NPDES PERMIT NO. NM0031178 RESPONSE TO COMMENTS

RECEIVED ON THE SUBJECT DRAFT NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) PERMIT IN ACCORDANCE WITH REGULATIONS LISTED AT 40 CFR 124.17

APPLICANT: Camino Real Regional Utility Authority

North Wastewater Treatment Plant

P.O. Box 429

Sunland Park, NM 88063

ISSUING OFFICE: U.S. Environmental Protection Agency

Region 6

1201 Elm Street Dallas, Texas 75270

PREPARED BY: Quang Nguyen

Environmental Engineer

Permitting and Water Quality Branch

Water Division

VOICE: 214-665-7238 FAX: 214-665-2191

EMAIL: Nguyen.Quang@epa.gov

PERMIT ACTION: Final permit decision and response to comments received on the proposed NPDES permit publicly noticed on April 12, 2025.

DATE PREPARED: June 9, 2025

Unless otherwise stated, citations to 40 CFR refer to promulgated regulations listed at Title 40, Code of Federal Regulations, revised as of June 6, 2025.

In the document that follows, various abbreviations are used. They are as follows:

4Q3 Lowest four-day average flow rate expected to occur once every three years

BAT Best available technology economically achievable BCT Best conventional pollutant control technology

BPT Best practicable control technology currently available

BMP Best management plan

BOD Biochemical oxygen demand (five-day unless noted otherwise)

BPJ Best professional judgment

CBOD Carbonaceous biochemical oxygen demand (five-day unless noted otherwise)

CD Critical dilution

CFR Code of Federal Regulations
Cfs Cubic feet per second
COD Chemical oxygen demand
COE United States Corp of Engineers

CWA Clean Water Act

DMR Discharge monitoring report ELG Effluent limitations guidelines

EPA United States Environmental Protection Agency

ESA Endangered Species Act FCB Fecal coliform bacteria

F&WS United States Fish and Wildlife Service

mg/L Milligrams per liter
μg/L Micrograms per liter
MGD million gallons per day

NMAC New Mexico Administrative Code NMED New Mexico Environment Department

NMIP New Mexico NPDES Permit Implementation Procedures

NMWQS New Mexico State Standards for Interstate and Intrastate Surface Waters

NPDES National Pollutant Discharge Elimination System

MQL Minimum quantification level

O&G Oil and grease

PCB Polychlorinated Biphenyl

PFAS Per- and Polyfluoroalkyl Substances POTW Publically owned treatment works

RP Reasonable potential

SIC Standard industrial classification s.u. Standard units (for parameter pH) SWQB Surface Water Quality Bureau

TDS Total dissolved solids
TMDL Total maximum daily load
TRC Total residual chlorine
TSS Total suspended solids
UAA Use attainability analysis
USGS United States Geological Service

WLA Wasteload allocation
WET Whole effluent toxicity

WQCC New Mexico Water Quality Control Commission

WQMP Water Quality Management Plan WWTP Wastewater treatment plant

SUBSTANTIAL CHANGES FROM DRAFT PERMIT

- 1. Included the reporting requirements for the 30-day average concentration and 30-day average loading as well as the effluent limits for the daily maximum concentration and daily maximum loading for dissolved Boron to the final permit.
- 2. Revised effluent limits for Arsenic (Total), Selenium (Total), Bis(2-ethylhexyl) Phthalate, and Butyl Benzyl Phthalate and included these limits to the final permit.

STATE CERTIFICATION

In a letter from Ms. Shelly Lemon, Bureau Chief, SWQB, to Mr. Scott Mason IV, Regional Administrator dated May 20, 2025, the NMED certified that the discharge will comply with the applicable provisions of Section 208(e), 301, 301, 303, 306 and 307 of the Clean Water Act and with appropriate requirements of State law.

The NMED stated that to meet the requirements of State law, including water quality standards and appropriate basin plan as may be amended by the water quality management plan, each of the conditions cited in the draft permit and the State certification shall not be made less stringent.

The State also stated that it reserves the right to amend or revoke this certification if such action is necessary to ensure compliance with the State's water quality standards and water quality management plan.

Condition of Certification

Condition No. 1: Effluent Limitation for Dissolved Boron

The draft permit did not contain the loading limitation from the waste load allocation (WLA) for boron in the Lower Rio Grande in the effluent limits. To protect and maintain existing and downstream water quality and to prevent further degradation of water quality in the Rio Grande Basin, the final permit must be corrected to add the following 30-day average loading effluent limitation and daily maximum for dissolved boron in Part I, Requirements for NPDES permits, Section A. Limitation and Monitoring Requirements.

Pollutant	30-day	7-day	Daily	30-day	7-day	Daily	Measurement	Sample
	avg.	avg.	Max	avg.	avg.	Max	Frequency	Type
Boron,	Report	***	6.26	Report	***	0.75	2/week	Grab
Dissolved	(lbs/day)		lbs/day	(mg/L)		mg/L		

[20.6.4(H) NMAC – General Criteria; 20.6.4.101 NMAC – Rio Grande Basin; State of New Mexico Water Quality Management Plan and Continuing Planning Process (WQMP/CPP), including Appendix A; 2024-2026 State of New Mexico CWA §303(d) / §305(b) Integrated Report; State of New Mexico Total Maximum Daily Loads for the Gila/Mimbres/San Francisco and Lower Rio Grande Basins; EPA Region VI Procedures for Implementing National Pollutant Discharge Elimination System Permits in New Mexico (NMIP)] (Please see Appendix 1 for the detail of this condition)

Background for Condition #1: Effluent Limitation for Dissolved Boron

Regulatory Citations/ Guidance:

New Mexico Administrative Code (NMAC), available at https://www.srca.nm.gov/nmac-home/nmac-titles/title-20-environmental-protection/chapter-6-water-quality/ 20.6.4.13 GENERAL CRITERIA

- H. Pathogens: Surface waters of the state shall be free of pathogens from other than natural causes in sufficient quantity to impair public health or the designated, existing or attainable uses of a surface water of the state.
- 20.6.4.101 RIO GRANDE BASIN: The main stem of the Rio Grande from the international boundary with Mexico upstream to one mile downstream of Percha Dam.
 - A. Designated uses: irrigation, marginal warmwater aquatic life, livestock watering, wildlife habitat and primary contact.
 - B. Criteria: The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses except that the following segment-specific criterion applies: temperature 34°C (93.2°F) or less. At mean monthly flows above 350 cfs, the monthly average concentration for: TDS 2,000 mg/L or less, sulfate 500 mg/L or less and chloride 400 mg/L or less.

Statewide Water Quality Management Plan and Continuing Planning Process (2020 WQMP/CPP), available at https://www.env.nm.gov/surface-water-quality/wqmp-cpp/Part IV – Total Maximum Daily Load (TMDL)

D. TMDL Implementation: As TMDLs are developed and approved, they are incorporated into Appendix B-1 of this WQMP/CPP and used as the basis for implementation of water pollution control activities. For point sources, TMDLs are implemented through NPDES permits (see Section V), whereas for nonpoint sources, TMDLs are implemented through the Nonpoint Source Management Program (NPSMP; see Section VII).

Part V – Effluent Limitations

A. Introduction

If a WLA has been developed in a TMDL, the permitting authority is required to incorporate it into the NPDES permit. A TMDL details the assumptions and processes used to develop the WLA. EPA's Technical Support Document (TSD) procedures should be used by the permitting authority to incorporate the WLA into the NPDES permit. However, if no TMDL has been established, the permitting authority reviews effluent discharge data to ensure that NPDES permits are protective of WQS. For all pollutants that have a reasonable potential to cause or contribute to a violation of a water quality standard, the permitting authority performs calculations or modeling to determine effluent limitations for those pollutants. This review is done in accordance with applicable federal regulations and guidance. Specific evaluations for NPDES permits issued in New Mexico are discussed in the EPA Region 6 document Procedures for

Implementing NPDES Permits in New Mexico (NMIP) developed by EPA in consultation with NMED.

