

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

OFFICE OF CHEMICAL SAFETY AND POLLUTION PREVENTION

MEMORANDUM

May 27, 2025

- **SUBJECT:** Calculating fold factors for uncertain worker exposures to mixed metal oxide (MMO) cathode active materials (CAMs) that contain cobalt
- FROM: Keith Salazar Senior Science Advisor Immediate Office New Chemicals Division

Elizabeth Childs Branch Supervisor New Chemicals Division

- TO: Shari Barash Division Director New Chemicals Division
- **THRU:** Anna Lowit Senior Science Advisor Immediate Office Office of Pollution Prevention and Toxics

Background

Under TSCA Section 5, the New Chemicals Division (NCD) is responsible for conducting risk assessment of new chemical substances submitted to determine whether these chemicals pose an unreasonable risk to the human health and the environment. NCD receives approximately 500 new chemical submissions each year that cover a variety of industry sectors. In recent years, NCD has received new chemical submissions for mixed metal oxides (MMO) in cathode active materials (CAMs) used in electric vehicles. MMO CAMs are crystallized metal oxides typically composed of some combination of lithium, cobalt, nickel, and other additional modifier metal oxides. This memorandum focuses on cobalt-containing CAMs as these types of MMO CAMs are the most common in the New Chemicals Program.

Additionally, this memorandum focuses on the hazards and worker exposures via the inhalation route. MMO CAM substances are known to induce adverse respiratory effects at low exposure concentrations based on 90-day inhalation studies in rats. In addition, the individual metal components are well-studied and induce adverse health effects such as pulmonary fibrosis, asthma

and lung cancer. Cobalt is the most potent carcinogenic component of the CAM metals. As a result, the percent composition of cobalt in the CAM is important for quantifying worker risks. A combination of engineering controls and respiratory protection is typically utilized to protect workers from these substances. To inform this decision process, EPA has subsequently developed a method for calculating fold factors for worker inhalation exposures for MMO CAMs that contain cobalt. The fold factor is the amount that the exposure exceeds the benchmark margin of exposure (MOE). The options for mitigating risks when exposure exceeds the acceptable MOE include 1) reducing exposures, 2) providing respiratory protection with an appropriate Assigned Protection Factor (APF), or a combination of both options 1 and 2.

To quantify inhalation risks for cobalt-containing CAMs, EPA currently uses a benchmark concentration lower bound (BMCL_{1SD}) of 8.4E-3 mg/m³ as the point of departure (POD) which is based on respiratory effects (i.e., increased lung weight, macroscopic changes in the lung, and histopathological changes in the respiratory tract) in a 90-day inhalation study in rats (OECD TG 413) for an analogue substance; this analogue substance is a CAM containing aluminum cobalt lithium nickel oxide¹.

EPA is not able to accurately quantify worker inhalation exposures for some scenarios involving the manufacturing or processing of CAM materials due to uncertainties of control technologies at facilities that have not yet been constructed. Therefore, EPA has calculated a generic fold factor for different air concentrations of cobalt-containing CAMs to identify the appropriate worker protection mitigation strategy. The fold factor ranges provided herein correspond to commonly used cutoffs for determining the appropriate APF.

Analysis Approach

1. As previously mentioned, NCD typically uses a BMCL_{1SD} of 8.4E-3 mg/m³ to quantify noncancer effects to MMO CAMs. Since an Inhalation Unit Risk (IUR) is not available for a MMO CAM to quantitatively assess cancer risks, NCD uses an IUR for cobalt and adjusts for the percent composition of cobalt in the new chemical substance. To determine the maximum percent composition of cobalt for which the BMCL_{1SD} is protective for both cancer and noncancer effects, EPA calculated New Chemical Exposure Limits (NCELs; represents the maximum airborne concentration of a new chemical substance in air that is allowable without the use of personal protection equipment) using either the BMCL_{1SD} for aluminum cobalt lithium nickel oxide for non-cancer respiratory effects or the cobalt IUR for lung cancer. The BMCL_{1SD} of 8.4E-3 mg/m³ yields a NCEL of 3.28E-5 mg/m³ (see Table 1) and the IUR of 7.7E-3 (μ g/m³)⁻¹ yields a NCEL of 3.29E-5 mg/m³ for a target risk level of 1 in 10,000 when the percent of cobalt is 79% of the new chemical substance (see Table 2). The calculations demonstrate that when the cobalt composition is < 80% in the MMO CAM, the BMCL_{1SD} is more protective than the IUR for setting occupational exposure limits.

