AUTHORIZATION TO DISCHARGE UNDER THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM

In compliance with the provisions of the Federal Clean Water Act as amended, (33 U.S.C. §§1251 et seq.; the "CWA", and the Massachusetts Clean Waters Act, as amended, (M.G.L. Chap. 21, §§26-53),

Global Companies, LLC

is authorized to discharge from a facility located at

Chelsea Sandwich, LLC 11 Broadway Chelsea, Massachusetts 02150

to receiving water named

Chelsea River/Mystic River Watershed (MA71)

in accordance with effluent limitations, monitoring requirements and other conditions set forth herein.

This permit shall become effective sixty days from the date of signature.

This permit and the authorization to discharge expire at midnight, five (5) years from the effective date.

This permit supersedes the permit issued on October 2, 1997.

This permit consists of 15 pages in Part I including effluent limitations, monitoring requirements, and 35 pages in Part II including General Conditions and Definitions.

Signed this 3 aday of June, 2005

Link M. Murgy

Linda M. Murphy, Director Office of Ecosystem Protection

Environmental Protection Agency

Boston, MA

Glenn Haas, Director

Division of Watershed Management

Department of Environmental Protection

Commonwealth of Massachusetts

Boston, MA

PART I

A. EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

During the period beginning on the effective date and lasting through the expiration date, the permittee is authorized to discharge treated storm water runoff from Chelsea Sandwich, LLC through **Outfall Serial Number 001** to the Chelsea River. Outfall 001 also includes a small quantity of boiler blow-down water. Such discharge shall: 1) be limited and monitored by the permittee as specified below; and 2) not cause a violation of the State Surface Water Quality Standards of the receiving water.

Effluent Characteristic	Units	Discharge Limitation		Monitoring Requirements (1)	
		Average Monthly	Maximum Daily	Measurement Frequency	Sample Type
Flow Rate ⁽³⁾	gpm		700	When Discharging	Estimate
Total Flow ⁽⁴⁾	Mgal/ Month	Report Monthly Total		When Discharging	Estimate
Total Suspended Solids (TSS)	mg/L	30	100	2/Month ⁽²⁾	Grab
Oil and Grease (O&G) (5)	mg/L		15	1/Month ⁽²⁾	Grab
pН	S.U.		6.5 to 8.5 ⁽⁶⁾	1/Month ⁽²⁾	Grab

See page 4 for explanation of footnotes

Part I.A.1, Continued

Effluent Characteristic	Units	Discharge Limitation		Monitoring Requirements (1)	
		Average Monthly	Maximum Daily	Measurement Frequency	Sample Type
Polynuclear Aromatic Hydrocarbons (PAHs) (7)					
Benzo(a)anthracene	μg/L		Report	Quarterly ⁽²⁾	Grab
Benzo(a)pyrene	μg/L		Report	Quarterly ⁽²⁾	Grab
Benzo(b)fluoranthene	μg/L		Report	Quarterly ⁽²⁾	Grab
Benzo(k)fluoranthene	μg/L		Report	Quarterly ⁽²⁾	Grab
Chrysene	μg/L		Report	Quarterly ⁽²⁾	Grab
Dibenzo(a,h)anthracene	μg/L		Report	Quarterly ⁽²⁾	Grab
Indeno(1,2,3-cd)pyrene	μg/L		Report	Quarterly ⁽²⁾	Grab
Naphthalene	μg/L		Report	Quarterly ⁽²⁾	Grab
Volatile Organic					
Compounds (VOCs)					
Benzene	μg/L		51	Quarterly ⁽²⁾	Grab
Toluene	μg/L		Report	Quarterly ⁽²⁾	Grab
Ethylbenzene	μg/L		Report	Quarterly ⁽²⁾	Grab
Total Xylenes	μg/L		Report	Quarterly ⁽²⁾	Grab

See page 4 for explanation of footnotes

Footnotes:

- 1. All samples shall be collected from a storm event that is greater than 0.1 inches in magnitude and that occurs at least 72 hours from the previously measurable (i.e., greater than 0.1 inch rainfall) storm event. All samples are to be grab samples taken within thirty (30) minutes of the initiation of the discharge from the outfall(s) where practicable, but in no case later than within the first hour of discharge from the outfall(s). Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location: after treatment in the Oil/Water (O/W) Separator but before the effluent is discharged into and/or mixes with the Chelsea River.
- 2. Sampling frequency of 1/month and 2/month is defined respectively as the sampling of one (1) and two (2) storm event(s) (as defined above in Footnote No. 1) in each calendar month. Sampling frequency of quarterly is defined as the sampling of one (1) storm event (as defined above in Footnote No. 1) in each quarter. Quarters are defined as the interval of time between the months of: January through March, inclusive; April through June, inclusive; July through September, inclusive; and October through December, inclusive.

 Quarterly sampling shall be performed concurrently with the monthly monitoring event. The permittee shall submit the results to EPA of any additional testing done to that required herein, if it is conducted in accordance with EPA approved methods consistent with the provisions of 40 CFR §122.41(l)(4)(ii).
- 3. For Flow Rate, the maximum daily value represents the estimated maximum instantaneous flow rate identified by the facility as passing through the O/W Separator for each day that storm water is discharged during the reporting period. The maximum instantaneous flow rate, which is to be reported in the units of gallons per minute (gpm), shall be based upon the summation of the pump curve value(s) for all pumps operating and controlling the rate of flow through the O/W Separator when the discharge is occurring during the reporting period.
- 4. For Total Flow, the value reported represents the estimated sum of the flow for each day that storm water is discharged during that month. The total monthly flow rate shall be calculated based upon the pump curve value(s) and the hours of operation for the pump(s) during the reporting period and shall be reported in the units of millions of gallons/month (Mgal/month). The permittee shall also report the total number of days during the reporting period in which there was a discharge from the outfall(s) (to be noted on DMR form under "Event Total" parameter).
- 5. O&G is to be measured using EPA Method 1664
- 6. See Part I.A.4., Page 8
- 7. See Part I.A.17., Page 9

Part I.A. (Continued)

During the period beginning on the effective date and lasting through the expiration date, the permittee is authorized to discharge treated ground water from Chelsea Sandwich, LLC through internal waste stream **Outfall Serial Number 002**. Extracted ground water shall be treated before being discharged into the storm water conveyance system. Such discharge shall: 1) be limited and monitored by the permittee as specified below; and 2) not cause a violation of the State Surface Water Quality Standards of the receiving water.

Effluent Characteristic	Units	Discharge Limitation		Monitoring Requirements (1)	
		Average Monthly	Maximum Daily	Measurement Frequency	Sample Type
Flow Rate ⁽³⁾	gpm		25	When Discharging	Flow Indicator
Total Flow (4)	Mgal/ Month	Report Monthly Total		When Discharging	Flow Indicator
Total Suspended Solids (TSS)	mg/L	30	100	Quarterly ⁽²⁾	Grab
Total Petroleum Hydrocarbons (TPH)	mg/L		5	Quarterly ⁽²⁾	Grab
рН	S.U.		6.5 to 8.5 (5)	Quarterly ⁽²⁾	Grab

See page 7 for explanation of footnotes

Part I.A.2 (Continued)

Effluent Characteristic	Units	Discharge Limitation		Monitoring Requirements (1)	
		Average Monthly	Maximum Daily	Measurement Frequency	Sample Type
Polynuclear Aromatic Hydrocarbons (PAHs) Group I PAH Compounds ⁽⁶⁾ Group II PAH Compounds ⁽⁸⁾ Naphthalene	μg/L μg/L μg/L		0.018 ⁽⁷⁾ 100 20	Quarterly ⁽²⁾ Quarterly ⁽²⁾ Quarterly ⁽²⁾	Grab Grab Grab
Volatile Organic Compounds (VOCs) Benzene Toluene Ethylbenzene Total Xylenes BTEX (9) Total Petroleum Hydrocarbons (TPH)	μg/L μg/L μg/L μg/L μg/L μg/L		5 Report Report Report 100	Quarterly ⁽²⁾ Quarterly ⁽²⁾ Quarterly ⁽²⁾ Quarterly ⁽²⁾ Quarterly ⁽²⁾ Quarterly ⁽²⁾	Grab Grab Grab Grab Grab Grab

See page 7 for explanation of footnotes

Footnotes:

- 1. All samples shall be collected at the outlet of the ground water remediation system prior to mixing with any storm water or other water flowing through the storm water conveyance system.
- 2. Sampling frequency of quarterly is defined as the sampling of one (1) event in each quarter. Quarters are defined as the interval of time between the months of: January through March, inclusive; April through June, inclusive; July through September, inclusive; and October through December, inclusive. Quarterly sampling for Outfall 002 shall be performed concurrently with the quarterly sampling required for Outfall 001. In the event there is no quarterly sampling of Outfall 001 (i.e., there is no storm event as described in Part I.A.1, Footnote Number 1 of this Draft Permit), then the permittee may select an alternate day within that designated quarter to complete the sampling of Outfall 002. The permittee shall submit the results to EPA of any additional testing done to that required herein, if it is conducted in accordance with EPA approved methods consistent with the provisions of 40 CFR §122.41(1)(4)(ii).
- 3. For Flow Rate, the permittee shall report the maximum daily flow rate of treated ground water discharged by the facility during the reporting period. The maximum daily flow rate, which is to be measured in the units of gallons per minute (gpm), shall be based upon the totalizer flow results or an approved equivalent flow measuring device.
- 4. For Total Flow, the value reported represents the sum of the flow for each day that ground water is discharged during that month. The total monthly flow rate shall be based upon the totalizer flow results or an approved equivalent flow measuring device and shall be reported in the units of millions of gallons/month (Mgal/month).
- 5. See Part I.A.4., Page 8
- 6. See Part I.A.18., Page 9
- 7. The compliance limit for each individual Group I PAH compound is being set at the Minimum Level (ML) of reporting (See Part I.A.18., Page 9) since the effluent limit of 0.018 µg/L is less than the ML reported for each Group I PAH compound in an aqueous solution. The compliance limit for the aggregate sum of the Group I PAH compounds is being set at 10.0 µg/L based on the approximate sum of the MLs for each individual Group I PAH compound. For purposes of determining compliance/non-compliance, any value of a Group I PAH compound detected below its ML shall be considered as non-detect.
- 8. See Part I.A.19., Page 10
- 9. The permit includes an effluent limit for the sum of benzene, toluene, ethylbenzene, and total xylenes (BTEX) compounds reported.

Part I.A. (Continued)

- 3. The discharges either individually or in combination shall not cause a violation of State Water Quality Standards of the receiving waters.
- 4. The pH of the effluent shall not be less than 6.5 nor greater than 8.5 at any time unless these values are exceeded as a result of natural causes.
- 5. The discharge shall not cause objectionable discoloration of the receiving waters.
- 6. The discharge shall not contain a visible oil sheen, foam, nor floating solids at any time.
- 7. The discharge shall not contain materials in concentrations or combinations which are hazardous or toxic to human health, aquatic life of the receiving surface waters or which would impair the uses designated by its classification.
- 8. There shall be no discharge of <u>tank bottom water and/or bilge water</u> alone or in combination with storm water discharge or other wastewater.
- 9. The discharge shall not impart color, taste, turbidity, toxicity, radioactivity or other properties which cause those waters to be unsuitable for the designated uses and characteristics ascribed to their use.
- 10. Notwithstanding specific conditions of this permit, the effluent must not lower the quality of any classified body of water below such classification, or lower the existing quality of any body of water if the existing quality is higher than the classification.
- 11. The permittee shall inspect, operate, and maintain the O/W Separator(s) at the facility to ensure that the Effluent Limitations and Conditions contained in this permit are met. The permittee shall ensure that all components of the facility's Storm Water Pollution Prevention Plan including those which specifically address the operation and maintenance of the O/W Separator(s) and other components of the storm water conveyance system are complied with.
- 12. Chemicals (i.e. disinfecting agents, detergents, emulsifiers, etc.), bioremedial agents including microbes shall not be added to the collection and treatment systems without prior approval by the U. S. Environmental Protection Agency (EPA) and the Massachusetts Department of Environmental Protection (MADEP) to prevent hydrocarbon and/or particulate matter carryover into the Chelsea River.
- 13. There shall be no discharge of any sludge and/or bottom deposits from any storage tank(s), basin(s), and/or diked area(s) to the receiving waters. Examples of storage tanks and/or basins include, but are not limited to: primary catch basins, stilling basins, O/W Separators,

- petroleum product storage tanks, baffled storage tanks collecting spills, and tank truck loading rack sumps.
- 14. The bypass of storm water runoff, wash water, or water used at the facility is prohibited except where necessary to avoid loss of life, injury, or severe property damage. Each bypass shall be sampled for all of the effluent characteristics identified in Part I.A.1 of this permit (i.e., monthly and quarterly) and the results reported to EPA within forty-five (45) days of the initiation of the bypass. These bypass reporting requirements are in addition to those already identified in 40 Code of Federal Regulations (CFR) §122.41(m).
- 15. EPA may modify this permit in accordance with EPA regulations in 40 Code of Federal Regulations (CFR) §122.62 and §122.63 to incorporate more stringent effluent limitations, increase the frequency of analyses, or impose additional sampling and analytical requirements.
- 16. The appearance of any size sheen attributable to the discharge from the Chelsea Sandwich, LLC shall be reported immediately by the permittee to the appropriate U.S. Coast Guard Officer in accordance with Section 311 of the Clean Water Act (CWA). This requirement is in addition to any reporting requirements contained in the National Pollutant Discharge Elimination System (NPDES) permit.
- 17. The reporting of Polynuclear Aromatic Hydrocarbons (PAHs) as described in the effluent limits for Outfall 001 will be based on the Minimum Level (ML) of reporting. The ML is defined as the level at which the entire analytical system gives recognizable mass spectra and acceptable calibration points. This level corresponds to the lower points at which the calibration curve is determined based on the analysis of the pollutant(s) of concern in reagent water. PAH analysis shall include the following compounds and their respective MLs as identified in parenthesis for each compound: benzo(a)anthracene (<0.05 μg/L), benzo(a)pyrene (<2.0 μg/L), benzo(b)fluoranthene (<0.1 μg/L), benzo(k)fluoranthene (<2.0 μg/L), chrysene (<5.0 μg/L), dibenzo(a,h)anthracene (<0.1 μg/L), indeno(1,2,3-cd)pyrene (<0.15 μg/L), and naphthalene (0.2 μg/L).
- 18. The Group I PAH compounds as identified in the effluent limits for Outfall 002, consist of the following seven (7) compounds: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene. The following MLs as identified in parenthesis next to each constituent shall be achieved during the monitoring of these compounds: benzo(a)anthracene (<0.05 μg/L), benzo(a)pyrene (<2.0 μg/L), benzo(b)fluoranthene (<0.1 μg/L), benzo(k)fluoranthene (<2.0 μg/L), chrysene (<5.0 μg/L), dibenzo(a,h)anthracene (<0.1 μg/L), and indeno(1,2,3-cd)pyrene (<0.15 μg/L).

- 19. The nine (9) Group II PAH compounds as identified in the effluent limits for Outfall 002 and their respective MLs consist of the following: acenaphthene (<0.5 μg/L), acenaphthylene (<0.2 μg/L), anthracene (<2.0 μg/L), benzo(ghi)perylene (<0.1 μg/L), fluoranthene (<0.5 μg/L), fluorene (<0.1 μg/L), naphthalene (<0.2 μg/L), phenanthrene (<0.05 μg/L), and pyrene (<0.05 μg/L). The sum of the nine Group II PAH compounds shall not exceed a total limit of 100 μg/L. EPA has also established an individual maximum daily effluent limit of 20 μg/L for naphthalene.
- 20. The permittee shall attach a copy of the laboratory case narrative to the respective Discharge Monitoring Report Form submitted to EPA and MADEP for each sampling event reported. The laboratory case narrative shall include a copy of the laboratory data sheets for each analyses (identifying the test method, the analytical results, and the detection limits for each analyte) and provide a brief discussion of whether all appropriate QA/QC procedures were met and were within acceptable limits.
- 21. All existing manufacturing, commercial, mining and silvicultural dischargers must notify the Director as soon as they know or have reason to believe:
 - a. That any activity has occurred or will occur which would result in the discharge, on a routine basis, of any toxic pollutant which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels:"
 - (1) One hundred micrograms per liter (100 ug/l);
 - (2) Two hundred micrograms per liter (200 ug/l)for acrolein and acrylonitrite; five hundred micrograms per liter (500 ug/l) for 2,4-dinitrophenol; and one milligram per liter (1 mg/l) for antimony;
 - (3) Five (5) times the maximum concentration value reported for that pollutant in the permit application in accordance with 40 C.F.R.§122.21(g)(7); or
 - (4) Any other notification level established by the Director in accordance with 40 C.F.R.§122.44(f).
 - b. That any activity has occurred or will occur which would result in the discharge, on a non-routine or infrequent basis, of any toxic pollutant which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels:"
 - (1) Five hundred micrograms per liter (500 ug/l);
 - (2) One milligram per liter (1 mg/l) for antimony;

- (3) Ten (10) times the maximum concentration value reported for that pollutant in the permit application in accordance with 40 C.F.R.§122.21(g)(7).
- (4) Any other notification level established by the Director in accordance with 40 C.F.R.§122.44(f).
- c. That they have begun or expect to begin to use or manufacture as an intermediate or final product or byproduct any toxic pollutant which was not reported in the permit application.

22. Wastewater Treatment System Flow Control

a. Written notification and approval by EPA and the MADEP shall be required, should the permittee propose changes to either the storm water conveyance or treatment system and/or ground water recovery system which have the potential to cause the maximum design flow rate through the O/W Separator and/or ground water treatment system to be exceeded.

23. Toxics Control

- a. The permittee shall not discharge any pollutant or combination of pollutants in toxic amounts.
- b. Any toxic components of the effluent shall not result in any demonstrable harm to aquatic life or violate any state or federal water quality standard which has been or may be promulgated. Upon promulgation of any such standard, this permit may be revised or amended in accordance with such standards.

24. Hydrostatic Test Water Discharges

- a. The hydrostatic test water shall be monitored as described below and treated through the O/W separator prior to being discharged through Outfall 001 to the Chelsea River. In addition, the flow of hydrostatic test water into the O/W separator shall be controlled to prevent it from exceeding the maximum design flow rate of the separator (i.e., 700 gpm).
- b. At a minimum, four (4) representative samples shall be taken of the hydrostatic test water: one (1) grab sample of the influent test water; and three (3) serial-grab samples of the hydrostatic test water effluent. The influent grab sample shall be taken approximately midway through the fill segment of the hydrostatic test procedure. The three (3) effluent serial-grab samples shall be taken over the duration of the entire discharge segment of the hydrostatic test procedure. The first effluent serial-grab sample shall be taken during the initial phase of discharge; the second around the midpoint; and the third near the end of the discharge. The effluent serial-grab samples shall be obtained before discharge into the O/W Separator and/or mixing with any storm water or other non-storm water flow.

These influent and effluent samples shall be analyzed for the following parameters:

- 1. Total Suspended Solids (TSS)
- 2. Oil & Grease (O&G)
- 3. pH
- 4. Dissolved Oxygen (DO)
- 5. Total Residual Chlorine
- 6. BTEX
- 7. MTBE
- 8. PAHs
- c. Testing for total residual chlorine is only required when potable water or a similar source of water which is likely to contain a residual chlorine concentration is used for hydrostatic testing. Testing for MTBE is only required if the tank undergoing testing was recently (i.e., within three years of the proposed testing date) used to store gasoline.
- d. During discharge (i.e., approximately at the same time the three effluent grab samples are taken), the flow exiting through the O/W Separator and outfall should be observed in order to prevent the inadvertent release of hydrocarbons to the receiving water(s). In the event that there is evidence of such a release (e.g., visible oil sheen and/or noticeable increase in turbidity of discharge water), the permittee shall immediately halt the discharge of hydrostatic test water and take steps to correct the problem.
- e. Any changes to these procedures must be approved by EPA and the MADEP prior to their implementation.
- f. The permittee shall submit a letter/report to the EPA, the MADEP, and the Director of Public Works of the municipality in which the facility is located, summarizing the results of the hydrostatic test within forty-five (45) days of completion of the test. This report shall contain: the date(s) during which the hydrostatic testing occurred; the source of the test water; the volume of test water discharged; a copy of the laboratory data sheets for each analyses, providing the test method, the detection limits for each analyte, and a brief discussion of whether all appropriate QA/QC procedures were met and were within acceptable limits; and a brief discussion of the overall test results and how they relate to the Effluent Limitations in this permit.
- g. The U.S. Environmental Protection Agency shall reserve the right to re-open the permit, in accordance with 40 CFR §122.62(a)(2), to examine hydrostatic test water discharges in the event that sampling results indicate that the standards for the assigned classification of the Chelsea River might not be attained using only an O/W Separator for treatment.

B. BEST MANAGEMENT PRACTICES/STORM WATER POLLUTION PREVENTION PLAN

- 1. The permittee shall maintain, update and implement the Storm Water Pollution Prevention Plan (SWPPP) to account for any changes which might occur at the facility which could impact the plan. The permittee shall be required to provide annual certification to EPA and the MADEP documenting that the previous year's inspections and maintenance activities were conducted, results recorded, records maintained, and that the facility is in compliance with the SWPPP.
- 2. In order to reduce the transportation of particulate matter to storm water conveyance and treatment devices at this facility, the permittee shall amend its existing SWPPP to include sweeping of paved areas at a frequency of no less than twice per year. At least one of the sweeping events shall occur in the early spring (i.e., March to April) to maximize the removal of solids which may have accumulated at the facility over the winter.
- 3. The permittee shall reevaluate its Best Management Practices (BMPs) for preventing and controlling the discharge of TSS. The results of this evaluation shall be submitted to EPA concurrent with the first annual certification by each facility of its SWPPP. Specifically, as part of this evaluation each facility shall be required to discuss and identify whether any changes, modifications and/or improvements are needed at the facility for the following items: 1) the effectiveness of the existing BMPs for reducing TSS loading; 2) the effectiveness of the current operation and maintenance performed on storm water conveyance and treatment systems for reducing TSS loading; 3) the effectiveness of surface soil conditions in the tank farm areas for reducing TSS loading; 4) the effectiveness of the existing treatment technology (i.e., Oil/Water Separator) for reducing TSS loading; and 5) the effectiveness of additional treatment technologies (and cost) which could be implemented to further reduce TSS levels.
- 4. The permittee shall submit a letter to the EPA and the MADEP notifying these agencies of the facility's intent to store ethanol, if applicable. Such notification shall be sent to the EPA and the MADEP at least ninety (90) days prior to the date that the facility intends to begin storing ethanol. The permittee shall also amend its existing SWPPP to identify what special provisions and conditions the facility will use for containing and treating ethanol, should it be spilled. This amendment shall take into account the analytical challenges for monitoring of this compound and the limited effectiveness of an Oil/Water Separator in treating this compound. The portions of the amended SWPPP shall accompany the ethanol notification letter sent to the EPA and the MADEP.
- 5. The certification shall be signed in accordance with the requirements identified in 40 CFR \$122.22 and a copy of the certification will be sent each year to EPA and MADEP as well as appended to the SWPPP within thirty (30) days of the annual anniversary of the effective

date of the Draft Permit. The permittee shall keep a copy of the most recent SWPPP at the facility and shall make it available for inspection by EPA and MADEP.

6. A copy of the SWPPP shall be provided to the municipality in which the facility is located upon written request by such municipality to the facility.

C. REOPENER CLAUSES

- 1. This permit shall be modified, or alternatively, revoked and reissued, to comply with any applicable standard or limitation promulgated or approved under sections 301(b)(2)(C) and (d), 304(b)(2), and 307(a)(2) of the Clean Water Act, if the effluent standard or limitation so issued or approved:
 - a. Contains different conditions or is otherwise more stringent than any effluent limitation in the permit; or
 - b. Controls any pollutants not limited in the permit.
- 2. This permit may be modified to incorporate new analytical methods and/or additional treatment for ethanol in the event that this facility elects to store ethanol in the future, and/or the changes to the SWPPP are not effective and protective in controlling the discharge of this compound to the receiving water.

D. MONITORING AND REPORTING

Monitoring results obtained during the previous month shall be summarized for each month and reported on separate Discharge Monitoring Report Form(s) postmarked no later than the 15th day of the month following the effective date of the permit.

Signed and dated originals of these, and all other reports and evaluations required herein, shall be submitted to EPA at the following address:

Environmental Protection Agency, Region 1
Water Technical Unit (SEW)
P.O. Box 8127
Boston, Massachusetts 02114

In addition, a second copy of each hydrostatic testing letter/report submitted in accordance with this permit shall be sent to EPA at the following address:

Environmental Protection Agency, Region 1
OEP/Industrial Permits Branch
1 Congress Street, Suite 1100 (CIP)
Boston, Massachusetts 02114

Signed and dated Discharge Monitoring Report Form(s) and all other reports required by this permit shall also be submitted to the State at the following addresses:

Massachusetts Department of Environmental Protection
Northeast Regional Office
Bureau of Waste Prevention
One Winter Street
Boston, MA 02108

and

Massachusetts Department of Environmental Protection
Division of Watershed Management
Surface Water Discharge Permit Program
627 Main Street, 2nd Floor
Worcester, Massachusetts 01608

E. STATE PERMIT CONDITIONS

- 1. This Discharge Permit is issued jointly by the EPA and the MADEP under Federal and State law, respectively. As such, all the terms and conditions of this permit are hereby incorporated into and constitute a discharge permit issued by the Commissioner of the MA DEP pursuant to M.G.L. Chap.21, §43.
- 2. Each Agency shall have the independent right to enforce the terms and conditions of this Permit. Any modification, suspension or revocation of this Permit shall be effective only with respect to the Agency taking such action, and shall not affect the validity or status of this Permit as issued by the other Agency, unless and until each Agency has concurred in writing with such modification, suspension or revocation. In the event any portion of this Permit is declared, invalid, illegal or otherwise issued in violation of State law such permit shall remain in full force and effect under Federal law as a NPDES Permit issued by the U.S. Environmental Protection Agency. In the event this Permit is declared invalid, illegal or otherwise issued in violation of Federal law, this Permit shall remain in full force and effect under State law as a Permit issued by the Commonwealth of Massachusetts.

(January, 2007)

TABLE OF CONTENTS

A. GENERAL CONDITIONS	Page
 Duty to Comply Permit Actions Duty to Provide Information Reopener Clause Oil and Hazardous Substance Liability Property Rights Confidentiality of Information Duty to Reapply State Authorities Other laws 	2 2 2 3 3 3 3 4 4 4
B. OPERATION AND MAINTENANCE OF POLLUTION CONTROLS	
 Proper Operation and Maintenance Need to Halt or Reduce Not a Defense Duty to Mitigate Bypass Upset 	4 4 4 4 5
C. MONITORING AND RECORDS	
Monitoring and Records Inspection and Entry D. REPORTING REQUIREMENTS	6 7
1. Reporting Requirements a. Planned changes b. Anticipated noncompliance c. Transfers d. Monitoring reports e. Twenty-four hour reporting f. Compliance schedules g. Other noncompliance h. Other information	7 7 7 7 8 8 8 9
2. Signatory Requirement	9 9
3. Availability of Reports E. DEFINITIONS AND ABBREVIATIONS	7
 Definitions for Individual NPDES Permits including Storm Water Requirements Definitions for NPDES Permit Sludge Use and Disposal Requirements Commonly Used Abbreviations 	9 17 23

PART II. A. GENERAL REQUIREMENTS

1. Duty to Comply

The permittee must comply with all conditions of this permit. Any permit noncompliance constitutes a violation of the Clean Water Act (CWA) and is grounds for enforcement action; for permit termination, revocation and reissuance, or modification; or for denial of a permit renewal application.