2024-2026 State of New Mexico CWA §303(d) / §305(b) Integrated Report, available at https://www.env.nm.gov/surface-water-quality/303d-305b/

Rio Grande (In	ternational Mexico	bnd to TX border)	AU IR CATEGORY	LOCATION DES	CRIPTION
			5/5A	HUC: 13030102	El Paso-Las Cruces
AU ID	WQS REF	WATER TYPE	SIZE	ASSESSED	MONITORING SCHEDULE
NM-2101_00	20.6.4.101	RIVER	7.95 MILES	2022	2029
USE	ATTAINMENT	CAUSE(S)	FIRST LISTED	TMDL DATE	PARAMETER IR CATEGORY
IRR	Not Supporting	Boron, Dissolved	2014	2023 (est.)	5/5A
LW	Fully Supporting				
MWWAL	Fully Supporting				
PC	Fully Supporting				
WH	Fully Supporting				

AU Comment: TMDL for E. coli. 2023 TMDL pending WQCC approval

Total Maximum Daily Loads for Gila/Mimbres/San Francisco and Lower Rio Grande Basins, available at https://www-q.env.nm.gov/surface-water-quality/wp-content/uploads/sites/18/2024/08/EPA-Approved-Gila-LRG-TMDL 082024.pdf

A dissolved boron waste load allocation for the Rio Grande (International Mexico bnd to TX border), assessment unit in the Lower Rio Grande Basin was included in the 2024 Total Maximum Daily Loads for the Gila/Mimbres/San Francisco and Lower Rio Grande Basins). The 2024 Total Maximum Daily Load for the Gila/Mimbres/San Francisco and Lower Rio Grande Basins was approved by the Water Quality Control Commission (WQCC) on July 9, 2024, and the EPA on August 20, 2024. The TMDL assigned a WLA of 6.26 lbs/day for dissolved boron to CRRUA's Sunland Park North WWTP.

EPA Region VI's Procedures for Implementing NPDES Permits in New Mexico (2012 NMIP), available at https://www.epa.gov/tx/procedures-implementing-national-pollutant-discharge-elimination-system-permits-new-mexico-nmip

Part IV – Establishing Water Quality – Based Toxic Effluent Limitations M. TMDL Strategy

40 CFR 122.44(d)(1) requires the permitting authority to establish permit conditions which achieve water quality standards. In addition, 40 CFR 130.7(c) requires TMDLs to be established at levels necessary to attain and maintain the applicable narrative and numerical water quality standards. Lastly, 40 CFR 122.44(d)(1)(vii)(B) requires that NPDES permit conditions must be consistent with the assumptions and requirements of an available waste load allocation (WLA) in a TMDL. These, approved loads are then incorporated into the State's WQMPs and NPDES permits. To meet the Federal requirements and meet State water quality requirements, permits

must meet those conditions of TMDLs that can be implemented in permits. Facilities that discharge the parameter of concern addressed in an approved or established TMDL generally fall into two groups and will need to be permitted in specific ways. Where the approved or established TMDL assigns an individual WLA to a specific discharger, the permit writer will permit per the TMDL condition. Where the approved or established TMDL does not include a specific WLA for a discharger, the WQMP will need to be revised to include the facility with a specific WLA or reference a specific WLA for that facility (which may require a revision of the TMDL). In either case, specific WLAs or conditions of the TMDL, which can include target parameter concentrations, in lieu of specific WLAs, will need to be included in permits. Pollutants with a specific numeric standard can be implemented at the point of discharge. Narrative or general water quality standards that cannot be implemented through a point of discharge limit will require additional modeling, as determined acceptable by EPA, to demonstrate compliance with the TMDL. Effluent trading, to allow new dischargers or allow expansion for existing discharges, will need to be verifiable and in all affected permits, consistent with EPA policy.

Incorporation of conditions of the TMDL may occur at reissuance of the permit, or the permit may be reopened to incorporate those conditions if they are of an immediate health and safety concern.

N. Determining Compliance with Water Quality Objectives and Water Quality Based Effluent Limitations

1. Water Quality Management Plan Compliance
Federal regulations state that NPDES permit limitations must reflect water quality
standards and State requirements per WQMP (40 CFR 122.44 (d)(6)). This regulation
requires that permits be at least consistent with State WQMP, which means that permit
writers must incorporate at least the requirements of WQMP, any WLAs or specified
statewide or basin specific parameter concentration target but may include more stringent
water quality standards in permits.

Regulation Rationale:

The Camino Real Regional Utility Authority (CRRUA) Sunland Park North Wastewater Treatment Plant (WWTP) discharges treated effluent into the Rio Grande in Water Quality Segment 20.6.4.101 NMAC of the Rio Grande Basin. The designated uses for the stream are irrigation, marginal warmwater aquatic life, livestock watering, wildlife habitat and primary contact.

State water quality standards consist of various components such as designated uses, water quality criteria, and the WQMP/CPP. The primary purpose of the WQMP/CPP is to provide a concise summary of the water quality management system in New Mexico. The WQMP is used to direct implementation of New Mexico water quality programs intended to provide a consistent approach to preserve, protect, and improve the water quality by ensuring that water quality standards are established to protect designated uses, the quality of water, and point (and nonpoint

sources) that may impact water quality. The WQMP/CPP requires that approved TMDLs and WLAs be incorporated in point source NPDES permits.

The NMIP also requires the incorporation of TMDLs and WLAs into point source NPDES permits.

The approved WLA described in the Total Maximum Daily Loads for the Gila/Mimbres/San Francisco and Lower Rio Grande Basins must be implemented in the CRRUA Sunland Park North NPDES permit to protect designated uses and prevent further degradation of the Rio Grande.

Response: The EPA concurs and has included the recommended reporting requirements for 30-day average concentration and 30-day average loading, as well as the effluent limits for the daily maximum concentration of 0.75 mg/L and daily maximum loading of 6.26 lbs/day for dissolved Boron to the final permit.

Comments that are not Conditions of Certification

Comment No. 1:

Doña Ana County voted to terminate its Joint Powers Agreement with the City on Sunland Park for the Camino Real Regional Utility Authority (CRRUA) on May 13, 2025. (See https://www.donaanacounty.org/Home/Components/News/News/878/.) This dissolution will result in a change in wastewater treatment plant operator during the permit term. NMED requests that EPA include the process that CRRUA, Doña Ana County (DAC), and the City of Sunland Park should follow to notify EPA on the change in operator. NMED should be copied on the change in operator notification submittals.

Response: The EPA agrees with NMED and modified PART III Section D.3 of the final permit (TRANSFERS) with the following languages.

This permit is not transferable to any person except after notice to the Director. The Director may require modification or revocation and reissuance of the permit to change the name of the permittee and incorporate such other requirements as may be necessary under the Act.

As an alternative to transfers described above, under 40 CFR 122.61(b) any NPDES permit may be automatically transferred to a new permittee if:

- (1) The current permittee notifies the Director at least 30 days in advance of the proposed transfer.
- (2) The notice includes a written agreement between the existing and new permittees containing a specific date for transfer of permit responsibility, coverage, and liability between them; and
- (3) The Director does not notify the existing permittee and the proposed new permittee of his or her intent to modify or revoke and reissue the permit. A modification under this

subparagraph may also be a minor modification under 40 CFR 122.63. If this notice is not received, the transfer is effective on the date specified in the agreement mentioned in item 2 of this section.

A copy of any transfer request must also be provided to NMED.

Comment No. 2:

Part I. Requirements for NPDES Permits, Section A. Limitation and Monitoring Requirements, Subsection 1. Final Effluent Limits -1.0 MGD Design Flow

The standard loading equation, using a conversion factor for liters to gallons is:

Loading [lbs/day] = concentration [mg/L] \times flow [MGD] \times 8.34

The effluent loading limitations (lbs/day) for daily maximum and monthly average for the following pollutants are calculated incorrectly in the draft permit and draft fact sheet.

- a. Arsenic, dissolved
- b. Selenium, total recoverable
- c. Bis(2-ethylhexyl) Phthalate
- d. Butyl Benzyl Phthalate Please see the table below which outlines the effluent loading limitations calculated using the standard conversion.

Fact Sheet. Table 5: Effluent limits

Parameters	Daily Max. (µg/L)	Monthly Avg.	Daily Max	Monthly Avg.
		(µg/L)	Loading (lbs/day)	Loading (lbs/day)
Arsenic,	9	9.69	0.07511	0.08086
Dissolved				
Selenium, Total	5	5	0.04173	0.04173
Recoverable				
Bis(2-ethylhexyl)	4.182	3.7	0.03490	0.03088
Phthalate				
Butyl Benzyl	1.115	1	0.00930	0.00835
Phthalate				

NMED requests that EPA review and revise the loading limitations in the permit accordingly.

