 days per week rather than 6 hours per day, 5 days per week. Then, the Multistage cancer models were fit to the dose-response data.

A BMR of 10 percent ER was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). The concentration and response data used for the modeling are presented in Table 2-107.

 Table 2-107. Increased Incidence of Bronchiolo-Alveolar Carcinomas in Female Mice and

 Associated Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane from a 2-year Chronic Bioassay

Adjusted Concentration (ppm)	Number of Animals	Incidence
0	49	1
2	50	0
5	50	1
16	50	3

The BMD modeling results for bronchiolo-alveolar carcinomas in female mice are summarized in Table 2-108. All Multistage models provided an adequate fit (chi-square p-value > 0.1) to the data. The Multistage 3-degree model converged on the 2-degree model. The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC was selected. The 2-degree Multistage model was selected as the more parsimonious choice. A plot of the Multistage 2-degree model with a BMR of 10 percent ER is shown in Figure 2-140. Additional modeling details, including model parameters, goodness of fit at each concentration, and log likelihood are shown in Figure 2-141.

 Table 2-108. Summary of BMD Modeling Results for Increased Incidence of Bronchiolo-Alveolar

 Carcinomas in Female Mice Following Inhalation Exposure to 1,2-Dichloroethane in a 2-Year

 Chronic Bioassay^a

Model	Goodnes	s of Fit	BMD 10%ER	BMDL 10%ER	Slope Factor	Basis for Model Selection	
	p-value	AIC	(ppm)	(ppm)			
Multistage 3	0.6059	47.82	23	14	0.0069	All the Multistage models provided	
Multistage 2	0.6059	47.82	23	14	0.0070	adequate fit (chi-square p-value > 0.1). The Multistage 3-degree	
Multistage 1	0.5056	48.31	40	16	0.0062	> 0.1). The Multistage 3-degree model converged on the 2-degree model. The BMDLs were sufficiently close (differed by < 3-fold); therefore EPA chose the 2-degree Multistage model, which had the lowest AIC and was the more parsimonious choice.	

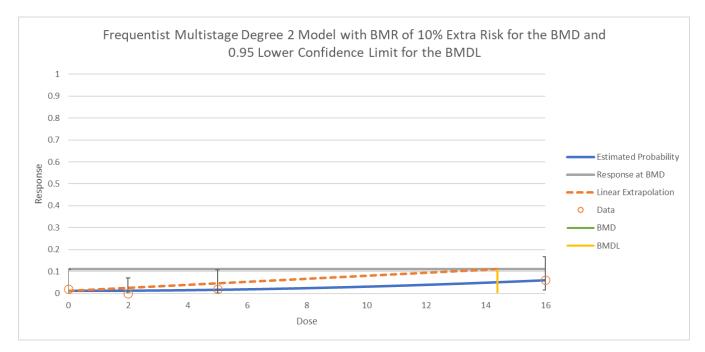


Figure 2-140. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage 2-Degree) for the Increased Incidence of Bronchiolo-Alveolar Carcinomas in Female Mice Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

Benchmark Dose				
BMD	23.02764702			
BMDL	14.38723029			
BMDU	Infinity			
AIC	47.81567877			
P-value	0.605883382			
D.O.F.	2			
Chi ²	1.002135499			
Slope Factor	0.006950608			

Model Para	meters			
# of Parameters	3			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	0.0113772	0.053529952	-0.093539578	0.116293979
b1	Bounded	NA	NA	NA
b2	0.000198691	3.67E-02	-0.071651227	0.072048609

Goodness of Fit					
Dees	Estimated	Expected	Observed	Size	Scaled
Dose	Probability	Expected		5120	Residual
0	0.0113772	0.557482822	1	49	0.592671971
2	0.012162611	0.608130555	0	50	-0.77982726
5	0.016275792	0.813789577	1	50	0.206418171
16	0.060405966	3.020298307	3	50	-0.011679786

Analysis of Deviance					
	Log	# of			
Model	Likelihood	Parameters	Deviance	Test d.f.	P Value
Full Model	-21.13187787	4	-	-	NA
Fitted Model	-21.90783939	2	1.551923026	2	0.460261021
Reduced Model	-23.3559877	1	2.896296628	3	0.407892098

Figure 2-141. Details Regarding the Selected Model (Multistage 2-Degree) for the Increased Incidence of Bronchiolo-Alveolar Carcinomas in Female Mice Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

2.2.2.3 Bronchiolo-Alveolar Adenomas and Carcinomas (Combined) in Female Mice

Female mice exhibited a significantly increased trend for the incidence of bronchiolo-alveolar adenomas and carcinomas (combined) in a 2-year inhalation toxicity study of 1,2-dichloroethane (<u>Nagano et al., 2006</u>). For BMD modeling, the exposure concentrations were first duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day, 7 days per week rather than 6 hours per day, 5 days per week. Then, the Multistage cancer models were fit to the dose-response data.

A BMR of 10 percent ER was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). The concentration and response data used for the modeling are presented in Table 2-109.