- a. The permittee shall comply with effluent standards or prohibitions established under Section 307(a) of the sludge use or disposal established under Section 405(d) of the CWA within the time provided in the regulations that establish these standards or prohibitions, even if the permit has not yet been modified to incorporate the requirements.
- b. The CWA provides that any person who violates Section 301, 302, 306, 307, 308, 318, or 405 of the CWA or any permit condition or limitation implementing any of such sections in a permit issued under Section 402, or any requirement imposed in a pretreatment program approved under Section 402 (a)(3) or 402 (b)(8) of the CWA is subject to a civil penalty not to exceed \$25,000 per day for each violation. Any person who negligently violates such requirements is subject to a fine of not less than \$2,500 nor more than \$25,000 per day of violation, or by imprisonment for not more than 1 year, or both. Any person who knowingly violates such requirements is subject to a fine of not less than \$5,000 nor more than \$50,000 per day of violation, or by imprisonment for not more than 3 years, or both.
- c. Any person may be assessed an administrative penalty by the Administrator for violating Section 301, 302, 306, 307, 308, 318, or 405 of the CWA, or any permit condition or limitation implementing any of such sections in a permit issued under Section 402 of the CWA. Administrative penalties for Class I violations are not to exceed \$10,000 per violation, with the maximum amount of any Class I penalty assessed not to exceed \$25,000. Penalties for Class II violations are not to exceed \$10,000 per day for each day during which the violation continues, with the maximum amount of any Class II penalty not to exceed \$125,000.

Note: See 40 CFR §122.41(a)(2) for complete "Duty to Comply" regulations.

2. Permit Actions

This permit may be modified, revoked and reissued, or terminated for cause. The filing of a request by the permittee for a permit modification, revocation and reissuance, or termination, or notifications of planned changes or anticipated noncompliance does not stay any permit condition.

3. <u>Duty to Provide Information</u>

The permittee shall furnish to the Regional Administrator, within a reasonable time, any information which the Regional Administrator may request to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit. The permittee shall also furnish to the Regional Administrator, upon request, copies of records required to be kept by this permit.

4. Reopener Clause

The Regional Administrator reserves the right to make appropriate revisions to this permit in order to establish any appropriate effluent limitations, schedules of compliance, or other provisions which may be authorized under the CWA in order to bring all discharges into compliance with the CWA.

For any permit issued to a treatment works treating domestic sewage (including "sludge-only facilities"), the Regional Administrator or Director shall include a reopener clause to incorporate any applicable standard for sewage sludge use or disposal promulgated under Section 405 (d) of the CWA. The Regional Administrator or Director may promptly modify or revoke and reissue any permit containing the reopener clause required by this paragraph if the standard for sewage sludge use or disposal is more stringent than any requirements for sludge use or disposal in the permit, or contains a pollutant or practice not limited in the permit.

Federal regulations pertaining to permit modification, revocation and reissuance, and termination are found at 40 CFR §122.62, 122.63, 122.64, and 124.5.

5. Oil and Hazardous Substance Liability

Nothing in this permit shall be construed to preclude the institution of any legal action or relieve the permittee from responsibilities, liabilities or penalties to which the permittee is or may be subject under Section 311 of the CWA, or Section 106 of the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA).

6. Property Rights

The issuance of this permit does not convey any property rights of any sort, nor any exclusive privileges.

7. Confidentiality of Information

- a. In accordance with 40 CFR Part 2, any information submitted to EPA pursuant to these regulations may be claimed as confidential by the submitter. Any such claim must be asserted at the time of submission in the manner prescribed on the application form or instructions or, in the case of other submissions, by stamping the words "confidential business information" on each page containing such information. If no claim is made at the time of submission, EPA may make the information available to the public without further notice. If a claim is asserted, the information will be treated in accordance with the procedures in 40 CFR Part 2 (Public Information).
- b. Claims of confidentiality for the following information will be denied:
 - (1) The name and address of any permit applicant or permittee;
 - (2) Permit applications, permits, and effluent data as defined in 40 CFR §2.302(a)(2).
- c. Information required by NPDES application forms provided by the Regional Administrator under 40 CFR §122.21 may not be claimed confidential. This includes information submitted on the forms themselves and any attachments used to supply information required by the forms.

8. Duty to Reapply

If the permittee wishes to continue an activity regulated by this permit after its expiration date, the permittee must apply for and obtain a new permit. The permittee shall submit a new application at least 180 days before the expiration date of the existing permit, unless permission for a later date has been granted by the Regional Administrator. (The Regional Administrator shall not grant permission for applications to be submitted later than the expiration date of the existing permit.)

9. State Authorities

Nothing in Part 122, 123, or 124 precludes more stringent State regulation of any activity covered by these regulations, whether or not under an approved State program.

10. Other Laws

The issuance of a permit does not authorize any injury to persons or property or invasion of other private rights, nor does it relieve the permittee of its obligation to comply with any other applicable Federal, State, or local laws and regulations.

PART II. B. OPERATION AND MAINTENANCE OF POLLUTION CONTROLS

1. Proper Operation and Maintenance

The permittee shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by the permittee to achieve compliance with the conditions of this permit and with the requirements of storm water pollution prevention plans. Proper operation and maintenance also includes adequate laboratory controls and appropriate quality assurance procedures. This provision requires the operation of back-up or auxiliary facilities or similar systems only when the operation is necessary to achieve compliance with the conditions of the permit.

2. Need to Halt or Reduce Not a Defense

It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit.

3. Duty to Mitigate

The permittee shall take all reasonable steps to minimize or prevent any discharge or sludge use or disposal in violation of this permit which has a reasonable likelihood of adversely affecting human health or the environment.

4. Bypass

a. Definitions

(1) *Bypass* means the intentional diversion of waste streams from any portion of a treatment facility.

(January, 2007)

(2) Severe property damage means substantial physical damage to property, damage to the treatment facilities which causes them to become inoperable, or substantial and permanent loss of natural resources which can be reasonably expected to occur in the absence of a bypass. Severe property damage does not mean economic loss caused by delays in production.

b. Bypass not exceeding limitations

The permittee may allow any bypass to occur which does not cause effluent limitations to be exceeded, but only if it also is for essential maintenance to assure efficient operation. These bypasses are not subject to the provision of Paragraphs B.4.c. and 4.d. of this section.

c. Notice

- (1) Anticipated bypass. If the permittee knows in advance of the need for a bypass, it shall submit prior notice, if possible at least ten days before the date of the bypass.
- (2) Unanticipated bypass. The permittee shall submit notice of an unanticipated bypass as required in paragraph D.1.e. of this part (Twenty-four hour reporting).

d. Prohibition of bypass

Bypass is prohibited, and the Regional Administrator may take enforcement action against a permittee for bypass, unless:

- (1) Bypass was unavoidable to prevent loss of life, personal injury, or severe property damage;
- (2) There were no feasible alternatives to the bypass, such as the use of auxiliary treatment facilities, retention of untreated wastes, or maintenance during normal periods of equipment downtime. This condition is not satisfied if adequate back-up equipment should have been installed in the exercise of reasonable engineering judgment to prevent a bypass which occurred during normal periods of equipment downtime or preventative maintenance; and
- (3) i) The permittee submitted notices as required under Paragraph 4.c. of this section.
 - ii) The Regional Administrator may approve an anticipated bypass, after considering its adverse effects, if the Regional Administrator determines that it will meet the three conditions listed above in paragraph 4.d. of this section.

5. Upset

- a. Definition. *Upset* means an exceptional incident in which there is an unintentional and temporary noncompliance with technology-based permit effluent limitations because of factors beyond the reasonable control of the permittee. An upset does not include noncompliance to the extent caused by operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation.
- b. Effect of an upset. An upset constitutes an affirmative defense to an action brought for noncompliance with such technology-based permit effluent limitations if the requirements of paragraph B.5.c. of this section are met. No determination made during

(January, 2007)

administrative review of claims that noncompliance was caused by upset, and before an action for noncompliance, is final administrative action subject to judicial review.

- c. Conditions necessary for a demonstration of upset. A permittee who wishes to establish the affirmative defense of upset shall demonstrate, through properly signed, contemporaneous operating logs, or other relevant evidence that:
 - (1) An upset occurred and that the permittee can identify the cause(s) of the upset;
 - (2) The permitted facility was at the time being properly operated;
 - (3) The permittee submitted notice of the upset as required in paragraphs D.1.a. and 1.e. (Twenty-four hour notice); and
 - (4) The permittee complied with any remedial measures required under B.3. above.
- d. Burden of proof. In any enforcement proceeding the permittee seeking to establish the occurrence of an upset has the burden of proof.

PART II. C. MONITORING REQUIREMENTS

1. Monitoring and Records

- a. Samples and measurements taken for the purpose of monitoring shall be representative of the monitored activity.
- b. Except for records for monitoring information required by this permit related to the permittee's sewage sludge use and disposal activities, which shall be retained for a period of at least five years (or longer as required by 40 CFR Part 503), the permittee shall retain records of all monitoring information, including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation, copies of all reports required by this permit, and records of all data used to complete the application for this permit, for a period of at least 3 years from the date of the sample, measurement, report or application except for the information concerning storm water discharges which must be retained for a total of 6 years. This retention period may be extended by request of the Regional Administrator at any time.
- c. Records of monitoring information shall include:
 - (1) The date, exact place, and time of sampling or measurements;
 - (2) The individual(s) who performed the sampling or measurements;
 - (3) The date(s) analyses were performed;
 - (4) The individual(s) who performed the analyses;
 - (5) The analytical techniques or methods used; and
 - (6) The results of such analyses.
- d. Monitoring results must be conducted according to test procedures approved under 40 CFR Part 136 or, in the case of sludge use or disposal, approved under 40 CFR Part 136 unless otherwise specified in 40 CFR Part 503, unless other test procedures have been specified in the permit.
- e. The CWA provides that any person who falsifies, tampers with, or knowingly renders inaccurate any monitoring device or method required to be maintained under this permit shall, upon conviction, be punished by a fine of not more than \$10,000, or by

(January, 2007)

imprisonment for not more than 2 years, or both. If a conviction of a person is for a violation committed after a first conviction of such person under this paragraph, punishment is a fine of not more than \$20,000 per day of violation, or by imprisonment of not more than 4 years, or both.

2. Inspection and Entry

The permittee shall allow the Regional Administrator or an authorized representative (including an authorized contractor acting as a representative of the Administrator), upon presentation of credentials and other documents as may be required by law, to:

- a. Enter upon the permittee's premises where a regulated facility or activity is located or conducted, or where records must be kept under the conditions of this permit;
- b. Have access to and copy, at reasonable times, any records that must be kept under the conditions of this permit;
- c. Inspect at reasonable times any facilities, equipment (including monitoring and control equipment), practices, or operations regulated or required under this permit; and
- d. Sample or monitor at reasonable times, for the purposes of assuring permit compliance or as otherwise authorized by the CWA, any substances or parameters at any location.

PART II. D. REPORTING REQUIREMENTS

1. Reporting Requirements

- a. Planned Changes. The permittee shall give notice to the Regional Administrator as soon as possible of any planned physical alterations or additions to the permitted facility. Notice is only required when:
 - (1) The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in 40 CFR§122.29(b); or
 - (2) The alteration or addition could significantly change the nature or increase the quantities of the pollutants discharged. This notification applies to pollutants which are subject neither to the effluent limitations in the permit, nor to the notification requirements at 40 CFR§122.42(a)(1).
 - (3) The alteration or addition results in a significant change in the permittee's sludge use or disposal practices, and such alteration, addition or change may justify the application of permit conditions different from or absent in the existing permit, including notification of additional use or disposal sites not reported during the permit application process or not reported pursuant to an approved land application plan.
- b. Anticipated noncompliance. The permittee shall give advance notice to the Regional Administrator of any planned changes in the permitted facility or activity which may result in noncompliance with permit requirements.
- c. Transfers. This permit is not transferable to any person except after notice to the Regional Administrator. The Regional Administrator may require modification or revocation and reissuance of the permit to change the name of the permittee and

(January, 2007)

incorporate such other requirements as may be necessary under the CWA. (See 40 CFR Part 122.61; in some cases, modification or revocation and reissuance is mandatory.)

- d. Monitoring reports. Monitoring results shall be reported at the intervals specified elsewhere in this permit.
 - (1) Monitoring results must be reported on a Discharge Monitoring Report (DMR) or forms provided or specified by the Director for reporting results of monitoring of sludge use or disposal practices.
 - (2) If the permittee monitors any pollutant more frequently than required by the permit using test procedures approved under 40 CFR Part 136 or, in the case of sludge use or disposal, approved under 40 CFR Part 136 unless otherwise specified in 40 CFR Part 503, or as specified in the permit, the results of the monitoring shall be included in the calculation and reporting of the data submitted in the DMR or sludge reporting form specified by the Director.
 - (3) Calculations for all limitations which require averaging or measurements shall utilize an arithmetic mean unless otherwise specified by the Director in the permit.
- e. Twenty-four hour reporting.
 - (1) The permittee shall report any noncompliance which may endanger health or the environment. Any information shall be provided orally within 24 hours from the time the permittee becomes aware of the circumstances.
 - A written submission shall also be provided within 5 days of the time the permittee becomes aware of the circumstances. The written submission shall contain a description of the noncompliance and its cause; the period of noncompliance, including exact dates and times, and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent reoccurrence of the noncompliance.
 - (2) The following shall be included as information which must be reported within 24 hours under this paragraph.
 - (a) Any unanticipated bypass which exceeds any effluent limitation in the permit. (See 40 CFR §122.41(g).)
 - (b) Any upset which exceeds any effluent limitation in the permit.
 - (c) Violation of a maximum daily discharge limitation for any of the pollutants listed by the Regional Administrator in the permit to be reported within 24 hours. (See 40 CFR §122.44(g).)
 - (3) The Regional Administrator may waive the written report on a case-by-case basis for reports under Paragraph D.1.e. if the oral report has been received within 24 hours.

(January, 2007)

- f. Compliance Schedules. Reports of compliance or noncompliance with, any progress reports on, interim and final requirements contained in any compliance schedule of this permit shall be submitted no later than 14 days following each schedule date.
- g. Other noncompliance. The permittee shall report all instances of noncompliance not reported under Paragraphs D.1.d., D.1.e., and D.1.f. of this section, at the time monitoring reports are submitted. The reports shall contain the information listed in Paragraph D.1.e. of this section.
- h. Other information. Where the permittee becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in a permit application or in any report to the Regional Administrator, it shall promptly submit such facts or information.

2. Signatory Requirement

- a. All applications, reports, or information submitted to the Regional Administrator shall be signed and certified. (See 40 CFR §122.22)
- b. The CWA provides that any person who knowingly makes any false statement, representation, or certification in any record or other document submitted or required to be maintained under this permit, including monitoring reports or reports of compliance or noncompliance shall, upon conviction, be punished by a fine of not more than \$10,000 per violation, or by imprisonment for not more than 2 years per violation, or by both.

3. Availability of Reports.

Except for data determined to be confidential under Paragraph A.8. above, all reports prepared in accordance with the terms of this permit shall be available for public inspection at the offices of the State water pollution control agency and the Regional Administrator. As required by the CWA, effluent data shall not be considered confidential. Knowingly making any false statements on any such report may result in the imposition of criminal penalties as provided for in Section 309 of the CWA.

PART II. E. DEFINITIONS AND ABBREVIATIONS

1. Definitions for Individual NPDES Permits including Storm Water Requirements

Administrator means the Administrator of the United States Environmental Protection Agency, or an authorized representative.

Applicable standards and limitations means all, State, interstate, and Federal standards and limitations to which a "discharge", a "sewage sludge use or disposal practice", or a related activity is subject to, including "effluent limitations", water quality standards, standards of performance, toxic effluent standards or prohibitions, "best management practices", pretreatment standards, and "standards for sewage sludge use and disposal" under Sections 301, 302, 303, 304, 306, 307, 308, 403, and 405 of the CWA.

(January, 2007)

Application means the EPA standard national forms for applying for a permit, including any additions, revisions, or modifications to the forms; or forms approved by EPA for use in "approved States", including any approved modifications or revisions.

Average means the arithmetic mean of values taken at the frequency required for each parameter over the specified period. For total and/or fecal coliforms and Escherichia coli, the average shall be the geometric mean.

Average monthly discharge limitation means the highest allowable average of "daily discharges" over a calendar month calculated as the sum of all "daily discharges" measured during a calendar month divided by the number of "daily discharges" measured during that month.

Average weekly discharge limitation means the highest allowable average of "daily discharges" measured during the calendar week divided by the number of "daily discharges" measured during the week.

Best Management Practices (BMPs) means schedules of activities, prohibitions of practices, maintenance procedures, and other management practices to prevent or reduce the pollution of "waters of the United States." BMPs also include treatment requirements, operating procedures, and practices to control plant site runoff, spillage or leaks, sludge or waste disposal, or drainage from raw material storage.

Best Professional Judgment (BPJ) means a case-by-case determination of Best Practicable Treatment (BPT), Best Available Treatment (BAT), or other appropriate technology-based standard based on an evaluation of the available technology to achieve a particular pollutant reduction and other factors set forth in 40 CFR §125.3 (d).

Coal Pile Runoff means the rainfall runoff from or through any coal storage pile.

Composite Sample means a sample consisting of a minimum of eight grab samples of equal volume collected at equal intervals during a 24-hour period (or lesser period as specified in the section on Monitoring and Reporting) and combined proportional to flow, or a sample consisting of the same number of grab samples, or greater, collected proportionally to flow over that same time period.

Construction Activities - The following definitions apply to construction activities:

- (a) <u>Commencement of Construction</u> is the initial disturbance of soils associated with clearing, grading, or excavating activities or other construction activities.
- (b) <u>Dedicated portable asphalt plant</u> is a portable asphalt plant located on or contiguous to a construction site and that provides asphalt only to the construction site that the plant is located on or adjacent to. The term dedicated portable asphalt plant does not include facilities that are subject to the asphalt emulsion effluent limitation guideline at 40 CFR Part 443.
- (c) <u>Dedicated portable concrete plant</u> is a portable concrete plant located on or contiguous to a construction site and that provides concrete only to the construction site that the plant is located on or adjacent to.

(January, 2007)

- (d) <u>Final Stabilization</u> means that all soil disturbing activities at the site have been complete, and that a uniform perennial vegetative cover with a density of 70% of the cover for unpaved areas and areas not covered by permanent structures has been established or equivalent permanent stabilization measures (such as the use of riprap, gabions, or geotextiles) have been employed.
- (e) <u>Runoff coefficient</u> means the fraction of total rainfall that will appear at the conveyance as runoff.

*Contiguous zone*_means the entire zone established by the United States under Article 24 of the Convention on the Territorial Sea and the Contiguous Zone.

Continuous discharge means a "discharge" which occurs without interruption throughout the operating hours of the facility except for infrequent shutdowns for maintenance, process changes, or similar activities.

CWA means the Clean Water Act (formerly referred to as the Federal Water Pollution Control Act or Federal Water Pollution Control Act Amendments of 1972) Pub. L. 92-500, as amended by Pub. L. 95-217, Pub. L. 95-576, Pub. L. 96-483, and Pub. L. 97-117; 33 USC §§1251 et seq.

Daily Discharge means the discharge of a pollutant measured during the calendar day or any other 24-hour period that reasonably represents the calendar day for purposes of sampling. For pollutants with limitations expressed in units of mass, the "daily discharge" is calculated as the total mass of the pollutant discharged over the day. For pollutants with limitations expressed in other units of measurements, the "daily discharge" is calculated as the average measurement of the pollutant over the day.

Director normally means the person authorized to sign NPDES permits by EPA or the State or an authorized representative. Conversely, it also could mean the Regional Administrator or the State Director as the context requires.

Discharge Monitoring Report Form (DMR) means the EPA standard national form, including any subsequent additions, revisions, or modifications for the reporting of self-monitoring results by permittees. DMRs must be used by "approved States" as well as by EPA. EPA will supply DMRs to any approved State upon request. The EPA national forms may be modified to substitute the State Agency name, address, logo, and other similar information, as appropriate, in place of EPA's.

Discharge of a pollutant_means:

- (a) Any addition of any "pollutant" or combination of pollutants to "waters of the United States" from any "point source", or
- (b) Any addition of any pollutant or combination of pollutants to the waters of the "contiguous zone" or the ocean from any point source other than a vessel or other floating craft which is being used as a means of transportation (See "Point Source" definition).

This definition includes additions of pollutants into waters of the United States from: surface runoff which is collected or channeled by man; discharges through pipes, sewers, or other conveyances owned by a State, municipality, or other person which do not lead

(January, 2007)

to a treatment works; and discharges through pipes, sewers, or other conveyances leading into privately owned treatment works.

This term does not include an addition of pollutants by any "indirect discharger."

Effluent limitation means any restriction imposed by the Regional Administrator on quantities, discharge rates, and concentrations of "pollutants" which are "discharged" from "point sources" into "waters of the United States", the waters of the "contiguous zone", or the ocean.

Effluent limitation guidelines means a regulation published by the Administrator under Section 304(b) of CWA to adopt or revise "effluent limitations".

EPA means the United States "Environmental Protection Agency".

Flow-weighted composite sample means a composite sample consisting of a mixture of aliquots where the volume of each aliquot is proportional to the flow rate of the discharge.

Grab Sample – An individual sample collected in a period of less than 15 minutes.

Hazardous Substance means any substance designated under 40 CFR Part 116 pursuant to Section 311 of the CWA.

Indirect Discharger means a non-domestic discharger introducing pollutants to a publicly owned treatment works.

Interference means a discharge which, alone or in conjunction with a discharge or discharges from other sources, both:

- (a) Inhibits or disrupts the POTW, its treatment processes or operations, or its sludge processes, use or disposal; and
- (b) Therefore is a cause of a violation of any requirement of the POTW's NPDES permit (including an increase in the magnitude or duration of a violation) or of the prevention of sewage sludge use or disposal in compliance with the following statutory provisions and regulations or permits issued thereunder (or more stringent State or local regulations): Section 405 of the Clean Water Act (CWA), the Solid Waste Disposal Act (SWDA) (including Title II, more commonly referred to as the Resources Conservation and Recovery Act (RCRA), and including State regulations contained in any State sludge management plan prepared pursuant to Subtitle D of the SDWA), the Clean Air Act, the Toxic Substances Control Act, and the Marine Protection Research and Sanctuaries Act.

Landfill means an area of land or an excavation in which wastes are placed for permanent disposal, and which is not a land application unit, surface impoundment, injection well, or waste pile.

Land application unit means an area where wastes are applied onto or incorporated into the soil surface (excluding manure spreading operations) for treatment or disposal.

Large and Medium municipal separate storm sewer system means all municipal separate storm sewers that are either: (i) located in an incorporated place (city) with a population of 100,000 or more as determined by the latest Decennial Census by the Bureau of Census (these cities are listed in Appendices F and 40 CFR Part 122); or (ii) located in the counties with unincorporated urbanized

(January, 2007)

populations of 100,000 or more, except municipal separate storm sewers that are located in the incorporated places, townships, or towns within such counties (these counties are listed in Appendices H and I of 40 CFR 122); or (iii) owned or operated by a municipality other than those described in Paragraph (i) or (ii) and that are designated by the Regional Administrator as part of the large or medium municipal separate storm sewer system.

Maximum daily discharge limitation means the highest allowable "daily discharge" concentration that occurs only during a normal day (24-hour duration).

Maximum daily discharge limitation (as defined for the Steam Electric Power Plants only) when applied to Total Residual Chlorine (TRC) or Total Residual Oxidant (TRO) is defined as "maximum concentration" or "Instantaneous Maximum Concentration" during the two hours of a chlorination cycle (or fraction thereof) prescribed in the Steam Electric Guidelines, 40 CFR Part 423. These three synonymous terms all mean "a value that shall not be exceeded" during the two-hour chlorination cycle. This interpretation differs from the specified NPDES Permit requirement, 40 CFR § 122.2, where the two terms of "Maximum Daily Discharge" and "Average Daily Discharge" concentrations are specifically limited to the daily (24-hour duration) values.

Municipality means a city, town, borough, county, parish, district, association, or other public body created by or under State law and having jurisdiction over disposal of sewage, industrial wastes, or other wastes, or an Indian tribe or an authorized Indian tribe organization, or a designated and approved management agency under Section 208 of the CWA.

National Pollutant Discharge Elimination System means the national program for issuing, modifying, revoking and reissuing, terminating, monitoring and enforcing permits, and imposing and enforcing pretreatment requirements, under Sections 307, 402, 318, and 405 of the CWA. The term includes an "approved program".

New Discharger means any building, structure, facility, or installation:

- (a) From which there is or may be a "discharge of pollutants";
- (b) That did not commence the "discharge of pollutants" at a particular "site" prior to August 13, 1979;
- (c) Which is not a "new source"; and
- (d) Which has never received a finally effective NPDES permit for discharges at that "site".

This definition includes an "indirect discharger" which commences discharging into "waters of the United States" after August 13, 1979. It also includes any existing mobile point source (other than an offshore or coastal oil and gas exploratory drilling rig or a coastal oil and gas exploratory drilling rig or a coastal oil and gas developmental drilling rig) such as a seafood processing rig, seafood processing vessel, or aggregate plant, that begins discharging at a "site" for which it does not have a permit; and any offshore rig or coastal mobile oil and gas exploratory drilling rig or coastal mobile oil and gas developmental drilling rig that commences the discharge of pollutants after August 13, 1979, at a "site" under EPA's permitting jurisdiction for which it is not covered by an individual or general permit and which is located in an area determined by the Regional Administrator in the issuance of a final permit to be in an area of biological concern. In determining whether an area is an area of biological concern, the Regional Administrator shall consider the factors specified in 40 CFR §§125.122 (a) (1) through (10).

An offshore or coastal mobile exploratory drilling rig or coastal mobile developmental drilling rig will be considered a "new discharger" only for the duration of its discharge in an area of biological concern.

New source means any building, structure, facility, or installation from which there is or may be a "discharge of pollutants", the construction of which commenced:

- (a) After promulgation of standards of performance under Section 306 of CWA which are applicable to such source, or
- (b) After proposal of standards of performance in accordance with Section 306 of CWA which are applicable to such source, but only if the standards are promulgated in accordance with Section 306 within 120 days of their proposal.

NPDES means "National Pollutant Discharge Elimination System".

Owner or operator means the owner or operator of any "facility or activity" subject to regulation under the NPDES programs.

Pass through means a Discharge which exits the POTW into waters of the United States in quantities or concentrations which, alone or in conjunction with a discharge or discharges from other sources, is a cause of a violation of any requirement of the POTW's NPDES permit (including an increase in the magnitude or duration of a violation).

Permit means an authorization, license, or equivalent control document issued by EPA or an "approved" State.

Person means an individual, association, partnership, corporation, municipality, State or Federal agency, or an agent or employee thereof.

Point Source means any discernible, confined, and discrete conveyance, including but not limited to any pipe ditch, channel, tunnel, conduit, well, discrete fissure, container, rolling stock, concentrated animal feeding operation, landfill leachate collection system, vessel, or other floating craft, from which pollutants are or may be discharged. This term does not include return flows from irrigated agriculture or agricultural storm water runoff (see 40 CFR §122.2).

Pollutant means dredged spoil, solid waste, incinerator residue, filter backwash, sewage, garbage, sewage sludge, munitions, chemical wastes, biological materials, radioactive materials (except those regulated under the Atomic Energy Act of 1954, as amended (42 U.S.C. §§2011 et seq.)), heat, wrecked or discarded equipment, rock, sand, cellar dirt and industrial, municipal, and agricultural waste discharged into water. It does not mean:

- (a) Sewage from vessels; or
- (b) Water, gas, or other material which is injected into a well to facilitate production of oil or gas, or water derived in association with oil and gas production and disposed of in a well, if the well is used either to facilitate production or for disposal purposes is approved by the authority of the State in which the well is located, and if the State determines that the injection or disposal will not result in the degradation of ground or surface water resources.

Primary industry category means any industry category listed in the NRDC settlement agreement (<u>Natural Resources Defense Council et al. v. Train</u>, 8 E.R.C. 2120 (D.D.C. 1976), modified 12 E.R.C. 1833 (D. D.C. 1979)); also listed in Appendix A of 40 CFR Part 122.

