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SUMMARY

This technical support document is in support of the TSCA Draft Risk Evaluation for
Octamethylcyclotetrasiloxane (D4) (U.S. EPA, 2025b). EPA gathered and evaluated the reasonably
available information to characterize the physical and chemical properties as well as environmental fate
and transport of D4. The key points are summarized below:

D4 is found in various environmental media including air, water, sediment, soil and biota due to
its widespread production and application.

The physical and chemical properties of D4 determine its environmental fate and transport
behavior, which is important in understanding D4’s persistence in the environment and its
potential for bioaccumulation, while considering transport, partitioning, and removal pathways.
D4 is a smooth, viscous liquid that is hydrophobic and volatile. Based on D4’s water solubility
(0.056 mg/L 23 °C), Henry’s law constant (11.8 atm-m3/mol at 21.7 °C), and log Koc values
(4.19-4.22 at 24.4-24.8 °C), D4 will preferentially partition to organic carbon, which suggests
that the major environmental compartments will be air, soil, biosolids, and sediment.

D4 is expected to undergo rapid hydrolysis in aquatic environments with dimethylsilanediol
(DMSD) as its final product. However, D4’s hydrolysis rate is highly dependent on pH and
temperature. In addition, D4 is not expected to undergo photolysis in aquatic environments under
environmentally relevant conditions since it does not absorb wavelengths greater than 290 nm.

D4 does not undergo biodegradation in water under aerobic conditions. In most natural surface
water (pH 6-8), volatilization will be the dominant process for D4 due to its vapor pressure
(0.9338 mm Hg at 25 °C) and Henry’s law constant (11.8 atm-m%mol at 21.7 °C). Hydrolysis of
D4 under neutral conditions will be much slower. In alkaline waters (pH > 9), hydrolysis will be
the dominant mechanism but volatilization will still occur first.

D4 is not expected to undergo significant direct photolysis and D4 in the gaseous phase is
expected to degrade slowly by reaction with photochemically produced hydroxyl radicals («OH)
in the atmosphere (tu2 = 4.7-11.4 days). D4 has the potential to undergo atmospheric long-range
transport due to its persistence in the atmosphere.

D4 can be transported to sediments from overlying surface water via advection, dispersion, and
sorption to suspended solids that can settle out from the water column. D4 does not undergo
biodegradation in sediment under aerobic and anaerobic conditions. Due to its log Koc (4.19—
4.22 at 24.4-24.8 °C) and log Kow (6.488 at 25.1 °C) values, D4 will have a strong affinity for
organic carbon in sediment.

D4 is not expected to be mobile and will adsorb strongly to organic matter in soil based on its log
Koc values (4.19-4.22 at 24.4-24.8 °C) and water solubility (0.056 mg/L at 23 °C). Also, D4 is
likely to volatilize from moist soil due to its high volatility and log Kaw (2.69 at 21.7 °C) and
hydrolyze in soil with higher acidity and clay content.

D4 disposed to municipal solid waste incineration will be effectively degraded (>99.9%) and its
emission through incineration ash landfill will be negligible. Incineration plants are not expected
to be significant sources of D4 releases to the air.

The removal of D4 in wastewater treatment will be primarily by sorption to sludge and
volatilization. Biodegradation is not expected to be a significant removal process. The remaining
small fraction of D4 in the wastewater effluent may be discharged to receiving water. D4
removed by sorption to sewage sludge may be transferred to soil through biosolids amendment.

D4 is highly likely to bioconcentrate and bioaccumulate in fish (mean BCF = 8,795 L/kg), and
may accumulate in sediment-dwelling organisms.
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While field-derived BMF values greater than one have been reported for specific predator-prey
relationships, overall D4 is unlikely to biomagnify. Also, D4 is not expected to exhibit trophic
magnification.

Overall, D4 meets the criteria for both a ‘Persistent” and ‘Very Persistent” substance in air and
sediment under the EPA New Chemicals framework (64 FR 60194, November 4, 1999). D4 also
meets the criteria for both a ‘Bioaccumulative’ and ‘Very Bioaccumulative’ substance in biota.
However, D4 is not expected to be persistent in water and soil under environmentally relevant
conditions but may be persistent in water where there is continuous release of D4.
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1 INTRODUCTION

Octamethylcyclotetrasiloxane (D4) belongs to a group of cyclic volatile methylsiloxanes (cVMS) that
consist of cyclic chains of alternating silicon (Si) and oxygen (O) atoms with methyl groups (CHs)
[-Si(CH3)2—0O-]x and D4 consists of four of these chains (x = 4) (Chandra, 1997; EC/HC, 2008c; Brooke
et al., 2009c; Panagopoulos and Macleod, 2018). D4 is manufactured by several sequential reactions that

include: 1) the reduction of quartz to silicon (Si); 2) reaction of silicon metal with methyl chloride
(CH3CI) to produce chlorosilanes; 3) the hydrolysis of chlorosilanes; 4) and the condensation of short
chain chlorosilanes to siloxanes (SEHSC, 2020).

Due to its unique physical and chemical properties, D4 is primarily used as an intermediate in the
manufacture of other silicone chemicals such as polydimethylsiloxane (PDMS) and as an ingredient in
commercial and consumer products, including sealants, adhesives, and cleaning, laundry, and
dishwashing products (Wang et al., 2001; EC/HC, 2008c; Horii and Kannan, 2008; Brooke et al., 2009c;
Cheng et al., 2011; Fromme et al., 2019; NICNAS, 2020). Because D4 is used in a wide range of

applications, it is found in various environmental media including air (Section 3.4.1), water (Section
3.4.2.1), sediment (Section 3.4.2.2), soil (Section 3.4.3.2), and biota (Section 3.6).
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2 PHYSICAL AND CHEMISTRY ASSESSMENT

2.1 Approach and Methodology

EPA gathered and evaluated physical and chemical property data and information according to the
process described in the Draft Systematic Review Protocol Supporting TSCA Risk Evaluations for
Chemical Substances (U.S. EPA, 2021d) (also referred to as the “2021 Draft Systematic Review
Protocol”). During the evaluation of D4, EPA considered both measured and estimated physical and
chemical property data/information. EPA selected empirical and measured data over modeled data as
much as possible to improve the confidence in the endpoints. Due to the relative availability of data,
only studies with an overall quality data determination of “High” were selected for use in determining
the representative physical and chemical properties of D4 for the purposes of the draft risk evaluation.

A composite plot consisting of box and whisker plots of reported high- and medium-quality physical and
chemical property data values is shown in Figure 2-1. The box and whisker plots for each endpoint
illustrate the mean (average, indicated by the blue diamond) and the 10th, 25th, 50th (median), 75th, and
90th percentiles. All individual data points are indicated by black circles, and the value selected for use
in this risk evaluation is overlaid (indicated by the orange star) to provide context for where it lies within
the distribution of the data set. Information on the full, extracted dataset is available in the supplemental
file, Draft Data Quality Evaluation and Data Extraction Information for Physical and Chemical
Properties of Octamethylcyclotetrasiloxane (D4) (U.S. EPA, 2025d).
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Figure 2-1. Box and Whisker Plots of Reported Physical and Chemical Property Data Values

D4 undergoes abiotic ring opening in water, soil, and sediment to form octamethyltetrasiloxanediol
(tetramer diol; CASRN 3081-07-0), which subsequently undergoes step-wise abiotic degradation
through hexamethyltrisiloxanediol (trimer diol; CASRN 3663-50-1) and tetramethyldisiloxanediol
(dimer diol; CASRN 1118-15-6) into the stable end-product dimethylsilanediol (DMSD) (CASRN
1066-42-8) (Figure 2-2) (Xu and Chandra, 1999; Durham, 2005; Xu and Miller, 2008). Studies have
reported that DMSD aerobically biodegrades in soil into silicic acid (H404Si; CASRN 10193-36-9)
under specific field and laboratory conditions (Sabourin et al., 1996; Lehmann et al., 1998; Sabourin et
al., 1999). Silicic acid was not considered since it is a naturally occurring small molecule from the
weathering of rocks or diatoms, which exists independently from siloxanes. Based on this, EPA
extracted and evaluated physical and chemical property values for the degradants, except silicic acid,
and are presented in Table 2-2. The rationale for each selected value is provided in Appendix A.1.3. The
references and data quality ratings for each selected value are provided in Table_Apx A-1, Table_Apx
A-2, Table_Apx A-3, and Table_Apx A-4.
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Figure 2-2. Summary of a Complete D4 Mineralization

2.2 Final Selected Physical and Chemical Property Values

The physical and chemical property values selected for use in this risk evaluation for D4 are given in
Table 2-1. For some physical and chemical properties, there are multiple high-quality values available
for selection that were identified during systematic review. The majority of selected data were collected
under standard environmental conditions (i.e., 20-25 °C and 760 mm Hg). However, some properties
are reported at several experimental temperatures to provide additional context to how D4 behaves under
environmentally relevant temperatures in real world scenarios. This is especially important for providing
foundational context for environmental fate and transport endpoints (i.e., biodegradation rates,
wastewater removal efficiency, bioaccumulation factors, etc.) as they demonstrate the variety of
environmental conditions where D4 may be measured.

D4 exists as a smooth, viscous liquid (DOE (2016); NCBI (2021) citing Lewis and Hawley (2007) and
O'Neil (2013)). D4 has a melting point of 17.5 °C (O'Neil, 2013; DOE, 2016; RSC, 2020; NCBI, 2021)
and a boiling point of 175 °C (O'Neil, 2013; Haynes, 2014b; DOE, 2016; NCBI, 2021). D4 has a vapor
pressure of 0.9338 mm Hg at 25 °C (Lei et al., 2010), a water solubility of 0.056 mg/L at 23 °C (Dow
Corning, 1991; Varaprath et al., 1996; NCBI, 2021), and a Henry’s law constant of 11.8 atm-m%/mol at
21.7 °C (Xu and Kropscott, 2012, 2014; NCBI, 2021).

Table 2-1. Physical and Chemical Properties of D4

Property Selected Value(s)? Reference(s) DatRaagrL:gglty
Molecular formula CsH2404Sis NCBI (2021 High
Molecular weight 296.61 g/mol Haynes (2014b) High
Physical form Smooth, viscous liquid Lewis and Hawley (2007) and | High

O'Neil (2013) as cited in DOE
(2016) and NCBI (2021)
Melting point 175°C O'Neil (2013); DOE (2016); High
RSC (2020); NCBI (2021)
Boiling point 175 °C O'Neil (2013) as cited in High
Haynes (2014b), DOE (2016),
and NCBI (2021
Density 0.95603 g/cm?® at 20 °C Zhang et al. (2015) High
Vapor pressure 0.9338 mm Hg at 25 °C Lei et al. (2010 High
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Vapor density No data identified
Water solubility 0.056 mg/L at 23 °C Dow Corning (1991), Dow High
Corning (1993b), and
Varaprath et al. (1996) as cited
in NCBI (2021)
6.488 + 0.017 at 25.1 °C Kozerski and Shawl (2007)
. (OECD 123)
Octanol/water partition .
coefficient (log Kow) 6.59 + 0.07 at 5.7 °C Xu and Kropscott (2012): High
6.98 £ 0.13 at 21.7 °C Xu and Kropscott (2014)
7.13+0.1at34.8°C
429 +£0.03at21.7°C Xu (2006), Xu and Kropscott
422 +0.01 at24 °C (2007), and Xu and Kropscott
o Vai o (2012) as cited in SEHSC
Ctar-lo- alr partltlon (2020) ngh
coefficient (log Koa)
481 +0.02at5.7 °C Xu and Kropscott (2014)
453 +0.08at12.2 °C
4.04+£0.07 at 34.8 °C
Henry’s law constant 1.4 atm-m®mol at 5.7 °C Xu and Kropscott (2012); High
3.5 atm-m*mol at 12.2 °C Xu and Kropscott (2014)
11.8 atm-m%/mol at 21.7 °C
31.1 atm-m®mol at 34.8 °C
Flash point 55 °C (closed cup) Sigma Aldrich (2020) as cited | High
in NCBI (2021)
Autoflammability No data identified
2.45 cP at 20 °C Palczewska-Tulinska and
Viscosity Oracz (2005 High
2.7 cP at 26.95 °C Liu et al. (2013
Refractive index 1.39674 at 20 °C Zhang et al. (2015) High
Dielectric constant 2.4-2.405at 20 °C Elsevier (2019) High

& Measured unless otherwise noted
b «Data Quality Rating” apply to all references listed in this table
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Table 2-2. Physical and Chemical Properties of D4 Degradants

Property DMSD Dimer Diol Trimer Diol Tetramer Diol
Molecular formula C2oHsO-Si C4H1403Si> CesH2004Si3 CeH2605Si4
CASRN 1066-42-8 1118-15-6 3663-50-1 3081-07-0
Molecular weight 92.17 g/mol 166.33 g/mol 240.48 g/mol 314.64 g/mol

Physical form

Crystal phase — interplanar

spacing and leafs

Needle-shaped, monoclinic,
white crystal

No data identified

No data identified

°C

Melting point 94.5-101 °C 66 °C -23t0-1.9°C -5°C
Boiling point No data identified No data identified 79-91 °C 86-88 at 0.4 torr
97-100 at 2 torr
Density 1.095-1.099 g/cm? 1.095 g/cm? at 25 °C 0.991-1.0127 g/cm?® at 20-25 | 0.9881-0.9886 g/cm? at 20

°C

Vapor pressure

No data identified

No data identified

No data identified

No data identified

Vapor density

No data identified

No data identified

No data identified

No data identified

Water solubility

2.45E06 mg/L at 25 °C

110,000-115,000 mg/L at 20-25
°C

No data identified

No data identified

Octanol/water
partition coefficient
(|Og Kow)

-0.41+0.1at20.1°C

0.926 +0.035at 12 °C
0.962 +0.049 at 20 °C
1.036 £ 0.042 at 27 °C
1.099 + 0.025 at 35 °C

2.125+0.249at 12 °C
2.369 + 0.104 at 20 °C
2.391+0.112 at 27 °C
2.512 £ 0.165 at 35 °C

No data identified

Octanol/air partition
coefficient (log Koa)

6.40+0.31at20.1°C

No data identified

No data identified

No data identified

Henry’s law constant

3.48E-09 atm-m3/mol at

20.1°C

2.58E-07 atm-m®mol at 12 °C
5.25E-07 atm-m®/mol at 20 °C
1.73E-07 atm-m3mol at 27 °C
1.39E-07 atm-m%/mol at 35 °C

1.12E-06 atm-m?*mol at 12 °C
1.23E-06 atm-m?*mol at 20 °C
1.13E-06 atm-m?®mol at 27 °C
1.37E-06 atm-m%/mol at 35 °C

No data identified

Flash point

No data identified

No data identified

No data identified

No data identified

Autoflammability

No data identified

No data identified

No data identified

No data identified

Viscosity

No data identified

No data identified

No data identified

No data identified

Refractive index

1.444-1.456 at 25 °C

1.457-1.466 at 25 °C

1.405-1.409 at 20-25 °C

1.4054-1.4088 at 20-25 °C
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2.3 Endpoint Assessments

The physical and chemical property values were taken from the Final Scope of the Risk Evaluation for
Octamethylcyclotetrasiloxane (Cyclotetrasiloxane, 2,2,4,4,6,6,8,8-octamethyl-) (D4); CASRN 556-67-2
(U.S. EPA, 2022b) (hereinafter referred to as the “final scope”) except for vapor pressure, octanol/water
partition coefficient (log Kow), octanol/air partition coefficient (log Koa), Henry’s law constant, and
viscosity, which were updated based on systematic review results added since the publication of the final
scope.

2.3.1 Vapor Pressure

A vapor pressure of 1.05 mm Hg at 25 °C from NCBI (2021) was reported in the final scope for D4
(U.S. EPA, 2022Db). Six high- and three medium-quality vapor pressure data were extracted and
evaluated through systematic review after the publication of the final scope. Three medium-quality
vapor pressure data were excluded for use in this risk evaluation because high-quality vapor pressure
data are available. The high-quality data from NIST (2022) was excluded for use in this risk evaluation
because a vapor pressure was reported without an experimental temperature and the other three vapor
pressures were measured at higher temperature ranges (>102.9 °C). Due to this, there is insufficient
evidence that these data are representative of D4 behavior under standard environmental conditions. The
vapor pressure data from NCBI (2021), U.S. EPA (2020), and Kochetkov (2001) were also excluded for
use in this risk evaluation because they were modeled data. The vapor pressure of 0.9338 mm Hg at 25
°C from Lei (2010) was selected for use in this risk evaluation because it was obtained from an
acceptable laboratory study and had the highest metric score (U.S. EPA, 2021d).

2.3.2 Octanol/Water Partition Coefficient (log Kow)

The log Kow values of 6.59 + 0.07, 6.98 + 0.13, and 7.13 £ 0.1 at 5.7, 21.7, and 34.8 °C, respectively,
(Xu and Kropscott, 2012, 2014) were reported in the final scope for D4 (U.S. EPA, 2022b). These high-
quality data were collected using a double-syringe apparatus that allowed for the concurrent
determination of internally consistent Kow, Koa, and Kaw partitioning coefficients with precision (Xu
and Kropscott, 2012, 2014). After the final scope was published, eight high-quality log Kow data for D4
were extracted and evaluated during systematic review. Three data points were excluded because no
experimental temperature was reported (Dow Corning, 1982, 1987; U.S. EPA, 2020). NCBI (2021)
reported a log Kow value of 6.74 at 25 °C, which was an average of three measurements from Xu et al.
(2014). However, the study reported log Kow values of 6.49, 4.45, and 6.98 at 25 °C, resulting in an
average of 5.97. Xu et al. (2014) also reported a log Kow value of 6.98 at 22 °C. When including the
fourth reported log Kow value, it gives a mean log Kow value of 6.225. Due to uncertainty in the source
of this error, the log Kow of 6.74 data point was excluded from consideration. Kozerski et al. (2007)
reported a log Kow value of 6.488 + 0.017 at 25.1 °C using the slow-stirring method as described in
OECD Test Guideline (TG) 123 (OECD, 2022b). The high-quality data published by Kozerski et al.
(2007), Xu and Kropscott (2012), and Xu et al. (2014) were selected for use in this risk evaluation.

2.3.3 Octanol/Air Partition Coefficient (log Koa)

No log Koa data were reported in the final scope for D4 (U.S. EPA, 2022b). After the final scope was
published, three high-quality and one medium-quality log Koa data were extracted and evaluated in the
systematic review process. The medium-quality data (Compton, 2019) was excluded from use in this
risk evaluation. SEHSC (2020) reported high-quality log Koa data from two different studies: 4.22 +
0.03 at 24 °C (Xu, 2006) and 4.29 + 0.03 at 21.7 °C (Xu and Kropscott, 2007, 2012). Xu and Kropscott
(2014) reported high-quality log Koa values of 4.81 + 0.02, 4.53 + 0.08, and 4.04 £ 0.07 at 5.7, 12.2, and
34.8 °C, respectively. Xu and Kropscott (2012) reported log Koa values of 4.28 + 0.04 at 21.7 °C and
4.30 £ 0.02 at 21.6 °C, which brings to a mean log Koa value of 4.29 + 0.03 at 21.7 °C. All of the
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above-listed, high-quality log Koa data were selected for use in this risk evaluation ((Xu and Kropscott,
2012, 2014) as cited in (SEHSC, 2020)).

2.3.4 Henry’s Law Constant

Henry’s law constant values of 1.4, 11.8, and 31.1 atm-m3/mol at 5.7, 21.7, and 34.8 °C, respectively
(Xu and Kropscott, 2012, 2014) were reported in the final scope for D4 (U.S. EPA, 2022b). After the
final scope was published, nine air/water partition coefficient (Kaw) data for D4 were extracted and
evaluated during systematic review. Henry’s law constant is in direct relation with Kaw (Mackay et al.,
2006) and can be determined by using Equation 2-1.