Table 2-109. Increased Incidence of Bronchiolo-Alveolar Adenomas and Carcinomas (Combined)in Female Mice and Associated Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane from a 2-Year Chronic Bioassay

Adjusted Concentration (ppm)	Number of Animals	Incidence
0	49	5
2	50	1
5	50	4
16	50	11

The BMD modeling results for bronchiolo-alveolar adenomas and carcinomas (combined) in female mice are summarized in Table 2-110. All Multistage models provided an adequate fit (chi-square p-value > 0.1) to the data. The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC was selected (Multistage 2-degree). A plot of the Multistage 2-degree model with a BMR of 10 percent ER is shown in Figure 2-142. Additional modeling details, including model parameters, goodness of fit at each concentration, and log likelihood are shown in Figure 2-143.

 Table 2-110. Summary of BMD Modeling Results for Increased Incidence of Bronchiolo-Alveolar

 Adenomas and Carcinomas (Combined) in Female Mice Following Inhalation Exposure to 1,2

 Dichloroethane in a 2-Year Chronic Bioassay^a

Model	Goodnes	ss of Fit	BMD 10%ER	BMDL 10%ER	Slope Factor	Basis for Model Selection
	p-value	AIC	(ppm)	(ppm)	(per ppm)	
Multistage 3	0.1016	132.0	13	7.6	0.013	All the Multistage models
Multistage 2	0.2413	130.0	12	7.5	0.013	provided adequate fit (chi-square p -value > 0.1). The BMDLs were
Multistage 1	0.1217	131.7	11	6.1	0.016	sufficiently close (differed by < 3-fold); therefore, EPA chose the 2-degree Multistage model, which had the lowest AIC.
^a Selected model	in bold.				•	•

Figure 2-142. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage 2-Degree) for the Increased Incidence of Bronchiolo-Alveolar Adenomas and Carcinomas (Combined) in Female Mice Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

Benchmark Dose				
BMD	12.14137745			
BMDL	7.47918985			
BMDU	19.79664615			
AIC	130.0361342			
P-value	0.241329764			
D.O.F.	2			
Chi ²	2.843181935			
Slope Factor	0.013370432			

Model Para	meters			
# of Parameters	3			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	0.061269856	2.31E-02	0.016075343	0.10646437
b1	Bounded	NA	NA	NA
b2	0.00071473	7.85E-02	-0.153059287	0.154488747

Goodness of Fit					
Dece	Estimated	Exported	Observed	Size	Scaled
Dose	Probability	Expected			Residual
0	0.061269856	3.002222954	5	49	1.15299002
2	0.063949778	3.197488882	1	50	-1.228915905
5	0.077894352	3.894717584	4	50	0.053347965
16	0.218232649	10.91163246	11	50	0.026751484

Analysis of Deviance					
	Log	# of			
Model	Likelihood	Parameters	Deviance	Test d.f.	P Value
Full Model	-61.33348348	4	-	-	NA
Fitted Model	-63.01806711	2	3.369167271	2	0.185521661
Reduced Model	-67.07521698	1	8.114299727	3	0.043707604

Figure 2-143. Details Regarding the Selected Model (Multistage 2-Degree) for the Increased Incidence of Bronchiolo-Alveolar Adenomas and Carcinomas (Combined) in Female Mice Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

2.2.2.4 Endometrial Stromal Polyps in Female Mice

Female mice exhibited a significantly increased trend for the incidence of endometrial stromal polyps in a 2-year inhalation toxicity study of 1,2-dichloroethane (<u>Nagano et al., 2006</u>). For BMD modeling, the exposure concentrations were first duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day, 7 days per week rather than 6 hours per day, 5 days per week. Then, the Multistage cancer models were fit to the dose-response data.

A BMR of 10 percent ER was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). The concentration and response data used for the modeling are presented in Table 2-111.

Table 2-111. Increased Incidence of Endometrial Stromal Polyps in Female Mice and AssociatedConcentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane from a 2-YearChronic Bioassay

Adjusted Concentration (ppm)	Number of Animals	Incidence
0	49	2
2	50	0
5	50	1
16	50	6

The BMD modeling results for endometrial stromal polyps in female mice are summarized in Table 2-112. All Multistage models provided an adequate fit (chi-square p-value > 0.1) to the data. The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC was selected (Multistage 3-degree). A plot of the Multistage 3-degree model with a BMR of 10 percent ER is shown in Figure 2-144. Additional modeling details, including model parameters, goodness of fit at each concentration, and log likelihood are shown in Figure 2-145.

 Table 2-112. Summary of BMD Modeling Results for Increased Incidence of Endometrial Stromal

 Polyps in Female Mice Following Inhalation Exposure to 1,2-Dichloroethane in a 2-Year Chronic

 Bioassay^a

	Goodnes	ss of Fit	BMD	BMDL	Slope	
Model	p-value	AIC	10%ER (ppm)	10%ER (ppm)	Factor (per ppm)	Basis for Model Selection
Multistage 3	0.3370	70.10	16	12	0.0086	All the Multistage models
Multistage 2	0.2839	70.39	16	11	0.0087	provided adequate fit (chi-square p-value > 0.1). The BMDLs were sufficiently close (differed by < 3-fold); therefore, EPA chose the 3-degree Multistage model, which had the lowest AIC.
Multistage 1	0.1521	72.23	21	11	0.0094	
^a Selected model	l in bold.					