Privately owned treatment works means any device or system which is (a) used to treat wastes from any facility whose operation is not the operator of the treatment works or (b) not a "POTW".

Process wastewater means any water which, during manufacturing or processing, comes into direct contact with or results from the production or use of any raw material, intermediate product, finished product, byproduct, or waste product.

Publicly Owned Treatment Works (POTW) means any facility or system used in the treatment (including recycling and reclamation) of municipal sewage or industrial wastes of a liquid nature which is owned by a "State" or "municipality".

This definition includes sewers, pipes, or other conveyances only if they convey wastewater to a POTW providing treatment.

Regional Administrator means the Regional Administrator, EPA, Region I, Boston, Massachusetts.

Secondary Industry Category means any industry which is not a "primary industry category".

Section 313 water priority chemical means a chemical or chemical category which:

- (1) is listed at 40 CFR §372.65 pursuant to Section 313 of the Emergency Planning and Community Right-To-Know Act (EPCRA) (also known as Title III of the Superfund Amendments and Reauthorization Act (SARA) of 1986);
- (2) is present at or above threshold levels at a facility subject to EPCRA Section 313 reporting requirements; and
- (3) satisfies at least one of the following criteria:
 - (i) are listed in Appendix D of 40 CFR Part 122 on either Table II (organic priority pollutants), Table III (certain metals, cyanides, and phenols), or Table V (certain toxic pollutants and hazardous substances);
 - (ii) are listed as a hazardous substance pursuant to Section 311(b)(2)(A) of the CWA at 40 CFR §116.4; or
 - (iii) are pollutants for which EPA has published acute or chronic water quality criteria.

Septage means the liquid and solid material pumped from a septic tank, cesspool, or similar domestic sewage treatment system, or a holding tank when the system is cleaned or maintained.

Sewage Sludge means any solid, semisolid, or liquid residue removed during the treatment of municipal wastewater or domestic sewage. Sewage sludge includes, but is not limited to, solids removed during primary, secondary, or advanced wastewater treatment, scum, septage, portable toilet pumpings, Type III Marine Sanitation Device pumpings (33 CFR Part 159), and sewage sludge products. Sewage sludge does not include grit or screenings, or ash generated during the incineration of sewage sludge.

Sewage sludge use or disposal practice means the collection, storage, treatment, transportation, processing, monitoring, use, or disposal of sewage sludge.

Significant materials includes, but is not limited to: raw materials, fuels, materials such as solvents, detergents, and plastic pellets, raw materials used in food processing or production, hazardous substance designated under section 101(14) of CERCLA, any chemical the facility is required to report pursuant to EPCRA Section 313, fertilizers, pesticides, and waste products such as ashes, slag, and sludge that have the potential to be released with storm water discharges.

Significant spills includes, but is not limited to, releases of oil or hazardous substances in excess of reportable quantities under Section 311 of the CWA (see 40 CFR §110.10 and §117.21) or Section 102 of CERCLA (see 40 CFR § 302.4).

Sludge-only facility means any "treatment works treating domestic sewage" whose methods of sewage sludge use or disposal are subject to regulations promulgated pursuant to Section 405(d) of the CWA, and is required to obtain a permit under 40 CFR §122.1(b)(3).

State means any of the 50 States, the District of Columbia, Guam, the Commonwealth of Puerto Rico, the Virgin Islands, American Samoa, the Trust Territory of the Pacific Islands.

Storm Water means storm water runoff, snow melt runoff, and surface runoff and drainage.

Storm water discharge associated with industrial activity means the discharge from any conveyance which is used for collecting and conveying storm water and which is directly related to manufacturing, processing, or raw materials storage areas at an industrial plant. (See 40 CFR §122.26 (b)(14) for specifics of this definition.

Time-weighted composite means a composite sample consisting of a mixture of equal volume aliquots collected at a constant time interval.

Toxic pollutants means any pollutant listed as toxic under Section 307 (a)(1) or, in the case of "sludge use or disposal practices" any pollutant identified in regulations implementing Section 405(d) of the CWA.

Treatment works treating domestic sewage means a POTW or any other sewage sludge or wastewater treatment devices or systems, regardless of ownership (including federal facilities), used in the storage, treatment, recycling, and reclamation of municipal or domestic sewage, including land dedicated for the disposal of sewage sludge. This definition does not include septic tanks or similar devices.

For purposes of this definition, "domestic sewage" includes waste and wastewater from humans or household operations that are discharged to or otherwise enter a treatment works. In States where there is no approved State sludge management program under Section 405(f) of the CWA, the Regional Administrator may designate any person subject to the standards for sewage sludge use and disposal in 40 CFR Part 503 as a "treatment works treating domestic sewage", where he or she finds that there is a potential for adverse effects on public health and the environment from poor sludge quality or poor sludge handling, use or disposal practices, or where he or she finds that such designation is necessary to ensure that such person is in compliance with 40 CFR Part 503.

(January, 2007)

Waste Pile means any non-containerized accumulation of solid, non-flowing waste that is used for treatment or storage.

Waters of the United States means:

- (a) All waters which are currently used, were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters which are subject to the ebb and flow of tide;
- (b) All interstate waters, including interstate "wetlands";
- (c) All other waters such as intrastate lakes, rivers, streams (including intermittent streams), mudflats, sandflats, "wetlands", sloughs, prairie potholes, wet meadows, playa lakes, or natural ponds the use, degradation, or destruction of which would affect or could affect interstate or foreign commerce including any such waters:
 - (1) Which are or could be used by interstate or foreign travelers for recreational or other purpose;
 - (2) From which fish or shellfish are or could be taken and sold in interstate or foreign commerce; or
 - (3) Which are used or could be used for industrial purposes by industries in interstate commerce:
- (d) All impoundments of waters otherwise defined as waters of the United States under this definition:
- (e) Tributaries of waters identified in Paragraphs (a) through (d) of this definition;
- (f) The territorial sea; and
- (g) "Wetlands" adjacent to waters (other than waters that are themselves wetlands) identified in Paragraphs (a) through (f) of this definition.

Waste treatment systems, including treatment ponds or lagoons designed to meet the requirements of the CWA (other than cooling ponds as defined in 40 CFR §423.11(m) which also meet the criteria of this definition) are not waters of the United States.

Wetlands means those areas that are inundated or saturated by surface or ground water at a frequency and duration to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas.

Whole Effluent Toxicity (WET) means the aggregate toxic effect of an effluent measured directly by a toxicity test. (See Abbreviations Section, following, for additional information.)

2. Definitions for NPDES Permit Sludge Use and Disposal Requirements.

Active sewage sludge unit is a sewage sludge unit that has not closed.

(January, 2007)

Aerobic Digestion is the biochemical decomposition of organic matter in sewage sludge into carbon dioxide and water by microorganisms in the presence of air.

Agricultural Land is land on which a food crop, a feed crop, or a fiber crop is grown. This includes range land and land used as pasture.

Agronomic rate is the whole sludge application rate (dry weight basis) designed:

- (1) To provide the amount of nitrogen needed by the food crop, feed crop, fiber crop, cover crop, or vegetation grown on the land; and
- (2) To minimize the amount of nitrogen in the sewage sludge that passes below the root zone of the crop or vegetation grown on the land to the ground water.

Air pollution control device is one or more processes used to treat the exit gas from a sewage sludge incinerator stack.

Anaerobic digestion is the biochemical decomposition of organic matter in sewage sludge into methane gas and carbon dioxide by microorganisms in the absence of air.

Annual pollutant loading rate is the maximum amount of a pollutant that can be applied to a unit area of land during a 365 day period.

Annual whole sludge application rate is the maximum amount of sewage sludge (dry weight basis) that can be applied to a unit area of land during a 365 day period.

Apply sewage sludge or sewage sludge applied to the land means land application of sewage sludge.

Aquifer is a geologic formation, group of geologic formations, or a portion of a geologic formation capable of yielding ground water to wells or springs.

Auxiliary fuel is fuel used to augment the fuel value of sewage sludge. This includes, but is not limited to, natural gas, fuel oil, coal, gas generated during anaerobic digestion of sewage sludge, and municipal solid waste (not to exceed 30 percent of the dry weight of the sewage sludge and auxiliary fuel together). Hazardous wastes are not auxiliary fuel.

Base flood is a flood that has a one percent chance of occurring in any given year (i.e. a flood with a magnitude equaled once in 100 years).

Bulk sewage sludge is sewage sludge that is not sold or given away in a bag or other container for application to the land.

Contaminate an aquifer means to introduce a substance that causes the maximum contaminant level for nitrate in 40 CFR §141.11 to be exceeded in ground water or that causes the existing concentration of nitrate in the ground water to increase when the existing concentration of nitrate in the ground water exceeds the maximum contaminant level for nitrate in 40 CFR §141.11.

Class I sludge management facility is any publicly owned treatment works (POTW), as defined in 40 CFR §501.2, required to have an approved pretreatment program under 40 CFR §403.8 (a) (including any POTW located in a state that has elected to assume local program responsibilities pursuant to 40 CFR §403.10 (e) and any treatment works treating domestic sewage, as defined in 40 CFR § 122.2,

(January, 2007)

classified as a Class I sludge management facility by the EPA Regional Administrator, or, in the case of approved state programs, the Regional Administrator in conjunction with the State Director, because of the potential for sewage sludge use or disposal practice to affect public health and the environment adversely.

Control efficiency is the mass of a pollutant in the sewage sludge fed to an incinerator minus the mass of that pollutant in the exit gas from the incinerator stack divided by the mass of the pollutant in the sewage sludge fed to the incinerator.

Cover is soil or other material used to cover sewage sludge placed on an active sewage sludge unit.

Cover crop is a small grain crop, such as oats, wheat, or barley, not grown for harvest.

Cumulative pollutant loading rate is the maximum amount of inorganic pollutant that can be applied to an area of land.

Density of microorganisms is the number of microorganisms per unit mass of total solids (dry weight) in the sewage sludge.

Dispersion factor is the ratio of the increase in the ground level ambient air concentration for a pollutant at or beyond the property line of the site where the sewage sludge incinerator is located to the mass emission rate for the pollutant from the incinerator stack.

Displacement is the relative movement of any two sides of a fault measured in any direction.

Domestic septage is either liquid or solid material removed from a septic tank, cesspool, portable toilet, Type III marine sanitation device, or similar treatment works that receives only domestic sewage. Domestic septage does not include liquid or solid material removed from a septic tank, cesspool, or similar treatment works that receives either commercial wastewater or industrial wastewater and does not include grease removed from a grease trap at a restaurant.

Domestic sewage is waste and wastewater from humans or household operations that is discharged to or otherwise enters a treatment works.

Dry weight basis means calculated on the basis of having been dried at 105 degrees Celsius (°C) until reaching a constant mass (i.e. essentially 100 percent solids content).

Fault is a fracture or zone of fractures in any materials along which strata on one side are displaced with respect to the strata on the other side.

Feed crops are crops produced primarily for consumption by animals.

Fiber crops are crops such as flax and cotton.

Final cover is the last layer of soil or other material placed on a sewage sludge unit at closure.

Fluidized bed incinerator is an enclosed device in which organic matter and inorganic matter in sewage sludge are combusted in a bed of particles suspended in the combustion chamber gas.

Food crops are crops consumed by humans. These include, but are not limited to, fruits, vegetables, and tobacco.

Forest is a tract of land thick with trees and underbrush.

Ground water is water below the land surface in the saturated zone.

Holocene time is the most recent epoch of the Quaternary period, extending from the end of the Pleistocene epoch to the present.

Hourly average is the arithmetic mean of all the measurements taken during an hour. At least two measurements must be taken during the hour.

Incineration is the combustion of organic matter and inorganic matter in sewage sludge by high temperatures in an enclosed device.

Industrial wastewater is wastewater generated in a commercial or industrial process.

Land application is the spraying or spreading of sewage sludge onto the land surface; the injection of sewage sludge below the land surface; or the incorporation of sewage sludge into the soil so that the sewage sludge can either condition the soil or fertilize crops or vegetation grown in the soil.

Land with a high potential for public exposure is land that the public uses frequently. This includes, but is not limited to, a public contact site and reclamation site located in a populated area (e.g., a construction site located in a city).

Land with low potential for public exposure is land that the public uses infrequently. This includes, but is not limited to, agricultural land, forest and a reclamation site located in an unpopulated area (e.g., a strip mine located in a rural area).

Leachate collection system is a system or device installed immediately above a liner that is designed, constructed, maintained, and operated to collect and remove leachate from a sewage sludge unit.

Liner is soil or synthetic material that has a hydraulic conductivity of 1 x 10⁻⁷ centimeters per second or less.

Lower explosive limit for methane gas is the lowest percentage of methane gas in air, by volume, that propagates a flame at 25 degrees Celsius and atmospheric pressure.

Monthly average (Incineration) is the arithmetic mean of the hourly averages for the hours a sewage sludge incinerator operates during the month.

Monthly average (Land Application) is the arithmetic mean of all measurements taken during the month.

Municipality means a city, town, borough, county, parish, district, association, or other public body (including an intermunicipal agency of two or more of the foregoing entities) created by or under State law; an Indian tribe or an authorized Indian tribal organization having jurisdiction over sewage sludge management; or a designated and approved management agency under section 208 of the CWA, as amended. The definition includes a special district created under state law, such as a water district, sewer district, sanitary district, utility district, drainage district, or similar entity, or an integrated waste management facility as defined in section 201 (e) of the CWA, as amended, that has as one of its principal responsibilities the treatment, transport, use or disposal of sewage sludge.

Other container is either an open or closed receptacle. This includes, but is not limited to, a bucket, a box, a carton, and a vehicle or trailer with a load capacity of one metric ton or less.

Pasture is land on which animals feed directly on feed crops such as legumes, grasses, grain stubble, or stover.

Pathogenic organisms are disease-causing organisms. These include, but are not limited to, certain bacteria, protozoa, viruses, and viable helminth ova.

Permitting authority is either EPA or a State with an EPA-approved sludge management program.

Person is an individual, association, partnership, corporation, municipality, State or Federal Agency, or an agent or employee thereof.

Person who prepares sewage sludge is either the person who generates sewage sludge during the treatment of domestic sewage in a treatment works or the person who derives a material from sewage sludge.

pH means the logarithm of the reciprocal of the hydrogen ion concentration; a measure of the acidity or alkalinity of a liquid or solid material.

Place sewage sludge or sewage sludge placed means disposal of sewage sludge on a surface disposal site.

Pollutant (as defined in sludge disposal requirements) is an organic substance, an inorganic substance, a combination or organic and inorganic substances, or pathogenic organism that, after discharge and upon exposure, ingestion, inhalation, or assimilation into an organism either directly from the environment or indirectly by ingestion through the food chain, could on the basis on information available to the Administrator of EPA, cause death, disease, behavioral abnormalities, cancer, genetic mutations, physiological malfunctions (including malfunction in reproduction) or physical deformations in either organisms or offspring of the organisms.

Pollutant limit (for sludge disposal requirements) is a numerical value that describes the amount of a pollutant allowed per unit amount of sewage sludge (e.g., milligrams per kilogram of total solids); the amount of pollutant that can be applied to a unit of land (e.g., kilograms per hectare); or the volume of the material that can be applied to the land (e.g., gallons per acre).

Public contact site is a land with a high potential for contact by the public. This includes, but is not limited to, public parks, ball fields, cemeteries, plant nurseries, turf farms, and golf courses.

Qualified ground water scientist is an individual with a baccalaureate or post-graduate degree in the natural sciences or engineering who has sufficient training and experience in ground water hydrology and related fields, as may be demonstrated by State registration, professional certification, or completion of accredited university programs, to make sound professional judgments regarding ground water monitoring, pollutant fate and transport, and corrective action.

Range land is open land with indigenous vegetation.

Reclamation site is drastically disturbed land that is reclaimed using sewage sludge. This includes, but is not limited to, strip mines and construction sites.

NPDES PART II STANDARD CONDITIONS (January, 2007)

Risk specific concentration is the allowable increase in the average daily ground level ambient air concentration for a pollutant from the incineration of sewage sludge at or beyond the property line of a site where the sewage sludge incinerator is located.

Runoff is rainwater, leachate, or other liquid that drains overland on any part of a land surface and runs off the land surface.

Seismic impact zone is an area that has 10 percent or greater probability that the horizontal ground level acceleration to the rock in the area exceeds 0.10 gravity once in 250 years.

Sewage sludge is a solid, semi-solid, or liquid residue generated during the treatment of domestic sewage in a treatment works. Sewage sludge includes, but is not limited to:, domestic septage; scum or solids removed in primary, secondary, or advanced wastewater treatment processes; and a material derived from sewage sludge. Sewage sludge does not include ash generated during the firing of sewage sludge in a sewage sludge incinerator or grit and screening generated during preliminary treatment of domestic sewage in treatment works.

Sewage sludge feed rate is either the average daily amount of sewage sludge fired in all sewage sludge incinerators within the property line of the site where the sewage sludge incinerators are located for the number of days in a 365 day period that each sewage sludge incinerator operates, or the average daily design capacity for all sewage sludge incinerators within the property line of the site where the sewage sludge incinerators are located.

Sewage sludge incinerator is an enclosed device in which only sewage sludge and auxiliary fuel are fired.

Sewage sludge unit is land on which only sewage sludge is placed for final disposal. This does not include land on which sewage sludge is either stored or treated. Land does not include waters of the United States, as defined in 40 CFR §122.2.

Sewage sludge unit boundary is the outermost perimeter of an active sewage sludge unit.

Specific oxygen uptake rate (SOUR) is the mass of oxygen consumed per unit time per unit mass of total solids (dry weight basis) in sewage sludge.

Stack height is the difference between the elevation of the top of a sewage sludge incinerator stack and the elevation of the ground at the base of the stack when the difference is equal to or less than 65 meters. When the difference is greater than 65 meters, stack height is the creditable stack height determined in accordance with 40 CFR §51.100 (ii).

State is one of the United States of America, the District of Columbia, the Commonwealth of Puerto Rico, the Virgin Islands, Guam, American Samoa, the Trust Territory of the Pacific Islands, the Commonwealth of the Northern Mariana Islands, and an Indian tribe eligible for treatment as a State pursuant to regulations promulgated under the authority of section 518(e) of the CWA.

Store or storage of sewage sludge is the placement of sewage sludge on land on which the sewage sludge remains for two years or less. This does not include the placement of sewage sludge on land for treatment.

Surface disposal site is an area of land that contains one or more active sewage sludge units.

NPDES PART II STANDARD CONDITIONS (January, 2007)

Total hydrocarbons means the organic compounds in the exit gas from a sewage sludge incinerator stack measured using a flame ionization detection instrument referenced to propane.

Total solids are the materials in sewage sludge that remain as residue when the sewage sludge is dried at 103 to 105 degrees Celsius.

Treat or treatment of sewage sludge is the preparation of sewage sludge for final use or disposal. This includes, but is not limited to, thickening, stabilization, and dewatering of sewage sludge. This does not include storage of sewage sludge.

Treatment works is either a federally owned, publicly owned, or privately owned device or system used to treat (including recycle and reclaim) either domestic sewage or a combination of domestic sewage and industrial waste of a liquid nature.

Unstable area is land subject to natural or human-induced forces that may damage the structural components of an active sewage sludge unit. This includes, but is not limited to, land on which the soils are subject to mass movement.

Unstabilized solids are organic materials in sewage sludge that have not been treated in either an aerobic or anaerobic treatment process.

Vector attraction is the characteristic of sewage sludge that attracts rodents, flies, mosquitoes, or other organisms capable of transporting infectious agents.

Volatile solids is the amount of the total solids in sewage sludge lost when the sewage sludge is combusted at 550 degrees Celsius in the presence of excess air.

Wet electrostatic precipitator is an air pollution control device that uses both electrical forces and water to remove pollutants in the exit gas from a sewage sludge incinerator stack.

Wet scrubber is an air pollution control device that uses water to remove pollutants in the exit gas from a sewage sludge incinerator stack.

3. Commonly Used Abbreviations

BOD Five-day biochemical oxygen demand unless otherwise specified

CBOD Carbonaceous BOD

CFS Cubic feet per second

COD Chemical oxygen demand

Chlorine

Cl₂ Total residual chlorine

TRC Total residual chlorine which is a combination of free available chlorine

(FAC, see below) and combined chlorine (chloramines, etc.)

NPDES PART II STANDARD CONDITIONS

(January, 2007)

TRO Total residual chlorine in marine waters where halogen compounds are

present

FAC Free available chlorine (aqueous molecular chlorine, hypochlorous acid,

and hypochlorite ion)

Coliform

Coliform, Fecal Total fecal coliform bacteria

Coliform, Total Total coliform bacteria

Cont. (Continuous) Continuous recording of the parameter being monitored, i.e.

flow, temperature, pH, etc.

Cu. M/day or M³/day Cubic meters per day

DO Dissolved oxygen

kg/day Kilograms per day

lbs/day Pounds per day

mg/l Milligram(s) per liter

ml/l Milliliters per liter

MGD Million gallons per day

Nitrogen

Total N Total nitrogen

NH₃-N Ammonia nitrogen as nitrogen

NO₃-N Nitrate as nitrogen

NO₂-N Nitrite as nitrogen

NO₃-NO₂ Combined nitrate and nitrite nitrogen as nitrogen

TKN Total Kjeldahl nitrogen as nitrogen

Oil & Grease Freon extractable material

PCB Polychlorinated biphenyl

pH A measure of the hydrogen ion concentration. A measure of the

acidity or alkalinity of a liquid or material

Surface-active agent

NPDES PART II STANDARD CONDITIONS (January, 2007)

Temperature in degrees Centigrade

Temp. °F Temperature in degrees Fahrenheit

TOC Total organic carbon

Total P Total phosphorus

Temp. °C

TSS or NFR Total suspended solids or total nonfilterable residue

Turb. or Turbidity Turbidity measured by the Nephelometric Method (NTU)

ug/l Microgram(s) per liter

WET "Whole effluent toxicity" is the total effect of an effluent

measured directly with a toxicity test.

C-NOEC "Chronic (Long-term Exposure Test) – No Observed Effect

Concentration". The highest tested concentration of an effluent or a toxicant at which no adverse effects are observed on the aquatic test

organisms at a specified time of observation.

A-NOEC "Acute (Short-term Exposure Test) – No Observed Effect Concentration"

(see C-NOEC definition).

 LC_{50} LC₅₀ is the concentration of a sample that causes mortality of 50% of the

test population at a specific time of observation. The $LC_{50} = 100\%$ is

defined as a sample of undiluted effluent.

ZID Zone of Initial Dilution means the region of initial mixing

surrounding or adjacent to the end of the outfall pipe or diffuser

ports.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION I 1 CONGRESS STREET - SUITE 1100 BOSTON, MASSACHUSETTS 02114-2023

FACT SHEET

DRAFT NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) PERMIT TO DISCHARGE TO WATERS OF THE UNITED STATES

NPDES PERMIT NO: MA0003280

PUBLIC NOTICE DATE:

NAME AND ADDRESS OF APPLICANT:

Global Companies, LLC 11 Broadway Chelsea, MA 02150

NAME AND ADDRESS OF FACILITY WHERE DISCHARGE OCCURS:

Chelsea Sandwich, LLC 11 Broadway Chelsea, MA 02150

RECEIVING WATER: Chelsea River/Mystic River Watershed (MA71)

CLASSIFICATION: SB

I. PROPOSED ACTION

The above named applicant has applied to the U.S. Environmental Protection Agency (EPA) for the re-issuance of a National Pollutant Discharge Elimination System (NPDES) permit to discharge treated storm water and ground water into the designated receiving water. The permit, which was issued to the Chelsea Sandwich, LLC (Chelsea Sandwich) on October 2, 1997 (the Current Permit), became effective on November 1, 1997, and expired on November 1, 2002. EPA received a permit renewal application dated November 7, 2001, from Chelsea Sandwich. Since the permit renewal application was deemed both timely and complete by EPA, the permit has been administratively continued.

II. TYPE OF FACILITY

The Chelsea Sandwich facility, which is located in Chelsea, Massachusetts, is engaged in the receipt, storage, and distribution of petroleum products. The spectrum of fuels handled by this facility consists of distillate (e.g., diesel, kerosene, and No.2 Fuel Oil) and residual products (e.g., No.6 Fuel Oil). Petroleum products are received in bulk quantities at the terminal's marine vessel dock. Product is then transferred to aboveground storage tanks located within the facility's tank farm areas. Final distribution of product is conducted primarily at the facility's truck loading rack and on occasion at the vessel dock when product is shipped off-site. The NPDES discharge consists of: 1) treated storm water runoff from pervious and impervious areas at the facility including the tank farm and loading rack; 2) ground water undergoing treatment as a result of a previous fuel oil spill; 3) a small volume of boiler blow-down water; and 4) occasionally water used for the hydrostatic testing of repaired tanks. The storm water, boiler blow-down, and hydrostatic test water discharges are to the Chelsea River through Outfall 001 (See Figure 1). This permit also establishes an internal waste stream (Outfall 002) which will discharge treated ground water into the storm water conveyance system upstream of Outfall 001.

III. SUMMARY OF MONITORING DATA

A quantitative description of the discharge in terms of significant effluent parameters based on discharge monitoring reports (DMRs) submitted for the Chelsea Sandwich facility during the time period of 1998 through 2003, is included in Attachment A. In addition, Attachment B contains a copy of the monitoring reports submitted by the facility for the ground water recovery and treatment system which has been in operation since November of 2003.

IV. PERMIT LIMITATIONS AND CONDITIONS

The effluent limitations, monitoring requirements, and any implementation schedule, if required, may be found in Part I (Effluent Limitations and Monitoring Requirements) of the draft NPDES permit (Draft Permit). The permit application is part of the administrative file (Permit No. MA0003280).

V. PERMIT BASIS AND EXPLANATION OF EFFLUENT LIMITATION DERIVATION

A. General Requirements

The Clean Water Act (CWA) prohibits the discharge of pollutants to waters of the United States without a NPDES permit unless such a discharge is otherwise authorized by the CWA. The NPDES permit is the mechanism used to implement technology and water quality-based effluent limitations and other requirements including monitoring and reporting. This Draft NPDES permit was developed in accordance with various statutory and regulatory requirements established pursuant to the CWA and applicable State regulations. During development, EPA considered the most recent technology-based treatment requirements, water quality-based requirements, and all

Fact Sheet No. MA0003280 Page 3 of 25

limitations and requirements in the current/existing permit. The regulations governing the EPA NPDES permit program are generally found at 40 CFR Parts 122, 124, 125, and 136. The general conditions of the Draft Permit are based on 40 CFR §122.41 and consist primarily of management requirements common to all permits. The effluent monitoring requirements have been established to yield data representative of the discharge under authority of Section 308(a) of the CWA in accordance with 40 CFR §122.41(j), §122.44(i) and §122.48.

1. <u>Technology-Based Requirements</u>

Subpart A of 40 CFR §125 establishes criteria and standards for the imposition of technology-based treatment requirements in permits under Section 301(b) of the CWA, including the application of EPA promulgated effluent limitations and case-by-case determinations of effluent limitations under Section 402(a)(1) of the CWA.

Technology-based treatment requirements represent the minimum level of control that must be imposed under Sections 301(b) and 402 of the CWA (See 40 CFR §125 Subpart A) to meet best practicable control technology currently available (BPT) for conventional pollutants and some metals, best conventional control technology (BCT) for conventional pollutants, and best available technology economically achievable (BAT) for toxic and non-conventional pollutants. In general, technology-based effluent guidelines for non-POTW facilities must be complied with as expeditiously as practicable but in no case later than three years after the date such limitations are established and in no case later than March 31, 1989 [See 40 CFR §125.3(a)(2)]. Compliance schedules and deadlines not in accordance with the statutory provisions of the CWA can not be authorized by a NPDES permit.

EPA has not promulgated technology-based National Effluent Guidelines for storm water discharges from petroleum bulk stations and terminals (Standard Industrial Code 5171). In the absence of technology-based effluent guidelines, the permit writer is authorized under Section 402(a)(1)(B) of the CWA to establish effluent limitations on a case-by-case basis using Best Professional Judgement (BPJ).