Equation 2-1
HLC =R X T X Ky
Where:
HLC = Henry’s law constant (atm-m3mol)
R = Universal gas constant (8.206x107° atm-m3/mol-K)
T = Temperature (K)
Ky = Dimensionless air/water partition coefficient

An uninformative study, Kochetkov et al. (2001), was excluded from this risk evaluation because the
reporting of the study was inconsistent. Different values for the same measurements were reported
throughout the study. Two high-quality studies were also excluded from this risk evaluation because no
experimental temperature was reported (NCBI (2021), citing U.S. EPA (2020) and U.S. EPA (2021c)).
The data from Ann Arbor Technical Services (1990) and Ann Arbor Technical Services (2000) had low
measurement precision (log scale standard deviations > 0.84), decreasing confidence in the reported log
Kaw. In addition, Ann Arbor Technical Services (1990) was unable to confirm equilibrium conditions
when taking air and water measurements, and its data are therefore considered unreliable. For these
reasons, the data from Ann Arbor Technical Services (1990, 2000) were excluded from this risk
evaluation. A log Kaw value of 2.74 at 25 °C was interpolated by Xu and Kropscott (2014) using the
linear regression of log Kaw values on the reciprocal of equilibrium temperature (T) in Kelvin. This is
equivalent to a Henry’s law constant of 13.4 atm-m3/mol (NCBI, 2021). This data was not selected for
use in this risk evaluation because high-quality empirical log Kaw values are available.

Hamelink et al. (1996) reported a mean undimensioned Henry’s law constant value of 3.4 + 1.37 at 20
°C, which is equivalent to a Henry’s law constant value of 0.0819 atm-m3/mol. D4 measurements were
obtained using the purge and trap technique, and sampled at periods of 24, 48, 72, and 96 hours. Henry’s
law constant was seen to increase from 1 to 72 hours, then decreased from 72 to 120 hours over the
course of the experiment. It was concluded that equilibrium was not confirmed in this experiment,
therefore it was excluded from this risk evaluation.

Xu and Kropscott (2014) also reported a log Kaw value of 2.17 + 0.08 at 12.2 °C, which is equivalent to
3.5 atm-m3/mol and is selected for use in this risk evaluation. The measured mean log Kaw value of 2.69
at 21.7 °C (Xu and Kropscott, 2012) is in good agreement with the log Kaw temperature dependence
yielded by the above-listed measurements by Xu and Kropscott. (2014). The reported log Kaw value of
2.69 at 21.7 °C (Xu and Kropscott, 2014) is in good agreement with the equilibrium of the three
measured partition coefficients (Equation 2-2).

Equation 2-2
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Log Kow = Log Kpa + Log Ky

Where:
Log Koy = Logarithmic octanol/water partition coefficient
Log Ko, = Logarithmic octanol/air partition coefficient
Log Ky = Logarithmic air/water partition coefficient

2.3.5 Viscosity

A viscosity value of 2.30 centipoise (cP) at 25 °C (NCBI, 2021) was reported in the final scope (U.S.
EPA, 2022b), but the viscosity unit was incorrectly reported. NCBI (2021) reported a viscosity of 2.30
centistokes (cSt) at 25 °C. In order to convert it to the cP unit, Equation 2-3 is used.

Equation 2-3
n=vxp
Where:
n = dynamic viscosity
v = kinematic viscosity (2.30 cSt)
p = density (0.96 g/cm®)

This would give us a viscosity of 2.21 cP at 25 °C. However, this datum was excluded because the
original study could not be located, so the laboratory method could not be verified. For this risk
evaluation, both 2.45 cP at 20 °C (Palczewska-Tulinska and Oracz, 2005) and 2.7 cP at 26.95 °C (Liu et
al., 2013) were selected because the data were obtained from laboratory studies and had the highest
metric scores.

2.4 Strengths, Limitations, Assumptions, and Key Sources of Uncertainty
for the Physical and Chemistry Assessment

The physical and chemical property data discussed in this document were the product of a systematic
review of reasonably available information. The data analyses, therefore, consider only a subset of all
physical and chemical data, not an exhaustive acquisition of all potential data. Due to cross-referencing
between many of the databases identified and assessed through the systematic review process, there is
potential for data from one primary source to be collected multiple times resulting in duplication within
the dataset. This duplication should be considered as a potential source of uncertainty in the data
analyses. However, data-collection procedures and expert judgment were used to minimize this
possibility whenever possible.

Due to D4’s low water solubility and surface tension, and volatility, certain physical and chemical
properties may be difficult to measure experimentally, such as water solubility and partitioning
coefficients (e.g., Kow, Koa, Kaw) with standard guideline tests. Sometimes those tests can exhibit poor
reproducibility as evidenced by large standard deviations (\Varaprath et al., 1996; Xu and Kropscott,
2012; Xu et al., 2014; Xu and Kropscott, 2014). The selection of the physical and chemical properties
for use in the current risk evaluation was based on professional judgment which incorporated
consideration of the overall data quality ranking of the references from the systematic review process.
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3 FATE AND TRANSPORT ASSESSMENT

3.1 Approach and Methodology

Reasonably available environmental fate data—including biotic and abiotic biodegradation rates,
removal during wastewater treatment, volatilization from lakes and rivers, and organic carbon/water
partition coefficient (log Koc)—are the parameters used in the current draft risk evaluation. In assessing
the environmental fate and transport of D4, EPA considered the full range of results from data sources
that were rated high confidence. Information on the full extracted dataset is available in the
supplemental file, Draft Data Quality Evaluation and Data Extraction Information for Environmental
Fate and Transport for Octamethylcyclotetrasiloxane (D4) (U.S. EPA, 2025c). In addition, EPA also
integrated robust monitoring data representing a subset of D4 available in the D4 Environmental Testing
Report {ERM, 2017, 7340832;, 2017, 7360869}. The report was prepared in accordance with an
Enforceable Consent Agreement (ECA) between EPA and five D4 manufacturers, processors, or
formulators (Dow Corning Corporation, Evonik Corporation, Momentive Performance Materials USA
Inc., Shin-Etsu Silicones of America, Inc., and Wacker Chemical Corporation) (U.S. EPA, 2014). It is
hereafter referred to as the ECA. The environmental testing program undertaken by five companies was
conducted in accordance with a Study Plan and Quality Assurance Project Plan that EPA reviewed and
approved, therefore the quality of data in the ECA is thus high.Other fate estimates were based on
modeling results from Estimation Programs Interface (EPI) Suite™ (U.S. EPA, 2017), a predictive tool
for physical and chemical properties and environmental fate estimation. Information regarding the
model inputs is available in Section 3.1.1.

First, EPA conducted a Tier | analysis to identify the environmental compartments (i.e., water, sediment,
biosolids, soil, groundwater, air) of major and minor relevance to the fate and transport of D4. Next, a
Tier Il analysis was conducted to identify the fate pathways and media most likely to cause exposure
from environmental releases. The results of the Tier I and Il analyses are discussed in Section 3.2. Next,
understanding the transformation behavior of D4 informs which pathways are expected to be dominant
or contributing to persistence in different compartments. D4 undergoes different transformation
processes, and they are discussed in Section 3.3. Since D4 degrades into DMSD in water, soil, and
sediment via different intermediate degradants under various conditions, this assessment also includes
the transformation behavior of DMSD in the environment (see Appendix A.2). Lastly, EPA assessed the
environmental fate and transport of D4 by considering the full range of results from data sources that
were rated high confidence and performed media-specific fate analyses as described in Section 3.4.

3.1.1 EPI Suite™ Model Inputs and Settings

To set up EPI Suite™ for estimating fate properties of D4, the “Search CAS” function was used. Then,
the physical and chemical properties were input based on the values in Table 2-1. EPI Suite™ was run
using default settings (i.e., no other parameters were changed or input) (Figure 3-1).

! See EPI Suite™ for additional information and supporting documents about this freely available, online suite of programs,
which was reviewed by the EPA Science Advisory Board (SAB, 2007).
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Figure 3-1. Screen Capture of EPI Suite™ Parameters Used to Calculate Physical and Chemical
Properties and Environmental Fate for D4

3.1.2 Fugacity Modeling

Fugacity modeling provides an indication of how D4 will be distributed in the environment. The
approach described by Mackay et al. (1996) using the Level 11l Fugacity model in EPI Suite™
(LEV3EPI™) was used for Tier Il analysis. LEV3EPI™ is described as a steady-state, non-equilibrium
model that uses a chemical’s physical and chemical properties and degradation rates to predict
partitioning of the chemical between environmental compartments and its persistence in a model
environment (U.S. EPA, 2017). D4’s physical and chemical properties were taken directly from Table
2-1. Environmental release information is valuable for fugacity modeling because the emission rates will
predict a real-time percent mass distribution for each medium. Due to a lack of data in the Toxics
Release Inventory (TRI) and Discharge Monitoring Report (DMR), environmental degradation half-
lives were derived from high-quality studies identified through systematic review to reduce the level of
uncertainty. The result of the Tier Il analysis is discussed in Section 3.2.2.

3.1.3 OECD Pov and LRTP Screening Tool Inputs and Settings

D4’s long-range transport potential (LRTP) was evaluated by using the Organisation for Economic Co-
operation and Development (OECD) Overall Environmental Persistence (Pov) and LRTP Screening
Tool (Version 2.2) (Wegmann et al., 2009). The OECD Pov and LRTP Tool is a software in a Microsoft
Excel spreadsheet format containing multimedia chemical fate models that were designed based on the
recommendations of the OECD expert group to estimate environmental persistence and LRTP of
organic chemicals at a screening level. With a chemical’s physical and chemical properties, the OECD
Pov and LRTP Tool is able to predict its Pov, characteristic travel distance (CTD), and surface transfer
efficiency (TE). Pov is the overall persistence in the whole environment in days, CTD quantifies the
distance in kilometers (km) from the point of release to the point at which the concentration has dropped
to 1/e, or approximately 37 percent of its initial value, and TE estimates the percentage of emitted
chemical that is deposited to surface media after transport away from the region of release. The OECD
Pov and LRTP Screening Tool calculates two emission scenario-specific CTD values, for emissions to
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air and water. Only transport in the medium that receives the emission is considered, thus CTD in air is
calculated from the emission-to-air scenario and CTD in water is calculated from the emission-to-water
scenario. No CTD is calculated for emissions to soil because soil is not considered to be mobile
(Wegmann et al., 2009). The physical and chemical properties were input based on the values in Table
2-1, Table 3-1, and Table 3-3 (Figure 3-2). The modeling results are discussed in Sections 3.4.1.1 and
3.4.2.1.

OECD Pov & LRTP

Screening Tool’ Main Menu Help Frp——

Select chemicals to evaluate
Simultaneous runs of one database and one chemical are possible.

Databases Single Chemical Monte Carlo Parameters
Reference Chemicals Name D4 Dispersion factors
Generic PCE Homologues

Molecular mass 296.61 for each property
— £ X
Log Koy 2.69 [ ] 5
— X
Log K., £.488 O 5
Half life in air (h) 274E+02 [ 10
Half life in water (h) 9.96E+01 [ 10
Half life in soil (h) 126E+02 © [ 10
Deselect Manage DB => | Clear Reset
Database Status: D Chemical Status: D
Calculate ‘ v Include Monte Carlo Analysis for Single Chemical

Color Codes

Results already present

Mo warnings: calculation possible
D Warnings: calculation still possible
. Errors: calculation impossible

D No data entered

Figure 3-2. Screen Capture of OECD Pov and LRTP Screening Tool Parameters Used to
Calculate the LRTP of D4

3.1.4 Evidence Integration

A brief description of evidence integration for fate and transport is available in the 2021 Draft
Systematic Review Protocol (U.S. EPA, 2021d). The environmental fate characteristics of D4 given in
Appendix C of the final scope (U.S. EPA, 2022b) were identified prior to completing the systematic
review. Table 3-1 provides selected environmental fate data that EPA considered while assessing the
fate of D4 and were updated after publication of the final scope (U.S. EPA, 2022b) with additional
information identified through the systematic review process. The following sections summarize the
findings and provide the rationale for selecting these environmental fate characteristics.
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Table 3-1. Environmental Fate Properties of D4

Property or
Endpoint

Value?

Reference(s)

Data Quality
Rating

Direct
photodegradation

Not expected to be susceptible to direct
photolysis by sunlight because the chemical
structure of D4 does not contain
chromophores that absorb at wavelengths
>290 nm

Abe et al. (1981)

High

Indirect
photodegradation

ty2 = 11.4 days (based on *OH rate constant
of 0.94E-12 cm®/mole-sec at 24 °C and a
12-hour day with 1.5E06 «OH/cm?®)

Atkinson (1991)

tio = 8.5 days (based on *OH rate constant
of 1.26E—-12 cm®*/mole-sec at 24 °C and a
12-hour day with 1.5E06 *OH/cm?®)

Sommerlade et al.

(1993)

tio = 5.1 days (based on *OH rate constant
of 2.1E-12 cm*/mole-sec at 40 °C and a 12-
hour day with 1.5E06 *OH/cm®)

Safron et al. (2015)

tyo = 4.7 days (based on *OH rate constant
of 2.3E-12 cm3/mole-sec at 40 °C and a 12-
hour day with 1.5E06 *OH/cm?)

Xiao et al. (2015)

to = 11.3 days (based on *OH rate constant
of 0.95E—12 cm*/mole-sec at 21 °C and a
12-hour day with 1.5E06 *OH/cm?)

Kim and Xu (2017)

to = 10.1 days (based on *OH rate constant
of 1.06E—12 cm3/mole-sec at 21 °C and a
12-hour day with 1.5E06 *OH/cm?)

Bernard et al. (2018)

ty2 = 8.3 days (based on *OH rate constant
of 1.3E-12 cm*/mole-sec at 24 °C and a 12-
hour day with 1.5E06 *OH/cm?)

Alton and Browne (2020)

High

Hydrolysis half-
life (water)

ti2 = 1.4, 3.4, and 0.02 days at pH 5, 7, and
9, respectively, and 25 °C (OECD 111)

Dow Corning (2004)

ty2 = 22.6 days at 9.5 °C and pH 7
tiz = 4.2 days at 24.7 °C and pH 7
ti2 = 0.25 days at 9.5 °C and pH 9
(OECD 111)

Durham (2005)

ty, =15.2,4.1, 1.6, and 0.4 days at 4, 20,
35, and 55 °C, respectively, and pH 7
(OECD 111)

Gatidou et al. (2016)

ti2.=15.6, 6.3, and 2.3 hours at pH 7.8, 8.5,
and 9.2, respectively, and 22 °C

Xu et al. (2016

High

Hydrolysis half-
life (soil)

t12 = 3.5-5.25 days in temperate soil at
relative humidity of 32-92%

Xu and Chandra (1999)

ti2 = 4.1-5.3 days in temperate soil at
relative humidity of 50-90%

Xu (2007)

High
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Property or a Data Quality
S Value Reference(s) Rating
o ti2 = 49 days in aerobic sediment at 22—-25 | Xu and Miller (2008)
Abiotic °C (OECD 308) _
degradation in - : : High
sediment ti2 = 365 days in anaerobic sediment at 24 | Xu (2009)
°C (OECD 308)
3.7%/29 days (OECD 310) at 30.9 mg/L test | Gledhill (2005)
Aerobic substance concentration in domestic sludge
biodegradation and soil, adaptation not specified High
in water 0.4%/7 days at 10 mg/L test substance Bayer AG (1995)
concentration in industrial sludge and soil
Anaerobic 2.1%/29 weeks (OECD 308) Xu (2009) High
biodegradation
in sediment
BCFs = 5,695 and 11,164 (whole body) at Dow Corning (1992)
mean test concentration of 29.4 pg/L for 1-g
and 5-g rainbow trout (Oncorhynchus
mykiss), respectively
BCFs = 8,474 (whole body) at mean test Dow Corning (1993a)
concentration of 29.9 ug/L for fathead
minnow (Pimephales promelas)
Mean BCFs = 12,400 and BCFy = 13,400 Fackler et al. (1995);
(whole body) at test concentration of 0.5 Springborn Laboratories
pg/L for fathead minnow (Pimephales (1991a); Springborn
Bioconcentration promelas) Laboratories (1991b)
factor (BCF) BCF = 2,864.6 (whole body) for rainbow Compton (2019)
(L/kg wet trout (Oncorhynchus mykiss) from ADME- High
weight, unless B analysis of feeding study data
noted) BCFy = 1,673 (muscle) at mean test Kim et al. (2020)
concentration of 4.79 ng/L for common carp
(Cyprinus carpio)
BCFss = 1,740 and BCF = 2,104 (muscle) at | Xue et al. (2020)
mean test concentration of 4.79 ng/L for
common carp (Cyprinus carpio)
BCF = 8,258 and 4,153 (whole body) Cantu et al. (2024)
assuming 2.0 and 7.1 mg-DOCI/L,
respectively, for rainbow trout
(Oncorhynchus mykiss) from ADME-B
analysis of feeding study data
Bioaccumulation | Mean BAFs = 5,900 (muscle) for crucian Guo et al. (2021)
factor (BAF) carp (Carassius carassius)
(L/_kg wet Mean BAFs = 4,141 (muscle) for crucian Wang et al. (2021) High
weight, unless . -
noted) carp (Carassius carassius)
Organic 4.19 + 0.04 at 24.8 °C (OECD 106) Miller and Kozerski High

carbon:water

(2007)
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Property or Value? Ref Data Quality
Endpoint alue L) Rating
partition 4.22 +0.05 at 24.4-24.8 °C Kozerski et al. (2014)
coefficient (log
Koc) (soil)
Organic 5.17+0.23at 25 °C Panagopoulos et al. Medium
carbon:water (2017)
partition
coefficient (log
Koc) (sediment)
Dissolved 5.05£0.07 Panagopoulos et al. High
organic (2015)
carbon:water
partition
coefficient (log
Kboc)
~88% mean total removal from four Hydroqual (1993)
wastewater treatment facilities
Removal in 98% mean total removal at 11 wastewater Wang et al. (2013) .
wastewater I High
treatment facilities
treatment
96% total removal (29% by sludge) at a Wang et al. (2015a)
wastewater treatment facility
Mean BSAF =2.15+ 1.57,1.25+0.21, and | Springborn Laboratories
0.81 £ 0.27 in sediment with low (0.23%), (1991d); Springborn
medium (2.3%), and high (3.9-4.1%) Laboratories (1991e)
organic carbon content, respectively, for
midge (Chironomus tentans)
] ) Mean BSAF = 2.15 + 0.64, 1.3 £ 0.00, and Kent et al. (1994)
Biota-sediment | 0.7 + 0.08 in sediment with low (0.23%),
accumulation medium (2.3%), and high (4.1%) organic _
factor (BSAF) | carbon content, respectively, for midge High
(9-OC/g-lipid, | (Chironomus tentans)
unless noted) - - - - -
Mean BSAF = 1.2 in shrimp from inner Evonik Goldschmidt
Oslofjord and 2.6 in shrimp from outer (2009)
Oslofjord
Mean BSAF = 0.42 £ 0.06 for mollusks Zhi et al. (2019)
(Mytilus galloprovinvialis, Cyclina sinensis,
and Crassostrea talienwhanensis)
1.9-2.4 Dow Corning (2009);
Powell et al. (2010)
Biomagnification Dow Cornina (2010
factor (BMF) 114 0l )
(kgkg lipid- | ¢ 66 + .21 (OECD 305) Woodburn etal. (2013) | High
normalized,
unless noted) 0.35 + 0.08 Compton (2019)
3.2 Xue et al. (2019)
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PE%%%;%? Value? Reference(s) Datsa%ﬂzlity
0.444 (+ 0.079 SE) Cantu et al. (2024)
0.5and 0.8 Powell et al. (2009)
Pelagic food web: 0.57-0.76 Borga et al. (2013)
0.74 McGoldrick et al. (2014)
15 Jiaetal. (2015
-rlr-1ra(1)gpnhiif?cation 0.6and 1.3 Powell et al. (2017) High
factor (TMF) Pelagic food web: 0.4-0.7; Powell et al. (2018)
Demersal food web: 0.5-0.7
17 Cui et al. (2019)
0.75 He et al. (2021
0.9 Kim et al. (2022)

a Measured unless otherwise noted

b Information was estimated using EPI Suite™ (U.S. EPA, 2017)

3.2 Partitioning

3.2.1 Tier I Analysis

Environmental transport and partitioning consist of processes such as volatilization, advection,
dispersion, diffusion, association with dissolved organic matter, and sorption to solids. These processes
are controlled by physical and chemical interactions between D4 and the surrounding media (e.g., air,
water, soil, sediments, etc.). D4 released to the environment is subject to these processes with some
processes of greater importance than others based on its physical and chemical characteristics (Section

2.2).

To be able to understand and predict the behaviors and effects of D4 in the environment, the first step is
identifying the major and minor media compartments and partitioning values (Table 3-2), which can
provide insight into how D4 may favor one compartment over another.