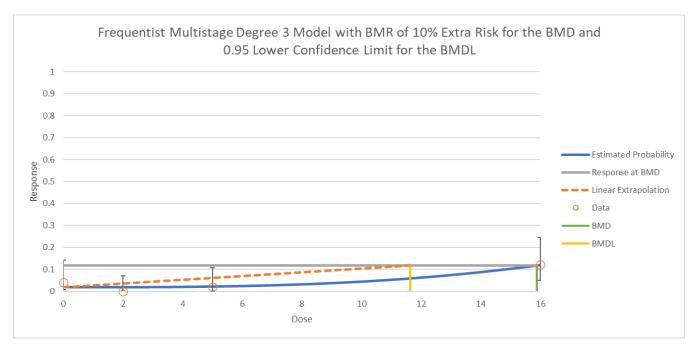


Figure 2-144. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage 3-Degree) for the Increased Incidence of Endometrial Stromal Polyps in Female Mice Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

Benchmark Dose				
BMD	15.88183212			
BMDL	11.62829155			
BMDU	33.54474972			
AIC	70.10389143			
P-value	0.336969894			
D.O.F.	2			
Chi ²	2.175523375			
Slope Factor	0.008599716			

Model Para	meters			
# of Parameters	4			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	0.019204564	3.85E-02	-0.056279724	0.094688853
b1	Bounded	NA	NA	NA
b2	Bounded	NA	NA	NA
b3	2.63012E-05	5.35E-02	-0.10487753	0.104930133

Goodness of Fit					
Dose	Estimated	Expected	d Observed	Size	Scaled
DOSE	Probability	Lxpected			Residual
0	0.019204564	0.941023655	2	49	1.091656458
2	0.019410912	0.970545585	0	50	-0.98516272
5	0.022423786	1.121189281	1	50	-0.114452357
16	0.119373076	5.968653792	6	50	0.012830596

Analysis of Deviance					
	Log	# of			
Model	Likelihood	Parameters	Deviance	Test d.f.	P Value
Full Model	-31.60416819	4	-	-	NA
Fitted Model	-33.05194571	2	2.895555043	2	0.235092195
Reduced Model	-36.65806521	1	7.212238997	3	0.065432012

Figure 2-145. Details Regarding the Selected Model (Multistage 3-Degree) for the Increased Incidence of Endometrial Stromal Polyps in Female Mice Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

2.2.2.5 Mammary Gland Adenocarcinomas in Female Mice

Female mice exhibited a significantly increased trend for the incidence of mammary gland adenocarcinomas in a 2-year inhalation toxicity study of 1,2-dichloroethane (<u>Nagano et al., 2006</u>). For BMD modeling, the exposure concentrations were first duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day, 7 days per week rather than 6 hours per day, 5 days per week. Then, the Multistage cancer models were fit to the dose-response data.

A BMR of 10 percent ER was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). The concentration and response data used for the modeling are presented in Table 2-113.

Table 2-113. Increased Incidence of Mammary Gland Adenocarcinomas in Female Mice andAssociated Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane from a 2-Year Chronic Bioassay

Adjusted Concentration (ppm)	Number of Animals	Incidence
0	49	1
2	50	2
5	50	1
16	50	6

The BMD modeling results for mammary gland adenocarcinomas in female mice are summarized in Table 2-114. All Multistage models provided an adequate fit (chi-square p-value > 0.1) to the data. The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC was selected (Multistage 3-degree). A plot of the Multistage 3-degree model with a BMR of 10 percent ER is shown in Figure 2-146. Additional modeling details, including model parameters, goodness of fit at each concentration, and log likelihood are shown in Figure 2-147.

 Table 2-114. Summary of BMD Modeling Results for Increased Incidence of Mammary Gland

 Adenocarcinomas in Female Mice Following Inhalation Exposure to 1,2-Dichloroethane in a 2

 Year Chronic Bioassay^a

	Goodnes	s of Fit	BMD	BMDL	Slope		
Model	p-value	AIC	10%ER (ppm)	10%ER (ppm)	Factor (per ppm)	Basis for Model Selection	
Multistage 3	0.7560	77.60	16	9.9	0.010	All the Multistage models provided	
Multistage 2	0.7044	77.77	17	9.7	0.010	adequate fit (chi-square p-value > 0.1). The BMDLs were	
Multistage 1	0.5949	78.34	18	9.1	0.011	sufficiently close (differed by < 3-fold); therefore, EPA chose the 3-degree Multistage model, which had the lowest AIC.	
^a Selected model in bold.							