Response: The EPA agrees with NMED, reviewed the previously conducted water quality based reasonable potential screening (RP) analysis and made corrections to the effluent limits for Arsenic (Total), Selenium (Total), Bis(2-ethylhexyl) Phthalate, and Butyl Benzyl Phthalate in the final permit. Reviewing the previously conducted RP analysis, EPA found a typo in the input. The EPA reran a RP analysis with correction. Like the results of the previously conducted RP analysis, Arsenic (Total), Selenium (Total), Bis(2-ethylhexyl) Phthalate, and Butyl Benzyl Phthalate in the revised RP analysis are found to have reasonable potential to violate New Mexico WQS consistent with the designated uses for the receiving waterbody (see Appendix 1). Based on the revised RP analysis, EPA revised effluent limits for the mentioned pollutants in the final permit (see table below).

Parameters	Daily Max.	Monthly Avg.	Daily Max Loading	Monthly Avg.
	(µg/L)	(µg/L)	(lbs/day)	Loading (lbs/day)
Arsenic, Total	32.616	28.269	0.272	0.236
Selenium, Total	5	5	0.0417	0.0417
Bis(2-ethylhexyl)	4.663	3.7	0.0389	0.0308
Phthalate				
Butyl Benzyl	1.23	1	0.0102	0.00834
Phthalate				

Comment No. 3:

Part 1. Requirements for NPDES Permits, Section B. Compliance Schedules NMED requests EPA incorporate a compliance schedule to address the new effluent limitation for dissolved boron. NMED recommends a 36-month compliance schedule with quarterly updates to EPA and NMED.

Response: The EPA agrees and added a 36-month compliance schedule for dissolved Boron in the final permit.

Comment No. 4:

Part I. Requirements for NPDES Permits, Section D. Overflow Reporting Overflows that endanger health or the environment are required to be reported to EPA and NMED. There is no public notification requirement for overflows that reach a water body and endanger human health of downstream users. NMED requests that EPA add a paragraph that requires permittees to coordinate with downstream users and stakeholders to develop a communications procedure or communication plan to notify the public of any overflows that reach a water body. Permittees should provide a copy of the public notification to NMED.

Response: The EPA agrees and added the following paragraph to the Part I (Requirements for NPDES Permits, Section D. Overflow Reporting) of the final permit.

The permittee shall coordinate with downstream users and stakeholders (i.e., TCEQ Border and Permian Area Director, TCEQ El Paso Regional Director, TCEQ El Paso Air/Water/Waste Section Manager, TCEQ Border Affair, etc.) to develop a communication procedure/plan to notify the public of any sewer overflows and bypass events. Permittees shall provide a copy of the developed communication procedure/plan to NMED.

Comment No. 5:

Part I. Requirements for NPDES Permits, Section D. Overflow Reporting Texas is a downstream State on the Rio Grande. NMED requests EPA include notification to the Texas Commission on Environmental Quality (TCEQ) for any overflows that reach the Rio Grande. The TCEQ points of contact that should be notified are:

Ryan Slocum, TCEQ El Paso Regional Director, via email at ryan.slocum@tceq.texas.gov Kent Waggoner, TCEQ El Paso Air/Water/Waste Section Manager, via email at kent.waggoner@tceq.texas.gov

Response: The draft permit has included 4 TCEQ contacts, 2 of whom are Ryan Slocum and Kent Waggoner, for any overflows that reach the Rio Grande. The EPA made no changes to the final permit.

Comment No. 6:

Part II. Other Conditions, Section B. 24-hour Oral Reporting: Daily Maximum Limitation Violations

The permittee is required to submit oral reports of daily maximum limitations to NMED and EPA. NMED requests to receive notifications via email to SWQ.Reporting@env.nm.gov.

Response: Comment noted. EPA added the email address to the final permit.

Comment No. 7:

Fact Sheet

The approval date for the most recent EPA-approved New Mexico water quality standards (NMWQS) in 20.6.4 NMAC is incorrect. NMED requests EPA update the Fact Sheet to reflect the most recent EPA-approval date of April 10, 2025, for NMWQS in 20.6.4 NMAC. For reference, see: https://www.env.nm.gov/surface-water-quality/wqs-amendments/.

Response: Comment noted for the record. No changes were made in the final permit.

Comment No. 8:

Fact Sheet

References to the State of New Mexico Clean Water Act §303(d)/§305(b) Integrated Report are outdated. The 2024–2026 Integrated Report was approved on May 17, 2024. NMED requests that EPA update the references to cite the current §303(d)/§305(b) Integrated Report. For reference, see: https://www.env.nm.gov/surface-water-quality/303d-305b/.

Response: Comment noted for the record. No changes were made in the final permit

Comment No. 9:

Fact Sheet. Section C. Water Quality Based Limitations, Subparagraph 5. Permit Action – Water Quality-Based Limits, Paragraph g. Boron

The Total Maximum Daily Load (TMDL) for the Gila/Mimbres/San Francisco and Lower Rio Grande Basins was approved by the Water Quality Control Commission on July 9, 2024, and approved by the EPA on August 20, 2024. The TMDL, available at https://www-q.env.nm.gov/surface-water-quality/wp-content/uploads/sites/18/2024/08/EPA-Approved-Gila-LRG-TMDL_082024.pdf, included a wasteload allocation for CRRUA North Wastewater Treatment Plant of 6.26 lbs/day of boron of CRRUA North for boron. NMED requests EPA update the fact sheet with this information.

Response: Comment noted for the record. The EPA has included the recommended reporting requirements for the 30-day average concentration and 30-day average loading, as well as the effluent limits for the daily maximum concentration of 0.75 mg/L and daily maximum loading of 6.26 lbs/day for dissolved Boron to the final permit.

				CALC	ULATIONS OF N	EW MEXICO	O WATER QUA	ALITY-B	ASED EFFLI	JENT LIMIT	ATIONS				
NMAC 20.6.4.	NMWQS a	s of 2023 (EF	PA Approved												
Calculations Sp				Excel		n red text)	as of February	v 2023							
·					,	,									
Prepared By:	Quang Nguye	e <mark>n</mark>			5-Jun-25	2:07 PM									
STEP 1:	REFERENCE I	MPLEMENTATIO	N PROCEDURE	S	APPENDIX	1									
	INPUT FACILI	TY AND RECEIV	ING STREAM D	ATA	of FACT	SHEET									
	LIST SOURCE	OF DATA INPL	Л												
IMPLEMENTATIO	ON PROCEDURE	S													
The State of Ne	ew Mexico Stand	lards for Interst	ate and Intrasta	te Surface Wat	ers are implemented	in this spread s	sheet								
by using proced	dures establishe	d in the current	"Procedures fo	r Implementing I	NPDES Permits in Nev	Mexico"									
FACILTY						DATA INPUT									
Permittee						Camino RUA									
NPDES Permit N	No.					NM0031178									
Outfall No.(s)						1									
Plant Effluent Fl	low (MGD)					1	Foi	r industria	l and federal fa	cility, use the h	nighest monthly	average flow			
Plant Effluent Fl	low (cfs)					1.55	for	the past 2	4 months. For	POTWs, use to	ne design flow				
RECEIVING STR	REAM					DATA INPUT									
						F. 0. 1									
Receiving Strea	am Name					Rio Grande	:-								
Basin Name	was at Oada Na					Rio Grande B 20.6.4.101	sasin								
Waterbody Seg	ned lake or rese	prijoir (antar "1"	if it's a lake "O"	if not)		0									
	atic life criteria co			ii fiot)		1									
	uatic life criteria					1									
	ater supply crit					0									
	ater supply crite					1									
	ering and wildlife			eams											
	J														
USGS Flow Sta	ation					USGS									
WQ Monitoring	Station No.					SJR									
Receiving Strea	am TSS (mg/l)					254.16	For	intermitte	nt stream, ente	effluent TSS					
Receiving Strea	am Hardness (m	g/l as CaCOs)		RANGE	0 - 400	20	For	intermitte	nt stream, enter	r effluent Hard	ness (If no dat	a, 20 mg/l is us	ed)		
Receiving Strea	am Critical Low F	Flow (4Q3) (cfs)			0	Ent	er "0" for	intermittent stre	am and lake.					
	am Harmonic Me					0.429	Ent	er harmor	ic mean or mod	lified harmonic	mean flow dat	a or 0.001 if n	o data is avail	able	
Avg. Receiving	Water Tempera	ture (C)				27.67									
pH (Avg), Rece						8.63									
Fraction of stre	am allow ed for i	mixing (F)				1	Ent	er 1, if str	eam morpholog	y data is not a	/ailable or for i	ntermittent stre	eams.		
Fraction of Critic	ical Low Flow					0									