2. Water Quality-Based Requirements

Water quality-based criteria are required in NPDES permits when EPA and the State determine that effluent limits more stringent than technology-based limits are necessary to maintain or achieve state or federal water-quality standards (See Section 301(b) (1)(C) of the CWA). Water quality-based criteria consist of three (3) parts: 1) beneficial designated uses for a water body or a segment of a water body; 2) numeric and/or narrative water quality criteria sufficient to protect the assigned designated use(s) of the water body; and 3) anti-degradation requirements to ensure that once a use is attained it will not be degraded. The Massachusetts State Water Quality Standards, found at 314 CMR 4.00, include these elements. The State Water Quality Regulations limit or prohibit discharges of pollutants to surface waters and thereby assure that the surface water quality standards of the receiving water are protected, maintained, and/or attained. These standards also include requirements for the regulation and control of toxic constituents and

Fact Sheet No. MA0003280 Page 4 of 25

require that EPA criteria, established pursuant to Section 304(a) of the CWA, be used unless a site-specific criteria is established. EPA regulations pertaining to permit limits based upon water quality standards and state requirements are contained in 40 CFR §122.44(d).

Section 101(a)(3) of the CWA specifically prohibits the discharge of toxic pollutants in toxic amounts. The State of Massachusetts has a similar narrative criteria in their water quality regulations that prohibits such discharges [See Massachusetts 314 CMR 4.05(5)(e)]. The effluent limits established in the Draft Permit assure that the surface water quality standards of the receiving water are protected, maintained, and/or attained.

3. Anti-Backsliding

EPA's anti-backsliding provision as identified in Section 402(o) of the Clean Water Act and at 40 CFR §122.44(l) prohibits the relaxation of permit limits, standards, and conditions unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued. Anti-backsliding provisions apply to effluent limits based on technology, water quality, BPJ and State Certification requirements. Relief from anti-backsliding provisions can only be granted under one of the defined exceptions [See 40 CFR §122.44(l)(i)]. Since none of these exceptions apply to this facility, the effluent limits in the Draft Permit must be as stringent as those in the Current Permit.

4. <u>Anti-Degradation</u>

The Massachusetts Anti-Degradation Policy is found at Title 314 CMR 4.04. All existing uses of the Chelsea River must be protected. The Chelsea River is classified as a Class SB water body by the State of Massachusetts and as such, is designated as a habitat for fish, other aquatic life and wildlife and for primary (e.g., wading and swimming) and secondary (e.g., fishing and boating) contact recreation. A Class SB water body may also be suitable for shellfish harvesting but there are no areas within the Chelsea River currently approved by the State for such use. This Draft Permit is being reissued with allowable effluent limits as stringent or more stringent than the Current Permit and accordingly will continue to protect the existing uses of the Chelsea River.

B. Description of Facility

Chelsea Sandwich is a bulk petroleum facility with operations consisting of the receipt, storage, and distribution of petroleum products. The terminal, which is located in Chelsea, Massachusetts near the confluence of the Chelsea and Mystic Rivers, covers an area of approximately ten (10) acres. The facility consists of three principal areas: tank farms, terminal yard, and a marine vessel dock.

There are two tank farm areas at the facility. The first area, which is located along the western edge of the property adjacent to the Mystic River, is referred to as the "Terminal Field" (See Figure 2). The Terminal Field has nine (9) tanks located within a concrete secondary containment dike encompassing the entire area. There are also two (2) smaller product additive tanks (15,000)

Fact Sheet No. MA0003280 Page 5 of 25

gallon capacity for each) within the Terminal Field that are used to store winter and summer diesel fuel additives. The second tank farm area, which is located in the central portion of the facility, consists of five (5) tanks. Secondary containment for this tank farm area is provided through individual steel dikes surrounding each tank. In total, the facility can store a gross capacity of approximately 670,000 barrels (or 28,000,000 gallons) of product.

All of the individual steel containment dikes are designed to contain the contents of the enclosed tank plus an added volume to hold any fire-extinguishment chemicals, water and/or precipitation (approximately 110 to 130 percent of the circumscribed tank's storage capacity). Similarly, the concrete secondary containment surrounding the Terminal Field is designed to contain the contents of the largest tank plus an additional volume for the storage of fire protection water and precipitation. The dikes prevent any potentially spilled petroleum products from migrating from one tank area to another or into any surrounding waterways.

The Terminal Yard generally consists of the area outside of the tank farm secondary containment structures. The Terminal Yard has an office, a garage/truck wash building, a boiler house, truck loading racks, an office and truck parking area for Heating Oil Partners (a separate business), and an oil/water (O/W) Separator. Operations at the Chelsea Sandwich Terminal also depend on the use of several smaller aboveground storage tanks (ranging in size from several hundred gallons to several thousand gallons). These smaller tanks are primarily used to store fuel additives, heating oil, and diesel fuel for the facilities "own use." The terminal also operates a 15,000 gallon tank which is used to recover usable product from oil/water mixtures which tend to form in the tanks over time. Oil recovered from this tank is pumped back to the tank farm for reuse and the separated water is removed by vacuum truck and disposed of off-site as a regulated Massachusetts waste (MAO1). There are currently no underground storage tanks at the terminal.

The marine vessel dock is located along a rip-rap embankment on the northeast shore of the Mystic River at the confluence of the Chelsea River. The dock is equipped with a manifold area for receipt and distribution of product. Most of the product stored at the facility (with the exception of some limited inventory transported by tanker truck) is received in bulk quantities at the vessel dock by ship or barge. Product off loaded from the ship or barge is piped to the bulk storage tanks. Final distribution of product is completed at the truck loading rack area and/or marine vessel dock. The facility occasionally loads distillate and residual products onto barges for off-site shipment.

The product spectrum stored at the facility consists of diesel, kerosene, No.2 Fuel Oil, and No.6 Fuel Oil. The facility also has the capability of physically blending some of these products together to market products which it does not currently store (e.g., No. 4 Fuel Oil). However, there are no other chemical processes/reactions which occur at the facility.

C. Description of Discharge

This Draft Permit authorizes the discharge of storm water runoff, hydrostatic test water, and boiler blow-down from one outfall (Outfall 001) at the facility. The Draft Permit also establishes an internal waste stream (Outfall 002) which will discharge treated ground water into the storm water conveyance system upstream of Outfall 001. The internal waste stream, along with its respective effluent limits was established in the Draft Permit to minimize the potential impacts of dilution with storm water in accordance with 40 CFR §122.45(h).

1. Outfall 001

Storm water is primarily collected at the terminal from three (3) areas: the secondary containment surrounding individual tanks, the Terminal Field tank farm, and the Terminal Yard. Three (3) of the steel containment dikes surrounding the individual tanks have earthen floors. Storm water accumulating within these areas either evaporates, infiltrates into the ground, or is drained into the terminal's underground storm water drainage system. For the remaining two (2) tanks with steel floors, accumulated storm water is pumped directly to the terminal's underground storm water drainage system. Valves on the storm water drainage pipes within the steel containment dikes are kept closed for safety considerations and are opened each time a diked area is drained.

Storm water collected within the Terminal Field tank farm is directed either by overland flow or through catch basins to a lift station located in the southern corner. The lift station pump must be manually activated to pump storm water into the terminal's storm water conveyance system.

Storm water runoff within the Terminal Yard is directed toward several low elevation catch basins. At the truck loading rack within the Terminal Yard, the roof directs storm water away from the truck rack equipment and loading operations to perimeter drains and individual catch basins located along the perimeter of the rack. Storm water reaching the perimeter drains and catch basins enters the terminal's underground water collection system and flows by gravity to the O/W Separator.

The vessel loading dock has a drip pan located under each of the manifold areas used for the receipt of product from ships and barges. Storm water as well as any residual product accumulating in the drip pan is pumped back to the facility for treatment and/or recovery.

Chelsea Sandwich operates two (2) boilers which are used to provide steam heat for several buildings and to facilitate the transfer of No. 6 Fuel Oil stored at the facility. Typically, a small volume of water is withdrawn from the boilers on a daily basis as part of the required operation and maintenance. This discharge or "boiler blow-down" is needed to prevent the potential build-up of naturally occurring mineral salts which can interfere with the operation of the boilers. Chelsea Sandwich currently discharges approximately one-half gallon per day of boiler blow-down into the storm water conveyance system. In comparison, thousands of gallons of treated ground water flow through the system on a daily basis and hundreds of thousands of gallons of treated storm water flow through the system during a typical rainfall event.

Fact Sheet No. MA0003280 Page 7 of 25

Wastewater from the truck wash facility (attached to the main office building) is routed directly to the Massachusetts Water Resources Authority (MWRA) sewer system. The Draft Permit does not include this non-storm water discharge.

The O/W Separator, which is located at the southern end of the property has an overall capacity of approximately 15,000 gallons. The original separator was an American Petroleum Institute-type structure with a weir/baffle designed to separate floating product and solid material from storm water. The separator was modified in November of 1998 to increase the maximum design flow capacity of the unit. The design capacity was increased through the installation of a coalescer plate retro-fit pack. The coalescer plate packs, which were placed within the confines of the original separator, were designed with sufficient size and plate spacing to increase the maximum design flow rating of the O/W Separator to 700 gallons per minute (gpm). The O/W Separator as well as the catch basins located throughout the facility are cleaned on an annual basis.

Chelsea Sandwich has indicated that the flow through the O/W Separator is controlled through the manual operation of two pumps located within the separator as well as a check valve and gate valve located directly upstream of the separator. Each of the pumps located within the separator are rated for a maximum flow rate of 350 gpm based on the total dynamic head conditions found in the O/W Separator. During an average rainfall event one pump is typically sufficient to handle the storm water run off. Under flooding conditions both pumps can be operated to achieve a maximum pumping rate of approximately 700 gpm. The check valve and gate valve located upstream of the O/W Separator are used to ensure that the flow entering the separator does not exceed the capacity of the two pumps and thereby overflow the unit.

Storm water pumped from the O/W Separator flows a short distance through an above-ground pipe to its discharge point (Outfall 001) located in the Chelsea River. Until recently, storm water pumped from the O/W Separator used to flow into the "Quadricell", a unit which was once used as a polishing step prior to discharge. The Quadricell unit was removed from service in October of 2004. The unit was no longer needed for treatment as a result of the improvements made to the O/W Separator (i.e., installation of the coalescer plate retro-fit pack).

Chelsea Sandwich has indicated that all tank bottom water is consolidated and hauled off-site by a licensed waste hauler(s) for treatment and disposal elsewhere. There have been several hydrostatic test water discharges reported at the facility since the issuance of the Current Permit. Discharge monitoring and reporting were conducted for these testing events in accordance with the procedures described in Part I.A.9 of the Current Permit. Potable water from the local municipal water supply was used as the source of water for these tests. Results from the testing of the hydrostatic test water shows conformance with the requirements and conditions identified in Part I.A.9 of the Current Permit.

2. Outfall 002

The MADEP has required the facility to design and operate a ground water recovery and treatment system located within the Terminal Field tank farm. The system was installed in November 2003 and is operated on a yearly basis to recover an unknown quantity of fuel oil released during an earlier spill. The ground water recovery system consists of nine (9) recovery wells which have been installed within and adjacent to the Terminal Field tank farm. Only four (4) recovery wells located within the Terminal Field are currently being used. The average total flow rate generated by the four (4) recovery wells is 7-8 gallons per minute (gpm) and the maximum design flow rate is 10 gpm. However, the treatment system has the potential to be expanded to treat a maximum design flow rate of 25 gpm.

Contaminated ground water is pumped from the recovery wells to a treatment system consisting of a O/W Separator, a cartridge filter bag, and granulated activated carbon (GAC). The treatment train initially included an air stripper but the use of this unit was discontinued due to the low concentrations of volatile organic compounds requiring treatment and a problem with iron fouling. Treated groundwater is discharged into the lift station sump located in the Terminal Field tank farm. From there, treated ground water as well as any accumulated storm water is pumped to the O/W Separator before being discharged to the Chelsea River. The discharge of treated ground water is currently being allowed through a NPDES Permit "Exclusion" letter issued by EPA to the facility (NPDES Exclusion #MA 03I-127) on October 31, 2003. EPA is proposing to incorporate the discharge of treated ground water into the Draft Permit as an internal waste stream (Outfall 002). Additional details are provided in Section V.E.9 of this Fact Sheet.

D. Discharge Location

The receiving water, Chelsea River (Boston Harbor/Mystic River Watershed/Segment MA71-06), is an urban tidal river flowing from the mouth of Mill Creek, between Chelsea and Revere, to Boston's Inner Harbor, between East Boston and Chelsea. For centuries, Chelsea River has been flanked by working industries, many of which used the channel to transport raw materials and finished goods. The river is officially classified as a Designated Port Area: a stretch of waterfront set aside primarily for industrial and commercial use. Chelsea River, which is also locally known as Chelsea Creek, is designated as a Class SB water body by the State of Massachusetts (See Part V.A.4. of this Fact Sheet for additional information).

Under Section 303(d) of the CWA, states are required to develop information on the quality of their water resources and report this information to the EPA, the U. S. Congress, and the public. In Massachusetts, the responsibility for monitoring the waters within the State, identifying those waters that are impaired, and developing a plan to bring them into compliance with the Massachusetts Water Quality Standards (314 CMR 4.0) resides with the MADEP. The MADEP evaluated and developed a comprehensive list of the assessed waters and the most recent list was published in the *Massachusetts Year 2002 Integrated List of Waters* (MADEP, September 2003). The list identifies the Chelsea River as one of the waterways within the State of Massachusetts

Fact Sheet No. MA0003280 Page 9 of 25

that is considered impaired. The impairment, as identified by the MADEP, is related to the presence of the following "pollutants", which were not considered to be present due to natural causes: priority organics, unionized ammonia, organic enrichment/low dissolved oxygen, pathogens, oil and grease, taste, odor and color, and turbidity.

The MADEP is required under the CWA to develop a Total Maximum Daily Load (TMDL) for a water body once it is identified as impaired. A TMDL is essentially a pollution budget designed to restore the health of a water body. A TMDL typically identifies the source(s) of the pollutant from direct and indirect discharges, determines the maximum amount of pollutant, including a margin of safety, that can be discharged to a specific water body while maintaining water quality standards for designated uses, and outlines a plan to meet the goal. A TMDL has not yet been developed for the Chelsea River. In the interim, EPA is developing the conditions for this permit based on a combination of water quality standards and best professional judgement. Should a TMDL be developed in the future, and if that TMDL identifies that the discharge from the facility is causing or contributing to the non-attainment of surface water quality critieria, then the permit may be re-opened. Additional details are provided below (See Sections V.E.3 and V.E.5 of this Fact Sheet) regarding the basis for the effluent limits established in the Draft Permit and how such limits relate to any of the "pollutants" identified above as impacting the water quality of the Chelsea River.

E. Proposed Permit Effluent Limitations and Conditions

This Draft Permit is not being considered in isolation, but rather, in the context of all potential direct dischargers (including other petroleum bulk stations and terminals) of light and heavy hydrocarbons, which discharge either directly into Boston Harbor or indirectly (via its tributaries: the Island End, Chelsea, and Mystic Rivers).

Section 402(p) of the Clean Water Act requires that EPA issue NPDES permits for storm water discharges which were permitted prior to February 4, 1987 [See 40 CFR §122.26(a)(1)(i)]. Since the facility had a permitted storm water discharge prior to February 4, 1987, and the activities occurring at the facility do not fall within the description of industrial activities eligible for EPA's Storm Water Multi-Sector General Permit for Industrial Activities [See 40 CFR §122.26(b)(14)(viii)], the facility must continue to be permitted through an individual facility NPDES permit.

The Draft Permit is conditioned to: (1) better regulate plausible non-storm water discharges (e.g., hydrostatic test water and groundwater remediation effluent) alone or in combination with storm water runoff to Boston Harbor, and (2) to better regulate ancillary operations that have the potential to contact storm water (e.g., materials storage, facility site-runoff, product blending, and product loading and unloading).

Storm water discharges from activities associated with petroleum bulk stations and terminals must satisfy best conventional technology (BCT) and best available technology (BAT) requirements and must comply with more stringent water quality standards if BCT and BAT

Fact Sheet No. MA0003280 Page 10 of 25

requirements are not adequate. On September 25, 1992, EPA promulgated through its General Permit for Storm Water Discharge Associated with Industrial Activity, that the minimum BAT/BCT requirement for storm water discharges associated with industrial activity is a Storm Water Pollution Prevention Plan (SWPPP) [57 FR, 44438]. EPA has included SWPPP requirements in the Draft Permit. In addition, EPA has decided to include numeric effluent limitations (e.g., technology-based and water quality-based limits) in the Draft Permit to ensure that petroleum constituents do not contribute to violations of the State's water quality standards.

Thus the Draft Permit for Chelsea Sandwich, authorizing the discharge of storm water, boiler blow-down, hydrostatic test water, and ground water, includes numeric effluent limits and requires the development, implementation, and annual review of the SWPPP prepared for the facility. The effluent parameters in the Draft Permit are discussed in more detail below according to the effluent characteristic(s) being regulated.

1. Flow

The typical treatment technology employed by petroleum bulk storage terminals for storm water runoff is an O/W Separator. This device uses gravity to separate the lower-density oils from water; resulting in an oil phase above the oil/water interface and a heavier particulate phase (sludge) on the bottom of the separator. Accordingly, the sizing of O/W Separators is based on the following design parameters: water-flow rate; density of oil to be separated; desired percentage removal of oil; and the operating temperature range.

To ensure proper operation of installed O/W Separators such that the oil and/or particulate phases are not entrained to the waterway, it is important that the flow through the separator be maintained at or below the maximum design flow rate of the separator. In order to ensure that this criteria was being met, EPA and the MADEP required as part of the Current Permit, that the facility identify both the maximum design flow rating of the O/W Separator and the measures taken by the facility to ensure that the maximum design flow rate would not be exceeded (See Part I.A.4 of the 1997 NPDES permit).

In response to this permit requirement, Chelsea Sandwich identified that the maximum design flow rating for the O/W Separator at the facility is 700 gpm. Chelsea Sandwich also indicated that the flow through the O/W Separator is controlled by limiting the rate at which storm water is pumped out of the O/W Separator. The flow into and out of the O/W Separator, as discussed further in Section V.C. of this Fact Sheet, is controlled through the pumping rate of the two pumps located within the separator. The estimated combined pumping rate of both of these pumps is 700 gpm. Since the pumping rate of both pumps does not exceed the maximum design flow rating of the separator, Chelsea Sandwich has demonstrated that the flow through the O/W Separator is appropriately controlled. The Draft Permit requires that the facility provide written notification and receive approval by EPA and MADEP for any proposed changes which have the potential to cause the maximum design flow rate through the O/W Separator to be exceeded.

Fact Sheet No. MA0003280 Page 11 of 25

EPA and MADEP are using the design flow information submitted by Chelsea Sandwich to identify the maximum daily effluent flow limit for Outfall 001 at the facility in accordance with Part I.A.8 of the Current Permit. The instantaneous flow rate of 700 gpm, which is based upon the pump curve information submitted by the facility, will become the new flow rate limit for Outfall 001 in the Draft Permit. The flow control device or system as described above and the identification of an instantaneous maximum flow rate should ensure compliance with "proper operation" as described at 40 CFR §122.41(e).

2. Total Suspended Solids (TSS)

The Draft Permit limit for TSS remains unchanged at 30 mg/l and 100 mg/l for the average monthly and maximum daily values, respectively. The monitoring frequency for this parameter has been reduced in the Draft Permit from semi-monthly to monthly based upon the facility's performance during the previous permit cycle.

The TSS limits in the Draft Permit are based upon the limits established in the Current Permit in accordance with the anti-backsliding requirements found in 40 CFR §122.44(l). Heavy metals and polynuclear aromatic hydrocarbons are readily adsorbed onto particulate matter and the release of these compounds can be to an extent, controlled by regulating the amount of suspended solids released into the environment.

The limits in the Current Permit were developed based upon a BPJ determination. In making this determination, EPA considered the technology guidelines promulgated at 40 CFR Part 423 for the Steam Electric Power Point Source Category for guidance. Steam electric generating facilities, similar to bulk petroleum storage facilities, frequently include the storage of fuel oil on their premises. In developing effluent limits for Steam Electric Source Category, EPA identified TSS as a potential pollutant due to the drainage associated with equipment containing fuel oil and/or the leakage associated with the storage of oil (USEPA, 1982). EPA then considered the level of treatment that could be technologically achieved for TSS using an O/W Separator and set corresponding limits in the guidelines (See 40 CFR Part 423 "low volume waste sources"). Given the similarities between the storage of petroleum products at bulk stations and terminals and the storage of fuel oil at steam electric facilities, EPA is using the same TSS limits established for steam electric facilities for bulk petroleum storage facilities.

There were several instances during the previous permit cycle when TSS limits were exceeded as shown in the summary of the discharge monitoring data submitted by the facility during the time period of 1998 to 2003 (See Attachment A to this Fact Sheet). There does not appear to be any observable trends associated with these sporadic occasions of elevated TSS levels, other than to note that most of the exceedances were for the monthly average TSS limit. However, overall the facility has been able to consistently meet its TSS limits over the last permit cycle through the proper operation of a correctly-sized O/W Separator, appropriate source controls, routine inspections, preventative maintenance, and implementation of best management practices.

3. Oil and Grease (O&G)

The Draft Permit limit for Oil and Grease (O&G) remains unchanged at 15 mg/L for the maximum daily value. The monitoring frequency for this parameter has been reduced from semimonthly to monthly based upon the facility's performance during the previous permit cycle. O&G shall be measured using EPA method 1664. Originally this effluent limit was established by EPA-Headquarters as guidance to, and as a means of establishing a categorization within, the petroleum marketing terminals and oil production-facilities - categories. However, performance data from terminals in Massachusetts and Maine continue to support that this effluent limit can be achieved through the proper operation of a correctly-sized O/W Separator and implementation of best management practices. EPA has made a BPJ determination based upon the technology-based and performance information to continue with an O&G limit of 15 mg/L in the Draft Permit.

As noted in Section V.D. of this Fact Sheet, O&G is one of the pollutants identified by the State of Massachusetts as having contributed to the impairment of Chelsea River. The MADEP uses a narrative description (e.g., waters shall be free from oil, grease and petrochemicals that produce a visible film on the surface of the water) rather than a numeric threshold to identify whether this pollutant is an issue for a water body. The information contained in the *Massachusetts Year 2002 Integrated List of Waters* (MADEP, September 2003) and in the *Boston Harbor Watershed 1999 Water Quality Assessment Report* (MADEP, October 2002) does not clearly identify the basis for why O&G was identified as a problem in Chelsea River. However, the *Boston Harbor Watershed 1999 Water Quality Assessment Report* does mention a small number of historic spills which took place during the transportation and offloading of petroleum products along the Chelsea River. These spills, which would have produced a visible film on the surface of the water, would have likely exceeded the MADEP's criteria for O&G. Such spills are under the jurisdiction of the U.S. Coast Guard (See 33 CFR Part 154) rather than EPA's NPDES program and the results appear unrelated to the performance of any of the storm water treatment systems at the petroleum bulk stations and terminals along Chelsea River.

EPA believes that the controls in place at Chelsea Sandwich (i.e., Draft Permit limit for O&G of 15 mg/L and implementation of best management practices) should ensure that the storm water discharge from the facility does not contribute to the further impairment of Chelsea River. An effluent limit for O&G of 15 mg/L should ensure that the discharge from the facility will be free from oil, grease, and petrochemicals that might produce a visible film on the surface of the water. Best Management Practices being implemented by the facility, which includes a Storm Water Pollution Prevention Plan, ensures that there is a program in place at the facility to limit the amount of pollutants being discharged with storm water runoff. Best Management Practices are fully enforceable permit conditions that serve to prevent pollution, rather than simply treat it. Chelsea Sandwich has demonstrated its ability to meet the O&G permit condition in the Current Permit as shown in the summary of the discharge monitoring data submitted during the time period of 1998 to 2003 (See Attachment A to this Fact Sheet).

4. pH

Massachusetts State Surface Water Quality Standards require the pH of Class SA and Class SB waters to be within the range of 6.5 to 8.5 standard units (S.U.). The pH permit range of 6.5 to 8.5 as identified in the Draft Permit, which is to be monitored on a monthly basis, has been established in accordance with the State Surface Water Quality Standards. The discharge shall not exceed this pH range unless due to natural causes. In addition, there shall be no change from background conditions that would impair any uses assigned to the receiving water class.

A summary of the discharge monitoring data submitted by the facility during the time period of 1998 to 2003 is included as Attachment A to this Fact Sheet. There were several occasions early on in the previous permit cycle when the pH of the discharge was below 6.5. This was not considered a violation since the Current Permit did not contain an effluent limit for pH.

5. Polynuclear Aromatic Hydrocarbons (PAHs)

Polynuclear Aromatic Hydrocarbons (PAHs) are a group of organic compounds which are found throughout the environment. PAHs are primarily introduced into the environment through the incomplete combustion of organic compounds. PAHs are also present in crude oil and some of the heavier petroleum derivatives and residuals (e.g., fuel oil and asphalt). Spillage or discharge of these products can serve to introduce PAHs into the environment. PAHs will strongly adsorb to suspended particulates and biota and can also bio-accumulate in fish and shellfish.

There are sixteen (16) PAH compounds identified as priority pollutants under the CWA (See 40 CFR 423 - Appendix A). Several of these PAHs are well known animal carcinogens, others are not considered carcinogenic alone but can enhance or inhibit the response of the carcinogenic PAHs. Typically, exposure would be to a mixture of PAHs rather than to an individual PAH.

EPA required the permittee to submit a PAH pollutant scan (for the 16 PAH compounds identified as priority pollutants) from the storm water outfall at the facility as part of the permit renewal application process for the Current Permit because of the health concerns discussed above and the potential for PAHs to be present in some of the heavier petroleum distillate and residual products stored at the facility. A similar requirement was put in place for the petroleum bulk stations and terminals located in South Portland, Maine starting in the early 1990's.

The sampling results from this facility did not show the presence of any of the reported 16 PAH compounds confirming a similar trend noted for the majority of the hundreds of quarterly samples obtained from the South Portland facilities. As a result, the Current Permit was issued with a requirement for quarterly monitoring without any limits for the following seven (7) PAH compounds identified as probable human carcinogens:

Benzo(a)anthracene Benzo(b)fluoranthene Chrysene Benzo(a)pyrene Benzo(k)fluoranthene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene

All of the petroleum storage terminals and facilities that had a reasonable potential to discharge PAHs into Boston Harbor were required to continue monitoring for PAHs. The seven (7) PAH compounds identified above for monitoring purposes, were selected primarily based on their toxicity and presence in petroleum products. EPA proposed as part of the Current Permit to evaluate the monitoring results to be collected from these facilities and to determine whether there was a need to establish PAH limits.

EPA has reviewed the discharge monitoring data for PAHs submitted by Chelsea Sandwich since the issuance of the Current Permit in 1997. The seven (7) PAHs analyzed for were not detected above their respective reporting limits during any of the quarterly sampling events which occurred since 1997. A majority of the other petroleum bulk stations and terminals located along Chelsea Creek also reported similar results. The reporting limits for each of the seven PAH compounds were typically around 1 μ g/L (or 1 part per billion). A summary of the discharge monitoring data submitted by the facility during the time period of 1998 to 2003 is included as Attachment A to this Fact Sheet. A separate summary table providing the monitoring results from 2001 to 2003 for PAHs with their respective detection limits can be found in Attachment C to this Fact Sheet.