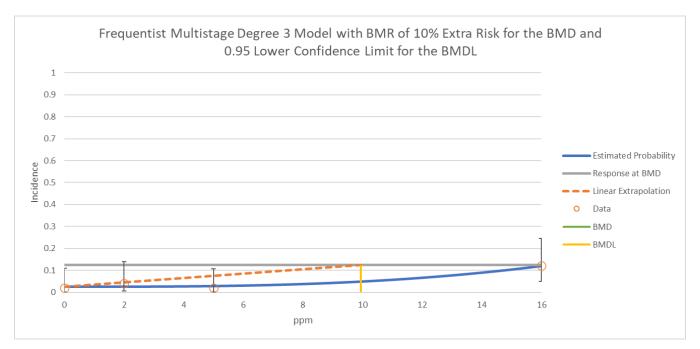


Figure 2-146. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage 3-Degree) for the Increased Incidence of Mammary Gland Adenocarcinomas in Female Mice Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

Benchmark Dose				
BMD	16.27040863			
BMDL	9.941820292			
BMDU	Infinity			
AIC	77.60267152			
P-value	0.755966155			
D.O.F.	2			
Chi ²	0.559517345			
Slope Factor	0.01005852			

Model Para	meters			
# of Parameters	4			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	0.026137909	3.28E-02	-0.038234568	0.090510386
b1	Bounded	NA	NA	NA
b2	Bounded	NA	NA	NA
b3	2.44615E-05	5.38E-02	-0.105461386	0.105510309

Goodness of Fit					
Dece	Estimated	Expected	Observed	Cino	Scaled
Dose	Probability	Expected	Observed	Size	Residual
0	0.026137909	1.280757549	1	49	-0.248083557
2	0.026328467	1.316423363	2	50	0.595784802
5	0.029111123	1.455556151	1	50	-0.377596042
16	0.118984218	5.949210887	6	50	0.020822887

Analysis of D	Analysis of Deviance				
	Log				
Model	Likelihood	Parameters	Deviance	Test d.f.	P Value
Full Model	-36.5269587	4	-	-	NA
Fitted Model	-36.80133576	2	0.548754125	2	0.760045437
Reduced Model	-39.65162334	1	5.700575167	3	0.127122222

Figure 2-147. Details Regarding the Selected Model (Multistage 3-Degree) for the Increased Incidence of Mammary Gland Adenocarcinomas in Female Mice Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

2.2.2.6 Hepatocellular Adenomas in Female Mice

Female mice exhibited a significantly increased trend for the incidence of hepatocellular adenomas in a 2-year inhalation toxicity study of 1,2-dichloroethane (Nagano et al., 2006). For BMD modeling, the exposure concentrations were first duration adjusted to estimate an equivalent inhalation dose for animals exposed for 24 hours per day, 7 days per week rather than 6 hours per day, 5 days per week. Then, the Multistage cancer models were fit to the dose-response data.

A BMR of 10 percent ER was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). The concentration and response data used for the modeling are presented in Table 2-115.

Table 2-115. Increased Incidence of Hepatocellular Adenomas in Female Mice and AssociatedConcentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane from a 2-YearChronic Bioassay

Adjusted Concentration (ppm)	Number of Animals	Incidence
0	49	1
2	50	1
5	50	1
16	50	6

The BMD modeling results for hepatocellular adenomas in female mice are summarized in Table 2-116. All Multistage models provided an adequate fit (chi-square p-value > 0.1) to the data. The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC was selected (Multistage 3-degree). A plot of the Multistage 3-degree model with a BMR of 10 percent ER is shown in Figure 2-148. Additional modeling details, including model parameters, goodness of fit at each concentration, and log likelihood are shown in Figure 2-149.

 Table 2-116. Summary of BMD Modeling Results for Increased Incidence of Hepatocellular

 Adenomas in Female Mice Following Inhalation Exposure to 1,2-Dichloroethane in a 2-Year

 Chronic Bioassay^a

			1 1	Slope	
p-value	AIC	10%ER (ppm)	10%ER (ppm)	Factor (per ppm)	Basis for Model Selection
0.9911	70.08	16	11	0.0093	All the Multistage models
0.9337	70.21	16	11	0.0095	provided adequate fit (chi-square p -value > 0.1). The BMDLs were
0.6159	71.18	18	9.5	0.011	sufficiently close (differed by < 3-fold); therefore, EPA chose the 3-degree Multistage model, which had the lowest AIC.
(0.9911 0.9337	0.9911 70.08 0.9337 70.21	AIC (ppm) 0.9911 70.08 16 0.9337 70.21 16	AIC (ppm) (ppm) 0.9911 70.08 16 11 0.9337 70.21 16 11	AIC (ppm) (ppm) (per ppm) 0.9911 70.08 16 11 0.0093 0.9337 70.21 16 11 0.0095

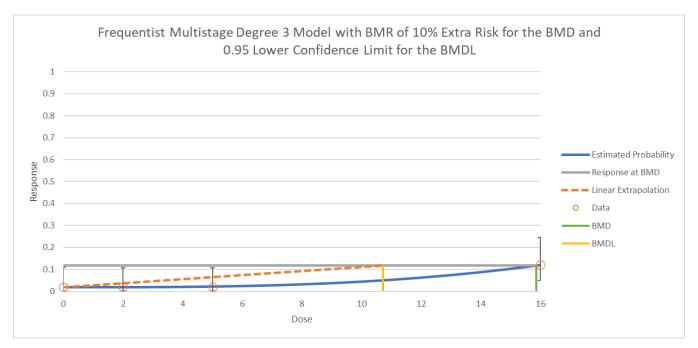


Figure 2-148. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage 3-Degree) for the Increased Incidence of Hepatocellular Adenomas in Female Mice Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