Table 3-2. Partitioning Values for D4

Partition Predominant
Coefficient Value Log Value Source(s) Phase
OCt"’Er}fxv ";’ater 9.55E06 at 21.7°C | 6.984at21.7°C | Xuand Kropscott (2012) | Organic carbon
Organic Average of Miller and
carbon/water 16,032 at 24.8°C | 4.205 at 24.8 °C Kozerski (2007) and Organic carbon
(Koc) Kozerski et al. (2014)
OCEaK”OT)/a" 19,498 at21.7°C | 4.29at21.7°C | Xuand Kropscott (2012) | Organic carbon
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AEK‘:\"S;” 490at21.7°C | 2.69at21.7°C | Xuand Kropscott (2012) Air
SO('lz‘s’\ﬁter 2,399 3.38 Bletsou et al. (2013) Organic carbon

Based on the partition coefficients reported in Table 3-2, D4 will preferentially partition to organic
carbon over air and water, and soil over water. This suggests that the major environmental
compartments for D4 will be air, soil, biosolids, and sediment.

D4 exists in both gaseous and particulate phases in the atmosphere (Anh et al., 2021; Tran and Kannan,
2015; Tran et al., 2017; Li et al., 2020). A log Koa Vvalue of 4.29 indicates that D4 will favor organic
carbon over air (Table 3-2). However, higher D4 concentrations were measured in gaseous phase
compared to particulate phase (Tran and Kannan, 2015). The AEROWIN™ program in EPI Suite™
estimated that a negligible fraction (8x10~° to 2x1073 percent) of D4 may be sorbed to atmospheric
particulates (U.S. EPA, 2017). Thus, D4 is expected to have a low tendency to associate with
particulates and will predominately be in the gaseous phase (ECHA, 2012; Xu and Wania, 2013; Surita
and Tansel, 2014; NICNAS, 2020). The gaseous-particulate distribution of D4 may change depending
on the relative humidity as well as temperature (Anh et al., 2021). Given the volatility of D4 and the
expectation that releases will be primarily to air and water, air is expected to be a major compartment for
DA4.

Down-the-drain disposals from industrial and consumer uses are a primary source of D4 in water
compartments. While much of D4 is expected to either volatilize or sorb to sludge during wastewater
treatment, quantifiable levels may be present in the effluent (Wang et al., 2013; Zhang, 2014). A log
Kaw value of 2.69 indicates that D4 will favor air over water (Table 3-2), which means D4 is expected
to readily evaporate from water and moist soil into the atmosphere. D4 does not appreciably partition to
water due to its water solubility (0.056 mg/L at 23 °C) (Dow Corning, 1991; Varaprath et al., 1996;
NCBI, 2021), so volatilization is expected to be a dominant pathway for D4 (Chandra, 1997; ECHA,
2012; Shoeib et al., 2016). In addition, D4 may hydrolyze to smaller, more polar products in water.
Thus, surface water is a minor compartment for D4.

3.2.2 Tier Il Analysis

This Tier Il analysis was conducted to identify the fate pathways and media most likely to cause
exposure to environmental releases and which media should be emphasized during evaluation. For the
air compartment, the greatest half-life from Atkinson (1991) was selected as the best value for a
conservative approach. Since hydrolysis was the dominant pathway for D4 degradation in surface water,
the selected water half-life is an average of the hydrolysis half-lives obtained from two OECD TG 111
studies (Durham, 2005; Gatidou et al., 2016). For the soil compartment, the empirical half-life from Xu
and Chandra (1999) was selected. The sediment half-life is an average of the half-lives obtained from
three OECD TG 308 studies (Xu and Miller, 2008; Xu, 2009; Xu and Miller, 2009). All the half-life
values were obtained at environmental conditions (i.e., pH 7 and 22-25 °C). All other input variables
were left at their default settings (e.g., equal emission rates and advection time). Table 3-3 lists the half-
life inputs used for the LEV3EPI™ runs.

Table 3-3. Environmental Half-Lives Used in EPI Suite™ Level 111 Fugacity Modeling

Media Half-Life (hours) Reference(s)

Air 273.6 Atkinson (1991)
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Media Half-Life (hours) Reference(s)
Water 99.6 Average of Durham (2005) and Gatidou et al. (2016)
Soil 126 Xu and Chandra (1999)
Sediment 5,248 Average of Xu and Miller (2008), Xu and Miller (2009),

and Xu (2009)

Assuming equal releases to air, water, and soil, the LEV3PI™ results show that D4 emissions will
primarily partition to air (52%), water (30%), and sediment (16%) with 2 percent to soil (Table 3-4;
Figure 3-3). These results reiterate the Tier | analysis results that air is expected to be a major

compartment for D4 released to the environment. Though the expected lifespan of D4 in water is short

based on its physical and chemical properties that drive rapid volatilization and hydrolysis, the sizable
30 percent fraction predicted to be in aqueous media may be inflated by predictions of sorption to
particulate matter in the water column.

Table 3-4. EPI Suite™ Level 111 Fugacity Modeling Results for D4

Substance Released to

Percentage (%) of Substance Partitioning into Each Compartment

Air Water Soil Sediment
100% Soil release 90.5 0 9.5 0
100% Air release 100 0 0 0
100% Water release 9.9 58.6 0 31.5
Equal releases 52 30 2 16
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Figure 3-3. EPI Suite™ Level 111 Fugacity Modeling Graphical Result for D4

3.3 Transformation Processes

3.3.1 Hydrolysis

Hydrolysis is a chemical reaction where water, often in combination with light energy or heat, breaks
down one or more chemical bonds in a chemical substance. Hydrolysis half-life indicates the rate at
which a chemical will react with water. Predicting hydrolysis rates can help to estimate both how long
the chemical and/or its hydrolysis byproducts will remain after being released to the environment.

3.3.1.1 Surface Water

Hydrolysis is the dominant pathway for D4 degradation in surface water. D4 is expected to undergo
rapid hydrolysis, and its hydrolysis rate is dependent on the pH and temperature. D4 hydrolysis proceeds
from a ring-opening step, forming tetramer diol that will subsequently hydrolyze to form trimer and
dimer diols, terminating with DMSD (Dow Corning, 2004; Durham, 2005; Gatidou et al., 2016). Five
high-quality hydrolysis studies were identified during systematic review.

Three studies determined the hydrolysis rates of D4 using OECD TG 111 that was modified to consider
the volatility of D4. Dow Corning (2004) conducted sealed tube hydrolysis studies at 25 °C and pH
levels 5, 7, and 9. Base catalysis was the more efficient mechanism (t12 = 0.56 hours at pH 9), followed
by acid catalysis (t12 = 33 hours at pH 5). Hydrolysis of D4 under neutral conditions was much slower
(tu2 = 69 hours at pH 7), demonstrating the parabolic nature of D4’s hydrolysis with respect to pH.
Durham (2005) conducted experiments at pH 4, 7, and 9, and temperatures at 10, 25 and 35 °C. In
agreement with Dow Corning (2004), the slowest hydrolysis rate was observed at pH 7 (t12 = 101.6
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hours at 25 °C), followed by pH 4 (ti2 = 1.77 hours at 25 °C), and pH 9 (tw2 = 0.96 hours at 25 °C).
Across all pH tests, hydrolysis rates increased with temperature. The shortest observed half-life was 0.19
hours at pH 9 and 35 °C, while the longest was 542 hours (= 22.6 days) at pH 7 and 10 °C. Gatidou et al.
(2016) assessed D4 hydrolysis in amber glass vials at 4, 20, 35, and 55 °C. As anticipated, the slowest
hydrolysis occurred at 4 °C with a half-life of 15.2 days (= 365 hours), and the fastest at 55 °C with a
half-life of 0.4 days (= 9.6 hours). However, there is additional uncertainty in these half-lives since the
test concentration was 100 pg/L, which is almost double D4’s water solubility with no additional detail
on D4 recovery from the buffer matrix or how D4 degradation was determined. In addition, all three
studies reported DMSD and its oligomers as the byproducts of D4 after undergoing hydrolysis (Dow
Corning, 2004: Durham, 2005; Gatidou et al., 2016).

A non-guideline study, Xu et al. (2016) used a lower D4 concentration of 0.5 pg/L at 22 °C over 48
hours at various pH levels. The mean half-lives were 15.6, 6.32, and 2.33 hours at pH 7.8, 8.5, and 9.2,
respectively. This generally supports the OECD TG 111 studies and demonstrates hydrolysis at a more
environmentally relevant concentration in alkaline systems. Xu et al. (2016) also identified DMSD as a
hydrolysis byproduct of DA4.

Dow Chemical (2022a) used the data from Durham (2005) to model the pseudo first-order rates of
hydrolytic and condensation reactions governing concentrations of DMSD oligomer hydrolysis
products. Rate constant ks was found to be much slower than ks, indicating that the top pathway is
dominant (Figure 3-4). Half-lives of 6.9, 8.2, and 7.3 days were calculated for the tetramer, trimer, and
dimer diol oligomers, respectively, at pH 7 and 25 °C showing low aqueous persistence.

DMSD DMSD
C,Hg0,Si C,Hg0,Si

Trimer Dimer DMSD
5 o CoHg0y iy —2—s CyHy4 0351, —2—s 2 C;Hg 05 S
4 Tetramer ‘ o

ke .
C8H2404Si4_ - CBHZﬁOFlS"‘]-

“ ) Dimer DMSD
' 2C4H1403SizT’4 C2H8025i

Figure 3-4. Summary of D4 Hydrolysis Pathway Showing Stoichiometric Ratios Among the
Silanols Adapted from Dow Chemical (2022a)

A medium-quality study, Spivack and Dorn (1994) determined the hydrolytic equilibrium between
DMSD, dimer, and trimer diols. The stability of DMSD in aqueous media was seen to be much greater
than for D4 and the other oligomers, as discussed in Appendix A.2.1.1.

3.3.1.2 Sediment

Three high-quality microcosm studies demonstrated abiotic hydrolysis of D4 in sediment (Xu and
Miller, 2008; Xu, 2009; Xu and Miller, 2009). In Xu and Miller (2008), approximately 32 percent of D4
underwent hydrolysis after 22 days under aerobic conditions. D4’s half-life was calculated to be
approximately 47 days and the degradation products identified as silanediol and siloxanediols. However,
the complete mineralization of either D4 or its hydrolytic products to CO2 was not significant (<0.15%)
after the first three weeks. Another aerobic study, Xu and Miller (2009), reported a D4 sediment half-life
of 242 days. Concurrent tetramer, trimer, and dimer silanol formation and subsequent hydrolysis were
observed early in the experiment (<7 days), leaving the dominant DMSD product through the end of the
study. Xu (2009) reported a calculated half-life of 365 days under anaerobic conditions and D4 was seen
to hydrolyze to the same silanols terminating with DMSD.
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3.3.1.3 Soil
Four high-quality studies investigating the removal mechanisms of D4 in soil were identified during
systematic review. Xu and Chandra (1999) examined hydrolysis in two different soils. One was a
temperate soil, Londo, with a pH of 7.6, organic matter content of 2.4 percent, and consisted of 50
percent sand, 28 percent silt, and 22 percent clay. The other soil was a highly weathered Hawaiian soil,
Wahiawa, with a pH of 4.9 and organic matter content of 2.2 percent, and consisted of 21.2 percent
sand, 24 percent silt, and 54.8 percent clay. The experiments were conducted in both open and closed
tubes at 22.2 °C under different relative humidities (32, 92, and 100 percent) for seven days. The half-
lives for D4 in Londo soil were 3.54 and 5.25 days at relative humidity of 32 and 92 percent,
respectively. Little or no degradation of D4 was observed at 100 percent relative humidity. The half-
lives for D4 in Wahiawa soil were 0.04 days (= 58 minutes), 0.08 days (= 1.9 hours), and 0.89 days (=
21 hours) at relative humidity of 32, 92, and 100 percent, respectively. Xu and Chandra (1999) described
the degradation as a multi-step hydrolysis that was initiated with the ring-opening hydrolysis, like in
water and sediment. The ultimate degradation product was DMSD. These findings suggest that the rate
of degradation decreases as the soil moisture increases and the degradation rate was faster in weathered
soil due to its higher pH and clay content. Volatilization was seen to be negligible at low moisture levels
due to high sorption and fast degradation of D4 in dry soil. But when degradation rates were low at
higher relativity humidity, volatilization accelerated and was the predominant process.

Xu (2007) performed a data extrapolation based on the measured hydrolysis rates of D4 in two soils
from Xu and Chandra (1999) and Xu (1999) to estimate the soil degradation rate at three different
moisture levels (50, 70, and 90%). The extrapolated half-lives for Londo soil were 4.1, 4.7, and 5.27
days at relative humidity of 50, 70, and 90 percent, respectively. The extrapolated half-lives for
Wahiawa soil were 0.046 days (= 1.1 hours), 0.06 days (= 1.44 hours), and 0.078 days (= 1.87 hours) at
relative humidity of 50, 70, and 90 percent, respectively. These results agree with the results reported by
Xu and Chandra (1999).

Two high-quality field studies, Shi et al. (2015) and Xu, L. et al. (2019) conducted a simulated
hydrolysis study using uncontaminated soil that was mixed with crude oil and petroleum ether to
determine whether petroleum hydrocarbons had an effect on the hydrolysis kinetics of D4. Both studies
were excluded from use in this risk evaluation because soil with crude oil does not represent D4’s
behavior in natural soil.

The formation of silanols and DMSD in soil is not exclusive to D4 degradation. DMSD and linear
silanols were shown to be formed from D5 and dodecamethylcyclohexasiloxane (D6) hydrolysis in soil
(Xu, 1999; Xu and Chandra, 1999), along with the hydrolysis of PDMS in various soil and sludge
systems (Lehmann et al., 19944, 1994b; Carpenter et al., 1995; Lehmann et al., 1995; Lehmann and
Miller, 1996; Lehmann et al., 2000, 2002). The fate of DMSD is discussed further in Appendix A.2.1.1.

3.3.2 Biodegradation

Biodegradation occurs when an organic material is broken down by biological microorganisms under
natural environmental conditions (i.e., aerobic and anaerobic).

3.3.2.1 Surface Water

D4 is not expected to biodegrade rapidly in surface waters under environmentally relevant conditions.
Gledhill (2005) performed an OECD TG 310 sealed vessel headspace carbon dioxide (CO>) evolution
biodegradation test for D4 ready biodegradability. An inoculum was prepared from a municipal
wastewater treatment plant (WWTP) sludge and sewage, and fresh soil was added at 10 mg/L. The test
showed 3.7 percent degradation of D4 at day 29 (the maximum degradation was 16.2 percent at day
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21).2 However, there is uncertainty regarding this study. The D4 concentration was several orders of
magnitude above its water solubility, which likely does not represent the bioavailability of D4.

This result is supported by a set of non-test guideline studies performed by Bayer AG (1995) using
inocula from two German WWTPs treating chemical industry waste in Leverkusen and Dormagen. No
CO. evolution was observed after one week of incubation.

3.3.2.2 Sediment
In sediment, the half-life of D4 is long, qualifying it as highly persistent (64 FR 60194, November 4,
1999). Three high-quality studies used OECD TG 308 (OECD, 2002) to measure anaerobic and aerobic
transformation of D4 in freshwater sediment systems, with modifications to minimize the effects of D4
volatility on the accuracy of the tests.

Springborn Laboratories (1991c)® used core chambers, which are laboratory microcosms that simulate
natural conditions, to study the biodegradation of test materials in certain lentic environments. Water
and sediment samples were collected from Horseshoe Pond located in Wareham, Massachusetts. The
sediment had a pH of 5.5 and 3.2 percent organic carbon (OC) content, and consisted of 74 percent sand,
22 percent silt, and 4 percent clay. No indication of biodegradation was observed after a 28-day study
with a 14C-D4 dose of 32.2 pg/L to the water fraction. The largest *C percentage was recovered from
volatile organic carbon (VOC) traps, followed by sediments, then water. Parent D4 accounted for less
than one percent of 1*C both water and sediment at the conclusion of the study, indicating extensive
hydrolysis in both compartments. However, two specifics from this study introduce high uncertainty, as
discussed in Brooke et al. (2009c). Firstly, the mass balance varied greatly, ranging between 47.3 and
101.6 percent and the mean recovery values were below 80 percent. Secondly, the *C-D4
concentrations measured in the sediment varied greatly in replicates for the same sampling time.

Xu (2009) studied the degradation rates of D4 under anaerobic conditions with sediment from Lake
Pepin, which is located on the border between Minnesota and Wisconsin. At a pH of 7.9 and an average
test temperature of 24 °C, D4 loss was negligible (97.9 percent remaining after 29 weeks), which
corresponds to a half-life of 365 days. Xu and Miller (2009), an accompanying aerobic study with Lake
Pepin sediment, yielded a half-life of 242 days. Hydrolysis products were detected in the aerobic study,
though complete mineralization/CO2 generation was less than one percent over 22 weeks. Xu and Miller
(2008) conducted an aerobic degradation study with sediment from Sanford Lake in Michigan and
obtained a much shorter half-life of 47 days. Again, the primary transformation mechanism was
hydrolysis with a 32 percent loss of D4 within 22 days, though with less than 0.15 percent
mineralization. The stark contrast between the aerobic half-lives from Xu and Miller (2008, 2009) can
be explained by several factors. Firstly, the Sanford Lake sediment test was conducted at a pH of 6.95,
which was approximately one unit lower than Lake Pepin. Secondly, the Sanford Lake sediment
contained about one percent lower OC content. Thirdly, as discussed in Section 3.3.1.1, D4 hydrolyzes
more rapidly under basic conditions (Dow Corning, 2004; Durham, 2005). Lastly, a higher sediment OC
content can reduce hydrolysis transformation by D4 sorption to sediment organics.

3.3.2.3 Soil

One high-quality biodegradation study on D4 was identified during systematic review. Dow Corning
(1997) reported that more than 99 percent of D4 was degraded in highly weathered soil at 100 percent

2 The apparent decrease in CO; evolution in the treatment vials is likely due to a gradual increase in CO; in the abiotic
controls between day 21 and 29, and due to natural variance among all vessels.

3 Technology Sciences Group (1997) is the same study as Springborn Laboratories (1991c). Therefore, it is not discussed in
this assessment.
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relative humidity within 24 hours and a large of fraction of degradation product was DMSD. It is highly
likely that D4 did not undergo biodegradation but instead was hydrolyzed (see Section 3.3.1.3).

3.3.3 Photolysis

Photolysis is another form of chemical reaction in which chemical molecules are broken down after
absorbing light, primarily in the ultraviolet range. There are two forms of photolysis: direct and indirect.
Direct photolysis occurs when a chemical substance interacts directly with the sunlight, while indirect
photolysis occurs in the presence of photosensitizers (e.g., 0zone (O3), nitrate (N3), and hydroxyl
radicals (+OH), etc.) under visible light.

3.3.3.1 Atmosphere

Direct Photodegradation
D4 is not expected to undergo significant direct photolysis in the atmosphere since its chemical structure
does not absorb light at wavelengths greater than 290 nm (Abe et al., 1981).

Indirect Photodegradation

D4 in the gaseous phase is expected to degrade slowly by reaction with photochemically produced
hydroxyl radicals (+OH) in the atmosphere. Assuming 12 hours of light reaction, a hydroxyl (OH)
concentration of 1.5x108 OH/cm?, and rate constants ranging from 0.94x107? to 2.3x107*2
cm®molecule-second, the measured atmospheric half-lives for D4 ranged from 4.7 to 11.4 days
(Atkinson, 1991; Sommerlade et al., 1993; Safron et al., 2015; Xiao et al., 2015; Kim and Xu, 2017;
Bernard et al., 2018; Alton and Browne, 2020). Degradation by reactions with nitrate radicals (+NOz)
and ozone radicals (+Os) were seen to be negligible (Abe et al., 1981; Atkinson, 1991; U.S. EPA, 2017).
Since its estimated atmospheric half-lives are greater than two days, D4 meets the criterion for
persistence in the air compartment (64 FR 60194, November 4, 1999). The atmospheric half-life of D4
does not pertain to indoor environments due to lower «OH concentrations, less mixing of air, and lower
sunlight intensity.