Based on EPA's review of the data from this facility as well as the other facilities for which PAH data were collected, EPA has concluded that permit limits for PAH compounds are not required at this time. However, given the potential health concerns related to PAHs, the type of petroleum products stored at the facility, the historical levels of PAHs which have been documented in the sediment of Chelsea River and Boston Harbor, and the fact that priority organics were one of the "pollutants" identified by MADEP contributing to the impairment of Chelsea River, EPA will require the facility to continue to monitor for PAHs without limits on a quarterly basis from the storm water outfall(s) at the facility. Future monitoring will be required to achieve the following Minimum Level (ML) of reporting for each of the PAH compounds identified below:

Benzo(a)anthracene	$< 0.05 \mu g/L$	Benzo(a)pyrene	$<2.0 \mu g/L$
Benzo(b)fluoranthene	$< 0.1 \mu g/L$	Benzo(k)fluoranthene	$<2.0 \mu g/L$
Chrysene	$< 5.0 \mu g/L$	Dibenzo(a,h)anthracene	$< 0.1 \mu g/L$
Indeno(1,2,3-cd)pyrene	$< 0.15 \mu g/L$	Naphthalene	$<0.2 \mu g/L$

The ML is defined as the level at which the entire analytical system gives recognizable mass spectra and acceptable calibration points. This level corresponds to the lower points at which the calibration curve is determined based on the analysis of the pollutant of concern in reagent water.

EPA has added naphthalene to the list of PAH compounds to be reported without limits by the facility in the Draft Permit. Naphthalene is considered an important limiting pollutant parameter based upon the prevalence of this compound in petroleum products and its toxicity (i.e., naphthalene has been identified as a possible human carcinogen).

Fact Sheet No. MA0003280 Page 15 of 25

As noted in Section V.D. of this Fact Sheet, "priority organics" were one of the pollutants identified by the State of Massachusetts as having contributed to the impairment of Chelsea River. The information contained in the *Massachusetts Year 2002 Integrated List of Waters* (MADEP, September 2003) and in the *Boston Harbor Watershed 1999 Water Quality Assessment Report* (MADEP, October 2002) does not clearly identify the basis for identifying priority organics as a problem in Chelsea River. However, MADEP personnel indicated during followup conversations that the primary stressor under the priority organics category was believed to be polychlorinated biphenyls (PCBs). The *Boston Harbor Watershed 1999 Water Quality Assessment Report* notes that a health advisory was issued by Massachusetts in 1988 for Boston Harbor based primarily on the presence of elevated levels of PCBs. The data from Boston Harbor was extrapolated to Chelsea River based on the fact that this also is an estuarine environment. PCBs are not typically associated with petroleum products and as such there are no limits or monitoring requirements for these compounds in the Current as well as the Draft Permit.

6. Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX)

Refined petroleum products contain numerous types of hydrocarbons. Individual components partition to environmental media on the basis of their physical/chemical properties (e.g., solubility, vapor pressure). Rather than attempt to establish effluent limits for every compound found in a petroleum release, limits are typically established for the compounds that would be the most difficult to remove as well as demonstrate the greatest degree of toxicity. Generally, the higher the solubility of a volatile organic compound (VOC) in water, the more difficult it is to remove.

VOCs such as benzene, toluene, ethylbenzene, and the three xylene compounds (BTEX) are normally found at relatively high concentrations in gasoline and light distillate products (e.g., diesel fuel). BTEX concentrations typically decrease in the heavier grades of petroleum distillate products (e.g., fuel oils). Since many petroleum spills involve gasoline or diesel fuel, a traditional approach for such spills has been to place limits on the individual BTEX components and/or the sum of total BTEX compounds.

Of these four compounds, benzene has one of the highest solubilities, it is one of the most toxic constituents, and it is found at relatively high concentrations in gasoline and diesel fuel. The concentration of benzene in gasoline is approximately 20,000 parts per million (Potter and Simmons, 1998). Because of the reasons mentioned above, benzene can be considered one of the most important limiting pollutant parameters found in gasoline or diesel fuel. Building on this premise, benzene can be used as an indicator-parameter for regulatory as well as characterization purposes of storm water which comes in contact with gasoline and diesel fuel. The primary advantage of using an indicator-parameter is that it can streamline monitoring efforts while simultaneously maintaining an effective level of environmental protection.

The Current Permit does not include monitoring for BTEX. The decision to not include BTEX in the Current Permit was based on the facility not storing gasoline. However, the facility does store

Fact Sheet No. MA0003280 Page 16 of 25

diesel fuel and the concentration of benzene in diesel fuel, although several orders of magnitude smaller than that found in gasoline, is still significant from an environmental perspective. The average percent by weight of benzene in diesel fuel is approximately 0.03 percent (Potter and Simmons, 1998) which is equivalent to a concentration of benzene of approximately 300 parts per million. This value is well above the recommended Federal Water Quality Criteria of 0.051 parts per million (or 51 parts per billion) for benzene. Based on this, EPA believes that there is a reasonable potential to impact human health and the environment if there was a release of diesel fuel.

To better regulate the "potential" for diesel fuel to come in contact with storm water via ancillary operations at this facility (i.e., such as product spills during loading and unloading operations), EPA has included a quarterly monitoring requirement for BTEX and a maximum daily effluent limit of 51 μ g/L for benzene in the Draft Permit. In establishing the effluent limit for VOCs in the Draft Permit, EPA reviewed all appropriate criteria including the most recent recommended Federal Water Quality Criteria and the quarterly monitoring results for BTEX obtained from the discharges of all of the petroleum bulk stations and terminals along Chelsea River. EPA is proposing a maximum daily effluent limit for benzene of 51 μ g/L in the Draft Permit. This number represents the current recommended Federal Water Quality Criteria for benzene adopted by the State of Massachusetts (See 314 CMR 4.05(5)(e)). The benzene limit of 51 μ g/L is based on the human health criteria associated with the consumption of aquatic organisms (USEPA, 2002). EPA believes that the inclusion of monitoring for BTEX with a limit for benzene is necessary for the protection of human health and to maintain the water quality standards established under Section 303 of the CWA.

The Draft Permit does not include monitoring for methyl tertiary-butyl ether (MTBE), a synthetic compound used as a blending component in gasoline. Gasoline is not one of the products stored at the Chelsea Sandwich facility.

7. Tank-Bottom and Bilge Water

The bottom of many petroleum product storage tanks may contain a layer of water that has separated from the stored petroleum product due to the density difference between the product and water. As this water coalesces and then settles to the bottom of the tank, compounds including BTEX and PAHs found in the product above it are able to partition and dissolve into the water. The partitioning and dissolution allows the concentrations of some of the more soluble and denser petroleum components to reach toxic levels. Facility operators drain this layer of water to prevent transfer with the finished product as well as to free up valuable storage space.

Whereas storm water contacts only those hydrocarbons spilled on the ground and then only for short periods of time; tank bottom and bilge water remains in intimate proximity with petroleum derivatives for prolonged periods of time, allowing toxic pollutants to dissolve into the aqueous phase. EPA Region I considers both tank-bottom and bilge water "process wastewater", since soluble toxic materials can partition from the petroleum product into the water over time. To protect Boston Harbor from toxic pollutants dissolved in tank-bottom and bilge water, EPA is

Fact Sheet No. MA0003280 Page 17 of 25

prohibiting the permittee from discharging any tank-bottom or bilge water alone or in combination with storm water or other wastewater.

8. <u>Hydrostatic Test Water Discharges</u>

Occasionally repairs are made at the facility to the tanks and the piping used for the storage and conveyance of petroleum products. To ensure safe working conditions during this maintenance work, storage tanks and/or pipe networks are rigorously cleaned (e.g., "Poly Brushed", "Squeegee Pigged") and certified as being "gas-free." After completing certain maintenance work, the vessels and/or pipe networks may require hydrostatic testing (e.g., to be filled with water and monitored for changes in water levels) before product replacement. Some of the bulk petroleum storage facilities located along Chelsea River use the river as a source of test water. Thus, hydrostatic test water discharge may contain minimal amounts of foreign matter, trace amounts of hydrocarbons, and other background material found in the river. Other facilities use potable water as a source of test water and as a result their may be some residual chlorine present in the discharge. As a precaution, the hydrostatic test water shall be monitored as described below and treated through the O/W Separator prior to being discharged to the Chelsea River. In addition, the flow of hydrostatic test water into the O/W Separator shall be controlled to prevent it from exceeding the maximum design flow rate of the separator.

At a minimum, four (4) representative samples shall be taken of the hydrostatic test water: one (1) grab sample of the influent test water; and three (3) serial-grab samples of the hydrostatic test water effluent. The influent grab sample shall be taken approximately midway through the fill segment of the hydrostatic test procedure. The three (3) effluent serial-grab samples shall be taken over the duration of the entire discharge segment of the hydrostatic test procedure. The first effluent serial-grab sample shall be taken during the initial phase of discharge; the second around the midpoint; and the third near the end of the discharge. The effluent serial-grab samples shall be obtained before discharge into the O/W Separator and/or mixing with any storm water or other non-storm water flow.

These influent and effluent samples shall be analyzed for the following parameters:

- 1. Total Suspended Solids (TSS)
- 2. Oil & Grease (O&G)
- 3. pH
- 4. Dissolved Oxygen (DO)
- 5. Total Residual Chlorine
- 6. BTEX
- 7. MTBE
- 8. PAHs (16 compounds)

Testing for total residual chlorine is only required when potable water or a similar source of water which is likely to contain a residual chlorine concentration is used for hydrostatic testing.

Fact Sheet No. MA0003280 Page 18 of 25

Testing for MTBE is only required if the tank undergoing testing was recently (i.e., within three years of the proposed testing date) used to store gasoline.

During discharge (i.e., approximately at the same time the three effluent grab samples are taken), the flow exiting through the O/W Separator and outfall should be observed in order to prevent the inadvertent release of hydrocarbons to the receiving water(s). In the event that there is evidence of such a release (e.g., visible oil sheen and/or noticeable increase in turbidity of discharge water), the permittee shall immediately halt the discharge of hydrostatic test water and take steps to correct the problem.

Sampling of the above parameters is needed to provide adequate characterization of the influent and effluent hydrostatic test water and to identify whether there are any contaminant residuals present in the hydrostatic test water which might require the conditions in the Draft Permit to be modified or reopened.

The permittee shall submit a letter/report to EPA and the MADEP, summarizing the results of the transfer within forty-five (45) days of completion of the test. This report shall contain: the date(s) of hydrostatic test water transfer; the source of the test water; the volume of test water transferred; a copy of the analytical results identifying the detection limits and associated quality assurance/quality control information for all of the discharge monitoring required in the Draft Permit; and a brief discussion of the overall test results and how they relate to the discharge parameters and their respective effluent limits identified in the Draft Permit.

9. <u>Discharge of Treated Ground Water (Outfall 002)</u>

The Draft Permit establishes an internal waste stream (Outfall 002) through which treated ground water is to be discharged into the storm water conveyance system upstream of Outfall 001. The discharge of treated ground water is currently allowed through a NPDES Permit "Exclusion" letter issued by EPA to the facility (NPDES Exclusion #MA 03I-127) on October 31, 2003. The internal waste stream along with its respective effluent limits was established to ensure that monitoring results reflect the true characteristics of the waste stream and not the more dilute storm water with which it is being mixed (See 40 CFR §122.45(h)).

Samples taken in compliance with the monitoring requirements specified in the Draft Permit shall be taken at the outlet of the ground water remediation system, prior to where treated ground water is discharged into the storm water conveyance system. The frequency of sampling of treated ground water has been reduced from monthly to quarterly in the Draft Permit based on the performance of the remediation system since it began operating in November of 2003. Attachment B to this Fact Sheet contains a copy of the monitoring reports submitted by the facility for the ground water remediation system since it became operational.

Ground water in contact with spilled petroleum product for an extended period of time has the potential to be contaminated with compounds found in that product. As a result, compounds, such as BTEX and PAHs, may partition and dissolve into the ground water and potentially reach

Fact Sheet No. MA0003280 Page 19 of 25

toxic levels. Accordingly, more stringent and extensive effluent limits are required for the ground water treatment system before it can discharge wastewater from the facility. The lower limits established for this waste stream also reflect that it is a continuous discharge rather than intermittent discharge (i.e., like storm water). The effluent characteristics identified in Part I.A.2 of the Draft Permit are discussed in more detail below.

a. Flow

The Draft Permit establishes a limit for the maximum daily flow rate of 25 gpm for Outfall 002 based on the maximum design flow rate of the ground water treatment system. The maximum daily value represents the maximum daily flow rate of treated ground water discharged by the facility during the reporting period. The Draft Permit also requires the facility to report total flow, which is the value that represents the total monthly flow rate in millions of gallons for that month. The maximum daily flow rate as well as the total flow rate shall be based upon the totalizer flow results or an approved equivalent flow measuring device.

b. Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX) and Total Petroleum Hydrocarbons (TPH)

Historic information indicates that the spill impacting the ground water at the facility may have involved a fuel oil product. As discussed previously in Part V.E.6 of this Fact Sheet, effluent limits are not typically established for every compound found in a petroleum release. Instead, limits are established for the compounds that would be the most challenging to remove as well as demonstrate the greatest degree of toxicity. Based on this, Outfall 002 includes a maximum daily limit for benzene as well as the aggregate sum of the BTEX compounds. The permit also requires that individual toluene, ethylbenzene, and total xylene concentrations be monitored and reported on a quarterly basis. EPA has made a BPJ determination based upon technology-based criteria to establish effluent limits for benzene and BTEX at 5 μ g/L and 100 μ g/L, respectively.

The effluent limits for Outfall 002 also include a maximum daily limit of 5 mg/L for Total Petroleum Hydrocarbons (TPH). TPH, measures the total concentration of all petroleum related hydrocarbon compounds within a specified carbon range (Weisman, 1998). The petroleum related compounds included within this analysis range from compounds with 6 carbon (C_6) atoms to compounds with 25 carbon atoms (C_{25}). The use of TPH concentrations to establish target cleanup levels for soil or water is a common approach implemented by regulatory agencies in the United States (Weisman, 1998). EPA has made a BPJ determination based upon the technology-based and performance information to include TPH in this permit. EPA has eliminated the monitoring requirement for MTBE from the Draft Permit based on the facility's assurance that the earlier spill did not involve gasoline. The permittee has also confirmed that gasoline is not one of the products currently stored at the Chelsea Sandwich facility.

Fact Sheet No. MA0003280 Page 20 of 25

c. Polynuclear Aromatic Hydrocarbons (PAHs)

Effluent limits for Outfall 002 also include limits for PAH compounds. There are sixteen (16) PAH compounds identified as priority pollutants under the CWA. These sixteen PAHs have been divided into two groups in the Draft Permit based upon differences in toxicity/carcinogenicity. The Group I PAH compounds, which are believed to be probable human carcinogens include the following compounds:

Benzo(a)anthracene
Benzo(b)fluoranthene
Chrysene
Dibenzo(a,h)anthracene

Indeno(1,2,3-cd)pyrene

The most recent recommended Federal Water Quality Criteria for each of the Group I PAH compounds is $0.018~\mu g/L$ based on the human health criteria associated with the consumption of aquatic organisms (USEPA, 2002). EPA has established a maximum daily limit of $0.018~\mu g/L$ at Outfall 002 for each of the individual Group I PAH compounds based on this criteria. However, the $0.018~\mu g/L$ effluent limit is below the current Minimum Level (ML) of reporting for each individual Group I PAH compound in an aqueous solution. Accordingly, EPA has established, based on approved test methods, a compliance level for each individual Group I PAH compound at its respective ML as identified below:

Benzo(a)anthracene	$< 0.05 \mu g/L$	Benzo(a)pyrene	$<$ 2.0 μ g/L		
Benzo(b)fluoranthene	$<0.1 \mu g/L$	Benzo(k)fluoranthene	$<$ 2.0 μ g/L		
Chrysene	$<$ 5.0 μ g/L	Dibenzo(a,h)anthracene	$<$ 0.1 μ g/L		
Indeno(1,2,3-cd)pyrene $<0.15 \mu g/L$					

Future monitoring will be required to achieve these MLs. The compliance/non-compliance limit for the aggregate sum of the individual Group I PAH compounds has been set at $10.0~\mu g/L$. This limit reflects the approximate sum of the MLs for each Group I PAH compound. The $10.0~\mu g/L$ value reflects a BPJ determination made by EPA based upon technology-based and performance information. For purposes of determining compliance/non-compliance, any value of a Group I PAH compound detected below its ML shall be considered as non-detect.

The toxicity/carcinogenicity of the Group II PAH compounds is considerably less than the Group I PAH compounds. As a result EPA has established a higher technology-based maximum daily effluent limit of $100~\mu g/L$ for the sum of the individual Group II compounds. The nine (9) Group II PAH compounds and their respective MLs are:

Acenaphthene	$< 0.5 \mu g/L$	Acenaphthylene	$< 0.2 \mu g/L$
Anthracene	$<2.0 \mu g/L$	Benzo(ghi)perylene	$<0.1 \mu g/L$
Fluoranthene	$<0.5 \mu g/L$	Fluorene	$<0.1 \mu g/L$
Naphthalene	$<0.2 \mu g/L$	Phenanthrene	$<0.05 \mu g/L$
Pyrene	$<0.05 \mu g/L$		

Fact Sheet No. MA0003280 Page 21 of 25

Future monitoring will be required to achieve these MLs. EPA has also established an individual technology-based maximum daily effluent limit of $20~\mu g/L$ for Naphthalene. Naphthalene can be considered one of the important limiting pollutant parameters in this second group of PAH compounds. The basis for identifying naphthalene as this limiting pollutant is similar to the process used for identifying benzene as the limiting pollutant in the BTEX suite of compounds (See Section V.E.6 of this Fact Sheet).

10. <u>Prohibition of Non-Storm Water Discharges</u>

Non-storm water discharges including fire protection foam, either in concentrate form or as a foam diluted with water, are excluded from coverage under this permit. EPA believes that there is a significant potential for these discharges to be contaminated. Thus, the permittee is required to obtain a separate NPDES permit for these non-storm water discharges prior to any such discharge or seek the necessary approval(s) from the appropriate local pretreatment authority to discharge to the sanitary sewer system.

However, this permit authorizes some non-storm water discharges. These discharges potentially include treated effluent from firefighting activities, fire hydrant flushings, boiler blow-down, and potable water sources which may include vehicle, equipment, and surface wash-down waters which do not have chemicals (such as solvents, soaps, emulsifiers and/or detergents) added. To prevent hydrocarbon and/or particulate carry-over through the treatment system, the permittee shall not add chemicals, soaps, detergents, solvents, emulsifiers, etc. to any fresh water wash-down collection and treatment system without prior approval by EPA and the MADEP.

Treated effluent from these activities means that the effluent shall be directed to the O/W Separator either alone or commingled with storm water, prior to discharge from Outfall 001. No additional monitoring requirements, other than those specified in the Draft Permit, are necessary for these types of discharges.

11. Storm Water Pollution Prevention Plan

Pursuant to Section 304(e) of the CWA and 40 CFR §125.103(b), best management practices (BMP) may be expressly incorporated into a permit on a case-by-case basis where necessary to carry out Section 402(a)(1) of the CWA. This facility stores and handles pollutants listed as toxic under Section 307(a)(1) of the CWA or pollutants listed as hazardous under Section 311 of the CWA and has ancillary operations which could result in significant amounts of these pollutants reaching the Chelsea River and Boston Harbor.

To control the activities/operations, which could contribute pollutants to waters of the United States via storm water discharges at this facility, the Current Permit required the facility to develop a Storm Water Pollution Prevention Plan (SWPPP) with site-specific BMPs. The SWPPP requirements and the BMPs identified therein are intended to facilitate a process whereby the permittee thoroughly evaluates potential pollution sources at the terminal and selects and implements appropriate measures to prevent or control the discharge of pollutants in storm

Fact Sheet No. MA0003280 Page 22 of 25

water runoff. The SWPPP, upon implementation, becomes a supporting element to any numerical effluent limitations in the Draft Permit. Consequently, the SWPPP is as equally enforceable as the numerical limits.

The permittee has certified to EPA that a SWPPP was developed and implemented for this facility in accordance with the schedule and requirements identified in the Current Permit. The Draft Permit continues to ensure that the SWPPP is kept current and adhered to, by requiring the permittee to maintain and update the SWPPP as changes occur at the facility. In addition, the Draft Permit requires the permittee to provide annual certification to EPA and the MADEP, documenting that the previous year's inspections and maintenance activities were conducted, results recorded, records maintained, and that the facility is in compliance with its SWPPP. A signed copy of the certification will be sent each year to EPA and MADEP as well as appended to the SWPPP within thirty (30) days of the annual anniversary of the effective date of the Draft Permit. This certification will be signed in accordance with the requirements identified in 40 CFR §122.22. A copy of the most recent SWPPP shall be kept at the facility and be available for inspection by EPA and MADEP.

12. Additional Requirements and Conditions

These effluent monitoring requirements have been established to yield data representative of the discharge under the authority of Section 308(a) of the CWA in accordance with 40 CFR \$122.41(j), \$122.44(i) and \$122.48.

The remaining conditions of the permit are based on the NPDES regulations, Part 122 through 125 and consist primarily of management requirements common to all permits.

VI. ENDANGERED SPECIES ACT

Section 7(a) of the Endangered Species Act of 1973, as amended (ESA) grants authority to and imposes requirements upon Federal agencies regarding endangered or threatened species of fish, wildlife, or plants ("listed species") and habitat of such species that has been designated as critical (a "critical habitat"). The ESA requires every Federal agency, in consultation with and with the assistance of the Secretary of Interior, to insure that any action it authorizes, funds, or carries out, in the United States or upon the high seas, is not likely to jeopardize the continued existence of any listed species or result in the destruction or adverse modification of critical habitat. The United States Fish and Wildlife Service (USFWS) administers Section 7 consultations for freshwater species. The National Marine Fisheries Service (NMFS) administers Section 7 consultations for marine species and anadromous fish.

EPA has reviewed the federal endangered or threatened species of fish, wildlife, or plants to see if any such listed species might potentially be impacted by the re-issuance of this NPDES permit. The review has focused primarily on marine species and anadromous fish since the discharge is to the Chelsea River (Mystic River Watershed) which ultimately flows into Boston Harbor. Given the urban nature of Chelsea Creek, EPA believes that it is unlikely that there would be any

Fact Sheet No. MA0003280 Page 23 of 25

listed marine species (See Attachment D) or critical habitat present. Furthermore, effluent limitations and other permit conditions which are in place in this Draft Permit should preclude any adverse effects should there be any incidental contact with listed species either in Chelsea Creek and/or Boston Harbor. EPA has discussed the results of its determination with NMFS and a copy of the Draft Permit has been provided to NMFS for review and comment as part of an informal Section 7 consultation.

VII. ESSENTIAL FISH HABITAT

Under the 1996 Amendments (PL 104-267) to the Magnuson-Stevens Fishery Conservation and Management Act (16 U.S.C. § 1801 et seq. (1998)), EPA is required to consult with the National Marine Fisheries Services (NMFS) if EPA's action or proposed actions that it funds, permits, or undertakes, "may adversely impact any essential fish habitat" (EFH). The Amendments define EFH as "waters and substrate necessary to fish for spawning, breeding, feeding, or growth to maturity," (16 U.S.C. § 1802 (10)). "Adverse impact" means any impact which reduces the quality and/or quantity of EFH (50 C.F.R. § 600.910 (a)). Adverse effects may include direct (e.g., contamination or physical disruption), indirect (e.g., loss of prey, reduction in species' fecundity), site-specific or habitat-wide impacts, including individual, cumulative, or synergistic consequences of actions. Id.

Essential fish habitat is only designated for species for which federal fisheries management plans exist (16 U.S.C. § 1855(b) (1) (A)). EFH designations for New England were approved by the U.S. Department of Commerce on March 3, 1999.

A review of the relevant essential fish habitat information provided by NMFS indicates that essential fish habitat has been designated for 15 managed species within the NMFS boundaries encompassing the outfall location. A copy of the managed species within the EFH is included in Attachment E to this Fact Sheet. EPA has concluded that the permitted discharge will not likely adversely impact the EFH and the managed species identified for this general location. This conclusion is based on the amount and frequency of the discharge, as well as effluent limitations and other permit requirements that are identified in this Fact Sheet. These factors are designed to be protective of all aquatic species, including those with EFH designations.

EPA has determined that a formal EFH consultation with NMFS is not required because the proposed discharge will not adversely impact the EFH. If adverse impacts are detected as a result of this permit action, NFMS will be notified and an EFH consultation will promptly be initiated.

VIII. STATE CERTIFICATION REQUIREMENTS

EPA may not issue a permit unless the MADEP certifies that the effluent limitations contained in the permit are stringent enough to assure that the discharge will not cause the receiving water to violate State Surface Water Quality Standards or unless state certification is waived. The staff of the MADEP has reviewed the Draft Permit and advised EPA that the limitations are adequate to

Fact Sheet No. MA0003280 Page 24 of 25

protect water quality. EPA has requested permit certification by the State pursuant to 40 CFR 124.53 and expects that the Draft Permit will be certified.

IX. ADMINISTRATIVE RECORD, PUBLIC COMMENT PERIOD, HEARING REQUESTS, AND PROCEDURES FOR FINAL DECISION

The Administrative Record containing the documents forming the basis of this Draft Permit is on file and may be inspected at the EPA Record Center located in Boston at 1 Congress Street between 9:00 a.m. and 5:00 p.m., Monday through Friday, except holidays. Individuals interested in reviewing the Administrative Record should contact the Record Center staff at (617) 918-1440 to schedule an appointment.

All persons, including applicants, who believe any condition of the Draft Permit is inappropriate must raise all issues and submit all available arguments and all supporting material for their arguments in full by the close of the public comment period, to the U.S. EPA, Office of Ecosystem Protection Attn: Neil Handler, 1 Congress Street, Suite 1100 (CIP), Boston, Massachusetts 02114-2023 or via email to handler.neil@epa.gov. The comments should reference the name and permit number of the facility for which they are being provided.

A public hearing will be held after at least thirty (30) days public notice, since the Regional Administrator has determined that significant public interest exists regarding this Draft Permit. In reaching a final decision on the Draft Permit the Regional Administrator will respond to all significant comments and make these responses available to the public at EPA's Boston office.

Following the close of the comment period, and after a public hearing, if such hearing is held, the Regional Administrator will issue a final permit decision and forward a copy of the final decision to the applicant and each person who has submitted written comments or requested notice. Within thirty (30) days following the notice of final permit decision, any interested person may submit a request for a formal evidentiary hearing to reconsider or contest the final decision. Requests for a formal evidentiary hearing must satisfy the Requirements of 40 CFR §124.74. In general, the reader should reference 40 CFR 124–PROCEDURES FOR DECISION MAKING, Subparts A, D, E and F for specifics relative to this section.