STEP 2:	INPUT AMBIENT AND EFF	FLUENT DATA												
	CALCULATE IN-STREAM	I WASTE CONCE	NTRATION	NS										
DATA INPUT					entration as mid	cro-gram per l	iter (ug/l or ppb)							
21			-	pecified for the		or gramper.	(ag. o. pps)							
						out the DL is a	reater than MOL in	put "1/2 DL" for calculat	ion					
						_			IOII.					
							smaller than MQL, no							
		if a less tha	in MQL va	ikue is reported	i, input eitner th	e reported va	lue or "0" for calcul	ation.						
			-				oncentration (Cd)							
		See the cur	rent "Prod	cedures for Imp	elementing NPD	ES Permits in 1	New Mexico"							
		Cd = [(F*Qa	*Ca) + (Q	le*2.13*Ce)] / (F	*Qa + Qe)									
		Where:												
		Cd = Instrea	am Waste	Concentration										
		F = Fracti	on of stre	am allow ed for	mixing (see "P	rocedures for	Implementing NPDE	S Permits in New Mexic	:0")					
		Ce = Report	ted conce	entration in efflu	ient									
		Ca = Ambie	nt stream	concentration	upstream of dis	charge								
		Qe = Plant e	effluent flo	OW										
		Qa = Critica	l low flow	of stream at d	lischarge point	expressed as	the 4Q3 or harmon	nic mean flow for human	n health criter	ia				
					J 1	i i								
The following fo	ormular convert metals repo	orted in total form	to dissolv	ed form if crite	ria are in dissol	ved form								
	Procedures for Implement				THE GIT WINDOO	Tod Tollill								
Kp = Kpo * (TS		ing it become			artition coofficie	nt: Kno and a	can be found in tal	olo bolow						
C/Ct = 1/ (1 + K									or intermitten	t atraam)				
,								g stream (or in effluent t	or intermitten	i Sirearrij				
Total Wetal Crite	eria (Ct) = Cr / (C/Ct)			UU = Fraction	1 of metal disso	ived; and G =	Dissolved criteria	value						
		Otracus I in a	au Dautitia	on Coefficient				Lake Linear Pa	utition Coeffic	it				
T-4-1 M-4-1-	T-4-IV/-b				0/04	Diagonal V					0/04	Diagonal Va	harde Labo	
Total Metals	Total Value	Кро	alpha (a)	Кр	C/Ct	Dissolved va	alue in Stream	Кро	alpha (a)	Кр	C/Ct	Dissolved Va	liue in Lake	
Arsenic		480000	-0.73	8423.895681	0.31836819	#VALUE		480000	-0.73	8423.895681	0.31836819	#VALUE		
Chromium III	0.82	3360000	-0.93	19480.02813	0.168037744	0.13779095		2170000	-0.27	486497.6977	0.008022575	0.0065785		
Copper	4.66	1040000	-0.74	17268.47594	0.185564705	0.86473152		2850000	-0.9	19509.60059	0.167825781	0.7820681		
Lead	0	2800000	-0.8		0.105532254	0		2040000	-0.53	108373.5626	0.035033357	0		
Nickel	2.35	490000	-0.57	20858.59131		0.37293184		2210000	-0.76	32848.14131				
Silver		2390000	-1.03		0.330670413	0		2390000	-1.03	7964.114277				
Zinc	54.3	1250000	-0.7			7.16049211		3340000	-0.68	77316.74632				
	0	1200000	0.1		0.1010001			000000	0.00	71010.17002	U.U 10 TETE	E.UEUTUU		
The following fo	ormular is used to calculate	hardness denen	dent crite	ria				Dissolved						
Ů	State Water Quality Standa		aon onc					WQC (ug/l)						
ני ובמסב וכוכו ננ	JOILLE TTAICI QUAINY SIANU	aruo iui utialio)						TTQC (ug/l)						
								.== .====		f Chromal I c	6.5, enter 750	in cell O114		
Aluminum (T)		Acute			e(1.3695[ln(ha	ardness)]+1.8	308)	377.4565069		ii oneampris	0.0, 61161 700	III COII OTTI		
Aluminum (T)		Acute Chronic			e(1.3695[ln(ha			377.4565069 151.2229667		If Stream pH <				
Aluminum (T) Cadmium (D)						ardness)]+0.9	161)			•	6.5, enter 87 in	n cell P114		

									Dissolved						
									WQC (ug/l)						
Chromium III (D)		Acute			0.316 e(0.819	[In(hardness)]	+3.7256)		152.4888787						
		Chronic			0.860 e(0.819	[In(hardness)]	+0.6848)		19.8356702						
Copper (D)		Acute			0.960 e(0.942	22[In(hardness)]-1.700)		2.949857764						
		Chronic			0.960 e(0.854	15[In(hardness)]-1.702)		2.263769249						
Lead (D)		Acute			e(1.273[ln(ha	rdness)]-1.46)	*CF3		10.79154489		CF3 = 1.46203	3 - 0.145712*ln(hardness)		
		Chronic			e(1.273[ln(ha	rdness)]-4.705	5)*CF4		0.420531012		CF4 = 1.46203	3 - 0.145712*ln(hardness)		
Manganese (D)		Acute			e(0.3331[ln(h	ardness)]+6.4	676)		1746.691001						
		Chronic			e(0.3331[ln(h	ardness)]+5.8	743)		965.048559						
Nickel (D)		Acute			0.998 e(0.846	[In(hardness)]	+2.255)		119.9874916						
		Chronic			0.997 e(0.846	[In(hardness)]	+0.0584)		13.32690594						
Silver (D)		Acute			0.85 e(1.72[ln	(hardness)]-6	.59)		0.201924903						
Zinc (D)		Acute			0.978 e(0.909	94[In(hardness)]+0.9095)		37.02425804						
		Chronic			0.986 e(0.909	947[In(hardnes	s)]+0.6235)		28.04834719						
						m Waste Conce	entration				Livestock&	Acute	Chronic	Human	Need
POLLUTANTS			Ambient	Effluent	Acute	Domestic	Chronic	Human	Domestic	Irrigation	Wildlife	Aquatic	Aquatic	Health	TMDL
			Conc.	Conc.	Aquatic	Supply	Aquatic	Health	Criteria	Criteria	Criteria	Criteria	Criteria	Criteria	
	CAS No.	MQL	Ca (ug/l)	Ce (ug/l)	2.13*Ce	Cd,dom (ug/l)	Cd (ug/l)	Cd,hh (ug/l)	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	
Radioactivity, Nutrients,	and Chlorine														
Aluminum, total	7429-90-5	2.5	10	48	102.24	102.24	102.24	82.244568	1E+100	1E+100	1E+100	377.4565069	151.22297	1E+100	NA
Aluminum, dissolved	7429-90-5			41.1	87.543	87.543	87.543	68.5657655	1E+100	5000	1E+100	1E+100	1E+100	1E+100	NA
Barium, dissolved	7440-39-3	100	100	24.6	52.398	52.398	52.398	62.7169783	2000	1E+100	1E+100	1E+100	1E+100	1E+100	NA
Boron, dissolved	7440-42-8	100	190	75.1	159.963	159.963	159.963	166.474305	1E+100	750	5000	1E+100	1E+100	1E+100	NA
Cobalt, dissolved	7440-48-4	50			0	0	0	0	1E+100	50	1000	1E+100	1E+100	1E+100	N/A
Uranium, dissolved	7440-61-1	0.1	0	0	0	0	0	0	30	1E+100	1E+100	1E+100	1E+100	1E+100	NA
Vanadium, dissolved	7440-62-2	50			0	0	0	0	1E+100	100	100	1E+100	1E+100	1E+100	NA
Ra-226 and Ra-228 (pCi/l)			0.74	2.46	5.2398	5.2398	5.2398	4.26435068	5	1E+100	30	1E+100	1E+100	1E+100	NA
Strontium (pQi/l)			16.9	0.309	0.65817	0.65817	0.65817	4.17901137	8	1E+100	1E+100	1E+100	1E+100	1E+100	Need TMDL
Tritium (pCi/l)					0	0	0	0	20000	1E+100	20000	1E+100	1E+100	1E+100	NA
Gross Alpha (pCi/l)			0	0	0	0	0	0	15	1E+100	15	1E+100	1E+100	1E+100	NA
Asbestos (fibers/l)					0	0	0	0	7000000	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
Total Residual Chlorine	7782-50-5	33			0	0	0	0	1E+100	1E+100	11	19	11	1E+100	N/A
Ammonia as N, total (mg/l)			0.1	0.764	1.62732	1.62732	1.62732	1.29623345	1E+100	1E+100	1E+100	Criterion	Criterion	1E+100	N/A
Nitrate as N (mg/l)				15.2	32.376	32.376	32.376	25.3576554	10	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
Nitrite + Nitrate (mg/l)			0.3	15.9	33.867	33.867	33.867	26.590475	1E+100	1E+100	132	1E+100	1E+100	1E+100	N/A
METALS AND CYANIDE															
Antimony, dissolved (P)	7440-36-0	60			0	0	0	0	6	1E+100	1E+100	1E+100	1E+100	640	N/A
Arsenic, dissolved (P)	7440-38-2	0.5	4	17.2	36.636	36.636	36.636	29.5612936	10	100	200	340	150	9	N/A
Beryllium, dissolved	7440-41-7	0.5	0	0	0	0	0	0	4	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
Cadmium, dissolved	7440-43-9	1			0	0	0	0	5	10	50	0.418091688	0.142116	1E+100	N/A
Chromium (III), dissolved	16065-83-1	10	0	0.13779095	0.293494724	0.29349472	0.29349472	0.22987207	1E+100	1E+100	1E+100	152.4888787	19.83567	1E+100	NA
Chromium (VI), dissolved	18540-29-9	10			0	0	0	0	1E+100	1E+100	1E+100	16	11	1E+100	N/A
Chromium, dissolved	7440-47-3				0	0	0	0	100	100	1000	1E+100	1E+100	1E+100	N/A
Copper, dissolved	7440-50-8	0.5	0	0.864731524	1.841878145	1.84187815	1.84187815	1.44260289	1300	200	500	2.949857764	2.2637692	1E+100	NA
Lead, dissolved	7439-92-1	0.5	0	0	0	0	0	0	15	5000	100	10.79154489	0.420531	1E+100	N/A
Manganese, dissolved	7439-96-5				0	0	0	0	1E+100	1E+100	1E+100	1746.691001	965.04856	1E+100	N/A