Sommerlade et al. (1993) identified heptamethylhydroxycyclotetrasiloxane (C7H2205Sis; CASRN 5290-
02-8) (19.95% of the total amount of GC-detectable substances) as the major degradant from the
reaction of D4 with «OH, along with lesser amounts of
heptamethyl(hydroperoxymethyl)cyclotetrasiloxane (CgH2406Sis; CASRN 150375-95-4) (9.95%), 1,2-
bis(heptamethylcyclotetrasiloxanyl)ethane (C16H4608Sis; CASRN 17156-73-9)(4.22%),
heptamethyl(hydroxymethyl)cyclotetrasiloxane (CgH2205sSis; CASRN 17866-06-7) (0.74%), and
bis(heptamethylcyclotetrasiloxanyl)ether (C14H4209Sis; CASRN 17909-39-6) (0.72%). The hydroxyl-
substituted degradation products are likely to be removed from the atmosphere by wet deposition
because they are expected to be more soluble in water and have a lower vapor pressure than D4
(Chandra, 1997; Brooke et al., 2009c¢; Janechek et al., 2017; Alton and Browne, 2022).

Navea et al. (2009) developed a box model to simulate D4 concentration by mass balance, using three
different atmospheric segments (urban, suburban, and rural) to simulate their population density,
emissions, and OH concentrations in the summertime. This study was not used in this risk evaluation
because multiple high-quality empirical data on indirect photodegradation are available.

A half-life of 8.55 days was calculated from the Atmospheric Oxidation Program (AOPWIN™) in EPI
Suite™ using an estimated rate constant of 2.25x107*2 cm3/molecule-second at 25 °C, assuming an
atmospheric *OH concentration of 1.5x10°% molecule/cm? and a 12-hour day (U.S. EPA, 2017). The
result from AOPWIN™ was not selected for use in this risk evaluation because high-quality empirical

Page 31 of 82


https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6835713
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6835897
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6834050
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=2912068
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=3363844
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=4166451
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6835955
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6833978
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6835713
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6835897
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=11181058
https://www.govinfo.gov/content/pkg/FR-1999-11-04/pdf/99-28888.pdf
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6834050
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6990705
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6994688
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=3866926
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=11204075
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6996526
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=11181058

846

847
848
849
850
851
852
853
854
855
856
857

858

859
860
861
862
863
864
865
866
867
868
869

870

871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889

PUBLIC RELEASE DRAFT
September 2025

data on indirect photodegradation are available.

3.3.3.2 Surface Water

A medium-quality study examining direct photolysis of D4 in water was identified during systematic
review. Dow Corning (1980) reported that D4 underwent photolytic oxidation on water containing 10
ppm nitrate ion in the presence of simulated sunlight. Visible films of D4 shrank and gel was formed on
the surface of water when exposed to light. Because Dow Corning (1980) investigated a D4 film (neat)
rather than aqueous phase D4, the findings are not relevant to D4 in the environment. Therefore, this
study was excluded for use in this risk evaluation. No other information is available on the direct
photolysis of D4 in water. D4 is not expected to undergo aqueous photolysis since hydrolysis is
expected to be the main degradation pathway in water. Indirect aqueous photolysis is not expected to
contribute to D4 transformation in water due to its general low susceptibility to indirect photolytic
processes in the atmosphere (see Section 3.3.3.1).

3.4 Media Assessments

D4 has been detected in the atmosphere, and aquatic and terrestrial environments. In the air, D4 will be
most predominant in the gaseous phase and is expected to be persistent (64 FR 60194, November 4,
1999). D4 was detected in indoor air and dust and is strongly correlated with occupant density. D4 is
expected to have a longer half-life in indoor air compared to outdoor air due to lower «OH
concentrations, less mixing of air, and lower sunlight intensity. In aquatic environments, D4 does not
undergo biodegradation in water and is expected to hydrolyze rapidly. D4 can be transported to
sediments from overlying surface water via advection, dispersion, and sorption to suspended solids that
can settle out from the water column. D4 will have a strong affinity for organic carbon in sediment. In
terrestrial environments, D4 may be present in soils via land-application of biosolids. However, D4 is
unlikely to migrate to groundwater and surface water via runoff because D4 is expected to dissipate in
the soil via abiotic processes such as hydrolysis and volatilization.

3.4.1 Air and Atmosphere

3.4.1.1 Outdoor Air
D4 is expected to have a low tendency to associate with particulates and will predominately be in the
gaseous phase (see Section 3.2.1). Generally, higher concentration of D4 is expected to be found in the
gaseous phase than in particulate phase. Tran and Kannan (2015) reported a maximum D4 air
concentration of 722 ng/m?3 in the gaseous phase, while the maximum D4 air concentration in particulate
phase was 101 ng/m?.

Due to its widespread use and high volatility, a large fraction of D4 is released into the air during
manufacture, use and recycling/disposal processes (Kaj et al., 2005a; Ahrens et al., 2014; Companioni-
Damas et al., 2014; NICNAS, 2020). There is a greater tendency for D4 air concentrations to be higher
in urban and industrial areas compared to suburban and rural areas. D4 air concentrations were detected
up to 0.19 pg/m? in Chicago, while the maximum concentrations of 0.014 and 0.037 pg/m?® in were
measured in a rural and suburban areas in lowa, respectively (Yucuis et al., 2013). Several other air
monitoring studies also observed the general trend of increasing air concentrations with increasing
population density (Wang et al., 2001; Genualdi et al., 2011; Jiang, 2022). Additional sources of D4 air
emissions are landfills and WWTPs (see Sections 3.4.3.3 and 3.5.2). The highest D4 air concentration
was measured near an aeration tank (up to 2.11 pg/m®) in a WWTP and a landfill (up to 0.471 pg/m?3) in
Ontario, Canada (Cheng et al., 2011).
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Based on its physical and chemical properties and long half-life in the atmosphere (t1> = 4.7-11.4 days),
D4 is assumed to be persistent in the air (see Section 3.3.3.1). The OECD Pov and LRTP Screening Tool
was run to get additional information on D4’s long-range transport potential in the air. For D4 emissions in
air, a Pov of 16 days, CTD of 5,658 km (= 3,515.7 miles), and TE of 0.0184 percent were given using a
molecular mass of 296.61 g/mol, log Kaw of 2.69, and log Kow of 6.488 along with an atmospheric half-
life of 273.6 hours, a water half-life of 99.6 hours, and soil half-life of 126 hours (Table 3-3; Figure 3-2).
A CTD of 5,658 km suggests that D4 does have the potential to undergo long-range transport in the air
(e.g., 1,936 km from Washington, D.C. to Arctic Ocean), however a TE of 0.0184 percent suggests that
a negligible fraction of D4 emitted to air will be deposited to surface media such as water. CTD can also
be calculated using the LEV3EPI™ model in EPI Suite™ without considerations for advection (Beyer et
al., 2000; U.S. EPA, 2017). After entering the physical and chemical properties of D4 (Figure 3-1), a
CTD of 4,680 km (=~ 2,908 miles) was calculated. Both modeling results confirm that D4 has the
potential to undergo atmospheric long-range transport.

3.4.1.2 Indoor Air and Dust
D4 can be released to indoor air, either as an impurity from silicone-containing products (i.e., electrical
and electronic devices, building materials, paints and coatings, sealants, etc.) or during the use of
cosmetics and personal care products (Lu et al., 2010; Gallego et al., 2017; Shen et al., 2018; Tran et al.,
2019; Zhu et al., 2023).

Concentrations of D4 in indoor air was observed to be higher than those in outdoor air. For instance,
Yucuis et al. (2013) reported a maximum outdoor air concentration of 0.37 pg/m?compared to a
maximum indoor air concentration of 0.5 pg/m? in an office. D4 was also detected in indoor dust
samples (Lu et al., 2010; Xu et al., 2012; Meng and Wu, 2015; Tran et al., 2015; Zhu et al., 2023), at
levels as high as 17 pg/m?® in a barbershop (Liu et al., 2017). Studies have demonstrated that D4
concentrations in indoor air were observed to have strong correlation with occupant density (Shields et
al., 1996; Yucuis et al., 2013). In addition, out of all microenvironments studied, D4 concentrations in
dust generally decreased in the order: barbershops/beauty salons > homes > offices > laboratories as a
result of certain products being used (Sha et al., 2018; Anh et al., 2021; Lu et al., 2010; Yucuis et al.,
2013; Companioni-Damas et al., 2014; Tran and Kannan, 2015; Liu et al., 2017).

3.4.1.3 Key Sources of Uncertainty in the Assessment of Air and Atmosphere
Since the assessment of the fate of D4 in air and atmosphere relied on empirical «OH oxidation half-
lives from multiple high-quality studies (see Section 3.3.3.1), there is a robust confidence that D4 is
persistent (64 FR 60194, November 4, 1999) and may undergo atmospheric long-range transport. In
addition, there are several non-TSCA uses of D4 (i.e., cosmetics and personal care products) that are
released to the air. It is not possible to differentiate whether the releases were directly from TSCA or
non-TSCA uses.

3.4.2 Aquatic Environments

D4’s presence in aquatic environments is primarily due to releases from industrial processes, down-the-
drain disposals from industrial and consumer uses, and non-point sources especially from urban areas
(EC/HC, 2008c; Horii and Kannan, 2008; Genualdi et al., 2011; Lee et al., 2019; NICNAS, 2020).

3.4.2.1 Surface Water
Environmental concentrations of D4 are generally higher near industrial processing facilities (Zhang et
al., 2018; Jiang, 2022), in waters receiving WWTP effluent (Schlabach et al., 2007; Dow Corning, 2010;
Horii et al., 2017; Jiang, 2022), and near densely populated and coastal areas (Anh et al., 2021; Hong et
al., 2014; Powell et al., 2017). The main removal mechanisms of D4 are volatilization from water during
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aeration and adsorption onto sludge (see Section 3.5.2), however a fraction of D4 will be discharged into
receiving waters.

Concentrations of D4 in surface water in the United States and Canada were reported in three studies
(Simon and Paulson, 1985; Wang et al., 2013; ERM, 2017a). Simon and Paulson (1985) collected
samples of final effluent from three WWTPs and reported D4 concentrations at below detection limits
(<0.5 pg/L) for all sites (Ann Arbor, Detroit, and Washington, D.C.). Wang et al. (2013) reported D4
concentrations up to 0.023 pg/L in waters receiving effluents of nearby WWTPs in Canada. The
environmental testing program (ERM, 2017a, 2017b) collected environmental media samples from
fourteen WWTPs located in New York, Michigan, Ohio, West Virginia, Kentucky, Illinois, Kansas,
lowa, Colorado, and Oregon during two sampling events between 2016 to 2017. Four WWTPs were
manufacturing/processing plants that treated wastewater onsite and discharged directly into a receiving
water body under a National Pollution Discharge Elimination System (NPDES) (referred to as direct
discharge or “DD” WWTPs). Five WWTPs received wastewater for treatment from industrial sites
known to be D4 processors or formulators (referred to as indirect discharge or “I” WWTPs). The other
five WWTPs received less than 15 percent of wastewater for treatment from industrial facilities that
were not D4 manufacturing, processing, or formulating sites (referred to as non-industrial or “R”
WWTPs). Surface water samples were collected from the midpoint of the edge of the adequately mixed
zone. The highest concentration was 0.7 pug/L at the location in Friendly, WV where D4 was detected at
100 percent. D4 was not detected in surface water samples from the indirect WWTPs. For the non-
industrial WWTPs, D4 was found in most samples at one location (Genesee, MI) during the first
sampling event, but levels were below the laboratory method detection limit (<0.037 pg/L) during the
second event. D4 was not detected in the remaining “R” WWTPs.

Bioavailability of D4 to biota in the surface water compartment is expected to be variable and location
dependent. An environmental exposure study was conducted at an environmentally relevant
concentration (4.79 £ 1.19 ng/L) and reported an uptake rate (k1) of 199/day in common carp (Cyprinus
carpio) (Xue et al., 2020). This is an order of magnitude lower than another environmental exposure
study that had an uptake rate of 2,450 per day for fathead minnow (Pimephales promelas) at a nominal
exposure concentration of 500 ng/L, which is approximately 5- to 100-fold greater than observed
ambient levels (Fackler et al., 1995). Because of this, D4 is expected to accumulate readily to fish in the
water column, especially in environments with greater D4 concentrations such as those receiving
WWTP effluent and urban areas releasing non-point source of D4 (EC/HC, 2008c; Warner et al., 2014;
Zhi et al., 2019). In remote areas where D4 concentrations are lower and detections are diffuse, it is
highly possible that D4 will volatilize due to its Henry’s law constant (11.8 atm-m3/mol at 21.7 °C (Xu
and Kropscott, 2012, 2014)), hydrolyze, and/or partition to sediments (log Koc = 5.20 at 25 °C
(Panagopoulos et al., 2017)) rather than appreciably partition to biota (see Section 3.6).

The OECD Pov and LRTP Screening Tool was run to get additional information on D4’s LRTP in water
(Figure 3-2). For D4 emissions in water, a Pov of 6.3 days, CTD of 9.9 km (= 6.15 miles), and TE of
2.45%107° percent were calculated. A CTD of 9.9 km suggests that D4 does not have the potential to
undergo long-range transport in water (e.g., 1,963 miles from Washington, D.C. to Arctic Ocean). The
persistence of D4 in the surface water compartment is expected to be hydrolysis mediated. Aquatic
biodegradation of D4 is expected to be much slower than hydrolytic degradation (see Sections 3.3.2.1
and 3.3.1.1). Given the range of empirical hydrolysis half-lives, D4 is not expected to be persistent (tu
< 60 days) in the surface water compartment under environmentally relevant conditions.

Hamelink et al. (1996) determined the volatilization rate constant of D4 from water. The volatilization
rate constant for D4 was estimated to be 0.005 to 0.22 per hour in rivers and 0.002 to 0.005 per hour in
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lakes and ponds. The calculated volatilization half-lives of D4 from a 1-meter-deep water body are 3 to
138 hours in rivers and 138 to 145 hours in lakes and ponds. This suggests that D4 will readily volatilize
from water. Moreover, Yaman et al. (2020) studied the air-water exchange patterns of D4 in a river
basin located in the southwestern part of Turkey. D4 concentrations measured in the air and water
samples were used to estimate the net air-water exchange fluxes. The fluxes were negative in all
samples, which indicate volatilization from water.

The volatilization half-lives of D4 from a model river and lake were estimated using the Water
Volatilization program (WVOLWIN™) in EPI Suite™ and default settings were applied (see default
settings in Figure 3-1). The volatilization half-life of D4 was 1.76 and 163.6 hours (= 6.82 days) for a
model river and lake, respectively (U.S. EPA, 2017). This result agrees with the findings of Hamelink et
al. (1996) and Yaman et al. (2020) that D4 is highly likely to volatilize rapidly from water.

3.4.2.2 Sediments
D4 can be transported to sediments from overlying surface water via advection, dispersion, and sorption
to suspended solids that settle out from the water column. With D4’s log Koc value of 5.20 at 25 °C for
lake sediment (Panagopoulos et al., 2017), and a log Kow value of 6.488 at 25.1 °C (Kozerski and
Shawl, 2007), D4 will have a strong affinity for OC in sediment. In addition, Panagopoulos et al. (2015)
reported a measured log Kpoc value of 5.05 + 0.07, which suggests that D4 is more likely to bind to
dissolved organic matter and be less mobile in the water column.

Based on sediment monitoring studies, elevated D4 concentrations were observed near outlets of
WWTPs (Schlabach et al., 2007; Shoeib et al., 2016; ERM, 2017a) and industrial areas (Zhang et al.
2018; Lee et al., 2019; Nguyen et al., 2022). Jiang et al. (2022) reported a maximum D4 concentration of
55.3 ng/g dry weight (dw) at a sampling site in Zhangjiagang, where China’s largest siloxane production
plant is located, and 8.50 ng/g dry weight (dw) near WWTP effluent discharge locations in Beijing and
Kunming. D4 concentrations were measured up to 1.20 ng/g dw in other sampling sites that were not
impacted by the plant or effluent discharge. Dow Corning (2007) reported a maximum D4 concentration
of 286 ng/g dw at a sampling site in Toronto Harbor, which is known to receive direct discharges of
treated wastewater. Sediment samples collected as part of the ECA were collected either “very near” and
“as close as practicable” to the surface water sampling locations (ERM, 2017a). D4 was detected in all
sediment samples collected in a water body that received direct discharges from WWTPs that treat
wastewater from D4 manufacturing and processing facilities in the United States. The maximum level
(18,000 ng/g dw) was measured at Waterford, NY where samples were collected approximately 60 m
downstream from the effluent outfall. For the indirect and non-industrial WWTPs, results varied. Of the
ten indirect and non-industrial WWTPs, D4 was detected at a maximum concentration of 7.7 ng/g dw.

In addition, sediment concentrations near populated areas were observed to be higher when compared to
rural and/or secluded areas (Dow Corning, 2010; Hong et al., 2014; Zhang et al., 2018). Dow Corning
(2009) reported a D4 mean concentration 0.37 ng/g wet weight (ww) in a remote Lake Opeongo,
Canada. However, all nine samples were measured below the method detection level (MDL).

3.4.2.3 Key Sources of Uncertainty in the Assessment of Aquatic Environments

Accounting for D4’s low solubility, high volatility, ubiquitous use, and high tendency to sorb to
particulate matter in field studies can be difficult. Due to this, D4 measurements in aquatic environments
often come with caveats of low detection and quantitation frequencies (Schlabach et al., 2007; Dow
Corning, 2009; Powell et al., 2009; Dow Corning, 2010; Warner et al., 2010; Horii et al., 2013; Hong et
al., 2014; Warner et al., 2014; Powell et al., 2017; Zhi et al., 2018; Norwegian Environment Agency,
2019; Panagopoulos Abrahamsson et al., 2020; Jiang, 2022; Kim et al., 2022), substantial contamination
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levels (Dow Corning, 2009; Nusz et al., 2018; Kim et al., 2022), and low spike recoveries (Dow
Corning, 2009; Wang et al., 2010; Jiang, 2022; Kim et al., 2022). Low detection frequencies driven by
high background levels introduce uncertainty, especially in the lower bounds of environmental
concentrations of D4. In addition, variation in agueous concentration is also introduced based on
extraction protocol-some studies capture D4 in both dissolved and particulate phases filter samples prior
to extraction. Lastly, monitoring concentrations of DMSD within the context of this risk evaluation
should be regarded with caution, as DMSD is not formed in the environment solely from TSCA-defined
conditions of use for D4.

One of the most significant release sources of D4 into the aquatic environments is down-the-drain
discharge from consumer products consumed by the general public (Horii and Kannan, 2008; Xu et al.,
2013; Zhang et al., 2018). D4 concentrations in aquatic environments may vary with location, depending
on the concentration of D4 in products and the consumption level of users.

The relative contributions of the competing processes of D4 fate in surface waters are further dependent
on processes such as advection, turbulence (sediment-water and air-water mixing), biota habitat and
habitat range. Therefore, it is expected that exposure to D4 in surface water will be variable and context
specific, with greater probability of exposure near WWTP effluent discharge locations and near greatly
urbanized areas.

There is some uncertainty over the actual concentration of D4 present in the sediment phase. Sediment
concentrations have been demonstrated to be correlated with sediment OC content (Zhang et al., 2011;
Wang et al., 2013; Lee et al., 2019). Powell (2009) observed a strong positive correlation between the
dry weight sediment concentrations of D4 with the sediment total OC content in Lake Pepin that created
a spatial D4 concentration gradient across the lake. Lake Pepin is a wide stretch of the Mississippi River
and therefore particles in the influent of the lake will settle based on size and density as the system
transitions from lotic to lentic; upstream was shown to have larger solids containing a greater proportion
of inorganics as compared to downstream, where smaller, more organic-rich particles fall out.

3.4.3 Terrestrial Environments

D4 is expected to be released to terrestrial environments via land application of biosolids and disposal of
solid waste to landfills. With measured log Koc values of 4.19-4.22 (Miller and Kozerski, 2007;
Kozerski et al., 2014) and a water solubility of 0.056 mg/L (Dow Corning, 1991; Varaprath et al., 1996;
NCBI, 2021), D4 will have a strong affinity for organic matter in terrestrial environments and leaching
is not expected to occur.

3.4.3.1 Biosolids

Sludge is defined as the solid, semi-solid, or liquid residue generated by wastewater treatment processes.
The term, “biosolids” refers to treated sludge that meet the EPA pollutant and pathogen requirements for

land application and surface disposal (40 CFR Part 503) (U.S. EPA, 1993).

As discussed in Section 3.5.2, D4 is expected to be removed primarily by sorption to sludge in
wastewater treatment, followed by air stripping. D4 removed by sorption to sewage sludge may be
transferred to soil through biosolids amendment. D4 concentrations in sludge-applied soils may be lower
than the biosolids themselves after the incorporation process due to dilution and abiotic processes such
as hydrolysis and volatilization.