X. EPA & MADEP CONTACTS

Additional information concerning the Draft Permit may be obtained between the hours of 9:00 a.m. and 5:00 p.m., Monday through Friday, excluding holidays, from the EPA and MADEP contacts below:

Neil Handler, EPA New England - Region I 1 Congress Street, Suite 1100 (CIP) Boston, MA 02114-2023

Telephone: (617) 918-1334 FAX: (617) 918-0334

email: handler.neil@epa.gov

Fact Sheet No. MA0003280 Page 25 of 25

Paul Hogan, Massachusetts Department of Environmental Protection Division of Watershed Management, Surface Water Discharge Permit Program 627 Main Street, 2nd Floor Worcester, Massachusetts 01608 Telephone: (508) 767-2796 FAX: (508) 791-4131

email: <u>paul.hogan@state.ma.us</u>

Date
Linda M. Murphy, Director
Office of Ecosystem Protection
U.S. Environmental Protection Agency

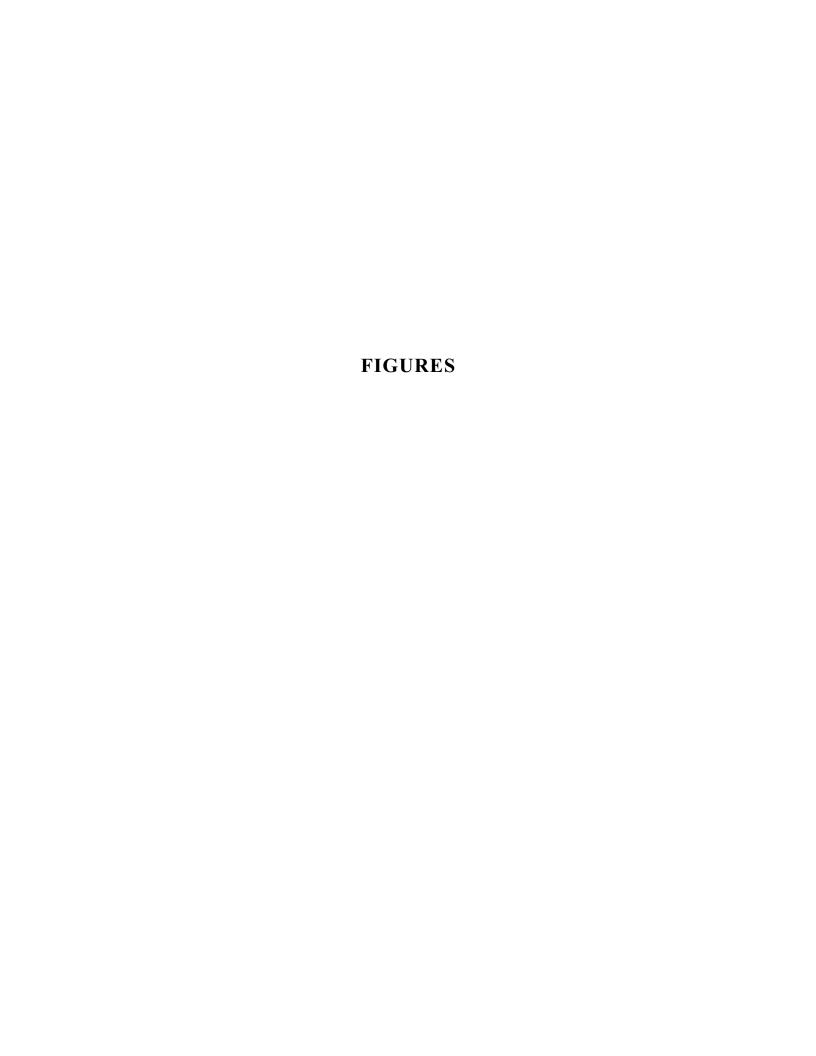
REFERENCES

ES&T. 2002. MTBE Ambient Water Quality Criteria Development: A Public/Private Partnership. Mancini, E.R., et al., Environmental Science & Technology, Vol. 36, No. 2. 2002.

Global. 2004. Chelsea Sandwich, LLC - NPDES Permit No. MA0003280, Responses to EPA Information Request Dated May 19, 2004. Global Companies, LLC, Chelsea, MA. June 2004.

MADEP. 2002. Boston Harbor 1999 Water Quality Assessment Report. Massachusetts Department of Environmental Protection, Division of Watershed Management, Worcester, MA. October 2002 (70-AC-1)

MADEP. 2003. Massachusetts Year 2002 Integrated List of Waters, Part 2 - Final Listing of Individual Categories of Waters. Commonwealth of Massachusetts Executive Office of Environmental Affairs, September, 2003 (CN:125.2)


Potter, Thomas L. and Kathleen E. Simmons, 1998. *Composition of Petroleum Mixtures, Volume 2*. Total Petroleum Hydrocarbon Criteria Working Group Series, May 1998.

Triton, Inc. 2000. NPDES Permit Amendment Application, Chelsea Sandwich, LLC - 11 Broadway, Chelsea, MA, NPDES Permit No. MA 0003280. Triton Environmental, Inc., New Haven, CT. June 2000.

USEPA. 1982. Development Document for Effluent Limitations Guidelines and Standards and Pretreatment Standards for the Steam Electric Point Source Category. United States Environmental Protection Agency, Office of Water and Waste Management, Washington, D.C. EPA-440/1-82/029, November 1982.

USEPA. 2002. *National Recommended Water Quality Criteria: 2002*. United States Environmental Protection Agency, Office of Water, Washington, D.C. EPA-822-R-02-047, November 2002.

Weisman, Wade, 1998. *Analysis of Hydrocarbons in Environmental Media, Volume 1*. Total Petroleum Hydrocarbon Criteria Working Group Series, March 1998.

ATTACHMENT A SUMMARY OF DISCHARGE MONITORING REPORT (DMR) RESULTS (1998 TO 2003)

CHELSEA SANDWICH, LLC

NPDES PERMIT NO. MA0003280

ATTACHMENT B

SUMMARY OF GROUND WATER MONITORING DATA

(2003 TO 2004)

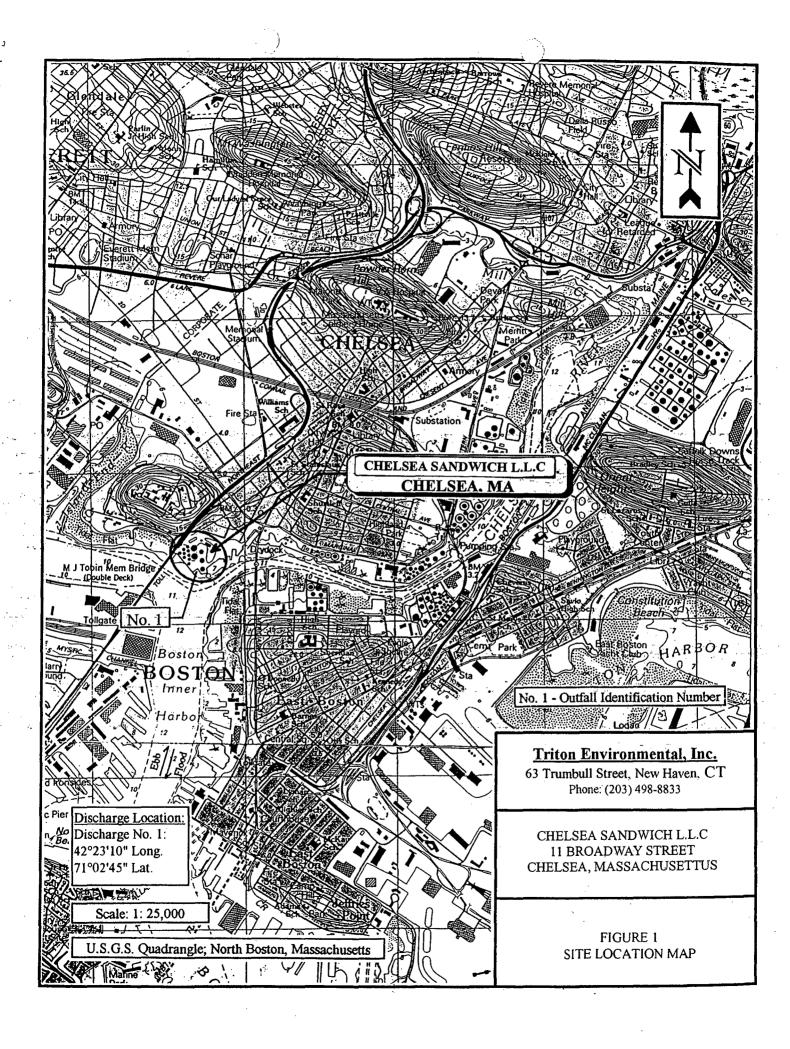
CHELSEA SANDWICH, LLC

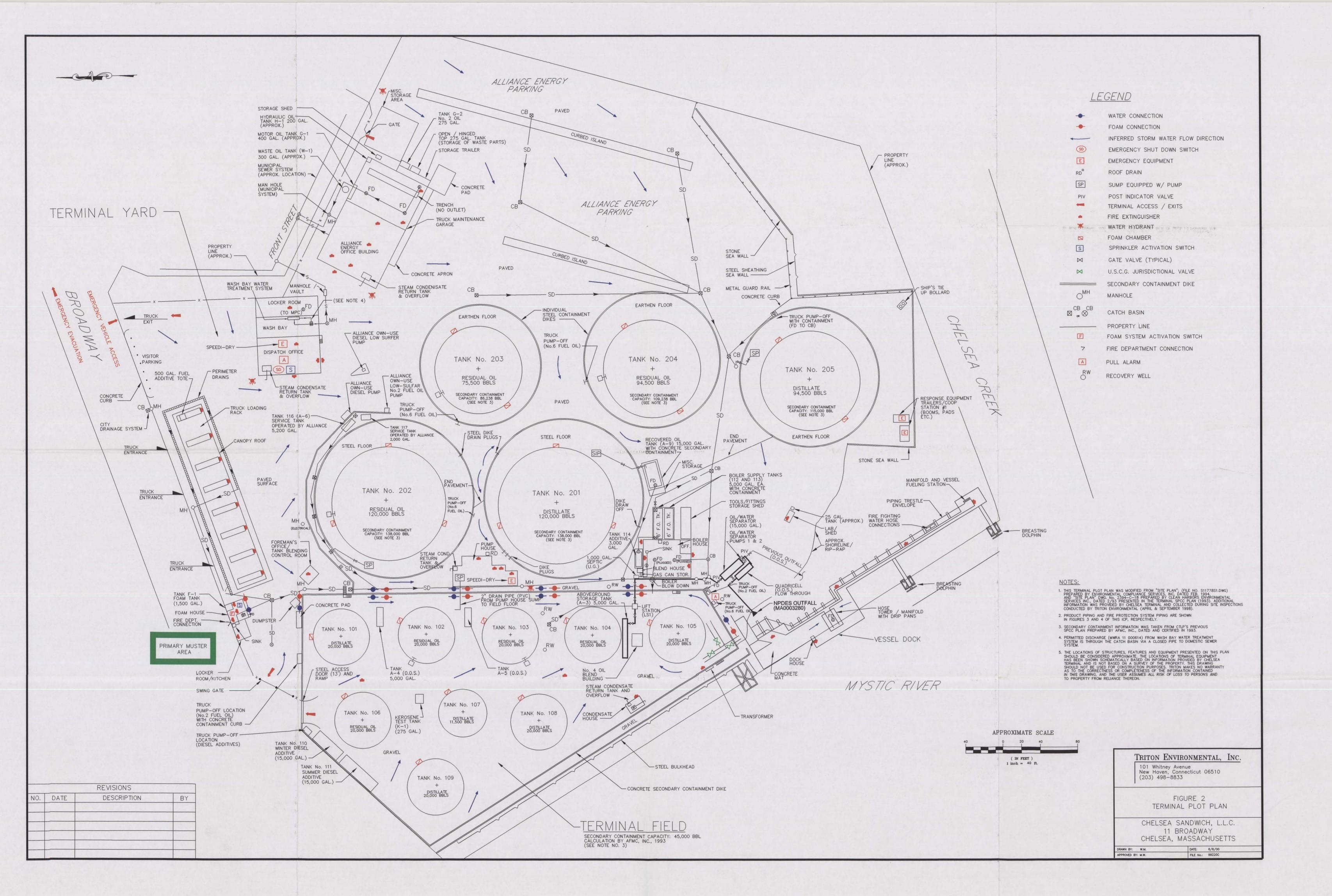
NPDES PERMIT NO. MA0003280

ATTACHMENT C

SUMMARY OF DISCHARGE MONITORING REPORT (DMR) RESULTS

(2001 TO 2003)


FOR POLYNUCLEAR AROMATIC COMPOUNDS


CHELSEA SANDWICH, LLC

NPDES PERMIT NO. MA0003280

ATTACHMENT D ENDANGERED SPECIES LIST

ATTACHMENT E ESSENTIAL FISH HABITAT DESIGNATION

ATTACHMENT A SUMMARY OF DISCHARGE MONITORING REPORT (DMR) RESULTS (1998 TO 2003)

CHELSEA SANDWICH, LLC
NPDES PERMIT NO. MA0003280

001A OIL/WATER SEPARATOR

Monitoring Parameter: Flow Rate (gal/min)

Permit Limit: Report Only

Monitoring Frequency: Once/Rain Event

Sample Type: Curve

	No Reported	Reported	Percent Violations
Monitoring	Disch. Monthly	Daily	Monthly Daily
Period Ending	Code Avg.	<u>Max.</u>	Avg. Max.
01/31/98		320	0
02/28/98		220	0
03/31/98		220	Ö
04/30/98		220	Ö
05/31/98		220	Ö
06/30/98		220	Ö
07/31/98		220	Ō
08/31/98		220	• 0
09/30/98		220	0
10/31/98		220	0
11/30/98		220	Ō
12/31/98		220	0
01/31/99		220	0
02/28/99		220	0
03/31/99		200	0
04/30/99		200	0
05/31/99		200	0
06/30/99		200	0
07/31/99		200	0
08/31/99		200	0
09/30/99		200	0
10/31/99		200	0
11/30/99		200	0
12/31/99		299	0
01/31/00		200	0
02/29/00		200	0
03/31/00		200	0
04/30/00		200	0
05/31/00		200	• 0
06/30/00		200	0
07/31/00		200	0
08/31/00		200	0
09/30/00		200	0
10/31/00		200	0
11/30/00		200	0
12/31/00		200	0
01/31/01		200	0
02/28/01		200	0
03/31/01		200	0
04/30/01		200	0
05/31/01		200	0
06/30/01	8		
07/31/01		200	0
08/31/01		200	0
09/30/01		200	0
10/31/01		200	0
11/30/01		200	0
12/31/01		200	0
01/31/02		200	. 0
02/28/02		200	0
03/31/02		200	0
04/30/02		200	0
05/31/02		200	0
06/30/02		200	0

07/31/02	200	0
08/31/02	200	0
09/30/02	200	0
10/31/02	200	0
11/30/02	200	0
12/31/02	200	0
01/31/03	175	0
02/28/03	175	0
03/31/03	175	0
04/30/03	175	0
05/31/03	175	0
06/30/03	175	0
07/31/03	175	0
08/31/03	175	0
09/30/03	175	0
10/31/03	175	0
11/30/03	175	0
12/31/03	175	0

Monitoring Parameter: pH (S.U.)

Permit Limit: Report Only

Monitoring Frequency: Once/Month

Monitoring Period Ending	No Reported Disch. Monthly Code Avg.	Reported Daily <u>Max.</u>	Percent Violations Monthly Daily Avg. Max.
01/31/98		6.4	0
02/28/98		6.74	0
03/31/98		6.68	0
04/30/98	•	6.39	0
05/31/98		6.51	0
06/30/98		6.08	0
07/31/98		6.88	
08/31/98		5.39	0
09/30/98		6.74	0
10/31/98		6.28	0
11/30/98		6.66	0
12/31/98		6.71	. 0
01/31/99		6.38	0
02/28/99		6.6	0
03/31/99		6.76	0
04/30/99 E			
05/31/99		6.97	0
06/30/99		6.78	0
07/31/99		6.58	0
08/31/99		6.44	0
09/30/99		6.95	0
10/31/99		7.08	0
11/30/99		6.85	0
12/31/99		6.66	0
01/31/00		6.70	0
02/29/00		6.76	0
03/31/00		7.00	0
04/30/00		6.98	0
05/31/00		7.59	0
06/30/00		7.37	0
07/31/00		6.90	0
08/31/00 E		6 00	•
09/30/00 10/31/00		6.88 7.39	0 0
11/30/00		7.39 7.10	0
12/31/00		7.10 7.28	0
01/31/01		7.20 7.6	0
02/28/01		7.8 6.91	0
02/28/01 03/31/01			0
02/21/01		7.71	U

04/30/01		7.25	0
05/31/01		7.16	0
06/30/01	8		
07/31/01		7.05	0
08/31/01		7.22	0
09/30/01		7.75	0
10/31/01		8.38	0
11/30/01		7.56	0
12/31/01		7.31	0
01/31/02		7.06	0
02/28/02		6.89	0
03/31/02		6.57	0
04/30/02		7.10	0
05/31/02			0
06/30/02		7.19	0
07/31/02		7.23	0
08/31/02		7.27	0
09/30/02		7.12	0
10/31/02		6.8	0
11/30/02		6.47	0
12/31/02		7.45	0
01/31/03		7.15	0
02/28/03		7.10	0
03/31/03		7.12	0
04/30/03		7.07	0
05/31/03			0
06/30/03		6.85	0
07/31/03	· ·		0
08/31/03	1	7.40	0
09/30/03		7.37	0
10/31/03		8.04	0
11/30/03		8.36	0
12/31/03		7.37	0

Monitoring Parameter: <u>Total Supended Solids (mg/L)</u>
Permit Limit: <u>Monthly Avg. 30 mg/L; Daily Max. 100 mg/L</u>

Monitoring Frequency: Twice/Month

Monitoring Period Ending	No Disch. <u>Code</u>	Reported Monthly Avg.	Reported Daily <u>Max.</u>	Percent Viole Monthly Avg.	ations Daily <u>Max.</u>
01/31/98	ı	6.35	8	0	0
02/28/98		45.9	93.2	53	0
03/31/98		5.0	5.0	0	0
04/30/98		14.75	20.5	0	0
05/31/98		62.6	65.6	109	0
06/30/98		2.8	5.6	0	0
07/31/98		17.75	18.00	0	0
08/31/98		21.9	23.0	0	0
09/30/98		36.5	60.5	22	0
10/31/98		5.5	5.5	0	0
11/30/98		5.75	6.0	0	0
12/31/98		16.5	17.5	0	0
01/31/99		0.0	0.0	0	0
03/31/99		21.0	21.0	0	0
04/30/99		9.0	9.0	0	0
05/31/99		15.5	15.5	0	0
06/30/99		17.0	17.0	0	0
07/31/99		6.25	6.5	0	0
08/31/99		7.5	7.5	0	0
09/30/99		36.87	71.0	23	0
10/31/99		7.0	14.0	0	0
11/30/99		8.55	11.6	0	0
12/31/99		13.25	19.5	0	0
01/31/00		6.25	12.5	0	0

02/29/00		43.0	68.0	43	0
03/31/00		8.25	16.5	0	0
04/30/00		6.75	7.0	0	0
05/31/00		14.5	43.5	0	0
06/30/00		5.8	11.6	0	0
07/31/00		6.5	13.0	0	0
08/31/00		0.0	0.0	0	0
09/30/00		32.6	58.7	9	Ō
10/31/00		7.9	9.0	0	ō
11/30/00		0.0	0.0	0	Ö
12/31/00		5.2	5.2	0	Ö
01/31/01		133	207	343	107
02/28/01		0.0	0.0	0	0
03/31/01		28.0	32.4	0	0
04/30/01		8.0	8.0	0	0
05/31/01		5.6	34.2	0	0
06/30/01	8	5.0	34.2	U	U
07/31/01	•	5.2	15.6	0	0
08/31/01		7.2	14.4	0	
•					0
09/30/01		29.0 5.2	36.8	0	0
10/31/01			11.6	0	0
11/30/01		3.8	7.6	0	0
12/31/01		0.0	0.0	0	0
01/31/02	_	0.0	0.0	0	0
02/28/02	D				
03/31/02	_	17.1	51.3	0	0
04/30/02	מ			_	_
05/31/02		21.2	42.4	0	0
06/30/02		3.5	7.0	0	0
07/31/02		0.0	0.0	0	0
08/31/02		44.0	62.0	47	0
09/30/02		0.0	0.0	0	0
10/31/02		4.6	9.2	0	0
11/30/02		5.8	6.0	0	0
12/31/02		5.0	10.0	0	0
01/31/03		7.6	15.2	0	0
02/28/03		8.8	20	0	0
03/31/03		61	108	103	8
04/30/03		0.0	0.0	0	0
05/31/03		0.0	0.0	0	0
06/30/03		2.8	5.6	0	0
07/31/03		8.0	8.0	0	0
08/31/03		0.0	0.0	0	0
09/30/03		14	14	0	0
10/31/03		0.0	0.0	0	0
11/30/03		0.0	0.0	0	0
12/31/03		0.0	0.0	0	0

Monitoring Parameter: Oil & Grease (mg/L)

Permit Limit: <u>Daily Max. 15 mg/L</u> Monitoring Frequency: <u>Twice/Month</u>

Monitoring <u>Period Ending</u>	No Disch. <u>Code</u>	Reported Monthly Avg.	Reported Daily <u>Max.</u>	Percent Vi Monthly Avg.	olations Daily <u>Max.</u>
01/31/98			3.0		0
02/28/98			5.7		0
03/31/98			5.0		0
04/30/98			0.0		0
05/31/98			6.9		0
06/30/98			0.0		0
07/31/98			8.9		0
08/31/98			5.0		0
09/30/98			5.3		0
10/31/98			0.0		0

11	./30/98		0.0	0
	/31/98			Ö
	./31/99			0
	:/31/33 :/28/99			467
	/31/99			
				0
	/30/99		0.0	0
	/31/99		0.0	0
	/30/99		0.0	0
	/31/99		0.0	0
	/31/99		0.0	0
	/30/99			0
	/31/99		0.0	0
	./30/99		0.0	0
	/31/99		0.0	0
	./31/00		0.0	0
02	/29/00		5.9	0
03	/31/00		0.0	0
04	/30/00		0.0	0
05	/31/00		0.0	0
06	/30/00		0.0	0
07	/31/00		0.0	0
	/31/00		0.0	0
	/30/00		5.1	0
	/31/00			0
	./30/00		0.0	0
	/31/00		0.0	0
	/31/01			41
	2/28/01			0
	/31/01			Ö
	/30/01			0
	5/31/01		0.0	0
	5/30/01	8	0.0	
		•	0.0	•
	/31/01			0
	/31/01			0
	/30/01		0.0	0
	/31/01		0.0	0
	./30/01		0.0	0
	2/31/01		0.0	0
	./31/02		0.0	0
	2/28/02		0.0	0
	/31/02		5.2	0
	/30/02		0.0	0
	5/31/02		0.0	0
06	730/02	•	0.0	0
	//31/02		0.0	0
08	3/31/02		0.0	0
. 09	/30/02		0.0	0
10	/31/02		0.0	0
11	./30/02		0.0	0
12	2/31/02		0.0	0
	./31/03		0.0	0
	2/28/03		10.7	0
	3/31/03		5.0	0
	/30/03		0.0	Ŏ
	5/31/03		0.0	0
	5/30/03	•	0.0	0
	//31/03		0.0	0
	3/31/03		0.0	0
	/30/03		0.0	0
)/31/03		0.0	0
	./30/03		0.0	0
12	2/31/03		0.0	0

Monitoring Parameter: Total Flow (Mgal/month)

Permit Limit: Report Only

Monitoring Frequency: Once/Rain Event

Sample Type: Estimate

	No	Reported	Reported	Percent Viol	ations
Monitoring		Monthly	Daily	Monthly	Daily
<u>Period Ending</u>	<u>Code</u>	Avg.	Max.	Avg.	Max.
01/31/98		237.6		0	
02/28/98		415.8		0	
03/31/98		118.8		0	
04/30/98		118.8		0	
05/31/98		138.6		0	
06/30/98 07/31/98		198.0 171.6		0	
08/31/98		184.8		0	
09/30/98		204.6		Ö	
10/31/98		316.8		Ō	
11/30/98		277.2		0	
12/31/98		105.6		0	
01/31/99		211.2		0	
02/28/99		300.0		0	
03/31/99		158.4		0	
04/30/99 05/31/99		156.0 192.0		0	
05/31/99		120.0		0	
07/31/99		45.0		0	
08/31/99		24.0		Ō	
09/30/99		120.0		0	
10/31/99		152.0		0	
11/30/99		192.0		0	
12/31/99		132.0		0	
01/31/00		168.0		0	
02/29/00		204.0		0	
03/31/00 04/30/00		180.0 162.0		0	
05/31/00		116.0		0	
06/30/00		264.0		0	
07/31/00		210.0		0	
08/31/00		72.0		0	
09/30/00		138.0		0	
10/31/00		138.0		0	
11/30/00		156.0		0	
12/31/00		204.0		0	
01/31/01		180.0		0	
02/28/01 03/31/01		48.0 174.0		0	
04/30/01		216.0		0	
05/31/01		216.0		Ö	
06/30/01	8				
07/31/01		60.0		0	
08/31/01		48.0		0	
09/30/01		42.0		0	
10/31/01		66.0		0	
11/30/01 12/31/01		66.0		0	
01/31/02		198.0 102.0		0	
02/28/02		120.0		0	
03/31/02		76.0		0	
04/30/02		64.0		0	
05/31/02		84.0		0	
06/30/02		60.0		0	
07/31/02		84.0		0	
08/31/02		123.0		0	
09/30/02 10/31/02		234.0 138.0		0	
11/30/02		180.0		0	
/ 50/ 02		200.0		v	

	12/31/02	204.0	0
***	01/31/03	0.14	0
	02/28/03	0.35	0
	03/31/03	0.32	0
	04/30/03	0.43	0
	05/31/03	0.44	0
	06/30/03	0.27	0
	07/31/03	0.16	0
	08/31/03	0.30	0
	09/30/03	0.36	0
	10/31/03	0.24	0
	11/30/03	0.18	0
	12/31/03	0.4	0

*** For the reporting periods prior to January 31, 2003, Total Flow was reported on the DMRs in the units of thousand of gallons/month. Starting with the reporting period ending January 31, 2003, Total Flow was reported in the units of millions of gallons/month (Mgal/month).