							Waste Conc					Livestock&	Acute	Chronic	Human	Need
				Ambient	Effluent	Acute	Domestic	Chronic	Human	Domestic	Irrigation	Wildlife	Aquatic	Aquatic	Health	TMDL
POLLUTANTS				Conc	Conc.	Aquatic	Supply	Aquatic	Health	Criteria	Criteria	Criteria	Criteria	Criteria	Criteria	
		CAS No.	MQL	Ca (ug/l)	Ce (ug/l)	2.13*Ce	Cd,dom (ug/l)	Cd (ug/l)	Cd,hh (ug/l)	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	
Mercury, dissolve	d	7439-97-6	0.005			0	0	0	0	1E+100	1E+100	1E+100	1.4	0.77	1E+100	N/A
Mercury, total		7439-97-6	0.005			0	0	0	0	2	1E+100	0.77	1E+100	1E+100	1E+100	N/A
Molybdenum, diss	olved	7439-98-7		7	34	72.42	72.42	72.42	58.2385043	1E+100	1000	1E+100	1E+100	1E+100	1E+100	N/A
Molybdenum, total	recoverable	7439-98-7			37	78.81	78.81	78.81	61.7258717	1E+100	1E+100	1E+100	7920	1895	1E+100	N/A
Nickel, dissolved (P)	7440-02-0	0.5		0.372931841	0.794344821	0.79434482	0.79434482	0.62214981	700	1E+100	1E+100	119.9874916	13.326906	4600	N/A
Selenium, dissolve	ed (P)	7782-49-2	5			0	0	0	0	50	130	50	1E+100	1E+100	4200	N/A
Selenium, dis (SO	4 >500 mg/l)		5			0	0	0	0	50	250	50	1E+100	1E+100	4200	N/A
Selenium, total red	overable	7782-49-2	5		4.85	10.3305	10.3305	10.3305	8.09109399	1E+100	1E+100	5	20	5	1E+100	N/A
Silver, dissolved		7440-22-4	0.5		0	0	0	0	0	1E+100	1E+100	1E+100	0.201924903	1E+100	1E+100	N/A
Thalllium, dissolve	d (P)	7440-28-0	0.5			0	0	0	0	2	1E+100	1E+100	1E+100	1E+100	0.47	N/A
Zinc, dissolved		7440-66-6	20	0	7.160492115	15.2518482	15.2518482	15.2518482	11.9456113	10500	2000	25000	37.02425804	28.048347	26000	NA
Cyanide, total reco	overable	57-12-5	10			0	0	0	0	200	1E+100	5.2	22	5.2	140	N/A
Dioxin		1746-01-6	0.00001			0	0	0	0	3.00E-05	1E+100	1E+100	1E+100	1E+100	5.1E-08	N/A
VOLATILE COMP	POUNDS					-										
Acrolein	00.120	107-02-8	50			0	0	0	0	18	1E+100	1E+100	1E+100	1E+100	400	N/A
Acrylonitrile		107-13-0	20			0	0	0	0	0.65	1E+100	1E+100	1E+100	1E+100	70	NA
Benzene		71-43-2	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	160	N/A
Bromoform		75-25-2	10			0	0	0	0	44	1E+100	1E+100	1E+100	1E+100	1200	N/A
		56-23-5	2				0	0	0	5						
Carbon Tetrachlor	ide					0					1E+100	1E+100	1E+100	1E+100	50	N/A
Chlorobenzene		108-90-7	10			0	0	0	0	100	1E+100	1E+100	1E+100	1E+100	800	N/A
Clorodibromometh	ane	124-48-1	10			0	0	0	0	4.2	1E+100	1E+100	1E+100	1E+100	210	N/A
Chloroform		67-66-3	50	0	0	0	0	0	0	57	1E+100	1E+100	1E+100	1E+100	2000	NA
Dichlorobromomet		75-27-4	10			0	0	0	0	5.6	1E+100	1E+100	1E+100	1E+100	270	N/A
1,2-Dichloroethar		107-06-2	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	6500	N/A
1,1-Dichloroethyle	ene	75-35-4	10			0	0	0	0	7	1E+100	1E+100	1E+100	1E+100	20000	N/A
1,2-Dichloropropa	ane	78-87-5	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	310	N/A
1,3-Dichloropropy	rlene	542-75-6	10			0	0	0	0	3.5	1E+100	1E+100	1E+100	1E+100	120	N/A
Ethylbenzene		100-41-4	10			0	0	0	0	700	1E+100	1E+100	1E+100	1E+100	130	N/A
Methyl Bromide		74-83-9	50			0	0	0	0	49	1E+100	1E+100	1E+100	1E+100	10000	N/A
Methylene Chlorid	е	75-09-2	20			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	10000	N/A
1,2,4,5-Tetrachlor	obenzene	95-94-3				0	0	0	0	1E+100	1E+100	1E+100	1E+100	1E+100	0.03	N/A
1,1,2,2-Tetrachlo	roethane	79-34-5	10			0	0	0	0	1.8	1E+100	1E+100	1E+100	1E+100	30	N/A
Tetrachloroethyler	ne	127-18-4	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	290	NA
Tolune		108-88-3	10			0	0	0	0	1000	1E+100	1E+100	1E+100	1E+100	520	N/A
1,2-trans-Dichloro	oethylene	156-60-5	10			0	0	0	0	100	1E+100	1E+100	1E+100	1E+100	4000	NA
1,1,1-Trichloroeth	iane	71-55-6				0	0	0	0	200	1E+100	1E+100	1E+100	1E+100	200000	N/A
1,1,2-Trichloroeth	iane	79-00-5	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	89	N/A
richloroethylene		79-01-6	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	70	N/A
/inyl Chloride		75-01-4	10			0	0	0	0	2	1E+100	1E+100	1E+100	1E+100	16	NA
ACID COMPOUN	os															
2-Chlorophenol		95-57-8	10			0	0	0	0	175	1E+100	1E+100	1E+100	1E+100	800	N/A
2,4-Dichlorophen	ol	120-83-2	10			0	0	0	0	105	1E+100	1E+100	1E+100	1E+100	60	N/A
2,4-Dimethylphen		105-67-9	10			0	0	0	0	700	1E+100	1E+100	1E+100	1E+100	3000	N/A
			10			0	0	0								
3-Methyl-4-chloro 2-Methyl-4,6-dinitr		59-50-7 534-52-1	50			0	0	0	0	1E+100 14	1E+100 1E+100	1E+100 1E+100	1E+100 1E+100	1E+100 1E+100	2000 30	N/A N/A