Studies measuring concentrations of D4 in sludge and biosolids from multiple countries outside the
United States reported concentrations ranging from 0.04 to 46.5 pg/g dw (Kaj et al., 2005b; Schlabach et
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al., 2007; Zhang et al., 2011; Bletsou et al., 2013; Xu et al., 2013; Lee et al., 2014; Wang et al., 2015b;
Lietal., 2016; Xu et al., 2016; COWI AS, 2018). In addition, Horii et al. (2019) reported D4
concentrations ranging from 0.17 to 0.56 pg/g ww from nine conventional WWTPs in Japan.

Data on D4 concentrations in biosolids resulting from non-industrial and industrial wastewater treatment
in the United States were collected as part of the ECA (ERM, 2017a; SEHSC, 2021). D4 concentrations
ranged from 0.448 to 6.16 ug/g dw in industrial sites and 0.055 to 0.659 pg/g dw in non-industrial sites.
In addition, two studies reported D4 concentrations ranging from 0.2 to 1.77 pg/g dw in sludge samples
from WWTPs located in the United States (Zhang, 2014) and Canada (\Wang et al., 2015a). Biosolids
with elevated D4 concentrations are to be expected at or near WWTPs that treat industrial waste.

With its water solubility (0.056 mg/L at 23 °C) (Dow Corning, 1991; Varaprath et al., 1996; NCBI,
2021) and affinity for sorption to organic matter in soil (log Koc = 4.19-4.22 at 24.4-24.8 °C) (Miller
and Kozerski, 2007; Kozerski et al., 2014), D4 is unlikely to migrate to groundwater and surface water
via runoff after land application of biosolids (see Section 3.4.3.4). Furthermore, D4 is expected to
dissipate in the soil via hydrolysis and volatilization processes (see Section 3.3.1.3).

3.4.3.2 Soil
When D4 is released to soil, approximately 90.5 percent of the mass fraction is estimated to partition to
air (Table 3-4). A small percentage (9.5%) will remain in soil associated with solids and undergo abiotic
degradation processes. The relative contributions of hydrolytic and volatilization processes to D4
dissipation from soil depend on the mineralogy of the soil and the percentage of relative humidity (soil
moisture) (Xu and Chandra, 1999; Xu, 2007). D4 volatilization was observed to be predominant in moist
soils, while acidic, drier, and clay heavy soils have shown to have greater hydrolysis rates (Buch and
Ingebrigtson, 1979; Xu and Chandra, 1999). Refer to Section 3.3.1.3 for more information on
hydrolysis.

As discussed in Section 3.3.1.3, DMSD is the main degradant product of D4 after undergoing hydrolysis
in soil. DMSD is expected to degrade further in the environment to ultimately produce CO- and silicic
acid (H404Si) and/or silica (SiO2) (Figure 2-2) (Lehmann et al., 1994b; Chandra, 1997; ECHA, 2012).

3.4.3.3 Landfills
D4 is not listed under Subtitle C of the Resource Conservation and Recovery Act (RCRA) (40 CFR Part
261). No landfill leachate monitoring studies were identified during systematic review. D4 may be
disposed into landfills through various waste streams such as consumer waste, residential waste,
industrial waste, and municipal waste including dewatered wastewater biosolids. Because D4 is a highly
volatile chemical with a Henry’s law constant of 11.8 atm-m3/mol at 21.7 °C (Xu and Kropscott, 2012,
2014), it is highly likely that D4 will be released to air from solid wastes.

The release of biogases from landfills is another point source of D4 emission to the air. Biogases are
produced by biological decomposition of solid wastes in landfills (Schweigkofler and Niessner, 1999;
McBean et al., 2002; Badjagbo et al., 2010; Gaj and Pakuluk, 2015; Riicker and Kiimmerer, 2015). D4
will readily partition to the gaseous phase due to its water solubility (0.056 mg/L at 23 °C) and vapor
pressure (0.9338 mm Hg at 25 °C) (Dewil et al., 2006; Surita and Tansel, 2014; NICNAS, 2020).
Exceptionally high D4 concentrations were measured in biogas from landfills ranging from 0.196 to
29.1 mg/m?® (Schweigkofler and Niessner, 1999; Badjagbo et al., 2009; Badjagbo et al., 2010; Piechota
et al., 2013). Biogases can be captured and burned to generate renewable energy (heat or electricity)
(Dewil et al., 2007; McBean et al., 2002; McBean, 2008; Badjagbo et al., 2009; Badjagbo et al., 2010),
however not all waste disposal facilities do this, nor are they required to. If it is not captured and burned,
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D4 in the gaseous phase is expected to degrade slowly by reaction with «OH in the atmosphere (see
Section 3.3.3.1), therefore D4 is likely to be persistent in outdoor air near release sites and undergo
atmospheric long-range transport.

3.4.3.4 Groundwater

No groundwater monitoring studies were identified during systematic review. Given the strong affinity
of D4 to adsorb to organic carbon (log Koc = 4.19-4.22 at 24.4-24.8 °C) (Miller and Kozerski, 2007,
Kozerski et al., 2014), D4 is expected to be immobile in soil and will not leach to groundwater.
Furthermore, D4 migration to groundwater is unlikely due to its water solubility (0.056 mg/L at 23 °C)
(Dow Corning, 1991; Varaprath et al., 1996; NCBI, 2021).

3.4.3.5 Key Sources of Uncertainty in the Assessment of Terrestrial Environments
PDMS is used in a broad range of industrial, medical, and consumer applications, therefore a significant
amount of PDMS is used in down-the-drain products and released to the environment via wastewater
effluent and sewage sludge (Chandra, 1997; Brooke et al., 2009c). All PDMS polymers contain residual
amounts of cyclic siloxanes, including D4. The lower molecular weight (consisting lower viscosity)
polymers may contain volatile cyclic siloxanes (<0.1-0.5%), and higher molecular weight (consisting
higher viscosity) polymers may contain 1 to 3 percent volatile cyclic siloxanes (EC/HC, 2008c). Based
on the information provided above, a small fraction of D4 may form during the breakdown of PDMS
under certain conditions in landfills and soils where sewage sludge containing PDMS is applied
(EC/HC, 2008c; Brooke et al., 2009¢). However, the overall contribution of PDMS degradation is not
significant and cannot be quantified based on the information reasonably available to the EPA.

3.5 Persistence Potential of D4

In the atmosphere, D4 is not expected to undergo significant direct photolysis in the atmosphere and will
degrade slowly after reacting with photochemically produced «OH. D4 meets the criterion for
persistence in the air compartment (tu2 > 2 days; 64 FR 60194, November 4, 1999) (Section 3.3.3.1). In
surface water and sediment under environmentally relevant conditions, D4 is not expected to undergo
biodegradation (Sections 3.3.2.1 and 3.3.2.2). The persistence of D4 in the surface water compartment is
expected to be determined by hydrolysis. Given the range of empirical hydrolysis half-lives, D4 is not
expected to be persistent (t12 < 60 days) in the surface water compartment under environmentally
relevant conditions (Section 3.3.1.1). As a hydrophobic chemical, D4 will be highly adsorptive to
organic matter in suspended solids and sediment and is expected to be very persistent (t2 > 180 days)
(Sections 3.3.1.2 and 3.3.2.2). In soil under environmentally relevant conditions, D4 will undergo
abiotic degradation such as hydrolysis and volatilization (Section 3.3.1.3). With a half-life of 126 hours
(= 5.25 days), D4 is not expected to be persistent in the soil (t12 < 180 days) (Section 3.2.2).

3.5.1 Destruction and Removal Efficiency

Destruction and removal efficiency is a percentage that represents the mass of a pollutant removed or
destroyed in a thermal incinerator relative to the mass that entered the system. EPA requires that
hazardous waste incineration systems destroy and remove at least 99.99 percent of each harmful
chemical in the waste, including treated hazardous waste (46 FR 7684, January 23, 1981).

Several assessments estimated that more than 99.9 percent of D4 disposed to municipal solid waste
incineration will be mineralized (Lassen et al., 2005; Greve et al., 2014; ECHA, 2019; GSC, 2024). EPA
identified an incineration study during systematic review. Horii et al. (2019) collected and analyzed
dewatered sludge, incineration ash, and flue gas samples from nine sewage treatment plants (STPs)
located in Saitama Prefecture, Japan. D4 concentration in incineration ash was found to be near the
MDL (0.004 pg/g dw) and was two orders of magnitude lower than the mean D4 concentration in
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dewatered sludge (0.36 pg/g dw). The results indicate that D4 in dewatered sludge was effectively
degraded by incineration (>99.9%) and D4 emission through incineration ash landfill was negligible. In
conclusion, Horii et al. (2019) verified that incineration plants are not expected to be significant sources
of D4 releases to the air.

On the other hand, D4 concentration in flue gas from the dewatered sludge incinerator was 0.17 pug/nm?
(= 1.7x10%¢ pg/m?). D4 present in flue gas will be released to the atmosphere where it is expected to
degrade slowly by reaction with photochemically produced «OH) in the atmosphere.

3.5.2 Removal in Wastewater Treatment

Wastewater treatment is performed to remove contaminants from wastewater using physical, biological,
and chemical processes. Generally, municipal wastewater treatment facilities apply primary and
secondary treatments. During the primary treatment, screens, grit chambers, and settling tanks are used
to remove solids from wastewater. After undergoing primary treatment, the wastewater undergoes a
secondary treatment. Secondary treatment processes can remove up to 90 percent of the organic matter
in wastewater using biological treatment processes such as trickling filters or activated sludge.
Sometimes an additional stage of treatment such as tertiary treatment is utilized to further clean water
for additional protection using advanced treatment techniques (e.g., ozonation, chlorination,
disinfection).

D4 is a volatile liquid with a vapor pressure of 0.9338 mm Hg at 25 °C (Lei et al., 2010), water
solubility of 0.056 mg/L at 23 °C (Dow Corning, 1991; Varaprath et al., 1996; NCBI, 2021), log Kow
value of 6.488 at 25.1 °C (Kozerski and Shawl, 2007), and a Henry’s law constant of 11.8 atm-m3%mol at
21.7 °C (Xu and Kropscott, 2012, 2014). Based on these properties, the removal of D4 in activated
sludge wastewater treatment is expected to be primarily by sorption to sludge and volatilization. Since
D4 was not readily biodegradable under aerobic conditions based on two biodegradation tests (Bayer
AG, 1995; Gledhill, 2005), biodegradation is not expected to be a significant removal process. The
remaining D4 fraction sorbed to suspended solids in the wastewater treatment effluent may be
discharged to receiving water (Wang et al., 2013; Zhang, 2014; Ha My Nu et al., 2021).

A total of 21 wastewater treatment studies were identified during systematic review. Two studies were
rated as low-quality studies, another two as uninformative, and one as a medium-quality study. Those
five studies were not selected for use in this risk evaluation. Out of the remaining 16 high-quality
studies, only three studies reported the removal of D4 from wastewater in the United States and Canada
using activated sludge treatment. Hydroqual (1993) reported a mean total D4 removal of approximately
88 percent from four activated sludge plants in New Jersey. Wang et al. (2013) reported a mean total
removal of 98 percent from eleven wastewater treatment facilities in Canada. The study showed that the
D4 removal rates were greater than 92 percent regardless of treatment type (e.g., lagoon vs. secondary
activated sludge vs. chemically-assisted primary). Wang et al. (2015a) reported a D4 removal efficiency
of 96 percent in a secondary activated sludge WWTP located in Canada and approximately 29 percent of
the removal was attributed to sorption to sludge. Sorption to sludge and volatilization in the aeration
tank were identified as two of the main removal pathways for D4 in this study.

For comparison, the Sewage Treatment Plant model (STPWIN™) in EPI Suite™ (U.S. EPA, 2017) was
run using the physical and chemical properties for D4 given in Table 2-1 (Figure 3-1). STPWIN™ in EPI
Suite™ simulates a conventional WWTP that uses activated sludge secondary treatment. The
biodegradation half-life parameter was set to 10,000 hours for the primary clarifier, aeration vessel, and
settling tank, which is a default for non-biodegradable chemical. STPWIN™ calculated approximately 60
percent removal of D4 by adsorption to sludge and approximately 40 percent by volatilization with less
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than 1 percent removed by biodegradation and discharged to effluent, which verifies the results from
monitoring studies.

The release of biogas from WWTPs is another point source of D4 emission to the air. Biogas consists

of methane (CHs4) and CO- and is produced during anaerobic digestion of sewage sludge (Schweigkofler
and Niessner, 1999: McBean et al., 2002; Badjagbo et al., 2010; Gaj and Pakuluk, 2015; Riicker and
Kimmerer, 2015). Due to its Henry’s law constant of 11.8 atm-m3/mol at 21.7 °C (Xu and Kropscott,
2012, 2014), D4 will preferentially partition to the gaseous phase. Exceptionally high D4 concentrations
were measured in biogas from STPs ranging from 0.5 to 10.1 mg/m?® (Schweigkofler and Niessner,
1999; Piechota et al., 2013; Raich-Montiu et al., 2014). D4 in the gaseous phase is expected to degrade
slowly by reaction with «OH in the atmosphere (see Section 3.3.3.1), therefore it will be persistent in the
air near landfills and WWTPs.

3.6 Bioaccumulation Potential of D4

Information on bioconcentration and bioaccumulation in aquatic and terrestrial organisms is important to
understanding the behavior of D4 in the environment and is a key component in assessing its risk to all
living organisms, including humans.

3.6.1 Bioconcentration Factor

Bioconcentration is the uptake and retention of a chemical by an aquatic organism from ambient water
only (U.S. EPA, 2003). Bioconcentration does not include chemical exposure through diet, but rather its
uptake by respiratory and dermal surfaces (Arnot and Gobas, 2006). Bioconcentration factor (BCF)
represents the tendency of a chemical to partition from water to an organism through the gills/respiratory
route. BCFs are reliably measured from laboratory experiments where exposure dose can be controlled-,
and steady-state conditions can be confirmed. BCF is traditionally calculated as the empirical ratio of
biota-water concentrations at steady state, noted as BCFss. BCF may also be derived from the first-order
uptake (k) and depuration (k, or k;) kinetic rate constants, noted as BCFx. Water concentrations
should be analyzed such that the bioavailable (i.e., dissolved) D4 fraction is captured, which can be
difficult given D4’s low water solubility and high volatility.

Considering the empirical evidence identified during systematic review, D4 is expected to
bioconcentrate in fish species. Nine high-quality, non-guideline BCF studies reported D4
bioconcentration in aquatic biota (Table 3-1). Out of those nine studies, three studies reported aqueous
exposure doses that were greater than D4’s water solubility (Dow Corning, 1984; Springborn
Laboratories, 1991d, €).* Since it is likely that these three studies did not capture the bioavailable D4
concentration in water, they were excluded for use in this risk evaluation.

Dow Corning (1992) conducted an 18-day exposure study with rainbow trout (Oncorhynchus mykiss)
under flow-through conditions. From the water and fish concentrations provided in the study report,
EPA calculated mean BCF values of 5,695 L/kg and 11,164 L/kg for 1-gram and 5-gram weight groups,
respectively. Similarly, Dow Corning (1993a) conducted a 16-day exposure study with fathead minnow
(Pimephales promelas) under flow-through conditions and reported a mean BCF value of 8,470 L/kg.
However, the experimental design of both studies could not determine whether steady-state was
achieved, which adds uncertainty to this data. Additionally, due to fish mortality in the Dow Corning
(1992) study, the fish concentrations measured at later time points have small sample sizes, introducing
some uncertainty.

4 Water solubility exceedance referring to the interstitial water concentration for both Springborn Laboratory studies listed in
this sentence.
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Fackler et al. (1995)° conducted a study consisting of a 28-day exposure period followed by a 14-day
depuration period with fathead minnows (Pimephales promelas) under continuous flow-through
conditions. The reported mean BCFss was 12,400 L/kg (95% CI: 9,380-16,100 L/kg), which was in
close agreement with the reported BCFx of 13,400 L/kg using the uptake and depuration rate constants
of 2,450 per day and 0.183 per day, respectively. As the authors highlighted that the depuration
concentration data did not fit a single compartment model, they also provided a BCFx of 10,000 L/kg
based solely on the uptake data. However, the BCF« values are comparable regardless of the regression
approach used.

Xue et al. (2020) reported BCFss and BCF values of 1,740 L/kg and 2,104 L/kg, respectively, in the
muscle tissue of common carp (Cyprinus carpio) after 32 days of exposure to D4 at 4.79 ng/L followed
by a 32-day depuration period. The BCFss value may be lower due to lack of steady state conditions as
evidenced by the fish concentration uptake curve presented in the study. However, the reported BCF
values were not lipid-normalized. In order to reduce any variability and uncertainty, EPA corrected the
reported BCF values for lipid content using the study’s average reported muscle tissue lipid content
adjusted to wet weight percentages (11.9 + 2.5% lipid, ww). The lipid-normalized BCFs and BCF
values are 14,622 and 17,681 L/kg ww, respectively.

Kim et al. (2020) and Bernardo et al. (2022) discussed several issues with the experimental design of
Xue et al. (2019, 2020) that may have a negative impact on the resulting BCF data. First, the fish length
ranged from 11.1 to 15.6 cm and only four fish were within the recommended 8 + 4 cm range (OECD
2012), which may indicate that the fish were at different developmental stages. Secondly, fish were
acclimated for seven days, which is significantly shorter than the recommended 14 days (OECD, 2012).
Lastly, the fish were not fed throughout the experiment as recommended (OECD, 2012), and a
significant decrease in fish body weights may have distorted the uptake, elimination, and metabolic
responses of the fish. Kim et al. (2020) noted additional errors in the results from Xue et al. (2019): first,
the reported BCF values were in wet-weight basis, however the concentrations used to calculate the BCF
values were on dry-weight basis; and second, the exposure and depuration regressions from which k,
and k, were derived did not fit the biota concentration values well, therefore yielding erroneous kinetic
parameters. Upon adjusting for these errors, Kim et al. (2020) calculated a BCF« value of 1,673 L/kg
ww using optimized k; and k, values. The lipid-normalized BCFx value is 14,059 L/kg ww.

Two dietary studies reported D4 BCFs that were determined semi-empirically using the ADME-B
model described in Gobas et al. (2019) (described further in Appendix B.2). Compton (2019) conducted
a study similar to OECD TG 305-111 (OECD, 2012), which consisted of a 10-day exposure period
followed by a 28-day depuration period with juvenile rainbow trout (Oncorhynchus mykiss). The
reported BCF value (£ standard error of the mean [SE]) was 2,865 (+ 1,112 SE) L/kg. Using the same
method, Cantu et al. (2024) reported a BCF value of 4,153 (+ 534 SE) L/kg and 8,258 (+ 1,062 SE) L/kg
with aqueous DOC concentrations of 2.0 and 7.1 mg-OC/L, respectively. Cantu et al. (2024) noted the
sensitivity of BCF to variations in aqueous DOC and this indicates the importance of D4 sorption to
dissolved organic matter in water. The relationship between aqueous DOC concentration and D4 BCF is
further discussed in Appendix B.2. Both semi-empirical BCF values derived using the ADME-B model
agree well with the empirical BCF values (Figure 3-5).

In order to determine a representative, central tendency BCF value for D4, EPA accounted for the

5 Springborn Laboratories (1991a, 1991b) is the same study as Fackler et al. (1995). Therefore, both studies will not be
discussed in risk evaluation.
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varying lipid contents of the fish species represented in the dataset. Briefly, EPA first averaged the lipid-
normalized BCFs from the four empirical laboratory BCF studies (Dow Corning, 1992, 1993a; Fackler
et al., 1995; Xue et al., 2020), then applied the recommended generic lipid content of 5 percent (OECD
2012) to obtain a BCF of 8,795 L/kg. See Appendix B.2 for more information.

3.6.2 Bioaccumulation Factor

While laboratory derived BCF values are important for isolating uptake rates from the respiratory route,
field-derived bioaccumulation factors (BAFs) tend to be more representative of environmentally
relevant accumulation dynamics. BAFs represent the extent to which a chemical is absorbed by biota
from dietary and environmental (respiratory and dermal) exposure routes determined at steady state.
Because of this, BAFs of hydrophobic chemicals are often expected to be greater than respective BCFs
that capture respiratory uptake from the environment only. However, for chemicals such as D4 that
undergo biotransformation in the gastrointestinal tract (thus exhibiting low uptake rates from dietary
routes), the magnitudes of BAFs and BCFs may be comparable (Gobas et al., 2019; Cantu et al., 2024).
Similar to BCFs, BAFs may be determined empirically by the ratio of chemical concentration in biota to
the concentration of freely dissolved chemical in water (BAFss) or from empirically-derived Kinetic rates
(BAF).