001A OIL/WATER SEPARATOR

Monitoring Parameter: <u>Methyl Tertiary-Butyl Ether (ug/L)</u>

Permit Limit: No Gasoline Product at Facility - No Analysis Required

Monitoring Frequency: Quarterly

Sample Type: Grab

Monitoring Period Ending	No Disch. <u>Code</u>	Reported Monthly <u>Avg.</u>	Reported Daily Max.	Percent Viola Monthly Avg.	tions Daily <u>Max.</u>
06/30/98	9				
09/30/98	9				
12/31/98	9				
03/31/99	9				
06/30/99	9				
09/30/99	9				
12/31/99	9				
03/31/00	9				
06/30/00	9				
09/30/00	9				
12/31/00	9				
03/31/01	9				
06/30/01	9				
09/30/01	9				
12/31/01	9				
03/31/02	9				
06/30/02	9				
09/30/02	9				
12/31/02	9				
03/31/03	9				
06/30/03	9				
09/30/03	9				
12/31/03	9				

001A OIL/WATER SEPARATOR

Monitoring Parameter: Toluene (ug/L)

Permit Limit: No Gasoline Product at Facility - No Analysis Required

Monitoring Frequency: Quarterly

Monitoring Period Ending	No Disch. <u>Code</u>	Reported Monthly Avg.	Reported Daily <u>Max.</u>	Percent Vi Monthly <u>Avg.</u>	olations Daily <u>Max.</u>
06/30/98	9				
09/30/98	9				
12/31/98	9				

03/31/99	9
06/30/99	9
09/30/99	9
12/31/99	9
03/31/00	9
06/30/00	9
09/30/00	9
12/31/00	9
03/31/01	9
06/30/01	9
09/30/01	9
12/31/01	9
03/31/02	9
06/30/02	9
09/30/02	9
12/31/02	9
03/31/03	9
06/30/03	9
09/30/03	9
12/31/03	9

Monitoring Parameter: Benzene (ug/L)

Permit Limit: No Gasoline Product at Facility - No Analysis Required

Monitoring Frequency: Quarterly

Monitoring	No Disch.	Reported Monthly	Reported Daily	Percent Viola Monthly	ations Daily
				-	_
Period Ending	<u>Code</u>	Avg.	Max.	Avg.	<u>Max.</u>
06/30/98	9				
09/30/98	9				
12/31/98	9				
03/31/99	9				
06/30/99	9				
09/30/99	9				
12/31/99	9				
03/31/00	9				
06/30/00	9				
09/30/00	9				
12/31/00	9				
03/31/01	9				
06/30/01	9				
09/30/01	9				
12/31/01	9				
03/31/02	9				
06/30/02	9				
09/30/02	9				
12/31/02	9				
03/31/03	9				
06/30/03	9				
09/30/03	9				
12/31/03	9				

Monitoring Parameter: Benzo(b)fluoranthene (ug/L)

Permit Limit: Report Only

Monitoring Frequency: Quarterly

Sample Type: Grab

Monitoring Period Ending	No Disch. <u>Code</u>	Reported Monthly Avg.	Reported Daily <u>Max.</u>	Percent Viola Monthly Avg.	tions Daily <u>Max.</u>
03/31/98			0.0		0
06/30/98			0.0		0
09/30/98			0.0		0
12/31/98			0.0		0
03/31/99			0.0		0
06/30/99			0.0	•	0
09/30/99			0.0		0
12/31/99			0.0		0
03/31/00			0.0		0
06/30/00			0.0		0
09/30/00			0.0		0
12/31/00			0.0		0
03/31/01			0.0		0
06/30/01			0.0	`	0
09/30/01			0.0		0
12/31/01			0.0		0
03/31/02			0.0		0
06/30/02			0.0		0
09/30/02			0.0		0
12/31/02			0.0		0
03/31/03			0.0		0,
06/30/03			0.0		0
09/30/03			0.0		0
12/31/03			0.0		0

001A OIL/WATER SEPARATOR

Monitoring Parameter: Benzo(k)fluoranthene (ug/L)

Permit Limit: Report Only

Monitoring Frequency: Quarterly

Monitoring	No Disch.	Reported Monthly	Reported Daily	Percent Monthly	Violations Daily
Period Ending	<u>Code</u>	Avg.	Max.	Avg.	Max.
03/31/98			0.0		0
09/30/98			0.0		0
12/31/98			0.0		0
03/31/99			0.0		0
06/30/99			0.0		0
09/30/99			0.0		0
12/31/99			0.0		0
03/31/00			0.0		0
06/30/00			0.0		0
09/30/00			0.0		0
12/31/00			0.0		0
03/31/01			0.0		0
06/30/01			0.0		0
09/30/01			0.0		0
12/31/01			0.0		0
03/31/02			0.0		0
06/30/02			0.0		0
09/30/02			0.0		0
12/31/02			0.0		0
03/31/03			0.0		0
06/30/03			0.0		0
09/30/03			0.0		0

0

001A OIL/WATER SEPARATOR

Monitoring Parameter: Benzo(a)pyrene (ug/L)

Permit Limit: Report Only

Monitoring Frequency: Quarterly

Sample Type: Grab

Monitoring <u>Period Ending</u>	No Disch. <u>Code</u>	Reported Monthly Avg.	Reported Daily <u>Max.</u>	Percent Monthly <u>Avg.</u>	Violations Daily <u>Max.</u>
03/31/98			0.0		0
06/30/98			0.0		0
09/30/98			0.0		0
12/31/98			0.0	o	0
03/31/99			0.0		0
06/30/99			0.0		0
09/30/99			0.0		0
12/31/99			0.0		0
03/31/00			0.0		0
06/30/00			0.0		0
09/30/00			0.0		0
12/31/00			0.0		0
03/31/01			0.0		0
06/30/01			0.0		0
09/30/01			0.0		0 .
12/31/01			0.0		0
03/31/02			0.0		0
06/30/02			0.0		0
09/30/02			0.0		0
12/31/02			0.0		0
03/31/03			0.0		0
06/30/03			0.0		0
09/30/03			0.0		0
12/31/03			0.0		0

001A OIL/WATER SEPARATOR

Monitoring Parameter: Chrysene (ug/L)

Permit Limit: Report Only

Monitoring Frequency: Quarterly

Monitoring Period Ending	No Reported Disch Monthly <u>Code</u> <u>Avg</u> .	Reported Daily <u>Max.</u>	Percent Vi Monthly <u>Avg.</u>	olations Daily <u>Max.</u>
03/31/98		0.0		0
06/30/98		0.0		0
09/30/98		0.0		0
12/31/98		0.0		0
03/31/99		0.0		0
06/30/99		0.0		0
09/30/99		0.0		0
12/31/99		0.0		0
03/31/00		0.0		0
06/30/00		0.0		0
09/30/00		0.0		0
12/31/00		0.0		0
03/31/01		0.0		0
06/30/01		0.0		0
09/30/01		0.0		0
12/31/01		0.0		0
03/31/02		0.0		0
06/30/02		0.0		0
09/30/02		0.0		0

12/31/02	0.0	0
03/31/03	0.0	0
06/30/03	0.0	0
09/30/03	0.0	0
12/31/03	0.0	0

Monitoring Parameter: Ethylbenzene (ug/L)

Permit Limit: No Gasoline Product at Facility - No Analysis Required

Monitoring Frequency: Quarterly

Sample Type: Grab

Monitoring Period Ending	No Disch. <u>Code</u>	Reported Monthly <u>Avg.</u>	Reported Daily <u>Max.</u>	Percent Viola Monthly Avg.	ations Daily <u>Max.</u>
05/00/00	•				
06/30/98	9				
09/30/98	9				
12/31/98	9				
03/31/99	9				
06/30/99	9				
09/30/99	9				
12/31/99	9				
03/31/00	9				
06/30/00	9				
09/30/00	9				
12/31/00	9				
03/31/01	9				
06/30/01	9				
09/30/01	9				
12/31/01	9				
03/31/02	9				
06/30/02	9				
09/30/02	9				
12/31/02	9				
03/31/03	9				
06/30/03	9				
09/30/03	9				
12/31/03	9				

001A OIL/WATER SEPARATOR

Monitoring Parameter: <u>Indeno (1,2,3-cd)pyrene (ug/L)</u>

Permit Limit: Report Only

Monitoring Frequency: Quarterly

Monitoring Period Ending	Disch. 1	Reported Reported Monthly Dail	ly Monthly	Violations Daily <u>Max.</u>
03/31/98		0.0		0
06/30/98		0.0		0
09/30/98		0.0		0
12/31/98		0.0		0
03/31/99		0.0		0
06/30/99		0.0		0
09/30/99		0.0		0
12/31/99		0.0		0
03/31/00		0.0		0
06/30/00		0.0	•	0
09/30/00		0.0		0
12/31/00		0.0		0
03/31/01		0.0		0
06/30/01		0.0		0
09/30/01		0.0		0
12/31/01		0.0		0

03/31/02	0.0	0
06/30/02	0.0	0
09/30/02	0.0	0
12/31/02	0.0	0
03/31/03	0.0	0
06/30/03	0.0	0
09/30/03	0.0	0
12/31/03	0.0	0

Monitoring Parameter: Benzo(a)anthracene (ug/L)

Permit Limit: Report Only

Monitoring Frequency: Quarterly

Sample Type: Grab

03/31/98 0.0 0 06/30/98 0.0 0 09/30/98 0.0 0 12/31/98 0.0 0 03/31/99 0.0 0 06/30/99 0.0 0 09/30/99 0.0 0 12/31/99 0.0 0 03/31/00 0.0 0 06/30/00 0.0 0 09/30/00 0.0 0 12/31/01 0.0 0 09/30/01 0.0 0 09/30/01 0.0 0 03/31/02 0.0 0 06/30/02 0.0 0 09/30/02 0.0 0 03/31/03 0.0 0 06/30/03 0.0 0 09/30/03 0.0 0 12/31/03 0.0 0	Monitoring Period Ending	No Reported Disch. Monthly <u>Code</u> <u>Avg.</u>	Reported Daily <u>Max.</u>	Percent Violations Monthly Dail Avg. Max.	У
09/30/98 0.0 0 12/31/98 0.0 0 03/31/99 0.0 0 06/30/99 0.0 0 09/30/99 0.0 0 12/31/99 0.0 0 03/31/00 0.0 0 06/30/00 0.0 0 09/30/00 0.0 0 12/31/00 0.0 0 03/31/01 0.0 0 06/30/01 0.0 0 09/30/01 0.0 0 02/31/01 0.0 0 03/31/02 0.0 0 06/30/02 0.0 0 09/30/02 0.0 0 03/31/03 0.0 0 06/30/03 0.0 0 09/30/03 0.0 0	03/31/98		0.0	0	
12/31/98 0.0 0 03/31/99 0.0 0 06/30/99 0.0 0 09/30/99 0.0 0 12/31/99 0.0 0 03/31/00 0.0 0 06/30/00 0.0 0 09/30/00 0.0 0 12/31/01 0.0 0 09/30/01 0.0 0 09/30/01 0.0 0 03/31/02 0.0 0 06/30/02 0.0 0 09/30/02 0.0 0 12/31/02 0.0 0 03/31/03 0.0 0 06/30/03 0.0 0 09/30/03 0.0 0	06/30/98		0.0	0	
03/31/99 0.0 0 06/30/99 0.0 0 09/30/99 0.0 0 12/31/99 0.0 0 03/31/00 0.0 0 09/30/00 0.0 0 12/31/00 0.0 0 03/31/01 0.0 0 06/30/01 0.0 0 09/30/01 0.0 0 12/31/01 0.0 0 03/31/02 0.0 0 06/30/02 0.0 0 09/30/02 0.0 0 12/31/02 0.0 0 03/31/03 0.0 0 06/30/03 0.0 0 09/30/03 0.0 0	09/30/98		0.0	0	
06/30/99 0.0 0 09/30/99 0.0 0 12/31/99 0.0 0 03/31/00 0.0 0 09/30/00 0.0 0 12/31/00 0.0 0 03/31/01 0.0 0 06/30/01 0.0 0 09/30/01 0.0 0 12/31/01 0.0 0 03/31/02 0.0 0 06/30/02 0.0 0 09/30/02 0.0 0 12/31/02 0.0 0 03/31/03 0.0 0 06/30/03 0.0 0 09/30/03 0.0 0	12/31/98		0.0	0	
09/30/99 0.0 0 12/31/99 0.0 0 03/31/00 0.0 0 09/30/00 0.0 0 12/31/00 0.0 0 03/31/01 0.0 0 06/30/01 0.0 0 09/30/01 0.0 0 12/31/01 0.0 0 03/31/02 0.0 0 06/30/02 0.0 0 09/30/02 0.0 0 12/31/02 0.0 0 03/31/03 0.0 0 06/30/03 0.0 0 09/30/03 0.0 0	03/31/99		0.0	0	
12/31/99 0.0 0 03/31/00 0.0 0 06/30/00 0.0 0 09/30/00 0.0 0 12/31/00 0.0 0 03/31/01 0.0 0 06/30/01 0.0 0 09/30/01 0.0 0 12/31/01 0.0 0 03/31/02 0.0 0 06/30/02 0.0 0 09/30/02 0.0 0 12/31/02 0.0 0 03/31/03 0.0 0 06/30/03 0.0 0 09/30/03 0.0 0	06/30/99		0.0	0	
03/31/00 0.0 0 06/30/00 0.0 0 09/30/00 0.0 0 12/31/00 0.0 0 03/31/01 0.0 0 06/30/01 0.0 0 09/30/01 0.0 0 12/31/01 0.0 0 03/31/02 0.0 0 06/30/02 0.0 0 09/30/02 0.0 0 12/31/02 0.0 0 03/31/03 0.0 0 06/30/03 0.0 0 09/30/03 0.0 0	09/30/99		0.0	0	
06/30/00 0.0 0 09/30/00 0.0 0 12/31/00 0.0 0 03/31/01 0.0 0 06/30/01 0.0 0 09/30/01 0.0 0 12/31/01 0.0 0 03/31/02 0.0 0 06/30/02 0.0 0 09/30/02 0.0 0 12/31/02 0.0 0 03/31/03 0.0 0 06/30/03 0.0 0 09/30/03 0.0 0	12/31/99		0.0	0	
09/30/00 0.0 0 12/31/00 0.0 0 03/31/01 0.0 0 06/30/01 0.0 0 09/30/01 0.0 0 12/31/01 0.0 0 03/31/02 0.0 0 06/30/02 0.0 0 09/30/02 0.0 0 12/31/02 0.0 0 03/31/03 0.0 0 06/30/03 0.0 0 09/30/03 0.0 0	03/31/00		0.0	0	
12/31/00 0.0 0 03/31/01 0.0 0 06/30/01 0.0 0 09/30/01 0.0 0 12/31/01 0.0 0 03/31/02 0.0 0 06/30/02 0.0 0 09/30/02 0.0 0 12/31/02 0.0 0 03/31/03 0.0 0 06/30/03 0.0 0 09/30/03 0.0 0	06/30/00		0.0	0	
03/31/01 0.0 0 06/30/01 0.0 0 09/30/01 0.0 0 12/31/01 0.0 0 03/31/02 0.0 0 06/30/02 0.0 0 09/30/02 0.0 0 12/31/02 0.0 0 03/31/03 0.0 0 06/30/03 0.0 0 09/30/03 0.0 0	09/30/00		0.0	0	
06/30/01 0.0 0 09/30/01 0.0 0 12/31/01 0.0 0 03/31/02 0.0 0 06/30/02 0.0 0 09/30/02 0.0 0 12/31/02 0.0 0 03/31/03 0.0 0 06/30/03 0.0 0 09/30/03 0.0 0	12/31/00		0.0	0	
09/30/01 0.0 0 12/31/01 0.0 0 03/31/02 0.0 0 06/30/02 0.0 0 09/30/02 0.0 0 12/31/02 0.0 0 03/31/03 0.0 0 06/30/03 0.0 0 09/30/03 0.0 0	03/31/01		0.0	0	
12/31/01 0.0 0 03/31/02 0.0 0 06/30/02 0.0 0 09/30/02 0.0 0 12/31/02 0.0 0 03/31/03 0.0 0 06/30/03 0.0 0 09/30/03 0.0 0	06/30/01		0.0	0	
03/31/02 0.0 0 06/30/02 0.0 0 09/30/02 0.0 0 12/31/02 0.0 0 03/31/03 0.0 0 06/30/03 0.0 0 09/30/03 0.0 0	09/30/01		0.0	0	
06/30/02 0.0 0 09/30/02 0.0 0 12/31/02 0.0 0 03/31/03 0.0 0 06/30/03 0.0 0 09/30/03 0.0 0	12/31/01		0.0	0	
09/30/02 0.0 0 12/31/02 0.0 0 03/31/03 0.0 0 06/30/03 0.0 0 09/30/03 0.0 0	03/31/02		0.0	0	
12/31/02	06/30/02		0.0	0	
03/31/03 0.0 0 06/30/03 0.0 0 09/30/03 0.0 0	09/30/02		0.0	0	
06/30/03	12/31/02		0.0	0	
09/30/03 0.0 0	03/31/03		0.0	0	
	06/30/03		0.0	0	
12/31/03 0.0 0	09/30/03		0.0	0	
	12/31/03		0.0	0	

001A OIL/WATER SEPARATOR

Monitoring Parameter: <u>Dibenzo(a,h)anthracene (ug/L)</u>

Permit Limit: Report Only

Monitoring Frequency: Quarterly

Monitoring Period Ending	No Disch. <u>Code</u>	Reported Monthly Avg.	Reported Daily Max.	Percent Viola Monthly <u>Avg.</u>	ations Daily <u>Max.</u>
03/31/98 06/30/98 09/30/98 12/31/98 03/31/99 06/30/99 09/30/99 12/31/99 03/31/00 06/30/00 09/30/00			0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0 0 0 0 0 0 0 0 0
			12		

06/30/01	0.0	0
09/30/01	0.0	0
12/31/01	0.0	0
03/31/02	0.0	0
06/30/02	0.0	0
09/30/02	0.0	0
12/31/02	0.0	0
03/31/03	0.0	0
06/30/03	0.0	0
09/30/03	0.0	0
12/31/03	0.0	0

Monitoring Parameter: <u>Total Xylenes (ug/L)</u>

Permit Limit: No Gasoline Product at Facility - No Analysis Required

Monitoring Frequency: Quarterly

Monitoring Period Ending	No Disch. <u>Code</u>	Reported Monthly Avg.	Reported Daily Max.	Percent Viola Monthly Avg.	ations Daily <u>Max.</u>
03/31/98	9				
06/30/98	9				
09/30/98	9				
12/31/98	9				
03/31/99	9				
06/30/99	9				
09/30/99	9				
12/31/99	9				
03/31/00	9				
06/30/00	9				
09/30/00	9				
12/31/00	9				
03/31/01	9				
06/30/01	9				
09/30/01	9				
12/31/01	9				
03/31/02	9				
06/30/02	9				
09/30/02	9				
12/31/02	9				
06/30/03	9				
09/30/03	9				
12/31/03	9				

NODI	DESCRIPTION		
A	GENERAL PERMIT EXEMPTION		
В	BELOW DETECT LIMIT/NO DETECT		•
C	NO DISCHARGE		•
D	LOST SAMPLE	7	,
E	ANALYSIS NOT CONDUCTED		
F .	INSUFFICIENT FLOW FOR SAMPLING		
G	SAMPLING EQUIPMENT FAILURE	•	
H	INVALID TEST		,
1	LAND APPLIED WASTE WATER		•
ປ ແ	RECYCLED, WATER-CLOSED SYSTEM		
K	FLOOD DISASTER		
L	DMR RECEIVED BUT NOT ENTERED	•	e e e e e e e e e e e e e e e e e e e
M .	NOT APPLIC DURING SLDGE MONITOR PERIOD		
N	NOT TRACKED IN PCS FOR THIS PERIOD		
Ų	NOT QUANTIFIABLE		
1	WRONG FLOW		
2	OPERATIONS SHUTDOWN		
•	LOW LEVEL PRODUCTION		
4	LAGOON PROCESSING	•	•
5	FROZEN CONDITIONS	~ `	•
6	PRODUCTION BASED LIMITS DONT APPLY TO MP		
7	DMR RECEIVED, PRODUCTION OR FLOW RELATED		•
8	OTHER	· .	•
7	MONITORING IS CONDITIONAL/NOT REQ THIS ME	-	

ATTACHMENT B

SUMMARY OF GROUND WATER MONITORING DATA

(2003 TO 2004)

CHELSEA SANDWICH, LLC

NPDES PERMIT NO. MA0003280

ALPHA ANALYTICAL LABORATORIES

Eight Walkup Drive Westborough, Massachusetts 01581-1019 (508) 898-9220 www.alphalab.com

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

CERTIFICATE OF ANALYSIS

Client: Tighe & Bond Laboratory Job Number: L0311674

Address: 4 Barlows Landing Road

Pocasset, MA 02559 Date Received: 14-NOV-2003

Attn: Mr. Rich Geisler Date Reported: 17-NOV-2003

Project Number: 3233494 Delivery Method: Client

Site: GLOBAL CHELSEA

ALPHA SAMPLE NUMBER	CLIENT IDENTIFICATION	SAMPLE LOCATION		
L0311674-01	INFLUENT	CHELSEA, MA		
L0311674-02	EFFLUENT	CHELSEA, MA		
L0311674-03	TRIP BLANK	CHELSEA, MA		

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized by: Ellen M. Collins
This document electronically signed

11170317:09 Page 1 of 18

ALPHA ANALYTICAL LABORATORIES NARRATIVE REPORT

Laboratory Job Number: L0311674

Volatile Organics

L0311674-02 was re-analyzed on dilution in order to quantitate the sample within the range of the calibration. The result is reported as a greater than value for the compound that exceeded the calibration on the initial analysis. The re-analysis was performed only for the compound which exceeded the range of the calibration.

PAH-Low

The surrogate % recovery for 2-Fluorobiphenyl at 41% on the associated Method Blank is below the acceptance criteria required for the method.

ALPHA ANALYTICAL LABORATORIES CERTIFICATE OF ANALYSIS

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0311674-01

Date Collected: 14-NOV-2003 14:30

Sample Matrix:

INFLUENT WATER Date Received: 14-NOV-2003
Date Reported: 17-NOV-2003

Condition of Sample:

Satisfactory

Field Prep:

None

Number & Type of Containers: 4-Amber, 2-Plastic, 2-Vial

Parameter	RESULT	UNITS	RDL	REF METHOD	DATE PREP ANAL	ID
					PREF MAN	
	82.	NTU	0.20	30 2130B	1114 20:	00 TV
idibidity	62.	NIO	0.20	30 21308	1114 20:	00 TEV
Color, Apparent	240	A.P.C.U.	100	30 2120B	1114 19:	00 LK
Solids, Total Suspended	27.	mg/l	10.	30 2540D	1116 11:	20 DT
Volatile Organics by GC/MS 8	260			1 8260B	1117 12:	50 RY
Methylene chloride	ND	ug/l	5.0	*****************************		7-200 V 40 FY 80 FY 80
1,1-Dichloroethane	ND	ug/l	0.75			
Chloroform	ND	ug/l	0.75	•		
Carbon tetrachloride	ND	ug/l	0.50			
1,2-Dichloropropane	ND	ug/l	1.8			
Dibromochloromethane	ND	ug/1	0.50			
1,2-Trichloroethane	ND	ug/l	0.75			
	ND	ug/l	0.50			•
Chlorobenzene	ND	ug/l	0.50			
Trichlorofluoromethane	ND	ug/l	2.5		•	
1,2-Dichloroethane	ND	ug/l	0.50			
1,1,1-Trichloroethane	ND	ug/1	0.50			
Bromodichloromethane	ND	ug/l	0.50			
trans-1,3-Dichloropropene	ND	ug/1	0.50			
cis-1,3-Dichloropropene	ND	ug/l	0.50			
1,1-Dichloropropene	ND	ug/l	2.5			
Bromoform	ND	ug/l	2.0			
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50			
Benzene	21.	ug/1	0.50	4		
Toluene	1.7	ug/1	0.75			
Ethylbenzene	0.71	ug/l	0.50			
Chloromethane	ND .	ug/l	2.5			-
Bromomethane	ND	ug/l	1.0		,	
Vinyl chloride	ND	ug/l	1.0		4	
Chloroethane	ND	ug/l	1.0	•		
1,1-Dichloroethene	ND	ug/1	0.50			
trans-1,2-Dichloroethene	ND	ug/l	0.75			
Trichloroethene	ND	ug/l	0.50			
1,2-Dichlorobenzene	ND	ug/l	2.5			
1,3-Dichlorobenzene	ND	ug/1	2.5			
1,4-Dichlorobenzene	ND	ug/l	2.5			
Methyl tert butyl ether	ND	ug/l	1.0			

Complete list of References and Glossary of Terms found in Addendum I

^{11170317:09} Page 3 of 18

CERTIFICATE OF ANALYSIS

Laboratory Sample Number: L0311674-01

TNFT	TIENT

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by GC/MS 82	60 continu			1 8260B	1.117 .12450 RY
p/m-Xylene	5.3	ug/l	0.50	* 02045	1117 12130 A1
o-Xylene	1.5	ug/1	0.50		
cis-1,2-Dichloroethene	ND	ug/l	0.50	•	•.
Dibromomethane	ND .	ug/l	5.0		
1,4-Dichlorobutane	ND	ug/l	5.0		
Iodomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Styrene	ND	ug/l	0.50		
Dichlorodifluoromethane	ND	ug/1	5.0		
Acetone	ND	ug/l	5.0		
Carbon disulfide	ND	ug/l	5.0		
2-Butanone	18.	ug/l	5.0		
Vinyl acetate	NID	ug/l	5.0		
4-Methyl-2-pentanone	ND	ug/l	5.0		
2-Hexanone	ND	ug/l	5.0		:
Ethyl methacrylate	ND	ug/l	5.0		
Acrolein	ND	ug/l	12.		
Acrylonitrile	ND	ug/1	5.0		
Bromochloromethane	ND	ug/l	2.5	•	
Tetrahydrofuran	81.	ug/l	10.		
2,2-Dichloropropane	ND	ug/l	2.5		-
1,2-Dibromoethane	ND	ug/1	2.5		
1,3-Dichloropropane	ND	ug/l	2.5		
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50		
Bromobenzene	ND	ug/l	2.5	•	•
n-Butylbenzene	1.2	ug/1	0.50		
sec-Butylbenzene	1.1	ug/l	0.50		•
tert-Butylbenzene	ND	ug/l	2.5		`
o-Chlorotoluene	ND	ug/l	2.5		
p-Chlorotoluene	ND ·	ug/1	2.5		
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5		
Hexachlorobutadiene	ND	ug/l	1.0		·
Isopropylbenzene	3.7	ug/l	0.50		
p-Isopropyltoluene	ND	ug/l	0.50	•	
Naphthalene	ND	ug/l	2.5		
n-Propylbenzene	3.0	ug/l	0.50		•
1,2,3-Trichlorobenzene	ND	ug/l	2.5	•.	
1,2,4-Trichlorobenzene	ND	ug/l	2.5		
1,3,5-Trimethylbenzene	ND	ug/l	2.5	4	
1,2,4-Trimethylbenzene	6.1	ug/l	2.5		
trans-1, 4-Dichloro-2-butene	ND	ug/l	2.5	* •	
Ethyl ether	ND	ug/l	2.5	•	
Surrogate(s)	Recovery		QC Cr	iteria	
1,2-Dichloroethane-d4	99.0	*			
Toluene-d8	100.	용			
4-Bromofluorobenzene	101.	ક			
Dibromofluoromethane	95.0	8			

ALPHA ANALYTICAL LABORATORIES CERTIFICATE OF ANALYSIS

Laboratory Sample Number: L0311674-01

INFLUENT

ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	1 8270C-		20:25	ANAL	
ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	1 #270C	М 1114	20:25	1177 10	:57 III.
ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20					
ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20					
ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20					•
ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20					•
ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20					
ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20					
ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20					
ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20		•			:
ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.20 0.20 0.20 0.20 0.20 0.20 0.20	P .				
ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.20 0.20 0.20 0.20 0.20 0.20 0.20	P .				
ug/l ug/l ug/l ug/l ug/l ug/l	0.20 0.20 0.20 0.20 0.20 0.20					
ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.20 0.20 0.20 0.20 0.20 0.20					
ug/1 ug/1 ug/1 ug/1 ug/1	0.20 0.20 0.20 0.20 0.20					
ug/l ug/l ug/l ug/l	0.20 0.20 0.20 0.20					
ug/1 ug/1 ug/1	0.20 0.20 0.20					
ug/l ug/l	0.20 0.20					
ug/l	0.20					
ug/1	0.20		•		,	
ug/1	0.20					
ug/1	0.20					
ug/1	0.20					
ug/1	0.20				•	
49/ 4						
ery	QC Crite	eria				
용	23-120					-
용	43-120					
8	33-120					
mar /1	0 10	T STOOM	1114	20:25	1117 23	ina on
				. •		
- .						
••.						
•••						
~ · .					•	
•						
mg/l	0.10			•		•
	OC Crite	eris	•			
erv	~	er ra				
	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	mg/l 0.10	mg/l 0.10	mg/l 0.10	mg/l 0.10	### ### ##############################

Comments: Complete list of References and Glossary of Terms found in Addendum I

ALPHA ANALYTICAL LABORATORIES CERTIFICATE OF ANALYSIS

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0311674-02

EFFLUENT

WATER

Date Collected: 14-NOV-2003 14:30

Date Received : 14-NOV-2003
Date Reported : 17-NOV-2003

Condition of Sample:

Sample Matrix:

Satisfactory

Field Prep:

None

Number & Type of Containers: 4-Amber, 2-Plastic, 2-Vial

PARAMETER	result	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Turbidity	0.23	NTU	0.20	30 2130B	1114 20:00 LK
Color, Apparent	7.0	A.P.C.U.	5.0	30 2120B	1114 19:00 LK
Solids, Total Suspended	ND	mg/l	5.0	30 2540D	1116 11:20 DT
Volatile Organics by GC/MS 8	260			1 826QA	1117 12:15 RY
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		:
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8	•	(
Dibromochloromethane	ND	ug/l	0.50		· · · · · · · · · · · · · · · · · · ·
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/1	0.50	•	•
Chlorobenzene	ND	ug/l	0.50	ř	
Trichlorofluoromethane	ND	ug/1	2.5		
1,2-Dichloroethane	ND	ug/l	0.50	•	•
1,1,1-Trichloroethane	ND	ug/l	0.50	•	
Bromodichloromethane	ND	ug/1	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/1	0.50	•	
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/1	2.0	•	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75	•	
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		•
Bromomethane	ND	ug/1	1.0		
Vinyl chloride	ND	ug/1	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1, 2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		•
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		