					Instrea	m Waste Conce	entration				Livestock&	Acute	Chronic	Human	Need
			Ambient	Effluent	Acute	Domestic	Chronic	Human	Domestic	Irrigation	Wildlife	Aquatic	Aquatic	Health	TMDL
POLLUTANTS			Conc	Conc.	Aquatic	Supply	Aquatic	Health	Criteria	Criteria	Criteria	Criteria	Criteria	Criteria	
	CAS No.	MQL	Ca (ug/l)	Ce (ug/l)	2.13*Ce	Cd,dom (ug/l)	Cd (ug/l)	Cd,hh (ug/l)	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	
2,4-Dinitrophenol	51-28-5	50	- (-5-/	. (-5-7	0	0	0	0	70	1E+100	1E+100	1E+100	1E+100	300	N/A
Pentachlorophenol	87-86-5	50			0	0	0	0	1	1E+100	1E+100	19	15	30	N/A
Phenol	108-95-2	10			0	0	0	0	10500	1E+100	1E+100	1E+100	1E+100	860000	N/A
2,4,5-Trichlorophenol	95-95-4				0	0	0	0	1E+100	1E+100	1E+100	1E+100	1E+100	600	N/A
2,4,6-Trichlorophenol	88-06-2	10			0	0	0	0	32	1E+100	1E+100	1E+100	1E+100	28	N/A
2-(2,4,5Trichlorophenoxy)propio					0	0	0	0	1E+100	1E+100	1E+100	1E+100	1E+100	400	N/A
BASE/NEUTRAL	(,			-										
Acenaphthene	83-32-9	10			0	0	0	0	2100	1E+100	1E+100	1E+100	1E+100	90	N/A
Anthracene	120-12-7	10			0	0	0	0	10500	1E+100	1E+100	1E+100	1E+100	400	N/A
Benzidine	92-87-5	50			0	0	0	0	0.0015	1E+100	1E+100	1E+100	1E+100	0.11	N/A
Benzo(a)anthracene	56-55-3	5			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.013	N/A
Benzo(a)pyrene	50-33-8	5			0	0	0	0	0.2	1E+100	1E+100	1E+100	1E+100	0.013	N/A
3,4-Benzofluoranthene	205-99-2	10			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.0013	N/A
Benzo(k)fluoranthene	207-08-9	5			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.0013	N/A
Bis(2-chloroethyl)Ether	111-44-4	10			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	22	N/A
Bis(2-chloro-1-methylethyl) ethe		10			0	0	0	0	1400	1E+100	1E+100	1E+100	1E+100	4000	N/A N/A
, ,,,			0.22	2.65				6.13686458							
Bis(2-ethylhexyl)Phthalate	117-81-7	10	0.22	3.65	7.7745	7.7745	7.7745		6	1E+100	1E+100	1E+100	1E+100	3.7	N/A
Bis(chloromethyl) ether Butyl Benzyl Phthalate	542-88-1 85-68-7	10	0.17	4.31	0 9.1803	9.1803	9.1803	7.22708186	1E+100 7000	1E+100 1E+100	1E+100 1E+100	1E+100 1E+100	1E+100 1E+100	0.17	N/A N/A
			0.17	4.31											
2-Chloronapthalene	91-58-7	10			0	0	0	0	2800	1E+100	1E+100	1E+100	1E+100	1000	N/A
Chrysene	218-01-9	5			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	1.3	N/A
2,4-Dichlorophenoxyacetic acid	94-75-7				0	0	0	0	1E+100	1E+100	1E+100	1E+100	1E+100	12000	N/A
Dibenzo(a,h)anthracene	53-70-3	5			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.0013	N/A
1,2-Dichlorobenzene	95-50-1	10			0	0	0	0	600	1E+100	1E+100	1E+100	1E+100	3000	N/A
1,3-Dichlorobenzene	541-73-1	10			0	0	0	0	469	1E+100	1E+100	1E+100	1E+100	10	N/A
1,4-Dichlorobenzene	106-46-7	10			0	0	0	0	75	1E+100	1E+100	1E+100	1E+100	900	N/A
3,3'-Dichlorobenzidine	91-94-1	5			0	0	0	0	0.78	1E+100	1E+100	1E+100	1E+100	1.5	N/A
Diethyl Phthalate	84-66-2	10			0	0	0	0	28000	1E+100	1E+100	1E+100	1E+100	600	N/A
Dimethyl Phthalate	131-11-3	10			0	0	0	0	350000	1E+100	1E+100	1E+100	1E+100	2000	N/A
Di-n-Butyl Phthalate	84-74-2	10			0	0	0	0	3500	1E+100	1E+100	1E+100	1E+100	30	N/A
2,4-Dinitrotoluene	121-14-2	10			0	0	0	0	1.1	1E+100	1E+100	1E+100	1E+100	17	N/A
1,2-Diphenylhydrazine	122-66-7	20			0	0	0	0	0.44	1E+100	1E+100	1E+100	1E+100	2	N/A
Fluoranthene	206-44-0	10			0	0	0	0	1400	1E+100	1E+100	1E+100	1E+100	20	N/A
Fluorene	86-73-7	10			0	0	0	0	1400	1E+100	1E+100	1E+100	1E+100	70	N/A
Hexachlorobenzene	118-74-1	5			0	0	0	0	1	1E+100	1E+100	1E+100	1E+100	0.00079	N/A
Hexachlorobutadiene	87-68-3	10			0	0	0	0	4.5	1E+100	1E+100	1E+100	1E+100	0.1	N/A
Hexachlorocyclohexane (HCH)-	608-73-1				0	0	0	0	1E+100	1E+100	1E+100	1E+100	1E+100	0.1	N/A
Hexachlorocyclopentadiene	77-47-4	10			0	0	0	0	50	1E+100	1E+100	1E+100	1E+100	4	N/A
Hexachloroethane	67-72-1	20			0	0	0	0	25	1E+100	1E+100	1E+100	1E+100	1	N/A
Indeno(1,2,3-cd)Pyrene	193-39-5	5	0	0	0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.013	N/A
Isophorone	78-59-1	10			0	0	0	0	368	1E+100	1E+100	1E+100	1E+100	18000	N/A
Nitrobenzene	98-95-3	10			0	0	0	0	18	1E+100	1E+100	1E+100	1E+100	600	N/A
Nitrosamines	Various				0	0	0	0	1E+100	1E+100	1E+100	1E+100	1E+100	12.4	N/A
Nitrosodibutylamine	924-16-3				0	0	0	0	1E+100	1E+100	1E+100	1E+100	1E+100	2.2	N/A
Nitrosodiethylamine	55-18-5				0	0	0	0	1E+100	1E+100	1E+100	1E+100	1E+100	12.4	N/A
n-Nitrosodimethylamine	62-75-9	50			0	0	0	0	0.0069	1E+100	1E+100	1E+100	1E+100	30	N/A
n-Nitrosodi-n-Propylamine	621-64-7	20			0	0	0	0	0.05	1E+100	1E+100	1E+100	1E+100	5.1	N/A
n-Nitrosodiphenylamine	86-30-6	20			0	0	0	0	71	1E+100	1E+100	1E+100	1E+100	60	N/A
N-Nitrosopyrrolidine	930-55-2				0	0	0	0	1E+100	1E+100	1E+100	1E+100	1E+100	340	N/A
Nonylphenol	84852-15-3				0	0	0	0	1E+100	1E+100	1E+100	28	6.6	1E+100	N/A
Pentachlorobenzene	608-93-5				0	0	0	0	1E+100	1E+100	1E+100	1E+100	1E+100	0.1	N/A
Pyrene	129-00-0	10			0	0	0	0	1050	1E+100	1E+100	1E+100	1E+100	4000	N/A
1,2,4-Trichlorobenzene	120-82-1	10			0	0	0	0	70	1E+100	1E+100	1E+100	1E+100	0.76	N/A