Benchmark Dose					
BMD	15.86314678				
BMDL	10.72443119				
BMDU	Infinity				
AIC	70.08200509				
P-value	0.991114758				
D.O.F.	2				
Chi ²	0.017849902				
Slope Factor	0.009324504				

Model Para	meters			
# of Parameters	4			
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	0.019111852	3.87E-02	-0.056762546	0.09498625
b1	Bounded	NA	NA	NA
b2	Bounded	NA	NA	NA
b3	2.63943E-05	0.053688515	-0.105201162	0.105253951

Goodness of Fit					
Dose	Estimated	Expected	Observed	Size	Scaled
	Probability	Expected			Residual
0	0.019111852	0.936480755	1	49	0.065638085
2	0.019318949	0.96594745	1	50	0.034647579
5	0.022342749	1.117137467	1	50	-0.11082622
16	0.119625443	5.981272148	6	50	0.007657574

Analysis of Deviance					
	Log	# of			
Model	Likelihood	Parameters	Deviance	Test d.f.	P Value
Full Model	-33.03170698	4	-	-	NA
Fitted Model	-33.04100255	2	0.018591143	2	0.990747499
Reduced Model	-36.65806521	1	7.234125334	3	0.064798208

Figure 2-149. Details Regarding the Selected Model (Multistage 3-Degree) for the Increased Incidence of Hepatocellular Adenomas in Female Mice Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

2.2.2.7 Hepatocellular Adenomas and Carcinomas (Combined) in Female Mice

Female mice exhibited a significantly increased trend for the incidence of hepatocellular adenomas and carcinomas (combined) in a 2-year inhalation toxicity study of 1,2-dichloroethane (Nagano et al., 2006). For BMD modeling, the exposure concentrations were first duration adjusted to estimate an equivalent inhalation concentration for animals exposed for 24 hours per day, 7 days per week rather than 6 hours per day, 5 days per week. Then, the Multistage cancer models were fit to the dose-response data.

A BMR of 10 percent ER was chosen according to EPA's *BMD Technical Guidance* (U.S. EPA, 2012). The concentration and response data used for the modeling are presented in Table 2-117.

Table 2-117. Increased Incidence of Hepatocellular Adenomas and Carcinomas (Combined) inFemale Mice and Associated Concentrations Selected for Dose-Response Modeling for 1,2-Dichloroethane from a 2-Year Chronic Bioassay

Adjusted Concentration (ppm)	Number of Animals	Incidence
0	49	2
2	50	1
5	50	2
16	50	6

The BMD modeling results for hepatocellular adenomas and carcinomas (combined) in female mice are summarized in Table 2-118. All Multistage models provided an adequate fit (chi-square p-value > 0.1) to the data. The BMDLs for the fit models were sufficiently close (differed by < 3-fold); therefore, the model with the lowest AIC was selected (Multistage 2-degree). A plot of the Multistage 2-degree model with a BMR of 10 percent ER is shown in Figure 2-150. Additional modeling details, including model parameters, goodness of fit at each concentration, and log likelihood are shown in Figure 2-151.

Table 2-118. Summary of BMD Modeling Results for Increased Incidence of HepatocellularAdenomas and Carcinomas (Combined) in Female Mice Following Inhalation Exposure to 1,2-Dichloroethane in a 2-Year Chronic Bioassay^a

Model	Goodnes	s of Fit	BMD 10%ER	BMDL 10%ER	Slope Factor	Basis for Model Selection	
	p-value	AIC	(ppm)	(ppm)	(per ppm)		
Multistage 3	0.5369	86.42	17	10	0.0097	All the Multistage models provided	
Multistage 2	0.8193	84.43	17	10	0.0097	adequate fit (chi-square p-value > 0.1). The BMDLs were sufficiently	
Multistage 1	0.6051	85.07	20	9.5	0.011	> 0.1). The BMDLs were sufficient close (differed by < 3-fold); therefo EPA chose the 2-degree Multistage model, which had the lowest AIC.	
^a Selected model	l in bold.						

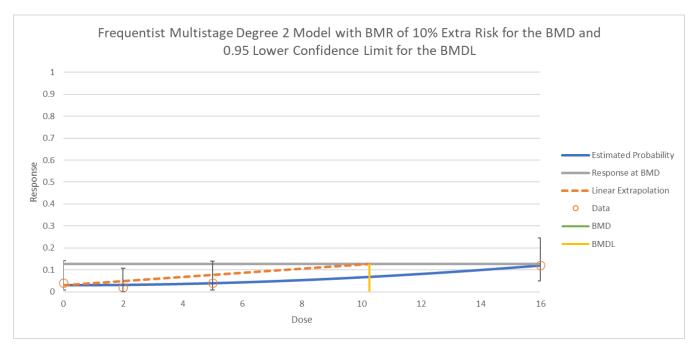


Figure 2-150. Plot of Response by Concentration with Fitted Curve for the Selected Model (Multistage 2-Degree) for the Increased Incidence of Hepatocellular Adenomas and Carcinomas (Combined) in Female Mice Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

Benchmark Dose					
BMD	16.704916				
BMDL	10.26208393				
BMDU	Infinity				
AIC	84.42822854				
P-value	0.81925885				
D.O.F.	2				
Chi ²	0.398710378				
Slope Factor	0.009744609				