Two high-quality field studies characterizing D4 BAF in crucian carp (Carassius carassius) in
freshwater were identified during systematic review. Guo et al. (2021) reported a non-lipid-normalized
mean BAF value of 5,900 L/kg in the muscle of crucian carp collected from seven sites in a river near a
methyl siloxane production factory in Liaoning Province, northeast China. A lipid-normalized BAF
could not be calculated since the study did not provide the lipid content of the fish samples. In addition,
the aqueous D4 concentrations from three out of seven sites were below the method detection limit (<1.5
ng/L) while measured D4 concentrations in carp were all quantifiable, which adds an uncertainty in the
reported BAF value. Wang et al. (2021) reported a lipid-normalized mean BAF value of 4,141 L/kg ww
in the muscle of crucian carp collected from three major rivers in South Korea. Wang et al. (2021)
assumed a carp muscle lipid content of 1.67 percent, which then was used to back calculate a non-lipid
corrected BAF. The non-lipid-normalized BAF is 69 L/kg, which is much smaller than the field-derived
BAF obtained for Carassius carassius by Guo et al. (2021). The measured aqueous concentrations of D4
in Wang et al. (2021) ranged from not-detects (n.d.) to 271 ng/L with a median of 52.7 ng/L, and the
biota concentrations ranged from n.d. to 31 ng/g ww with a median of 0.656 ng/g ww. The measured
aqueous concentrations of D4 in Guo et al. (2021) ranged from less than 1.2 to 3.2 ng/L with a mean of
2 ng/L, and the biota concentrations ranged from 6.5 to 18 ng/g ww with a mean of 13 ng/g ww. One
possible reason the aqueous D4 concentrations in Wang et al. (2021) were inflated compared to those
from Guo et al. (2021) is because the water samples in Wang et al. (2021) were not filtered and included
both dissolved and particulate-bound D4 fractions in the BAF ratio. However, it is unclear if Guo et al.
(2021) captured losses to the filtration apparatus during extraction recovery analyses. Moreover, as
highlighted by Cantu et al. (2024) and discussed in Appendix B.2, differences in aqueous DOC
concentration can greatly influence respiratory uptake rates and thus contribute to variation in BAFs.
Additionally, Wang et al. (2021) did not report how non-detects were handled, which may also greatly
influence the final reported values. Because no additional data characteristics were provided (e.g.,
whether samples were location-matched, or the carp concentrations were only given for muscle tissue
measurements), it is difficult to further contextualize this discrepancy in BAF magnitude. Figure 3-5
summarizes the high-quality BCF and BAF values identified for D4, illustrating the relatively wide
range of available values.
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Figure 3-5. Summary of High-Quality Identified Bioconcentration and Bioaccumulation Factors
Whiskers illustrate BCF/BAF ranges where available. Grey markers indicate feeding studies, therefore water
concentrations were not relevant. Dashed lines indicate “bioaccumulative” thresholds of 1,000 and 5,000 L/kg
(U.S. EPA, 2012).

3.6.3 Biota-Sediment Accumulation Factor

A biota-sediment accumulation factor (BSAF) captures accumulation to biota from the sediment
compartment. This is expected to be central to D4 uptake by biota since D4 is expected to sorb to
organics that settle in the sediment compartment. Bioaccumulation is implied when a BSAF is
(significantly) greater than one. However, a generic, theoretical BSAF value of 1.7 was estimated based
on partitioning of non-ionic organic compounds between tissue lipids and sediment carbon (ASTM
1997). A BSAF value less than 1.7 indicates less partitioning of an organic compound into lipids,
whereas a BSAF value greater than 1.7 indicates a greater uptake of the compound (Ozkoc et al., 2007,
Hong et al., 2014; Zhi et al., 2019; Bernardo et al., 2022). BSAF values are most relevant to informing
accumulation in benthic-dwelling species (e.g., mussels, crustaceans) rather than fish species present in
the water column. Because of this, only studies reporting BSAF values for benthic-dwelling, non-fish
organisms are reported in Table 3-1. Nonetheless, several fish species (e.g., fat greenling, crucian carp)
feed on material in the benthos and may ingest D4 from incidental sediment ingestion.

Nine high-quality studies reporting BSAF data were identified during systematic review. The study by
Horii et al. (2013) was excluded from use in this risk evaluation because all sediment concentrations
were below the MDL of the study, which decreased confidence in the precision of the reported BSAF
values as compared to the other eight high-quality studies.

Six studies reported BSAF values for benthic dwelling organisms. Evonik Goldschmidt (2009) reported
mean BSAF values of 1.2 g-OC/g-lipid for shrimp from the inner Oslofjord and 2.6 g-OC/g-lipid for
shrimp from the outer Oslofjord, Norway. Similar to other aquatic monitoring studies (see Section
3.4.2), the authors reported overall greater concentrations of D4 in water, sediment, and biota samples
collected in the more densely populated inner fjord area as compared to in the outer fjord that sits further
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from human development. Zhi et al. (2019) examined D4 BSAFs in three mollusk species (Mytilus
galloprovinvialis, Cyclina sinensis, and Crassostrea talienwhanensis) collected from the Bohai Sea,
China. The reported mean BSAF was 0.42 £ 0.06 g-OC/g-lipid (soft tissue). Springborn Laboratories
(1991d, 1991e) conducted a series of 14-day definitive toxicity studies to determine the effect of
sediment organic carbon concentrations on the bioaccumulation of 10-day old, second instar midge
larvae (Chironomus tentans). The studies were conducted under flow-through conditions at five D4
concentrations and three organic carbon contents. BSAF values were obtained from day 14
measurements from treatments in which survival rates between treatment and control vessels were not
statistically different. The reported mean BSAF values were 2.15 + 1.57, 1.25 £ 0.21, and 0.81 £ 0.27 in
sediment with low (0.23%), medium (2.3%), and high (3.9—4.1%) organic carbon content, respectively.
Using the same test method and organism, Kent et al. (1994) reported mean BSAF values of 2.15 + 0.64,
1.3£0.00, and 0.7 = 0.08 in sediment with low (0.23%), medium (2.3%), and high (4.1%) organic
carbon content, respectively. However, these values were not OC- or lipid-normalized and therefore
cannot be compared to the other normalized BSAF values presented in this section. Powell et al. (2009)
reported BSAFs in eighteen different species that were collected from Lake Pepin, Minnesota. Only
three species had a sample size that was equal to or greater than four (n > 4). The mean BSAF values
were 19.2 for midge larvae (Chironomus sp.), 2.6 for adult gizzard shad (Dorosoma cepedianum), and
2.1 for emerald shiner (Notropis atherinoides). All BSAF values reported by Powell et al. (2009) are
based on whole organism concentrations. While there is considerable uncertainty in the BSAF values
due to lack of field blanks, small samples sizes, low sediment concentrations (background-corrected D4
< MDL), and the use of uncensored values), it may be possible for D4 to accumulate more readily in
benthic organisms that feed on sediment-dwelling invertebrates and organic material as compared to
species at higher trophic levels (Powell et al., 2009).

The remaining three studies reported BSAF values for fish only. It should be noted that the sample sizes
for several species in the studies reporting fish BSAFs are quite low (i.e., < 11 individuals). Hong et al.
(2014) reported a mean BSAF value of 0.716 £ 0.456 (whole organism) kg-OC/kg-lipid for fat greenling
(Hexagrammos otakii; n = 6) collected from the Dalian Sea, China. Krogseth et al. (2017) reported
BSAF values of 3.4 £ 1.9 (muscle tissue) and 1.5 + 1.1 (whole organism) g-OC/g-lipid for arctic char
(Salvelinus alpinus; n = 11) and sticklebacks (Gasterosteus aculeatus; n = 6), respectively, collected
from Lake Storvannet, Norway. Wang et al. (2021) reported a mean BSAF of 2.36 £+ 1.84 (muscle
tissue) g-OC/g-lipid in crucian carp (Carassius carassius; n = 106) collected from three South Korean
river basins.

Empirically-determined BSAF values for D4 fall on both sides of the 1.7 threshold, indicating that D4
may accumulate to biota from the sediment in some environments.

3.6.4 Biomagnification Factor

Biomagnification factor (BMF) represents the tendency of a chemical to increase in concentration from
prey to predator. Like with BCF and BAF, BMF can be derived either as an empirical ratio of the
concentration of chemical in the predator to the concentration of the chemical in the predator’s diet at
steady state (BMFss), or as determined from kinetic constants from dietary uptake and depuration studies
(BMF). Especially for lipophilic chemicals, it may be appropriate for BMF to be calculated based on
lipid-normalized chemical concentrations in both the diet (prey) and consumer (predator) (i.e., BMFL),
as lipid content may differ among trophic levels. A BMF value greater than 1 indicates the occurrence of
biomagnification.

While BMF may be estimated from field measurements, controlled laboratory experiments allow for the
following conditions of an accurate BMF determination to be confirmed: that steady state is reached,
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that diet is the sole source of exposure to the predator, and that a consistent chemical dose to the
predator is maintained. These are important variables to control for when characterizing uptake and
depuration kinetics from dietary exposures. For this reason, field-derived BMF values from Dow
Corning (2009), Powell et al. (2010), Dow Corning (2010), and Xue et al. (2019) were excluded from
use in this risk evaluation.

Three high-quality studies used OECD TG 305 (OECD, 2012) to carry out laboratory dietary
biomagnification tests, with modifications. Woodburn et al. (2013) measured BMF in rainbow trout
(Oncorhynchus mykiss) and obtained a lipid-normalized, steady-state mean BMF_ ss value of 0.66 +
0.06. The ratio of ki/k> yielded greater BMF« values of 1.7 + 0.5 and 4.0 + 1.2 measured from ww and
lipid-normalized ww, respectively. These values are likely conservative estimates due to assumptions
and uncertainties in the two-compartment model used to obtain k1 and k> that decreased the value of k.
Compton (2019) reported a similar result with a BMF_ value of 0.35 + 0.21 (whole body minus gut) for
juvenile rainbow trout in a dietary exposure study, using Equation 3-1. Using the same method, Cantu et
al. (2024) reported a BMF value of 0.444 + 0.079 (SE).

Equation 3-1
BMF, = Epiet X F y PL,piet
kpr PL,Fish
Where:
BMF; = Lipid-normalized biomagnification factor (kg/kg)
Epiet = Dietary uptake coefficient (unitless)
F = Proportional feeding rate (kg-food/kg-ww fish)
kgt = Depuration rate constant (d2)
@1 Diet = Lipid content of diet (kg-lipid/kg-food)
L Fish = Lipid content of fish (kg-lipid/kg-fish)

The BMF values from three high-quality laboratory studies were below 1, which indicates that D4 is
unlikely to biomagnify.

3.6.5 Trophic Magnification Factor

Trophic magnification occurs when the average biological body burden of a chemical increases with
trophic level within a food web. It is often estimated using a trophic magnification factor (TMF). A
TMF value greater than one indicates trophic magnification within a food web, whereas a TMF less than
one indicates trophic dilution. When trophic dilution occurs, the concentration of a pollutant decreases
as the trophic level increases. It could be the result of a net balance of ingestion rate, uptake from food,
internal transformation, or elimination processes favoring loss of pollutant that enters the organism via
food.

Eight high-quality studies estimating the TMF of D4 were identified during systematic review. These
studies represent a range of habitat types, locations, and different types and sizes of food webs. All but
two studies reported multiple TMF estimates by including multiple food web configurations, calculation
methods, and/or sublocations. For instance, five studies employed and reported results of both ordinary
least-squares (OLS) regressions and bootstrapped regressions. Therefore, the entire dataset comprises of
24 individual TMF estimates. Of these, five reported TMF values were greater than 1.

Three TMF studies were conducted in China, in bodies of water experiencing both point and non-point

Page 45 of 82


https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=7307359
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6996285
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6994446
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6833792
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=4158892
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6833850
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=9960764
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=11592108

1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526

PUBLIC RELEASE DRAFT
September 2025

sources of D4 exposure. Cui et al. (2019) found D4 likely to biomagnify in a mixed, marine food web
comprising eighteen species in the Bohai Sea in northern China; the obtained TMF was 1.7 (95% CI:
1.1-2.6). Additionally, the authors used two benchmark chemicals known to biomagnify, BDE-47 and
BDE-99, to confirm that the study design was able to capture magnification (100% probability of
obtaining TMF > 1 was determined for both reference compounds).

Similarly, Jia et al. (2015) reported trophic magnification in a mixed, marine food web of Dalian Bay,
China. Five fish, one crustacean, five mollusk, and one polychaete species, as well as sea lettuce were
included in the analysis, totaling of 305 samples. The OLS yielded a TMF estimate of 1.16 (95% CI:
0.94-1.44), while the bootstrapped regression yielded a TMF of 1.5 (95% ClI: 1.2-1.8). Again, the
authors confirmed the representativeness of their study design with the benchmark chemical BDE-99,
yielding a probability of 99.7 percent of obtaining a TMF greater than 1.

To contrast, He et al. (2021) reported likely trophic dilution (bootstrapped TMF = 0.75; 95% CI: 0.58—
1.93) among twelve fish species from a freshwater food web in Lake Chaohu, China. Similarly, Kim et
al. (2022) reported an OLS-derived TMF value of 0.9 from fifteen fish species in the Geum River, South
Korea. He et al. (2021) used a markedly smaller sample size (<50) than Jia et al. (2015) and Cui et al.
(2019), likely contributing to the relatively larger variance in the obtained probability distribution for
TMF. Additionally, He et al. (2021) was the only study to use dry weight, lipid-normalized
concentrations in their analysis while others used lipid-normalized wet weights.

Trophic dilution of D4 was also reported in a pelagic marine food web in Tokyo Bay, a largely eutrophic
bay in Japan (Powell et al., 2017). The OLS regression across these fish species yielded a TMF of 1.3,
though with a relatively large variance range (95% ClI: 0.5-3.3), likely due to the small sample size of
21. The bootstrapped regression was much more precise, yielding a median TMF of 0.6 with 95% CI:
0.5-0.8. Powell et al. (2017) also reported a combined TMF range of 2.2 to 2.7 from the co-measured
benchmark chemicals CB-180 and CB-153.

Two studies found D4 to exhibit trophic dilution in both marine and freshwater ecosystems in Norway.
Borga et al. (2013) investigated several configurations of pelagic, freshwater food webs in Lake Mjgsa
and Lake Randsfjord including brown trout (Salmo trutta), smelt (Osmerus eperlanus), vendace
(Coregonus albula), whitefish, zooplankton (Mysis relicta), among other epi- and hypolimnetic species.
Using OLS regression, Borga et al. (2013) found mean TMF values from 0.57-0.76 across five food
web scenarios. Additionally, the reported benchmark chemicals, dichlorodiphenyldichloroethylene (p,p'-
DDE), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDESs), exhibited a
TMF range from 1.41-5.72, strengthening confidence in the D4 trophic dilution conclusion. Powell et
al. (2018) found D4 to exhibit trophic dilution in Oslofjord across all of four food web configurations
representing both demersal and pelagic systems. Mean OLS-derived TMFs ranged from 0.5-0.7 and
median bootstrapped values ranged from 0.4-0.7, however samples in this study were not analyzed for a
benchmark compound.

Two studies conducted in Lake Pepin and Lake Erie both reported trophic dilution to be likely in each of
the sampled food webs. Powell et al. (2009) calculated the TMF from 2 benthic macroinvertebrates and
15 fish species in Lake Pepin. With the OLS regression method, a TMF of 0.8 (95% CI: 0.6-1.1) was
obtained, and the bootstrapped regression yielded a TMF of 0.5 (95% CI: 0.3-0.7). Similarly,
McGoldrick et al. (2014) obtained a bootstrapped TMF of 0.74 (95% ClI: 0.39-1.2) from seven fish
species and one invertebrate species collected from the Western Basin of Lake Erie.

It is important to note that even those studies reporting TMF values greater than one obtained TMF
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ranges relatively close to one as compared to reference chemicals whose TMF values range from 1.2 to
5.72 (Borga et al., 2013; McGoldrick et al., 2014; Jia et al., 2015; Powell et al., 2017). This fact
combined with the remainder of the dataset shows overall low potential for D4 to exhibit trophic
magnification across several ecosystem and food web configurations. While there may be specific
instances of biomagnification in certain food webs and in certain predator-prey relationships, especially
in lower trophic levels and sediment-dwelling organisms, the majority of the empirical evidence
gathered from high-quality data suggests low potential for biomagnification of D4.

3.6.6 Key Sources of Uncertainty in the Assessment of Bioaccumulation Potential

Many sources of uncertainty in bioaccumulation assessments result from study design. For example,
water samples for BCF and BAF studies should be analyzed such that the bioavailable (i.e., dissolved)
fraction is captured. This can be difficult for volatile, hydrophobic chemicals with low solubilities like
D4, as discussed in Section 3.4.2.3. Additionally, Cantu et al. (2024) highlighted how D4 uptake via gill
respiration, and thus BCF, is greatly influenced by DOC concentration of the aqueous environment (see
Appendix B.2).

There are differing sources of uncertainty associated with field-derived BAF, BMF, BSAF and TMF
values as compared to laboratory-derived bioaccumulation metrics. Field studies introduce more
uncertainty than laboratory studies, specifically when no field controls are collected, small sample sizes,
the inability to confirm steady-state conditions, and uncertainties surrounding diet and additional
exposure routes (Dow Corning, 2009; Powell et al., 2009; Xue et al., 2019). Additional sources of
uncertainty include low detection and quantification frequencies in sampled biota (Borga et al., 2013;
Powell et al., 2018), and relatively small sample sizes (Borga et al., 2013; McGoldrick et al., 2014;
Powell et al., 2018; Kim et al., 2022), both of which can skew accumulation assessments if not taken
into consideration. Nonetheless, field measurements sometimes provide a more representative picture of
accumulation dynamics in natural environments when compared to engineered laboratory settings. As
laboratory experiments have better control over routes of exposure, these studies are important to inform
the impact of exposure characteristics (e.g., dietary vs. respiration, controlled chemical concentration
and exposure times) on chemical uptake and depuration. Because of this, both laboratory- and field-
measured bioaccumulation metrics were considered in the overall analysis of the bioaccumulation
potential of D4.

3.7 Weight of Scientific Evidence Conclusions for Fate and Transport
Assessment

The weight of scientific evidence supporting the fate and transport assessment is based on the strengths,
limitations, and uncertainties associated with the fate and transport studies evaluated within and outside
systematic review. The judgment is summarized below using confidence descriptors: robust, moderate,
slight, or indeterminate. This approach is consistent with the 2021 Draft Systematic Review Protocol
(U.S. EPA, 2021d).

3.7.1 Strengths, Limitations, Assumptions, and Key Sources

Given the consistent results from numerous high-quality studies, there is a robust confidence that D4:

e isexpected to undergo rapid hydrolysis in surface water and its hydrolysis rate is dependent on
the pH and temperature (Section 3.3.1.1);

e does not undergo biodegradation in water under aerobic conditions (Section 3.3.2.1);

e does not undergo biodegradation in sediment under aerobic and anaerobic conditions and will
have a strong affinity for organic carbon (Section 3.3.2.2);

e is not expected to undergo significant direct photolysis and will degrade slowly by reaction with
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photochemically produced hydroxyl radicals (+OH) in the atmosphere (Section 3.3.3.1);

e is not expected to undergo photolysis in aquatic environments under environmentally relevant
conditions since it does not absorb wavelengths greater than 290 nm (Section 3.3.3.2);

e has the potential to undergo atmospheric long-range transport due to its persistence in the air
(Section 3.4.1.1);

e isexpected to volatilize from surface water (Section 3.4.2.1);

e s likely to volatilize from moist soils and undergo hydrolysis in drier, acidic soils with higher
clay content (Sections 3.3.1.3 and 3.4.3.2);

e isexpected to transform into DMSD and its oligomer silanols in water, soil, and sediment
(Section 3.3.1);

o will be effectively degraded (>99.9%) and its emission through incineration ash landfill will be
negligible (Section 3.5.1);

o will be removed significantly after undergoing wastewater treatment primarily by sorption to
sludge and volatilization, with a small fraction of D4 in the wastewater effluent being discharged
to receiving water (Section 3.5.2);

e s likely to bioconcentrate and bioaccumulate in fish (Sections 3.6.1 and 3.6.2);
e may accumulate in sediment-dwelling organisms (Section 3.6.3); and
e is not expected to biomagnify in predator-prey relationships (Section 3.6.4).