¹ Study available upon request

Table 1. NCEL calculation based on the BMCL for aluminum cobalt lithium nickel oxide

POD Human (aka Human Equivalent Concentration, HEC) Calculation													NCEL (ulation						
POD Animal Study BMCL (mg/m ³)		Blood:Air Partition coefficient ratio (PCanimal / PChuman)		Animal Experiment Daily Duration (hrs/day)		Animal Exposure Frequency (days/wk)		Duration of Workshift (hrs/day)		Weekly Frequency of Workshift (days/wk)		Adjust resting breathing volume (5.2 m ³ /8hrs) to working breating rate (10 m ³ /8hrs)		Structural Alert as % of New Chemical Substance		POD Human (mg/m³)		Uncertainty Factor ² (unitless)		NCEL, 8h Time Weighted Avg (mg/m³)
8.40E-03	х	1	х	6	х	5	÷	8	÷	5	х	0.52	÷	100%	=	0.003276	÷	100	=	3.28E-05

Table 2. NCEL calculation based on Cobalt IUR

	NCEL Calculations Cancer Endpoint, Rat Cancer Inhalation Unit Risk based on Cobalt IUR for insoluble compounds															
Target Risk Level		Inhalation Unit Risk (per μg/m ³)		Structural Alert as % PMN		µg/mg		Permissible Air Concentration ¹ (mg/m ³)		Average Daily Adult Inhalation Rate (m ³ /day)		Permissible Amt per Person per Day (mg/day)		Air vol. inhaled in 8 hr work shift ² (m ³)		NCEL, 8h Time Weighted Avg (mg/m ³)
1E-04	÷	7.70E-03	÷	79%	÷	1000	=	2E-05	х	20	=	0.0003288	÷	10	=	3.29E-05
1E-05	÷	7.70E-03	÷	79%	÷	1000	=	2E-06	х	20	Ш	3.288E-05	÷	10	=	3.29E-06
1E-06	÷	7.70E-03	÷	79%	÷	1000	=	2E-07	х	20	ш	3.288E-06	÷	10	=	3.29E-07

2. Using the BMCL_{1SD}, EPA calculated the worker exposure concentrations that correspond to commonly used respiratory APFs. The calculations in Table 3 demonstrate that exposure concentrations of 3.09E-1 mg/m³, 3.09E-2 mg/m³, 1.54E-3 mg/m³, and 3.09E-4 mg/m³ result in fold factors of 10,000, 1,000, 50, and 10, respectively.

Table 3. Worker inhalation risk calculation using the $BMCL_{1SD}$

	Worker Margin of Exposure (MOE) Calculations using Animal Inhalation POD and Engineering Report PDR														
			Worker Ma	argin of Ex	posure (MOE) Calculation	ons using A	nimal	Innala	tion POD a	nd Enginee	ring Repor	t PDR		
								Hun	nan						
								Breat	hing					Benchmark	Endpoint
	Animal or Human POD				Worker E	kposure		Rat	es					MOE	Туре
Exposure	POD	POD	POD	Exposure	Total Worker	Worker	Exposure			Structural	POD Conc -	Exposure	Margin of	100	BMCL
Route	Conc.	Period	Frequency	mg/day	Breathing	Exposure	Frequency			Alert as %	Duration &	TWA	Exposure		
	mg/m ³	hrs/day	days/wk	Potential	Volume for	Duration	Days/Wk			of PMN	Breathing	mg/m ³	MOE		
				Dose Rate	PDR	Hours/Day					Rate				
				(PDR)	Exposure			븜	er.		Correction				
					Period m ³			Default	orker		Scenario _{HEC}				
								De	M		mg/m ³				
Inhalation	8.4E-03	6.00	5	3.09E+00	10.0	8.00	5	4.90	10.00	100%	3.1E-03	3.09E-01	0.01	Fold Factor =	10000
Inhalation	8.4E-03	6.00	5	3.09E-01	10.0	8.00	5	4.90	10.00	100%	3.1E-03	3.09E-02	0.1	Fold Factor =	1000
Inhalation	8.4E-03	6.00	5	1.54E-02	10.0	8.00	5	4.90	10.00	100%	3.1E-03	1.54E-03	2	Fold Factor =	50
Inhalation	8.4E-03	6.00	5	3.09E-03	10.0	8.00	5	4.90	10.00	100%	3.1E-03	3.09E-04	10	Fold Factor =	10

Conclusion

Based on the BMCL_{1SD} of 8.4E-3 mg/m³ and a benchmark MOE of 100, EPA calculated the corresponding fold factor for 4 different exposure ranges. The results of these calculations are presented in Table 4. The calculated fold factors utilizing the BMCL_{1SD} instead of the IUR are protective for both cancer and non-cancer respiratory effects, when the cobalt composition is less than 80% in the MMO CAM.

Table 4. Fold factors corresponding to worker inhalation exposures to cobalt-containing MMO CAMs

Calculated Fold Factor When the Calculated MOE Is Below the Benchmark MOE	Anticipated Worker Exposure Range (mg/m ³)	Anticipated Worker Exposure Range (µg/m ³)
>1,000 to 10,000	> 3.09E-02 to 3.09E-01	> 3.09E+01 to 3.09E+02
>50 to 1,000	>1.54E-03 to 3.09E-02	> 1.54E+00 to 3.09E+01
>10 to 50	> 3.09E-04 to 1.54E-03	> 3.09E-01 to 1.54E+00
≤10	≤ 3.09E-04	≤ 3.09E-01