						Instream	n Waste Conce	entration				Livestock&	Acute	Chronic	Human	Need
				Ambient	Effluent	Acute	Domestic	Chronic	Human	Domestic	Irrigation	Wildlife	Aquatic	Aquatic	Health	TMDL
OLLUTANTS				Conc	Conc.	Aquatic	Supply	Aquatic	Health	Criteria	Criteria	Criteria	Criteria	Criteria	Criteria	
		CAS No.	MQL	Ca (ug/l)	Ce (ug/l)	2.13*Ce	Cd,dom (ug/l)	Cd (ug/l)	Cd,hh (ug/l)	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	
ESTICIDES ANI	D PCBS															
ldrin		309-00-2	0.01	0	0	0	0	0	0	0.021	1E+100	1E+100	3	1E+100	0.0000077	N/A
lpha-BHC		319-84-6	0.05			0	0	0	0	0.056	1E+100	1E+100	1E+100	1E+100	0.0039	N/A
eta-BHC		319-85-7	0.05			0	0	0	0	0.091	1E+100	1E+100	1E+100	1E+100	0.14	N/A
amma-BHC (Lin	dane)	58-89-9	0.05			0	0	0	0	0.2	1E+100	1E+100	0.95	1E+100	4.4	N/A
hlordane		57-74-9	0.2	0	0	0	0	0	0	2	1E+100	1E+100	2.4	0.0043	0.0032	N/A
ichlorodiphenvlo	dichloroethane (DDD)				0	0	0	0	1E+100	1E+100	1E+100	1E+100	1E+100	0.0012	N/A
	dichloroethylene	· ·				0	0	0	0	1E+100	1E+100	1E+100	1E+100	1E+100	0.00018	N/A
	trichloroethane (0	0	0	0	1E+100	1E+100	1E+100	1E+100	1E+100	0.0003	N/A
1,4'-DDT and de		50-29-3	0.02	0	0	0	0	0	0	1	1E+100	0.001	1.1	0.001	1E+100	N/A
ieldrin		60-57-1	0.02	0	0	0	0	0	0	0.022	1E+100	1E+100	0.24	0.056	0.000012	N/A
iazinon		333-41-5				0	0	0	0	1E+100	1E+100	1E+100	0.17	0.17	1E+100	N/A
Alpha-Endosulfa	n	959-98-8	0.01			0	0	0	0	62	1E+100	1E+100	0.22	0.056	30	N/A
Reta-Endosulfan		33213-65-9	0.02			0	0	0	0	62	1E+100	1E+100	0.22	0.056	40	N/A
indosulfan sulfa		1031-7-8	0.02	0	0	0	0	0	0	62	1E+100	1E+100	1E+100	1E+100	40	N/A
indrin		72-20-8	0.02	0	0	0	0	0	0	2	1E+100	1E+100	0.086	0.036	0.03	N/A
ndrin Aldehyde		7421-93-4	0.1		Ů	0	0	0	0	10.5	1E+100	1E+100	1E+100	1E+100	1	N/A
leptachlor		76-44-8	0.01	0	0	0	0	0	0	0.4	1E+100	1E+100	0.52	0.0038	0.000059	N/A
leptachlor Epoix	do	1024-57-3	0.01	•	· ·	0	0	0	0	0.2	1E+100	1E+100	0.52	0.0038	0.00032	N/A
свя СВs	ue	336-36-3	0.01			0	0	0	0	0.5	1E+100	0.014	2	0.0030	0.00064	N/A
oxaphene		8001-35-2	0.3	0	0	0	0	0	0	3	1E+100	1E+100	0.73	0.0002	0.0004	N/A
охарпене		0001-33-2	0.3	U	U	U	U	U	U	3	ILT100	IET100	0.73	0.0002	0.0071	IVA
STEP 3:	OOAN POTENT	IAL BIOTOFAM	LAVA CTE CO	ON IOCUTTO A	TIONIO A CAINI	T WA TED OU	N ITTY COTTEDU									
JIEP J.	SCAN POTENT						ALIIY CRIIERI	1								
	AND ESTABLIS	SH EFFLUENT L	MITATION	S FOR ALL	APPLICABLE F	PARAMETERS										
o limits are esta	blished if the re	ceiving stream	is not desig	nated for t	ne particular u	ses.										
o limits are esta	blished if the po	tential instrean	w aste cor	ncentrations	are less than	the chronic w	ater quality cri	eria.								
he most applica	ble stringent crit	eria are used t	o establish	effluent lim	itations for a g	iven parameter	ř.									
Vater quality crit	eria apply at the	end-of-pipe fo	or acute aqu	uatic life cri	eria and disch	arges to public	lakes.									
background co	ncentration exce	eeds the water	quality crit	eria, w ater	quality criteria	apply. And "N	eed TMDL" sho	w n to the n	ext column of A	vg. Mass						
onthly avg cond	centration = daily	max. / 1.5.														
PPLICABLE WA	TER QUALITY-E	BASED LIMITS														
	The following f	ormular is use	d to calcula	te the allow	able daily max	imum effluent	cincentration		See the curre	nt "Procedure	s for Implemen	ting NPDES Perm	its in New Me	xico"		
	Daily Max. Con	c. = Cs + (Cs -	Ca)(F*Qa/0	Qe)		Monthly Avg.	Conc. = Daily I	Max. Conc. /	1.5							
/here:	Cs = Applicable	e water quality	standard													
	Ca = Ambient s	tream concent	ration													
	F = Fraction	of stream allow	ed for mixi	ng (1.0 is a	ssigned to dor	nestic water si	upply and hum	an health use	es)							
	Qe = Plant efflu	uent flow														
		ow flow (4Q3)														

						Livestock	Acute	Chronic	Human	Daily	Monthly	Daily Max	Mon. Avg	Daily	Monthly
POLLUTANTS		CAS No.	STORET	Domestic	Irrigation	or Wildlife	Aquatic	Aquatic	Health	Max Conc	Avg Conc	Total	Total	Max Load	Avg Load
				Limits	Limits	Limits	Limits	Limits	Limits	ug/l	ug/l	ug/l	ug/l	lb/day	lb/day
Radioactivity, Nut	rients, and	Chlorine, as	Total												
Aluminum, Total		7429-90-5	01105	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A
Aluminum, dissolve	d	7429-90-5		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A
Barium, Total		7440-39-3	01007	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A
Boron, Total		7440-42-8	01022	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	NA
Cobalt, Total		7440-48-4	01037	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A
Uranium, Total		7440-61-1	22706	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA
Vanadium, Total		7440-62-2	01087	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	NA
Ra-226 and Ra-228	3 (pQi/l)		11503	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA
Strontium (pCi/l)	(1 200)		13501	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA
Tritium (pCi/l)			04124	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA
Gross Alpha (pCi/l)			80029	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA
Asbestos (fibers/I)			33320	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Residual Chlo	rine	7782-50-5	50060	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A
Ammonia as N, tota		1102 00 0	00000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Nitrate as N (mg/l)	ii (iiigii)		00620	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Nitrite + Nitrate (mg	A)		00630	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A
METALS AND CYA		tal	00000	INV	IWA	IVA	IWA	INV	INV	IWA	IVA	INA	IWA	INV	IVA
Antimony, Total (P)	ANIDE, as I	7440-36-0	01097	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
, , , , ,		7440-38-2	1002		N/A	N/A	N/A	N/A		10.38387097	9	32.61591862	28.269156		0.235764761
Arsenic, Total (P) Beryllium, Total			01012	N/A N/A	N/A N/A	N/A	N/A	N/A	10.36367097 N/A	N/A	N/A	32.01391002 N/A	20.209100 N/A	0.27201676 N/A	0.235704701 N/A
		7440-41-7													
Cadmium, Total		7440-43-9	01027	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chromium (III), diss		16065-83-1	01033	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chromium (VI), diss	soived	18540-29-9	01034	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chromium, Total		7440-47-3	01034	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Copper, Total		7440-50-8	01042	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lead, Total		7439-92-1	01051	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Manganese, dissov		7439-96-5	01056	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Mercury, Dissolved	1	7439-97-6	71900	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Mercury, Total		7439-97-6	71900	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Molybdenum, disso		7439-98-7	1060	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Molybdenum, total i	ecoverable	7439-98-7	01062	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Nickel, Total (P)		7440-02-0	01067	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Selenium, Total (P)		7782-49-2	01147	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Selenium, Total (SC			01147	N/A	N/A	NA	N/A	N/A	N/A	N/A	NA	N/A	NA	NA	N/A
Selenium, Total rec	overable	7782-49-2	01147	N/A	N/A	5	N/A	5	N/A	5	5	5	5	0.0417	0.0417
Silver, Total		7440-22-4	01077	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	N/A
Thalllium, Total (P)		7440-28-0	01059	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A
Zinc, Total		7440-66-6	1092	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA
Cyanide, total reco	verable	57-12-5	00720	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	N/A
DIOXIN															0
2,3,7,8-TCDD		1746-01-6	34675	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA
VOLATILE COMP	OUNDS														
Acrolein		107-02-8	34210	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	N/A
Acrylonitrile		107-13-0	34215	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	N/A
Benzene		71-43-2	34030	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	NΑ