Model Para	meters			
# of Parameters 3				
Variable	Estimate	Std Error	Lower Conf	Upper Conf
g	0.030173657	3.26E-02	-0.03365823	0.094005545
b1	Bounded	NA	NA	NA
b2	0.000377563	5.45E-02	-0.106466417	0.107221543

Goodness of Fit					
Dose	Estimated	Expected	Observed	Size	Scaled
	Probability	Expected			Residual
0	0.030173657	1.478509213	2	49	0.428878843
2	0.031637234	1.581861679	1	50	-0.462631823
5	0.039284849	1.964242466	2	50	0.025513498
16	0.119525528	5.976276377	6	50	0.009704333

Analysis of [Deviance				
	Log	# of			
Model	Likelihood	Parameters	Deviance	Test d.f.	P Value
Full Model	-40.00137558	4	-	-	NA
Fitted Model	-40.21411427	2	0.42547738	2	0.808367344
Reduced Model	-42.53972311	1	4.651217674	3	0.199192151

Figure 2-151. Details Regarding the Selected Model (Multistage 2-Degree) for the Increased Incidence of Hepatocellular Adenomas and Carcinomas (Combined) in Female Mice Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

2.2.2.8 Combined Lung, Uterine, Mammary Gland, and Liver Tumors in Female Mice Female mice exhibited significantly increased incidences of bronchiolo-alveolar adenomas and carcinomas, uterine endometrial stromal polyps, mammary gland adenocarcinomas, and hepatocellular adenomas and carcinomas in a 2-year inhalation toxicity study of 1,2-dichloroethane (Nagano et al., 2006). The MS Combo model was applied to the incidence data for the individual tumors and polydegrees identified for the individual tumor models, shown above (Sections 2.2.2.1 through 2.2.2.7), using a BMR of 10 percent ER. The BMD Multistage Cancer/Multi-tumor modeling results for combined bronchiolo-alveolar adenomas and carcinomas, uterine endometrial stromal polyps, mammary gland adenocarcinomas, and hepatocellular adenomas and carcinomas in female mice are summarized in Table 2-119. A plot of the dose-response curves for the incidence of individual tumor types with a BMR of 10 percent ER is shown in Figure 2-152. Additional modeling details, including the cancer slope factor and log likelihood are shown in Figure 2-153.

Table 2-119. Summary of BMD Multi-Tumor (MS Combo) Modeling Results for Increased Incidence of Bronchiolo-alveolar Adenomas and Carcinomas, Uterine Endometrial Stromal Polyps, Mammary Gland Adenocarcinomas, and Hepatocellular Adenomas and Carcinomas (Combined) in Female Mice Following Inhalation Exposure to 1,2-Dichloroethane in a 2-Year Chronic Bioassay

Model	BMD 10%ER (ppm)	BMDL 10%ER (ppm)	Slope Factor (per ppm)
Multi-tumor (MS Combo)	8.3	4.6	0.022
Bronchiolo-alveolar carcinomas and adenomas in the lungs Multistage 2	12	7.5	0.013
Endometrial stromal polyp in the uterus Multistage 3	16	12	0.0086
Adenocarcinoma in the mammary gland Multistage 3	16	9.9	0.010
Hepatocellular adenomas and carcinomas in the liver Multistage 2	17	10	0.0097

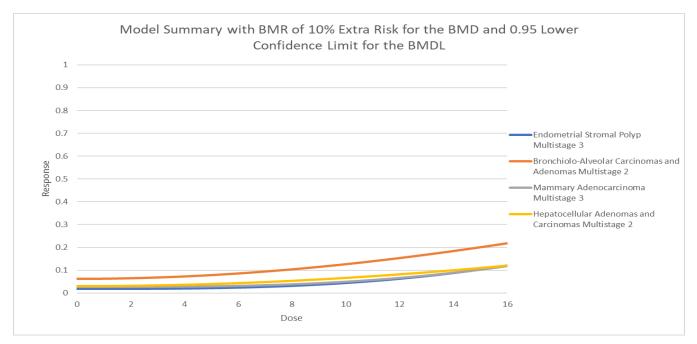


Figure 2-152. Plot of Response by Concentration with Fitted Curve for Selected Models used for the Multi-Tumor (MS Combo) Model for Increased Incidence of Bronchiolo-alveolar Adenomas and Carcinomas, Uterine Endometrial Stromal Polyps, Mammary Gland Adenocarcinomas, and Hepatocellular Adenomas and Carcinomas (Combined) in Female Mice Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

L	Jser Input	Model Results		
Info		Benchmark	Dose	
Model	frequentist Multi-tumor v1.0	BMD	8.337858446	
		BMDL	4.613136813	
Model Options		BMDU	10.36198116	
Risk Type	Extra Risk	Slope Factor	0.021677224	
BMR	0.1	Combined Log-		
Confidence Level	0.95	Likelihood	-173.0854629	
Background		Combined Log-		
-		Likelihood Constant	148.7966046	

Figure 2-153. Details Regarding the Multi-Tumor (MS Combo) Model for the Increased Incidence of Bronchiolo-alveolar Adenomas and Carcinomas, Uterine Endometrial Stromal Polyps, Mammary Gland Adenocarcinomas, and Hepatocellular Adenomas and Carcinomas (Combined) in Female Mice Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