As a result of varied conclusions, there is a moderate confidence that D4:
e does not exhibit trophic magnification (Section 3.6.5).

Findings with a robust weight of evidence had two or more high-quality studies that were largely in
agreement with each other. Findings that have a moderate weight of evidence were based on high-
quality studies that were mostly in agreement but varied in sample size and consistency of results. Due
to D4’s water solubility and volatility, certain physical and chemical properties may be difficult to
measure experimentally, such as water solubility and partitioning coefficients (e.g., Kow, Koa, Kaw)
with standard guideline tests (Varaprath et al., 1996; Xu and Kropscott, 2012; Xu et al., 2014; Xu and
Kropscott, 2014). The selection of these values was based on consideration of all reasonably available
information and used professional judgment which incorporated consideration of the overall data quality
ranking of the references.
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4 PHYSICAL CHEMISTRY AND FATE AND TRANSPORT
ASSESSMENTS CONCLUSIONS

D4 is found in various environmental media including air, water, sediment, soil and biota due to its
widespread production and application. The physical and chemical properties of D4 determine its
environmental fate and transport behavior, which is important in understanding D4’s persistence in the
environment and its potential for bioaccumulation, while considering transport, partitioning, and
removal pathways. Based on D4’s water solubility (0.056 mg/L 23 °C), Henry’s law constant (11.8
atm-m3/mol at 21.7 °C), and log Koc values (4.19-4.22 at 24.4-24.8 °C), D4 will preferentially partition
to organic carbon, which suggests that the major environmental compartments will be air, soil, biosolids,
and sediment. Based on these properties, the removal of D4 in wastewater treatment processes is
expected to be primarily by sorption to sludge, followed by volatilization. Surface water is highly likely
to be a minor pathway, and the main sources of D4 are from wastewater effluents and down-the-drain
disposals from industrial and consumer uses. Hydrolysis is the dominant pathway for D4 degradation in
surface water and its hydrolysis rate is highly dependent on pH and temperature. D4 may undergo
volatilization under specific environmental conditions. A fraction of D4 can be transported to sediments
from overlying surface water via advection, dispersion, and sorption to suspended solids that can settle
out from the water column. In areas where continuous releases of D4 take place, higher D4
concentrations in surface water can be expected. This also applies to suspended and benthic sediments.
D4 does not undergo biodegradation in water under aerobic conditions and in sediment under both
aerobic and anaerobic conditions. Since D4 is expected to be removed primarily by sorption to sludge in
wastewater treatment, it may be transferred to soil via land application of biosolids. Due to its water
solubility and strong affinity for organic carbon, D4 is unlikely to migrate to groundwater, surface water,
or be uptaken by crops and plants. Instead, D4 is expected to dissipate in the soil via abiotic processes
such as hydrolysis and volatilization.

When released directly to the atmosphere, D4 is not expected to undergo significant direct photolysis
and will degrade slowly after reacting with photochemically produced -OH. Due to its persistence in the
atmosphere (tu2 > 2 days), D4 has the potential to undergo atmospheric long-range transport. However,
D4 is not expected to undergo wet or dry deposition due to its low water solubility and high vapor
pressure. Atmospheric D4 concentrations may be elevated in close proximity to the release of biogases
from landfills and aeration tanks in WWTPs due to its volatility (0.9338 mm Hg at 25 °C). Under indoor
settings, D4 air concentrations were observed to be significantly higher than those from outdoor air and
are strongly correlated with occupant density. D4 was also detected in indoor dust, but due to its
volatility, higher D4 air concentrations are found in the gaseous phase.

Overall, D4 is not expected to be persistent in water and soil under environmentally relevant conditions
but will be persistent in air and sediments. However, it may be continually present in water where there
is continuous release of D4. In the environment, D4 is expected to transform into silanols and DMSD.
For biota, D4 is highly likely to bioconcentrate and bioaccumulate in fish. In addition, D4 may
accumulate in sediment-dwelling organisms. Though D4 can, in some instances, biomagnify and exhibit
trophic magnification, the weight of scientific evidence suggests that D4 is generally not expected to
biomagnify in predator-prey relationships or exhibit trophic magnification.
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APPENDICES

Appendix A D4 DEGRADANTS

A.1 Physical and Chemistry Assessment

A.1.1 Approach and Methodology

EPA gathered and evaluated physical and chemical property data and information according to the
process described in the Draft Systematic Review Protocol Supporting TSCA Risk Evaluations for
Chemical Substances (U.S. EPA, 2021d) (also referred to as the “2021 Draft Systematic Review
Protocol”). During the data evaluation for D4’s degradants, EPA considered both measured and
estimated physical and chemical property data/information summarized in Table_Apx A-1, Table_Apx
A-2, Table_Apx A-3, and Table_Apx A-4 as applicable. Information on the full, extracted dataset is
available and provided in the supplemental file, Draft Data Quality Evaluation and Data Extraction
Information for Physical and Chemical Properties for Octamethylcyclotetrasiloxane (D4) (U.S. EPA
2025d).

A.1.2 Final Selected Physical and Chemical Properties

For some physical and chemical properties, there are multiple high-quality values available for selection
that were identified during systematic review. The majority of selected data were collected under
standard environmental conditions (i.e., 20-25 °C and 760 mm Hg). However, some properties are
reported at several experimental temperatures to provide additional context to how D4 behaves under
environmentally relevant temperatures in real world scenarios. This is especially important for providing
foundational context for environmental fate and transport endpoints (i.e., biodegradation rates,
wastewater removal efficiency, bioaccumulation factors, etc.) as they demonstrate the variety of
environmental conditions where D4 may be measured.
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Table Apx A-1. Physical and Chemical Properties of Dimethylsilanediol (DMSD)

Property Selected Value? Reference(s) DatRaa?i:]Jgglty
Molecular formula C2HgO:Si Elsevier (2021a) High
Molecular weight 92.17 g/mol Elsevier (2021a) High
Physical form Crystal phase — interplanar Elsevier (2021c¢) High

spacing and leafs
Melting point 98.8+1.56 °C Elsevier (2021c) High
Boiling point No data identified
Density 1.095-1.099 g/cm?® Elsevier (2021c) High
Vapor pressure No data identified
Vapor density No data identified
Water solubility 2.45E06 mg/L at 25 °C Elsevier (2021c) High
Octanol/water partition |-0.41+0.1at20.1°C Xu and Kropscott (2012) as High
coefficient (log Kow) cited in Elsevier (2021c)
Octanol/air partition 6.40 £0.31at20.1°C Xu and Kropscott (2012) High
coefficient (log Koa)
Henry’s law constant 3.48E-09 atm-m¥mol at 20.1 °C | Xu and Kropscott (2012) High
Flash point No data identified
Autoflammability No data identified
Viscosity No data identified
Refractive index 1.444-1.456 at 25 °C Elsevier (2021c¢) High

Dielectric constant

No data identified

& Measured unless otherwise noted
b “Data Quality Rating” apply to all references listed in this table
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Table Apx A-2. Physical and Chemical Properties of Tetramethyldisiloxanediol (Dimer Diol)
a Data Quality
Property Selected Value Reference(s) Rating®
Molecular formula C4H1405Si2 Elsevier (2021a) High
Molecular weight 166.33 g/mol Elsevier (2021a) High
Physical form Needle-shaped, monoclinic, white | Elsevier (2021d) High
crystal
Melting point 66 °C Haynes (2014a); High
Elsevier (2021d)
Boiling point No data identified
Density 1.095 g/cm? at 25 °C Haynes (2014a) High
Vapor pressure No data identified
Vapor density No data identified
Water solubility 110,000-115,000 mg/L at 20-25°C | Elsevier (2021d) High
Octanol/water partition | 0.926 + 0.035 at 12°C Dow Chemical (2022b) High
coefficient (log Kow) 0.962 + 0.049 at 20°C
1.036 + 0.042 at 27°C
1.099 + 0.025 at 35°C
Octanol/air partition No data identified
coefficient (log Koa)
Henry’s law constant 2.58E-07 atm-m3®mol at 12 °C Dow Chemical (2022b) High
5.25E-07 atm-m3/mol at 20 °C
1.73E-07 atm-m*/mol at 27 °C
1.39E-07 atm-m®mol at 35 °C
Flash point No data identified
Autoflammability No data identified
Viscosity No data identified
Refractive index 1.457-1.466 at 25 °C Elsevier (2021d) High
Dielectric constant No data identified

& Measured unless otherwise noted
® “Data Quality Rating” apply to all references listed in this table
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Table Apx A-3. Physical and Chemical Properties of Hexamethyltrisiloxanediol (Trimer Diol)
a Data Quality
Property Selected Value Reference(s) Rating®
Molecular formula CeH200.Si3 Elsevier (2021a) High
Molecular weight 240.48 g/mol Elsevier (2021a) High
Physical form No data identified
Melting point -23t0-19°C Elsevier (2021a) High
Boiling point 72-74 °C at 0.3 torr Elsevier (2021a) High
79-91 °C at 2-3 torr
106 °C at 6 torr
Density 0.991-1.0127 g/cm® at 20-25 °C | Elsevier (2021a) High
Vapor pressure No data identified
Vapor density No data identified
Water solubility No data identified
Octanol/water partition | 2.125+0.249 at 12 °C Dow Chemical (2022b) High
coefficient (log Kow) 2.369 + 0.104 at 20 °C
2.391+0.112 at 27 °C
2.512+0.165 at35°C
Octanol/air partition No data identified
coefficient (log Koa)
Henry’s law constant 1.12E-06 atm-m*/mol at 12 °C Dow Chemical (2022b) High
1.23E-06 atm-m*/mol at 20 °C
1.13E-06 atm-m*/mol at 27 °C
1.37E-06 atm-m*/mol at 35 °C
Flash point No data identified
Autoflammability No data identified
Viscosity No data identified
Refractive index 1.405-1.409 at 20-25 °C Elsevier (2021a) High

Dielectric constant

No data identified

& Measured unless otherwise noted
® “Data Quality Rating” apply to all references listed in this table
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Table Apx A-4. Physical and Chemical Properties of Octamethyltetrasiloxanediol (Tetramer Diol)
Property Selected Value? Reference(s) DatRaa?i:]Jgglty
Molecular formula CsH2605Si4 Elsevier (2021a) High
Molecular weight 314.64 g/mol Elsevier (2021a) High
Physical form No data identified
Melting point -5°C Elsevier (2021b) High
Boiling point 86-88 °C at 0.4 torr Elsevier (2021b) High
97-100 °C at 2 torr
Density 0.9881-0.9886 g/cm®at 20 °C | Elsevier (2021b) High
Vapor pressure No data identified
Vapor density No data identified
Water solubility No data identified
Octanol/water partition No data identified
coefficient (log Kow)
Octanol/air partition No data identified
coefficient (log Koa)
Henry’s law constant No data identified
Flash point No data identified
Autoflammability No data identified
Viscosity No data identified
Refractive index 1.4054-1.4088 at 20-25 °C Elsevier (2021b) High
Dielectric constant No data identified

& Measured unless otherwise noted
b “Data Quality Rating” apply to all references listed in this table

A.1.3 Endpoint Assessments

The physical and chemical property values selected for use in this risk evaluation for D4 degradants are
given in Table_Apx A-1, Table_Apx A-2, Table_Apx A-3, and Table_Apx A-4. These values were
updated based on systematic review results added since the publication of the Final Scope of Risk
Evaluation for Octamethylcyclotetra- siloxane (D4) — Supplemental File: Data Extraction and Data
Evaluation Tables for Physical and Chemical Property Studies for D4 Degradants (U.S. EPA, 2022a).

A.1.3.1 Physical Form

Only one source was identified and evaluated as a high-quality physical form datum for DMSD. Elsevier
(2021c) reported DMSD as a crystal-phase with interplanar spacing and leafs. (Elsevier, 2021d) also
reported three high-quality physical form data for dimer diol. Dimer diol is described as a needle-
shaped, monoclinic, white crystal. For trimer and tetramer diols, no physical form data was identified.

A.1.3.2 Melting Point
For DMSD, Elsevier (2021c) reported nine high-quality melting point data that ranged from 94.5 to 101
°C. Seven sources reported melting point values from DMSD in a solvent, while two other sources did
not report a solvent. The average melting point of those nine data is 98.8 £ 1.56 °C and is selected for
use in this risk evaluation.
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Elsevier (2021d) reported 19 high-quality melting point data for dimer diol. One melting point datum
was reported at 121 °C and the remaining 18 melting point data ranged from 62 to 68 °C. Out of all the
melting point data, only eight data reported the solvent used in their studies. The calculated average
melting point of those 18 melting point data (excluding the outlier, 121 °C) is 65.5 + 2.17 °C. Haynes
(2014a) reported a melting point of 66 °C, which is in close agreement with the average melting point of
Elsevier (2021d).

Elsevier (2021a) reported two high-quality melting point data for trimer diol. A melting point was
reported at —1.9 °C and another was reported at —23 °C. The calculated average melting point of both
melting point data is —12.5 £ 14.92. The standard deviation is very high, indicating that the value of this
parameter is not well-defined. Therefore, a range of —23 to —1.9 °C was selected for use in this risk
evaluation.

A high-quality melting point was reported for tetramer diol. Elsevier (2021b) reported a melting point of
—5 °C and was selected for use in this risk evaluation.

A.1.3.3 Boiling Point
Systematic review extracted and evaluated five high-quality boiling point data for trimer diol. Elsevier
(2021a) reported three boiling point data ranging from 79 to 91 °C at 2—-3 torr. Elsevier (2021a) also
reported two boiling point values of 106 °C at 6 torr and 72—74 °C at 0.3 torr. All the boiling point data
were selected for use in this risk evaluation since they all were not measured under standard atmospheric
pressure (i.e., 760 mm Hg = 760 torr).

Systematic review extracted and evaluated two high-quality boiling point data for tetramer diol. Elsevier
(2021Db) reported 86-88 °C at 0.4 torr and 97-100 °C at 2 torr. Both boiling point data were selected for
use in this risk evaluation since they both were not measured under standard atmospheric pressure (i.e.,
760 mm Hg = 760 torr).

No boiling point data were identified for DMSD and dimer diol.

A.1.3.4 Density
Systematic review extracted and evaluated two density data for DMSD. RSC (2021) reported a density
of 0.97 g/mL, which is equivalent to 0.97 g/cm?®, and was rated as a medium-quality data. Elsevier
(2021c) reported a density ranging from 1.095-1.099 g/cm? and was rated as a high-quality data. The
high-quality density datum from Elsevier (2021c) was selected for use in this risk evaluation.

Systematic review also extracted and evaluated two sources that had density data for dimer diol. Elsevier
(2021d) reported three density data. Two of those density data (1.15 and 1.08-1.1) did not report the
experimental temperature so they both were excluded for use in this risk evaluation. The density datum
of 1.118 g/cm?® was reported at 16 °C. Haynes (2014a) reported a density value of 1.095 g/cm? at 25 °C.
The density data from Haynes (2014a) was selected for use in this risk evaluation because the density
was measured under standard environmental temperature (i.e., 20-25 °C).

Systematic review identified a high-quality density data for trimer diol. Elsevier (2021a) reported five
density values in the range of 0.991 to 1.0127 g/cm?® at 20-25 °C. The range of 0.991-1.0127 g/cm? at
20-25 °C was selected for use in this risk evaluation because all five data had the same rating, and no
information was provided to further distinguish them.
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Systematic review identified a high-quality density data for tetramer diol. Elsevier (2021b) reported
density values of 0.9881 and 0.9886 at 20 °C. They both were selected for use in this risk evaluation
because they both had the same rating, and no information was provided to further distinguish both data.

A.1.3.,5 Vapor Pressure

Systematic review extracted and evaluated vapor pressure data for DMSD. Dow Corning (2014)
reported a vapor pressure of 18.1 Pa, which is equivalent to 0.1358 mm Hg. These data were evaluated
to be uninformative. No vapor pressure data were identified for dimer, trimer, and tetramer diols.

A.1.3.6 Vapor Density
No vapor density data were identified for all four degradants.

A.1.3.7 Water Solubility
Systematic review identified four high-quality water solubility data for DMSD. U.S. EPA (2021b)
reported 10.8 and 11 M, which is equivalent to 995,000 and 1.01x10° mg/L based on DMSD’s
molecular weight of 92.17 g/mol. NLM (2021b) reported 10.85 M, which is equivalent to 1x10° mg/L
based on DMSD’s molecular weight of 92.17 g/mol. Elsevier (2021c) reported a water solubility value
of 2,450 g/L at 25 °C, which is equivalent to 2.45x108 mg/L at 25 °C. The water solubility of 2.45x10°
mg/L at 25 °C from Elsevier (2021c) was selected for use in this risk evaluation because of two reasons.
First, U.S. EPA (2021b) and NLM (2021Db) did not report an experimental temperature. Secondly,
empirical and measured data are preferred over estimated data.

Systematic review identified five high-quality water solubility data for dimer diol. U.S. EPA (2021a)
reported 0.661 and 0.662 M, which are equivalent to approximately 110,000 mg/L based on dimer diol’s
molecular weight of 166.32 g/mol. NLM (2021a) reported 0.66 M, which is equivalent to approximately
110,000 mg/L based on dimer diol’s molecular weight of 166.32 g/mol. Elsevier (2021d) reported two
water solubility data as “100 g solvent (water) dissolves 11 g substance at 20 °C” and “100 g solvent
(water) dissolves 11.5 g substance at 25 °C,” which corresponds to 110,000 and 115,000 mg/L,
respectively, at 20-25 °C. The water solubility range of 110,000 to 115,000 mg/L at 20-25 °C from
Elsevier (2021d) was selected for use in this risk evaluation because of two reasons, same as
aforementioned. First, U.S. EPA (2021a) and NLM (2021a) did not report an experimental temperature.
Secondly, empirical and measured data are preferred over estimated data.

No water solubility data were identified for trimer and tetramer diols.

A.1.3.8 Octanol/Water Partition Coefficient (log Kow)

Systematic review extracted and evaluated four log Kow data for D4 degradants. A medium-quality
study, Dow Corning (2014) incorrectly reported a log Kow value of —0.38 from Xu and Kropscott
(2012). The correct log Kow value was —0.41. For this reason, Dow Corning (2014) was excluded for use
in this risk evaluation. A high-quality log Kow value of —0.41 + 0.1 at 20.1 °C was reported for DMSD
obtained from a laboratory study using a double-syringe apparatus ((Xu and Kropscott, 2012), as cited
by (Elsevier, 2021c)). Kurume Laboratory (2021) reported a high-quality log Kow value of <0.3 at 25 °C
for DMSD, which was obtained from a laboratory study using OECD TG 117 (OECD, 2022a). The log
Kow data from Xu and Kropscott (2012) was selected for use in this risk evaluation because the study
provided a precise measurement. Log Kow values of 0.926 + 0.035, 0.962 + 0.049, 1.036 £ 0.042, and
1.099 £ 0.025 at 12, 20, 27, and 35 °C, respectively, were reported for dimer diol from a laboratory
study using a double-syringe apparatus (Dow Chemical, 2022b). The same study also reported log Kow
values of 2.125 + 0.249, 2.369 + 0.104, 2.391 + 0.112, and 2.512 + 0.165 at 12, 20, 27, and 35 °C,
respectively, for trimer diol using the same method. These empirical log Kow data were selected for use
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in this risk evaluation. In addition, Dow Chemical (2022b) also reported log Kow values of 1.018 +
0.038 and 2.381 £ 0.017 at 25 °C for the dimer and trimer diols, respectively, which were calculated
using linear regression of log Kow values on the reciprocal of absolute temperature (T) in Kelvin.
However, these data were not selected for use in this risk evaluation because high-quality empirical log
Kow values are available. No log Kow data were identified for tetramer diol.

A.1.3.9 Octanol/Air Partition Coefficient (log Koa)

Systematic review extracted and evaluated a high-quality log Koa data for DMSD. Xu and Kropscott
(2012) reported a log Koa value of 6.4 + 0.31 at 20.1 °C. This log Koa datum is selected for use in this
risk evaluation. No log Koa data were identified for dimer, trimer, and tetramer diols.