D		75-25-2	32104	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bromoform	-14-													N/A	
Carbon Tetrachlo	riue	56-23-5	32102	N/A	NA	N/A	N/A	N/A Channin	N/A	N/A Deib	N/A Manthly	N/A Deily May	N/A	N/A Deits	N/A Manthly
DOLLLITANTO		CACAL	CTODET	Damastia	Imination	Livestock	Acute	Chronic	Human	Daily May Cana	Monthly	Daily Max	Mon. Avg	Daily	Monthly
POLLUTANTS		CAS No.	STORET	Domestic	Irrigation	or Wildlife	Aquatic	Aquatic	Health	Max Conc	Avg Conc	Total	Total	Max Load	Avg Load
0 .1		400.00.7	04004	Limits	Limits	Limits	Limits	Limits	Limits	ug/l	ug/l	ug/l	ug/l	lb/day	lb/day
Chlorobenzene		108-90-7	34301	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Clorodibromometh	nane	124-48-1	32105	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chloroform		67-66-3	32106	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Dichlorobromome		75-27-4	32101	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
1,2-Dichloroetha		107-06-2	34531	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,1-Dichloroethyl	lene	75-35-4	34501	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
1,2-Dichloroprop	ane	78-87-5	34541	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,3-Dichloroprop	ylene	542-75-6	34561	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ethylbenzene		100-41-4	34371	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Methyl Bromide		74-83-9	34413	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Methylene Chloric	de	75-09-2	34423	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,2,4,5-Tetrachlo	robenzene	95-94-3		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,1,2,2-Tetrachlo	oroethane	79-34-5	34516	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tetrachloroethyle	ene	127-18-4	34475	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tolune		108-88-3	34010	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,2-trans-Dichlor	roethylene	156-60-5	34546	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1.1.1-Trichloroet	•	71-55-6		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,1,2-Trichloroet		79-00-5	34511	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Trichloroethylene		79-01-6	39180	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Vinyl Chloride		75-01-4	39175	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
ACID COMPOUN	ine	75-01-4	39173	INA	INV	INV	IWA	INA	INA	INA	INV	INA	IWA	IVA	IVA
	ID3	95-57-8	34586	N/A	N/A	N/A	NI/A	N/A	N/A	NVA	N/A	NA	AVA	NIA	N/A
2-Chlorophenol				N/A		N/A	N/A	N/A	N/A	N/A	N/A		N/A	N/A	
2,4-Dichlorophen		120-83-2	34601	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2,4-Dimethylpher		105-67-9	34606	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
3-Methyl-4-chloro		59-50-7		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2-Methyl-4,6-dinit		534-52-1	34657	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2,4-Dinitrophenol	(51-28-5	34616	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Pentachloropheno	ol	87-86-5	39032	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Phenol		108-95-2	34694	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
2,4,5-Trichloroph	enol	95-95-4		N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
2,4,6-Trichloroph	nenol	88-06-2	34621	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2-(2,4,5Trichlorop	phenoxy)propio	onic acid (Silve)	()	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Base/Neutral															
Acenaphthene		83-32-9	34205	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Anthracene		120-12-7	34220	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Benzidine		92-87-5	39120	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Benzo(a)anthrac	ene	56-55-3	34526	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Benzo(a)pyrene		50-32-8	34247	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
3,4-Benzofluorar		205-99-2	34230	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Benzo(k)fluorantl		207-08-9	34242	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bis(2-chloroethyl)		111-44-4	34273	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bis(2-chloro-1-m			34283	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bis(2-ethylhexyl)		117-81-7	39100	N/A	NA	NA	N/A	NA		4.663174194	3.7	4.663174194	3.7	0.03889087	0.030858
Bis(chloromethyl)		542-88-1	32.30	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A
		85-68-7	34292	N/A	N/A	N/A	N/A	N/A		1.229722581	1	1.229722581	1	0.01025589	0.00834
Butyl Benzyl Phth 2-Chloronapthale							N/A N/A	N/A N/A	1.229/22581 WA	1.229/22581 N/A			N/A		
	SIIC .	91-58-7	34581	N/A	N/A	N/A					N/A	N/A		N/A	N/A
Chrysene		218-01-9	34320	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2,4-Dichlorophen				N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
Dibenzo(a,h)anth		53-70-3	34556	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,2-Dichlorobenz	zene	95-50-1	34536	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

					Livestock	Acute	Chronic	Human	Daily	Monthly	Daily Max	Mon. Avg	Daily	Daily
POLLUTANTS	CAS No.	STORET	Domestic	Irrigation	or Wildlife	Aquatic	Aquatic	Health	Max Conc	Avg Conc	Total	Total	Max Load	Avg Load
			Limits	Limits	Limits	Limits	Limits	Limits	ug/l	ug/l	ug/l	ug/l	lb/day	lb/day
1,3-Dichlorobenzene	541-73-1	34566	N/A	NA	NA	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,4-Dichlorobenzene	106-46-7	34571	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
3,3'-Dichlorobenzidine	91-94-1	34631	N/A	N/A	NA	N/A	NA	NA	N/A	N/A	N/A	N/A	NA	N/A
Diethyl Phthalate	84-66-2	34336	N/A	N/A	NA	N/A	NA	N/A	N/A	N/A	N/A	N/A	NA	N/A
Dimethyl Phthalate	131-11-3	34341	N/A	N/A	NA	N/A	NA	N/A	N/A	N/A	N/A	N/A	NA	N/A
Di-n-Butyl Phthalate	84-74-2	39110	N/A	N/A	NA	N/A	NA	N/A	N/A	N/A	N/A	N/A	NA	N/A
2.4-Dinitrotoluene	121-14-2	34611	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,2-Diphenylhydrazine	122-66-7	34346	N/A	N/A	NA	N/A	NA	N/A	N/A	N/A	N/A	N/A	NA	N/A
Fluoranthene	206-44-0	34376	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	NA	N/A
	86-73-7	34381	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fluorene		7												
Hexachlorobenzene	118-74-1	39700	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Hexachlorobutadiene	87-68-3	34391	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Hexachlorocyclohexane (7	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Hexachlorocyclopentadier		34386	N/A	N/A	NA	N/A	NA	NA	N/A	N/A	N/A	NA	N/A	N/A
Hexachloroethane	67-72-1	34396	N/A	N/A	NA	N/A	NA	NA	N/A	N/A	N/A	NA	N/A	N/A
Indeno(1,2,3-cd)Pyrene	193-39-5	34403	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Isophorone	78-59-1	34408	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Nitrobenzene	98-95-3	34447	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Nitrosamines	Various		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Nitrosodibutylamine	924-16-3		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Nitrosodiethylamine	55-18-5		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
n-Nitrosodimethylamine	62-75-9	34438	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
n-Nitrosodi-n-Propylamine	621-64-7	34428	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
n-Nitrosodiphenylamine	86-30-6	34433	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
N-Nitrosopyrrolidine	930-55-2		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Nonylphenol	84852-15-3		N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Pentachlorobenzene	608-93-5		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Pyrene	129-00-0	34469	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
1,2,4-Trichlorobenzene	120-82-1	34551	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
PESTICIDES AND PCBS														
Aldrin	309-00-2	39330	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Alpha-BHC	319-84-6	39337	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Beta-BHC	319-85-7	39338	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Gamma-BHC	58-89-9	39340	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chlordane	57-74-9	39350	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dichlorodiphenyldichloroet	hane (DDD)		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dichlorodiphenyldichloroet	hylene (DDE)		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dichlorodiphenyltrichloroe	thane (DDT)		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
4,4'-DDT and derivatives	50-29-3	39300	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dieldrin	60-57-1	39380	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Diazinon	333-41-5	39570	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Alpha-Endosulfan	959-98-8	34361	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Beta-Endosulfan	33213-65-9		N/A	N/A	NA	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Endosulfan sulfate	1031-7-8	34351	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Endrin	72-20-8	39390	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Endrin Aldehyde	7421-93-4	34366	N/A	N/A	NA	NA	NA	N/A	N/A	NA	N/A	N/A	WA	N/A
Heptachlor	76-44-8	39410	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Heptachlor Epoixde	1024-57-3	39420	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A
PCBs	336-36-3	39516	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Toxaphene	8001-35-2	39400	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A