2.2.2.9 Combined Lung, Mammary Gland, and Liver Tumors in Female Mice (Alternate Analysis of Combined Tumors with Uterine Polyps Excluded)

This section presents an alternate analysis of combined tumors in female mice that excludes uterine polyps because these lesions are considered preneoplastic by some researchers. Female mice exhibited significantly increased incidences of bronchiolo-alveolar adenomas and carcinomas, mammary gland adenocarcinomas, and hepatocellular adenomas and carcinomas in a 2-year inhalation toxicity study of 1,2-dichloroethane (Nagano et al., 2006). The MS Combo model was applied to the incidence data for the individual tumors and polydegrees identified for the individual tumor models, shown above (Sections 2.2.2.1 through 2.2.2.7), using a BMR of 10 percent ER.

The BMD Multistage Cancer/Multi-tumor modeling results for combined bronchiolo-alveolar adenomas and carcinomas, mammary gland adenocarcinomas, and hepatocellular adenomas and carcinomas in female mice are summarized in Table 2-120. A plot of the dose-response curves for the incidence of individual tumor types with a BMR of 10 percent ER is shown in Figure 2-154. Additional modeling details, including the cancer slope factor and log likelihood are shown in Figure 2-155.

Table 2-120. Summary of BMD Multi-Tumor (MS Combo) Modeling Results for Increased Incidence of Bronchiolo-alveolar Adenomas and Carcinomas, Mammary Gland Adenocarcinomas, and Hepatocellular Adenomas and Carcinomas (Combined) in Female Mice Following Inhalation Exposure to 1,2-Dichloroethane in a 2-Year Chronic Bioassay

Model	BMD 10%ER (ppm)	BMDL 10%ER (ppm)	Slope Factor (per ppm)
Multi-tumor (MS Combo)	9.0	4.8	0.021
Bronchiolo-alveolar carcinomas and adenomas in the lungs Multistage 2	12	7.5	0.013
Adenocarcinoma in the mammary gland Multistage 3	16	9.9	0.010
Hepatocellular adenomas and carcinomas in the liver Multistage 2	17	10	0.0097

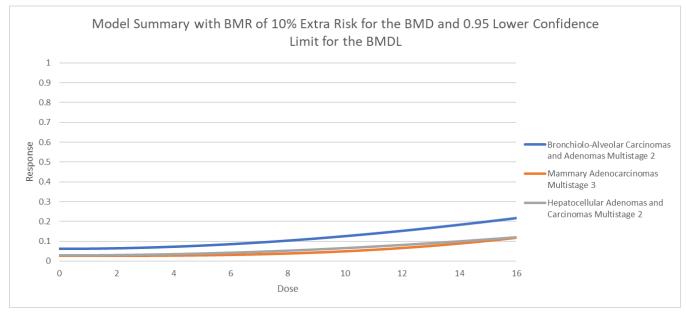


Figure 2-154. Plot of Response by Concentration with Fitted Curve for Selected Models Used for the Multi-Tumor (MS Combo) Model for Increased Incidence of Bronchiolo-alveolar Adenomas and Carcinomas, Mammary Gland Adenocarcinomas, and Hepatocellular Adenomas and Carcinomas (Combined) in Female Mice Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

Info		Benchmark	Dose
Model	frequentist Multi-tumor v1.0	BMD	8.96289734
		BMDL	4.755620898
Model Options		BMDU	11.70062473
Risk Type	Extra Risk	Slope Factor	0.021027748
BMR	0.1	Combined Log-	
Confidence Level	0.95	Likelihood	-140.0335171
Background		Combined Log-	
		Likelihood Constant	121.2334629

Figure 2-155. Details Regarding the Multi-Tumor (MS Combo) Model for the Increased Incidence of Bronchiolo-alveolar Adenomas and Carcinomas, Mammary Gland Adenocarcinomas, and Hepatocellular Adenomas and Carcinomas (Combined) in Female Mice Exposed to 1,2-Dichloroethane Via Inhalation (2-Year Study)