A.1.3.10 Henry’s Law Constant
Through systematic review, two high-quality log Kaw data for DMSD, and dimer and trimer diols were
extracted and evaluated. Xu and Kropscott (2012) reported a log Kaw value of —6.84 + 0.34 at 20.1 °C
for DMSD, which is equivalent to 3.48x10°° atm-m3/mol at 20.1 °C, using Equation 2-1. Dow Chemical
(2022b) reported log Kaw values of —4.957 + 0.037, —4.661 + 0.064, —5.153 + 0.038, and —4.261 + 0.095
at 12, 20, 27, and 35 °C, respectively for the dimer diol. These log Kaw values are equivalent to
2.58x107,5.25x10~, 1.73x10~, and 1.39x10°% atm-m®/mol at 12, 20, 27, and 35 °C, respectively, using
Equation 2-1. For the trimer diol, the log Kaw values were —4.320 £+ 0.136, —4.291 + 0.090, —4.107 +
0.127, and —4.340 £ 0.174 at 12, 20, 27, and 35 °C, respectively. These log Kaw values are equivalent to
1.12x107%, 1.23x107%, 1.93x107%, and 1.16x10°° atm-m®mol at 12, 20, 27, and 35 °C, respectively, using
Equation 2-1. Dow Chemical (2022b) also reported log Kaw values of —4.769 + 0.324 and —4.266 +
0.270 at 25 °C for dimer and trimer diols, respectively, which were interpolated using the function
resulting from a linear regression of log Kaw values on the reciprocal of absolute temperature (T) in
Kelvin. These log Kaw values are equivalent to 4.16x10~ and 1.33x10°® atm-m?*/mol at 25 °C,
respectively, using Equation 2-1. No Henry’s law constant data were identified for tetramer diol.

A.1.3.11 Flash Point
No flash point data were identified for all four degradants.

A.1.3.12 Autoflammability
No autoflammability data were identified for all four degradants.

A.1.3.13 Viscosity

No viscosity data were identified for all four degradants.

A.1.3.14 Refractive Index

Systematic review identified two high-quality refractive index data for DMSD. Elsevier (2021c)
reported a refractive index of 1.444 to 1.448 at 25 °C and 1.452 to 1.456 at 25 °C. A refractive index
range of 1.444 to 1.456 at 25 °C from Elsevier (2021c) was selected for use in this risk evaluation
because both data had the same rating, and no information was provided to further distinguish them.

Systematic review identified two high-quality refractive index data for dimer diol. Elsevier (2021d)
reported a refractive index of 1.457 to 1.461 at 25 °C and 1.462 to 1.466 at 25 °C. A refractive index of
1.457 to 1.466 at 25 °C from Elsevier (2021d) was selected for use in this risk evaluation because both
data had the same rating, and no information was provided to further distinguish them.

Systematic review identified six high-quality refractive index data for trimer diol. Elsevier (2021a)
reported a refractive index ranging from 1.405 to 1.409 at 20-25 °C. This refractive index range was
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selected for use in this risk evaluation because all of the data had the same rating, and no information
was provided to further distinguish them.

Systematic review identified three high-quality refractive index data for tetramer diol. Elsevier (2021b)
reported a refractive index ranging from 1.4054 to 1.4088 at 20-25 °C. This refractive index range was
selected for use in this risk evaluation because all of the data had the same rating, and no information
was provided to further distinguish them.

A.1.3.15 Dielectric Constant

No dielectric constant data were identified for any of the four degradants.

A.1.4 Strengths, Limitations, Assumptions, and Key Sources of Uncertainty

Due to cross-referencing between many of the databases identified and assessed through the systematic
review process, there is potential for data from one primary source to be collected multiple times
resulting in duplication within the dataset. This duplication should be considered as a potential source of
uncertainty in the data analyses. However, data-collection procedures and expert judgment were used to
minimize this possibility whenever possible.

A.2 Fate and Transport Assessment

A.2.1 Approach and Methodology

After the final scope (U.S. EPA, 2022b) was published, EPA extracted and evaluated environmental fate
and transport properties for DMSD. Table_Apx A-5 provides the selected environmental fate data, and
the following sections summarize the findings and provide the rationale for selecting these
environmental fate characteristics.
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2573  Table Apx A-5. Environmental Fate Properties of DMSD
Property or a Overall Quality
Endpoint Vi REETEREE) Determination
Direct Degraded via photochemical Dow Corning (1980) Medium

photodegradation demethylation in water containing
nitrate to yield methylsilanetriol and
ultimately to silicic acid

Degraded via photolytic oxidative Buch et al. (1984) High
demethylation reactions in water
containing nitrate or nitrite; silicic
acid and carbon dioxide were
identified as the final byproducts

Abiotic 98% of DMSD volatilized Lehmann and Miller (1996) High
degradation in

water

Abiotic Sand: 7.7%/1 week

degradation in Sandy clay loam: 3.6%/1 week, 30% Lehmann and Miller (1996) High

soil after 7 weeks
_ 3.5%/30 days based on test substance | Sabourin et al. (1996)
Aerobic concentration of 1,000 mg/L
biodegradation in High
water 13-14%/279 days based on test Sabourin et al. (1999)
substance concentration of 100 mg/L
Sandy loam: 9% after 244 days
Sandy loam: 1.1% after 255 days
Sabourin et al. (1996) High
Sandy: 2.64% after 290 days
Aerobic Clay loam: 1.5% after 290 days
biodegradation in
soil Sandy loam: 1.59-1.7%/1 week
Loam: 0.64-0.74%/1 week
Lehmann et al. (1998) High
Sandy clay loam: 0.42-0.5%/1 week
Sand: 0.36-0.42%/1 week
Organic 0.845 Lehmann and Miller (1996) High
carbon/water

partition coefficient
(log Koc) (sail)

2574 A.2.1.1 Water

2575  The terminal hydrolysis product of D4, DMSD is expected to persist in the aqueous environment.
2576  Because DMSD has a Henry’s law constant value of 3.482x10°at 20.1 °C (Xu and Kropscott, 2012), it
2577 is not expected to volatilize from aqueous surfaces. This has been demonstrated in qualitative laboratory
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studies in which DMSD dissolved in distilled water-filled open scintillation vials demonstrated high
recovery (>90%) until the water was completely evaporated (Lehmann and Miller, 1996). With its water
solubility of 2.45x10® mg/L at 25 °C (Elsevier, 2021c) and a log Kow Vvalue of —0.41 at 20.1 °C (Elsevier
(2021c) citing Xu and Kropscott (2012), DMSD is not expected to adsorb to particles in the water
column. In addition, D4 hydrolysis is not the sole source of DMSD formation in water as other cyclic
siloxanes hydrolyze readily to oligomer silanols with DMSD as their terminal hydrolysis product
(EC/HC, 2008a, 2008b; Brooke et al., 2009a, 2009b; NICNAS, 2020).

Two studies examining aqueous photolysis of DMSD were identified during systematic review. A
medium-quality study, Dow Corning (1980) observed DMSD undergoing photochemical demethylation
to yield methylsilanetriol (CASRN 2445-53-6) and ultimately to silicic acid. A high-quality study, Buch
(1984) also reported that DMSD was degraded via photolytic oxidative demethylation reactions in water
containing nitrate (NOg) or nitrite (NO?), and the final products were silicic acid and CO».

Biodegradation of DMSD is not expected to be an important process in water. A soil bacterium of the
genus Arthrobacter mineralized 13 to 14 percent of 100 mg/L of *C-DMSD in a liquid culture over 279
days (Sabourin et al., 1999) and mineralized 3.5 percent per month of 1,000 mg/L of **C-DMSD in
another study (Sabourin et al., 1996).

A.2.1.2 Soil
Two high-quality biodegradation studies on DMSD were identified during systematic review. Lehmann
et al. (1998) studied the importance of microbial degradation in removing DMSD from soil. The
biodegradation of DMSD was observed in four different soil types after six months under aerobic
conditions with silicic acid and CO- as its final products. Sabourin et al. (1996) also reported that
DMSD was eventually degraded to CO> in four different soil types after approximately 250 days.
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Appendix B ADDITIONAL INFORMATION ON D4
BIOACCUMULATION

B.1 Accounting for Fish Lipid Content Variation in Mean
Bioconcentration Factor Calculation

Because D4 is a very lipophilic chemical (log Kow = 6.488 L/kg (Kozerski and Shawl, 2007)),
bioconcentration and accumulation into tissues is expected to vary with organism lipid content. In order
to account for interspecies lipid content variation when determining a central tendency BCF for use in a
fish ingestion risk analysis (see Draft Environmental Media and General Population Exposure for
Octamethylcyclotetrasiloxane (D4) (U.S. EPA, 2025a)), BCF values were lipid-normalized prior to
averaging. Briefly, the mean empirical BCFs were lipid-normalized following Equation_Apx B-3. The
lipid contents and BCF. values are presented in Table_Apx B-1.

Equation_Apx B-1

BCF, = BCE,,,
PL,Fish
Where:
BCF, = Lipid-normalized bioconcentration factor (L/kg-lipid)
BCE,,, = Bioconcentration factor using wet weight organism concentration (L/kg)
@1 Fish = Lipid content of fish (kg-lipid/kg-fish)

Two of the laboratory BCF studies reported lipid content for the fish and tissues used in determining
BCF (Fackler et al., 1995; Xue et al., 2020). The remaining two studies did not report lipid content,
therefore representative lipid contents from studies presenting comprehensive datasets of the same
species were used to normalize these values (Dow Corning, 1992, 1993a). Finally, a generic lipid
content of 5 percent (OECD, 2012) was applied to the mean BCF_ to adjust back to a representative
BCFww for use in exposure calculations.

Table_Apx B-1. Summary of Mean BCF Normalization to Account for Interspecies Lipid Content
Variation

T (0] (0] )] Mean BCF_
2 2 L,Fish L,Fish L,Fish
BCF Study Fish Species BCFww (%) SD (%) Source (L/kg-lipid)
(L/kg)
Dow Corning Rainbow trout 8,439 10.4 0.4 Dumas et al. (2007) 81,144
(1992) (Oncorhynchus
mykiss)
Dow Corning Fathead minnow 8,474 2.22 0.85 Ussery et al. (2024) 381,712
(1993a) (Pimephales
promelas)
Fackler et al. Fathead minnow 12,900 6.4 NR Fackler et al. (1995) 201,563
(1995) (Pimephales
promelas)
Xue et al. (2020 Common carp 1,922 4,92 11 Xue et al. (2020) 39,145
(Cyprinus carpio)
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Mean

: ; PLFish | PLFish PLFish Mean BCFL

BCF Study Fish Species BCFuww (%) SD' (%) Source (L/kg-lipid)
(L/kg)

) 175,891
Mean BCF_ across all studies L/kg-lipid
BCFww using generic percent lipid content of 5%, BCFse, | 8,795 L/kg

NR = not reported

2 The BCF presented by Xue et al. (2020) was determined from only filet/muscle tissue. The authors provided
percent water content and percent lipid content on a dry weight basis. The lipid content applied here is therefore an

average derived from those data, which is also summarized in Table_Apx B-2.

Table Apx B-2. Summary of Carp Water and Lipid Content from Xue et al. (2020

sample ID Water Content | Lipid Content Dry Mass Lipid content
(%0) (% of dw) Content (%) (% of ww)
F1-1 71 12 29 35
F1-2 73 17 27 16
F1-3 69 18 31 56
F2-1 68 19 39 6.1
F2-2 70 14 30 47
F2-3 72 9 28 25
F3-1 73 16 27 43
F3-2 71 12 29 35
F3-3 70 14 30 47
F4-1 69 23 31 71
F4-2 72 % 08 -3
F4-3 70 24 30 79
F6-1 68 22 32 70
F6-2 73 17 27 46
F6-3 72 22 28 6.2
F8-1 71 15 29 4.4
F8-2 70 13 30 39
F8-3 70 16 30 48
F10-1 68 17 32 5.4
F10-2 71 18 29 52
F10-3 72 22 28 6.2
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sample 1D Water Content | Lipid Content Dry Mass Lipid content
(%) (% of dw) Content (%) (% of ww)
F16-1 73 13 27 35
F16-2 72 15 28 42
F16-3 71 16 29 46
F24-1 72 17 08 48
F24-2 70 14 30 42
F24-3 69 21 31 65
F32-1 73 16 97 43
F32-2 71 17 29 49
F32-3 72 18 28 5.0
F40-1 71 14 29 41
F40-2 70 21 30 63
F40-3 71 18 29 5.2
F48-1 70 19 30 57
F48-2 69 15 31 47
F48-3 70 17 30 c 1
F56-1 71 13 29 38
F56-2 72 14 28 3.9
F56-3 71 16 29 46
F64-1 73 15 97 i1
F64-2 68 14 32 45
F64-3 73 17 27 46
Mean 71 17 29 49
pevition 11

B.2 Dissolved Organic Carbon and D4 Bioconcentration

For very hydrophobic chemicals such as D4, adsorption to dissolved organic carbon (DOC) present in
the water column and fish bioconcentration through gill/respiratory uptake are competing processes in
surface water environments. As such, characterizing the extent to which these processes interact is
fundamental to understanding downstream exposures to fish consumers. Cantu et al. (2024)
demonstrated this dependency using the ADME-B model described in Gobas et al. (2019). Briefly, wet
weight (ww) BCF as determined from bioavailable (i.e., dissolved, not adsorbed) D4 can be described
by the following equations:
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Equation_Apx B-2

Where:

kBT

kBl
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k
BCF = 2%
kBT

Somatic (body) depuration rate constant (d1)
Gill uptake rate constant (d?)

The depuration rate constant (kz;) may be determined from the depuration phase of a feeding study
(e.g., OECD 305), and kj, is the gill uptake rate (d™) from freely dissolved/bioavailable D4, determined

semi-empirically by:

Equation_Apx B-3

Where:
kBZ
kpw
Cpoc
KDOC

_ (kpz X kpwy)
1+ Cpoc X Kpoc

kBl

Respiratory elimination rate constant (d1)

Fish body-water partition coefficient (L/kg, ww)
Concentration of dissolved organic carbon in the water column (kg/L)
Dissolved organic carbon/water partitioning coefficient (L/kg)

To illustrate how the BCF of D4 can vary with the DOC content in the water column, EPA used
the above-described ADME-B model (Gobas et al., 2019) to predict the BCF of D4 varying Cpoc
from 1 to 10 mg/L, levels typical of U.S. rivers (Breitmeyer et al., 2019). The input values for the
BCF model parameters in Equation_Apx B-1 and B-1. Summary of Mean BCF Normalization to
Account for Interspecies Lipid Content Variation

ST (0] @ (0] Mean BCF_
3 3 L,Fish L,Fish L,Fish
BCF Study Fish Species BCFww (%) SD (%) Source (L/kg-lipid)
(L/kg)
Dow Corning Rainbow trout 8,439 10.4 0.4 Dumas et al. (2007) 81,144
(1992) (Oncorhynchus
mykiss)
Dow Corning Fathead minnow 8,474 2.22 0.85 Ussery et al. (2024) 381,712
(1993a) (Pimephales
promelas)
Fackler et al. Fathead minnow 12,900 6.4 NR Fackler et al. (1995) 201,563
(1995) (Pimephales
promelas)
Xue et al. (2020) Common carp 1,922 4,92 1.1 Xue et al. (2020) 39,145
(Cyprinus carpio)
. 175,891
Mean BCF. across all studies L/kg-lipid
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Mean
: : PLFish | PLFish PLFish Mean BCFL
BCF Study Fish Species BCFuww (%) SD' (%) Source (L/kg-lipid)
(L/kg)
BCFww using generic percent lipid content of 5%, BCFse, | 8,795 L/kg

NR = not reported

2 The BCF presented by Xue et al. (2020) was determined from only filet/muscle tissue. The authors provided
percent water content and percent lipid content on a dry weight basis. The lipid content applied here is therefore an
average derived from those data, which is also summarized in Table_Apx B-2.

Table Apx B-2. Summary of Carp Water and Lipid Content from Xue et al. (2020

sample 1D Water Content | Lipid Content Dry Mass Lipid content
(%) (% of dw) Content (%) (% of ww)
F1-1 71 12 29 35
F1-2 73 17 27 46
F1-3 69 18 31 5 6
F2-1 68 19 32 6.1
F2-2 70 14 30 47
F23 72 9 28 25
F3-1 73 16 97 13
F3-2 71 12 29 35
F3-3 70 14 30 4.2
F4-1 69 23 31 71
F4-2 72 26 28 73
F4-3 70 24 30 7.2
F6-1 68 22 32 70
F6-2 73 17 27 46
F6-3 72 29 08 6.2
F8-1 71 15 29 4.4
F8-2 70 13 30 3.9
F8-3 70 16 30 48
F10-1 68 17 32 54
F10-2 71 18 29 59
F10-3 72 29 08 6.2
F16-1 73 13 27 35
F16-2 72 15 o8 47
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sample 1D Water Content | Lipid Content Dry Mass Lipid content
(%) (% of dw) Content (%) (% of ww)
F16-3 71 16 29 46
F24-1 72 17 28 48
F24-2 70 14 30 42
F24-3 69 21 31 65
F32-1 73 16 27 43
F32-2 71 17 29 49
F32-3 72 18 28 5.0
F40-1 71 14 29 i1
F40-2 70 271 30 6.3
F40-3 71 18 29 5.2
F48-1 70 19 30 57
F48-2 69 15 31 47
F48-3 70 17 30 51
F56-1 71 13 29 38
F56-2 72 14 08 39
F56-3 71 16 29 A5
F64-1 73 15 27 41
F64-2 68 14 3 45
F64-3 73 17 97 A5
Mean 71 17 29 49
pevition 11

are listed in Table_Apx B-3. A representative DOC concentration of 5 mg/L commonly used in
exposure modeling (e.g., default value in the Point Source Calculator (PSC) (U.S. EPA, 2019)) was
selected to calculate a BCF of 8,429 L/kg for rainbow trout (Oncorhynchus mykiss) based on the D4
elimination kinetics determined by Cantu et al. (2024) (Figure_Apx B-1 (a); BCF at 5 mg-DOC/L
indicated by triangle).

Table Apx B-3. Parameter Values used in ADME-B Model

Parameter Units Value Source
Kg2 d? 0.0004 Cantu et al. (2024)
Kew d? 564,777.4 Cantu et al. (2024)
Kboc L/kg 1050 Panagopoulos et al. (2015)
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Parameter Units Value Source
ket d? 0.0172 Cantu et al. (2024)

Figure_Apx B-1 (b) compares the semi-empirical, ADME-B modeled BCF of rainbow trout at a DOC
concentration of 5.0 mg/L against the distribution of reported BCF values identified from empirical
studies (i.e., rows (1) to (4) and (8) to (10) of Figure 3-5).

(a) (b)

100004
Metric

Je

(BCFss)
® BCFk

BCF (L/kg)
BCF (L/kg)

® BCFss

50004 50004
W ADME-BBCF

& Mean empirical
BCF

[ _I—

25 5.0 7.5 10.0
Dissolved Organic Carbon (mg/L) in Water Column

Figure_Apx B-1. D4 BCF Variation with Dissolved Organic Carbon (mg/L) (a) and Central
Tendency of Empirical BCF Values (b)

D4 BCF variation in rainbow trout (Oncorhynchus mykiss) with dissolved organic carbon (mg/L) in the water column
modeled using the ADME-B model (Gabas et al., 2019) described above, triangle indicating BCF at 5 mg-DOC/L of
8,429 L/kg (a); boxplot distribution of reported empirical BCF values compared against the ADME-B BCF value
(triangle) and the arithmetic mean of empirical BCF values of 8,795 L/kg (b).

As in Figure 3-5: BCF indicates bioconcentration factor determined as a steady-state ratio; BCFx indicates
bioconcentration factor determined by the Kinetic rate ratio; (BCFss) indicates steady-state was assumed but not
confirmed.

The semi-empirical ADME-B BCF of 8,429 L/kg agrees well with the central tendency of the empirical
values, of which the arithmetic mean is 8,795 L/kg (see Appendix B.2). Because DOC is not
traditionally measured during BCF studies, DOC levels from the BCF studies plotted in Figure_Apx B-1
(b) were not reported. Therefore, it cannot be determined how much of the wide variation in reported
BCF values for D4 is attributable to differences in DOC. Despite this, it is clear that aqueous DOC
concentration can greatly influence the magnitude of D4 BCF and BAF values and is likely a driver of
variability in the D4 bioconcentration and bioaccumulation dataset.
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