3 REFERENCES

- Aafjes, JH; Vels, JM; Schenck, E. (1980). Fertility of rats with artificial oligozoospermia. J Reprod Fertil 58: 345-351.
- Dow Chemical. (2006). Re: Testing consent order for ethylene dichloride; final report (docket no . OPPT-2003-0010) [TSCA Submission]. (Study ID No. 041115. 40060000065). HAP Task Force for Ethylene Dichloride.
- Igwe, OJ; Que Hee, SS; Wagner, WD. (1986). Interaction between 1,2-dichloroethane and disulfiram. I. Toxicologic effects. Fundam Appl Toxicol 6: 733-746. <u>http://dx.doi.org/10.1016/0272-0590(86)90186-7</u>
- IRFMN. (1978). Clinical chemistry results in adult rats exposed to ethylene dichloride by inhalation for 12 months [TSCA Submission]. (OTS0515737. 86-870001661). Shell Oil Company. https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/OTS0515737.xhtml
- Meistrich, ML; Finch, M; da Cunha, MF; Hacker, U; Au, WW. (1982). Damaging effects of fourteen chemotherapeutic drugs on mouse testis cells. Cancer Res.
- Munson, AE; Sanders, VM; Douglas, KA; Sain, LE; Kauffmann, BM; White Jr, KL. (1982). In vivo assessment of immunotoxicity. Environ Health Perspect 43: 41-52. http://dx.doi.org/10.1289/ehp.824341
- Muralidhara, S; Ramanathan, R; Mehta, SM; Lash, LH; Acosta, D; Bruckner, JV. (2001). Acute, subacute, and subchronic oral toxicity studies of 1,1-dichloroethane in rats: Application to risk evaluation. Toxicol Sci 64: 135-145. <u>http://dx.doi.org/10.1093/toxsci/64.1.135</u>
- Nagano, K; Umeda, Y; Senoh, H; Gotoh, K; Arito, H; Yamamoto, S; Matsushima, T. (2006). Carcinogenicity and chronic toxicity in rats and mice exposed by inhalation to 1,2dichloroethane for two years. J Occup Health 48: 424-436. http://dx.doi.org/10.1539/joh.48.424
- NTP. (1978). Bioassay of 1,2-dichloroethane for possible carcinogenicity [NTP]. (TR 55). Bethesda, Maryland: U.S. Department of Health and Human Services, National Institutes of Health, National Cancer Institute.

https://ntp.niehs.nih.gov/sites/default/files/ntp/htdocs/lt_rpts/tr055.pdf?vvv

- NTP. (1991). Toxicity studies of 1,2-dichloroethane (ethylene bichloride) (CAS No. 107-06-2) in F344/N rats, Sprague Dawley rats, Osborne-Mendel rats, and B6C3F1 mice (drinking water and gavage studies). In Toxicity Report Series, vol 4. (NTP TOX 4; NIH Publication No. 91-3123). Research Triangle Park, NC. <u>https://ntp.niehs.nih.gov/publications/reports/tox/000s/tox004</u>
- Payan, JP; Saillenfait, AM; Bonnet, P; Fabry, JP; Langonne, I; Sabate, JP. (1995). Assessment of the developmental toxicity and placental transfer of 1,2-dichloroethane in rats. Toxicol Sci 28: 187-198. <u>http://dx.doi.org/10.1006/faat.1995.1159</u>
- Rao, KS; Murray, JS; Deacon, MM; John, JA; Calhoun, LL; Young, JT. (1980). Teratogenicity and reproduction studies in animals inhaling ethylene dichloride. In B Ames; P Infante; R Reitz (Eds.), (pp. P149-P166). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
- Robaire, B; Smith, S; Hales, BF. (1984). Suppression of spermatogenesis by testosterone in adult male rats: effect on fertility, pregnancy outcome and progeny. Biol Reprod 31: 221-230.
- Schwetz, BA; Leong, BKJ; Gehring, PJ. (1974). Embryo- and fetotoxicity of inhaled carbon tetrachloride, 1,1-dichloroethane and methyl ethyl ketone in rats. Toxicol Appl Pharmacol 28: 452-464. http://dx.doi.org/10.1016/0041-008X(74)90230-0
- Storer, RD; Jackson, NM; Conolly, RB. (1984). In vivo genotoxicity and acute hepatotoxicity of 1,2dichloroethane in mice: Comparison of oral, intraperitoneal, and inhalation routes of exposure. Cancer Res 44: 4267-4271.
- U.S. EPA. (2012). Benchmark dose technical guidance [EPA Report]. (EPA100R12001). Washington, DC: U.S. Environmental Protection Agency, Risk Assessment Forum. <u>https://www.epa.gov/risk/benchmark-dose-technical-guidance</u>

- U.S. EPA. (2025). Risk Evaluation for 1,1-Dichloroethane. Washington, DC: Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention. https://www.regulations.gov/docket/EPA-HQ-OPPT-2024-0114
- Working, PK. (1988). Male reproductive toxicology: comparison of the human to animal models [Review]. Environ Health Perspect 77: 37-44. <u>http://dx.doi.org/10.1289/ehp.887737</u>
- Zeng, N; Jiang, H; Fan, Q; Wang, T; Rong, W; Li, G; Li, R; Xu, D; Guo, T; Wang, F; Zeng, L; Huang, M; Zheng, J; Lu, F; Chen, W; Hu, Q; Huang, Z; Wang, Q. (2018). Aberrant expression of miR-451a contributes to 1,2-dichloroethane-induced hepatic glycerol gluconeogenesis disorder by inhibiting glycerol kinase expression in NIH Swiss mice. J Appl Toxicol 38: 292-303. http://dx.doi.org/10.1002/jat.3526
- Zhang, Y; Li, G; Zhong, Y; Huang, M; Wu, J; Zheng, J; Rong, W; Zeng, L; Yin, X; Lu, F; Xie, Z; Xu, D; Fan, Q; Jia, X; Wang, T; Hu, Q; Chen, W; Wang, Q; Huang, Z. (2017). 1,2-dichloroethane induces reproductive toxicity mediated by the CREM/CREB signaling pathway in male NIH Swiss mice. Toxicol Sci 160: 299-314. <u>http://dx.doi.org/10.1093/toxsci/kfx182</u>