ALPHA ANALYTICAL LABORATORIES CERTIFICATE OF ANALYSIS

Laboratory Sample Number: L0311674-02

EFFLUENT

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA: PREP	e Anal	ID
Volatile Organics by GC/MS 82			0.50	1 8260B		1117 12:	15 KY
p/m-Xylene	ND	ug/1					
o-Xylene	ND	ug/1	0.50				
cis-1,2-Dichloroethene	ND	ug/1	0.50	1			
Dibromomethane	ND	ug/1	5.0				
1,4-Dichlorobutane	ND	ug/l	5.0				•
Iodomethane	ND	ug/l	\ 5.0				
1,2,3-Trichloropropane	ND	ug/1	5.0				
Styrene	ND	ug/l	0.50		*		
Dichlorodifluoromethane	ND	ug/l	5.0	*			
Acetone	ND	ug/l	5.0	•			
Carbon disulfide	ND	ug/l	5.0				
2-Butanone	37.	ug/l	5.0				
Vinyl acetate	ND	ug/l	5.0	·			
4-Methyl-2-pentanone	ND	ug/l	5.0				
2-Hexanone	ND	ug/l	5.0				
Ethyl methacrylate	ND	ug/l	5.0		\		
Acrolein	ND	ug/l	12.	•	A		
Acrylonitrile	ND	ug/l	5.0				•
Bromochloromethane	ND	ug/l	2.5				
Tetrahydrofuran	>100	ug/l	10				
2,2-Dichloropropane	ND _	ug/1	2.5				
1,2-Dibromoethane	ND	ug/l	2.5				
1,3-Dichloropropane	ND	ug/l	2.5		,		
1,1,2-Tetrachloroethane	ND	ug/l	0.50				
Lomobenzene	ND .	ug/l	2.5				•
n-Butylbenzene	ND	ug/1	0.50				
sec-Butylbenzene	ND	ug/l	0.50				
tert-Butylbenzene	ND	ug/l	2.5	•			
o-Chlorotoluene	ND	ug/l	2.5				
p-Chlorotoluene	ND	ug/l	2.5				
1,2-Dibromo-3-chloropropane	ND	ug/1	2.5				
Hexachlorobutadiene	ND	ug/l	1.0	•	•		
Isopropylbenzene	ND	ug/l	0.50				
p-Isopropyltoluene	ND	ug/l	0.50				
Naphthalene	ND	ug/l	2.5				
n-Propylbenzene	ND	ug/l	0.50				
1,2,3-Trichlorobenzene	ND	ug/l	2.5	. •			
1,2,4-Trichlorobenzene	ND	ug/l	2.5				
1,3,5-Trimethylbenzene	ND	ug/l	2.5				
1,2,4-Trimethylbenzene	ND	ug/l	2.5				
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5				
Ethyl ether	ND	ug/l	2.5				
Surrogate(s)	Recovery		QC Cr	iteria			
1,2-Dichloroethane-d4	101.	ક્ષ					
Toluene-d8	99.0	ક					
4-Bromofluorobenzene	106.	*					
Dibromofluoromethane	99.0	ુ. જ					

Complete list of References and Glossary of Terms found in Addendum I

^{11170317:09} Page 7 of 18

CERTIFICATE OF ANALYSIS

Laboratory Sample Number: L0311674-02

EFFLUENT

PARAMETER	RESULT	Units	RDL	REF METHOD	date Prep an	ID AL
						
Volatile Organics by GC/MS				1 8260B	1117	14:07 RY
Tetrahydrofuran	230	ug/l	40.			
Surrogate(s)	Recovery		QC Cri	iteria	•	
1,2-Dichloroethane-d4	101.	¥	~			•
Toluene-d8	101.	*	•		4	
4-Bromofluorobenzene	104.	*			,	
Dibromofluoromethane	98.0	8	•			
PAH by GC/MS SIM 8270M				1 8270C+M	1114 20:25 1117	in ik wi
Acenaphthene	ND	ug/l	0.20			
2-Chloronaphthalene	ND	ug/l	0.20			
Fluoranthene	ND	ug/l	0.20			
Naphthalene	ND	ug/l	0.20			
Naphtharene Benzo(a) anthracene	ND	ug/l	0.20			
Benzo(a) pyrene	ND	ug/1	0.20			
Benzo(a) pyrene Benzo(b) fluoranthene	ND	ug/1 ug/1	0.20			
Benzo(k) fluoranthene	ND	ug/l	0.20			
Chrysene	ND	ug/l	0.20			
Acenaphthylene	ND	ug/l	0.20		•	
Anthracene	ND	ug/l	0.20		•	
Benzo(ghi)perylene	ND	ug/1	0.20			
	ND	ug/l	0.20			ب ر
Fluorene	ND	ug/l ug/l	0.20			1
Phenanthrene	ND		0.20	•	•	`
Dibenzo (a, h) anthracene	ND	ug/1	0.20		•	•
Indeno(1,2,3-cd)Pyrene		ug/1				
Pyrene	ND	ug/1	0.20			
1-Methylnaphthalene	ND	ug/1	0.20		•	
2-Methylnaphthalene	ND	ug/l	0.20			
Perylene	ND	ug/l	0.20			
Biphenyl	ND	ug/l	0.20	•		
Benzo(e) Pyrene	ND	ug/1	0.20	* .		
Surrogate(s)	Recovery			iteria		•
Nitrobenzene-d5	49.0	8 .	23-12	0		
2-Fluorobiphenyl	49.0	ક	43-12	0	1	
4-Terphenyl-d14	60.0	*	33-12	0		
Hydrocarbon Scan by GC 810	OM			1 8100M	1114 20:25 1117	12:06 JB
Mineral Spirits	ND	mg/1	0.10			
Gasoline	ND	mg/l	0.10			
Fuel Oil #2/Diesel	ND	mg/l	0.10			
Fuel Oil #4	ND	mg/l	0.10			
Fuel Oil #6	ND	mg/l	0.10		•	
Motor Oil	ND	mg/1	0.10			
Kerosene	ND	mg/1	0.10			
	ND	mg/1	0.10			
Transformer Oil				•	•	
Unknown Hydrocarbon	0.18	mg/l	0.10			

ALPHA ANALYTICAL LABORATORIES CERTIFICATE OF ANALYSIS

Laboratory Sample Number: L0311674-02

EFFLUENT

)	PARAMETER	RESULT	UNITS	RDL	REF METHOD	DAT PREP	anal	ID
	Hydrocarbon Scan by GC 8100M							
	Surrogate(s) o-Terphenyl	Recovery 81.0	9 .	~;~~~~~~ ~~~	i sione iteria !O	1114 20125		

ALPHA ANALYTICAL LABORATORIES CERTIFICATE OF ANALYSIS

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0311674-03

311674-03 Date Collected: 14-NOV-2003 12:50

TRIP BLANK Date Received: 14-NOV-2003 Sample Matrix: WATER Date Reported: 17-NOV-2003

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 1-Vial

PARAMETER	result	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by GC/MS 8	1260			1 82609	1117 11:40 RY
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	uq/1	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/1	0.50		, and
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/1	0.75		
Tetrachloroethene	ND	ug/l	0.50		-
Chlorobenzene	ND	ug/l	0.50		•
Trichlorofluoromethane	ND	ug/1	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		k.
Bromodichloromethane	ND	ug/l	0.50		· · · · · · · · · · · · · · · · · · ·
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/1	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		V.
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/1	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		•
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND.	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/1	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	0.50		
o-Xylene	ND	ug/l	0.50		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/1	5.0		
1,4-Dichlorobutane	ND	ug/l	5.0		C.
Iodomethane	ND	ug/l	5.0		

ALPHA ANALYTICAL LABORATORIES CERTIFICATE OF ANALYSIS

Laboratory Sample Number: L0311674-03

TRIP BLANK

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
				•	
Volatile Organics by GC/MS 82	e continu			1 8260B	1317 11 240 RY
1,2,3-Trichloropropane	ND	ug/l	5.0		•
Styrene	ND	ug/l	0.50		
Dichlorodifluoromethane	ND	ug/l	5.0		•
Acetone	ND	ug/1	5.0		
Carbon disulfide	ND	ug/l	5.0		
2-Butanone	ND	ug/l	5.0		
Vinyl acetate	ND	ug/l	5.0		. •
4-Methyl-2-pentanone	ND	ug/l	5.0		
2-Hexanone	ND	ug/l	5.0		•
Ethyl methacrylate	ND	ug/l	5.0		_
Acrolein	ND	ug/l	12.		·
Acrylonitrile	ND	ug/l	5.0		
Bromochloromethane	ND	ug/l	2.5	•	
Tetrahydrofuran	ND	ug/l	10.		
2,2-Dichloropropane	ND	ug/l	2.5		
1,2-Dibromoethane	ND	ug/l	2.5	•	•
1,3-Dichloropropane	ND	ug/l	2.5	•	
1,1,1,2-Tetrachloroethane	ИD	ug/l	0.50		
Bromobenzene	ND	ug/l	2.5	•	
n-Butylbenzene	ND	.ug/1	0.50		
sec-Butylbenzene	ND .	ug/l	0.50		
tert-Butylbenzene	ND	ug/l	2.5	* (
o-Chlorotoluene	ND	ug/l	2.5		
Chlorotoluene	ND	ug/l	2.5	•	
/2-Dibromo-3-chloropropane	ND	ug/l	2.5		•
Hexachlorobutadiene	ND	ug/l	1.0		
Isopropylbenzene	ND	ug/l	0.50		
p-Isopropyltoluene	ND	ug/l	0.50		•
Naphthalene	ND	ug/l	2.5		
n-Propylbenzene	ND	ug/l	0.50		
1,2,3-Trichlorobenzene	ND	ug/l	2.5		
1,2,4-Trichlorobenzene	ND	ug/l	2.5		
1,3,5-Trimethylbenzene	ND	ug/l	2.5		
1,2,4-Trimethylbenzene	ND	ug/l	2.5		
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	•.	
Ethyl ether	ND	ug/l	2.5	•	
Surrogate(s)	Recovery		QC Cr	iteria	
1,2-Dichloroethane-d4	102.	8	·.		
Toluene-d8	100.	*			•
4-Bromofluorobenzene	105.	욯			
Dibromofluoromethane	100.	ક		•	
		•			

11170317:09

Comments: Complete list of References and Glossary of Terms found in Addendum I

ALPHA ANALYTICAL LABORATORIES QUALITY ASSURANCE BATCH DUPLICATE ANALYSIS

Parameter	Value 1	Value 2	Units	RPD	RPD L	imits
Turbidit	y for sampl	e(s) 01-02	(L0311674-0	1, WG15	5403)	
Turbidity	82.	82.	NTU	0		
Color Bons	rant for sa	moledev mi	-02 (L031167	auna w	±1 <i>EE4</i> 001	
Color, Apparent	240	300	A.P.C.U.	22	3166300	
Solids, Total S	uspended fo	r sample(s) 01-02 (L 03	11674-0	L, WG156	411)
Solids, Total Suspended	27.	31.	mg/l	14	32	
Hydrocarbon Scan	by GC 8100M	for sampl	e(s) 01-02 (L0311674	1-02, WG	156490)
Mineral Spirits	ND	ND	. mg/1	NC	40	
Gasoline	ND	ND	mg/1	NC	40	
Fuel Oil #2/Diesel	ND	ND	mg/1	NC	40	
Fuel Oil #4	ND	ND .	mg/l	NC	40	
Fuel Oil #6	ND	ND	mg/l	NC	40	e e e
Motor Oil	ND	ND	mg/1	NC	40	
Kerosene	ND	ND	mg/1	NC	40	*
Transformer Oil	ND	ND	mg/l	NC	40	
Unknown Hydrocarbon	0.18	ND	mg/l	NC	40	
Surrogate(s)	Reco	very				QC Criteria
o-Terphenyl	81.0	74.0	&	9		40-140

ALPHA ANALYTICAL LABORATORIES QUALITY ASSURANCE BATCH SPIKE ANALYSES

Parameter	% Recovery	QC Criteria	
Turbidity LCS	for sample(s) 01-02 (WG156403)	
Turbidity	93		and and an inches
Volatile Organics by GC/	MS 8260 LCS for sample	·(s) 01-03 (WG156126)	
Chlorobenzene	100	,	
Benzene	106	• .	
Toluene	105	·	
1,1-Dichloroethene	100		
Trichloroethene	105		
			•
Surrogate(s)			
1,2-Dichloroethane-d4	98		
Toluene-d8	102	·	
4-Bromofluorobenzene	102		
Dibromofluoromethane	100		
PAH by GC/MS SIM 827)1-02 (WG):56442)	
Acenaphthene	62	46-118	•
2-Chloronaphthalene	56		
Fluoranthene	82		
Anthracene	76	0.0	
Pyrene	83	26-127	
Surrogate(s)			
*itrobenzene-d5	4.8	23-120	•
)Fluorobiphenyl	54	43-120	•
4-Terphenyl-d14	75	33-120	
Hydrocarbon Scan by GC	OTODM TOE FAMILY	A ON DO MICHELADAN	
Petroleum Spike	98	40-140	
Surrogate(s)			
o-Terphenyl	92	40-140	

ALPHA ANALYTICAL LABORATORIES QUALITY ASSURANCE BATCH MS/MSD ANALYSIS

Parameter	MS &	MSD %	RPD	RPD Limi	t MS/MSD Limits
Volatile Organics by GC/MS	8260 for samp	le(s) 01-03	(L0311414-	04, WG156126	ı
Chlorobenzene	98	97	1.		
Benzene	98	99	1.	•	
Toluene	100	100	0		
1,1-Dichloroethene	93	95	2		•
Frichloroethene	0	0	NC		٠.
Surrogate(s)					
L,2-Dichloroethane-d4	100	106	6		
Foluene-d8	101	99	2		
4-Bromofluorobenzene	100	98	2		
Dibromofluoromethane	99	102	3		
PAH by GC/MS SIM 8270	M for sample(s) 01-02 (L(311132-09,	WG156442)	
Acenaphthene	59	59	0	40	46-118
2-Chloronaphthalene	54	52	4	40	
Fluoranthene	78	80	3	40	* S.
Anthracene	76	78	3	40	•
Pyrene	78	80	3	40	26-127
Surrogate(s)					
Nitrobenzene-d5	4 6	46	0		23-120
2-Fluorobiphenyl	51	52	2		43-120
4-Terphenyl-d14	67	71	6		33-120

ALPHA ANALYTICAL LABORATORIES QUALITY ASSURANCE BATCH BLANK ANALYSIS

Parameter	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
			 		
Blank Analys	is for sam	ole(s) 01-	02 (WG15	6403-2)	
Furbidity	ND	NTU	0.20	30 2130B	1114 20:00 LK
Elank Analys Solids, Total Suspended			en commence de la co	n become a fact con consistent annotation decreases consistent was	
Solids, local Suspended	ND	mg/l	5.0	30 2540D	1116 11:20 DT
Blank Analys	is for sam	ile/s) 01-	03 (WG15)	6126-81	
olatile Organics by GC/MS 8			• • • • • • • • • • • • • • • • • • • •	1 82608	1117 10:57 RY
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		• *
L,2-Dichloropropane	ND	ug/l	1.8		:
Dibromochloromethane	ND	ug/l	0.50		· •
L,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		. •
Chlorobenzene	ND	ug/l	0.50		
richlorofluoromethane	ND	ug/l	2.5		
.,2-Dichloroethane	ND	ug/l	0.50		
.,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
rans-1,3-Dichloropropene	ND	ug/l	0.50		
is-1,3-Dichloropropene	ND	ug/l	0.50		
,1-Dichloropropene	ND	ug/1	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	•	
Benzene	ND	ug/l	0.50	•	
Foluene	ND	ug/l	0.75		
Sthylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/1	2.5		
Bromomethane	ND	ug/l	1.0	•	
/inyl chloride	ND	ug/1	1.0		·
Chloroethane	ND	ug/1	1.0		
l,1-Dichloroethene	ND	ug/l	0.50		•
rans-1,2-Dichloroethene	ND	ug/l	0.75		
l,2-Dichlorobenzene	ND	ug/l	0.50	e e	
1,3-Dichlorobenzene	ND	ug/1	2.5		
	ND	ug/1	2.5	·	
1,4-Dichlorobenzene	ND	ug/1	2.5		
Methyl tert butyl ether	ND	ug/1	1.0		
p/m-Xylene	ND	ug/1	0.50		
o-Xylene	ND	ug/1	0.50		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/1	5.0		
1,4-Dichlorobutane	ND	ug/1	5.0		
Iodomethane	ND	ug/1	5.0		•
1,2,3-Trichloropropane	ND	ug/l	5.0		

ALPHA ANALYTICAL LABORATORIES QUALITY ASSURANCE BATCH BLANK ANALYSIS

Laboratory Job Number: L0311674

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	date Prep an	ID AL
Blank Analysi	s for same	le <i>(</i> s) 01-)3 (WG156	126-8)		
Volatile Organics by GC/MS 82				1 8260B	1117	10:57 RY
Styrene	ND	ug/l	0.50		en e	distriction to an expensive state.
Dichlorodifluoromethane	ND .	ug/l	5.0			
Acetone	ND	ug/l	5.0			
Carbon disulfide	ND	ug/l	5.0			
2-Butanone	ND	ug/l	5.0			
Vinyl acetate	ND	ug/l	5.0	•		
4-Methyl-2-pentanone	ND	ug/1	5.0			
2-Hexanone	ND	ug/l	5.0	•		-
Ethyl methacrylate	ND	ug/l	5.0			•
Acrolein	ND	ug/l	12.			
Acrylonitrile	ND	ug/l	5.0	:		•
Bromochloromethane	ND	ug/l	2.5			
Tetrahydrofuran	ND	ug/l	10.			
2,2-Dichloropropane	ND	ug/l	2.5		N.	
1,2-Dibromoethane	ND	ug/l	2.5			
1,3-Dichloropropane	ND	ug/1 ug/1	2.5		*	
1,1,1,2-Tetrachloroethane	ND	ug/1	0.50		•	
Bromobenzene	ND	ug/1 ug/1	2.5			
n-Butylbenzene	ND	ug/l ug/l	0.50			
sec-Butylbenzene	ND	ug/1 ug/1	0.50			-
tert-Butylbenzene	ND	ug/1 ug/l	2.5			4
o-Chlorotoluene	ND ND	ug/1 ug/l	2.5			
	ND	- · ·	2.5		·	• • •
p-Chlorotoluene	ND	ug/1	2.5			
1,2-Dibromo-3-chloropropane		ug/1	1.0			
Hexachlorobutadiene	ND	ug/1				
Isopropylbenzene	ND	ug/1	0.50			
p-Isopropyltoluene	ND	ug/l	0.50			
Naphthalene	ND	ug/l	2.5			
n-Propylbenzene	ND	ug/l	0.50			•
1,2,3-Trichlorobenzene	ND	ug/1	2.5			
1,2,4-Trichlorobenzene	ND	ug/l	2.5			
1,3,5-Trimethylbenzene	ND	ug/l	2.5			
1,2,4-Trimethylbenzene	ND	ug/l	2.5			
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5			_
Ethyl ether	ND	ug/l	2.5	•		
Surrogate(s)	Recovery		QC Cri	teria		.*
1,2-Dichloroethane-d4	103.	*	~		•	,
Toluene-d8	100.	ę.				
4-Bromofluorobenzene	105.	e S		•		•
Dibromofluoromethane	101.	e E	-			
Blank Analys		-	02 (WG156	442-1)		
PAH by GC/MS SIM 8270M		,_	<u>.</u>	1 8270CHM	1114 20:25 1117	10:45 HL
Acenaphthene	ND	ug/l	0.20	•		
2-Chloronaphthalene	ND	ug/l	0.20		•	
Fluoranthene	ND	ug/l	0.20			

ALPHA ANALYTICAL LABORATORIES QUALITY ASSURANCE BATCH BLANK ANALYSIS

Laboratory Job Number: L0311674

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA'	DATE ID		
					PREP	ANAL		
								
	rsis for samp	le(s) 01-	02 (WG15 6					
PAH by GC/MS SIM 8270M cont				1 8270C-M	1114 20:26	1117 10:4	5 M.	
Naphthalene	ND	ug/l	0.20	•				
Benzo (a) anthracene	ND	ug/l	0.20					
Benzo (a) pyrene	ND	ug/l	0.20					
Benzo (b) fluoranthene	ND	ug/l	0.20					
Benzo (k) fluoranthene	ND	ug/l	0.20					
Chrysene	ND	ug/l	0.20					
Acenaphthylene	ND	ug/l	0.20					
Anthracene	ND	ug/l	0.20					
Benzo(ghi)perylene	ND	ug/l	0.20					
Fluorene	ИD	ug/l	0.20					
Phenanthrene	ND	ug/l	0.20	•				
Dibenzo (a, h) anthracene	ND	ug/l	0.20					
Indeno (1,2,3-cd) Pyrene	ND	ug/l	0.20					
Pyrene	ND	ug/l	0.20		•			
1-Methylnaphthalene	ND	ug/l	0.20					
2-Methylnaphthalene	ND	ug/l	0.20					
Perylene	ND	ug/l	0.20	•				
Biphenyl	ND	ug/1	0.20		,			
Benzo (e) Pyrene	ND	ug/1	0.20					
Surrogate(s)	Recovery		QC Cri	teria		•		
trobenzene-d5	36.0	뫟	23-120	•				
JFluorobiphenyl	41.0	ેક	43-120)				
4-Terphenyl-d14	67.0	8	33-120	, , , , , , , , , , , , , , , , , , ,				
	sis for samp	le(s) 01-	02 (WG156	490-1)				
Hydrogarbon Scan by GC 810	MC			1 8100M	1114 20:25	1117 11:0)3 JB	
Mineral Spirits	ND	mg/l	0.10					
Gasoline	ND	mg/1	0.10					
Fuel Oil #2/Diesel	ND	mg/l	0.10	•	•			
Fuel Oil #4	ND	mg/l	0.10					
Fuel Oil #6	ND	mg/l	0.10		•			
Motor Oil	ND	mg/l	0.10					
Kerosene	ND	mg/1	0.10					
Transformer Oil	· ND	mg/l	0.10		٠.			
Unknown Hydrocarbon	ND	mg/l	0.10	•				
•			177					
					•			
Surrogate(s)	Recovery		OC Cri	teria				

ALPHA ANALYTICAL LABORATORIES ADDENDUM I

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IIIA, 1997.
- 30. Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.

GLOSSARY OF TERMS AND SYMBOLS

REF Reference number in which test method may be found. METHOD Method number by which analysis was performed.

ID Initials of the analyst.

NO Not detected in comparison to the reported detection limit.

Please note that all solid samples are reported on dry weight basis unless noted otherwise.

LIMITATION OF LIABILITIES

Alpha Analytical, Inc. performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical, Inc., shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical, Inc. be held liable for any incidental consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical, Inc.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding times and splitting of samples in the field.

Анд	CHAIN O		والمراكم والأرا		GE()F	2.3%	o didina di	oc'd I	V 347.3	. C.	11/1	4/0	3	iyan wis	110	de circles est	A Job#:	193	1167
	Westborough, MA 01581		Informati		(ic					rmai			Deli	veral	les			g Informati		
EL: 508-898-9220	the same of the sa		iame: Cla	<u> </u>	helsa 1.18			ADE				MAIL Adi E	Deliver	ables			Same	e as Client ir	fo PO#:	
lientInformation			ocation:				-	<u> </u>		Regu		· · · · · ·	Repa		nits					
tient: I che -	+ Bond	Project #		33494	<u> </u>				ed Pr					Criter						
ddress: 324	Grove St		Aanager: [ich G	seisur			MA		ncp					- ن				:	
	HV MA	ALPHA	<u> </u>		t <u>:</u>	na na energe	MC	PPF	RESU	IMPT	IVE	CERT	AINT	Y-TH	ESE	QUE	STIO	NSMUSTE	BEANSWERE	D
hone: 50% 7S	4 201	Turn-A	Around Tin	10				Yes Yes	148				Analy							
3X:		☐ Standa	erd	L RUSH (a	nly confirmed if p	ora-sobroved!)			ÜN									or rements?	5.	
maik		Date Du	5	X		ZHr	30.	co.		/		/ /	/ /	7	7	\mathcal{I}	7	177	DA 4451 - 114 A14	N 100
	ve been previously analyzed by Alpha		11/1	7/03				Ø/				' /			/ -		/ /	/ / /	SAMPLE HANI Filtration	JLING
	ecific Requirements/Comm	1611(3/15/6	toction En				AW	155 Jan 256	teach !	Sec. Sec.	からみり		3/ /	/ /		//	//	//-	☐ Done ☐ Not needed ☐ Lab to do Preservation ☐ Lab to do Please specify below)	
ALPHA Lab ID Lab Use Only)	SampleiD	•	Colle	ction Time	Sample Matrix	Sampler's	∛ `		F/ (5) ()	\ /-	2/	/ /	/ /	/				Specific Com	
9311674 1	Influet	 	11/14/03	2770	6W	200	X	4	X	X	X									(
2	EAFluent		11/14/03	るころ	GW	JPG	Y	X	X	X	X				1			 		
1/ 3	Trip Blank		11/14/23	12:00			1		1	†	X				+	+	+	1		
_V	1777				 	 	1	-	+	1		1				-	1	1		
	·				 	 	-	 	+	+	-	 		-	+	+	+	-	·	
					 	 	-	-	+-	+-	-	-		-	-	+	+	 		
	· · · · · · · · · · · · · · · · · · ·	,				 	-	-	-	╁	-			-	_	-	+-	 	 	
	<u> </u>	:				 	 	-	-	-	 	-			-	+	+-	 		
			-		 		-	-	-	-	-	-		-	+	+	+-	 		
							 	-	 		├					- -	-	ļ		
]												
UESTIONS ABO	VE MUST BE ANSWERED FOR P	RESUMPT	IVE CERTA	INTY		iner Type	P	P	6			ļ			-			Please p	rint clearly, legi ly. Samples ca	bly and
IS YO	JR -					eservative	A	A	A	A				-+		<u> </u>		logged in	and turnaroun tart until any <u>ar</u>	d time clock
PROJEMC(1 6	Relinqu	ished By:		Date	e/Time	5	1	Ju	eceive UL	ed B	<u>":</u> 			1/19		JP)	resolved.	All sample Alpha's P~	bmitted a

) 07-03 std

ATTACHMENT B

SUMMARY OF GROUND WATER MONITORING DATA

(2003 TO 2004)

CHELSEA SANDWICH, LLC

NPDES PERMIT NO. MA0003280

,							
	,						
			•			•	
		٠		.*			
							•

ALPHA ANALYTICAL LABORATORIES

Eight Walkup Drive Westborough, Massachusetts 01581-1019 (508) 898-9220 www.alphalab.com

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

CERTIFICATE OF ANALYSIS

Client: Tighe & Bond

Laboratory Job Number: L0311730

Address: 4 Barlows Landing Road

Pocasset, MA 02559

Date Received: 17-NOV-2003

Attn: Mr. Rich Geisler

Date Reported: 20-NOV-2003

Project Number: 32-33494

Delivery Method: Client

Site:

GLOBAL CHELSEA

ALPHA SAMPLE NUMBER	CLIENT IDENTIFICATION	SAMPLE LOCATION
L0311730-01	INFLUENT	CHELSEA, MA
L0311730-02	EFFLUENT	CHELSEA, MA
L0311730-03	TRIP BLANK	CHELSEA, MA

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized by: <u>Scott McLean</u>
This document electronically signed

11200314:58

Page 1 of 20

ALPHA ANALYTICAL LABORATORIES NARRATIVE REPORT

Laboratory Job Number: L0311730

PAH

L0311730-01 has elevated limits of detection due to the 10x dilution required by the elevated concentrations of target compounds in the sample.

11200314:58 Page 2 of 20

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0311730-01

Date Collected: 17-NOV-2003 12:40

INFLUENT

Date Received: 17-NOV-2003

Sample Matrix:

WATER

Date Reported: 20-NOV-2003

Condition of Sample:

Satisfactory

Field Prep:

None

Number & Type of Containers: 4-Amber, 2-Plastic, 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID
					Prep anal
Turbidity	140	NTU	0.20	30 2130B	1117 17:00 LK
Color, Apparent	360	A.P.C.U.	100	30 2120B	1117 17:00 LK
Solids, Total Suspended	36.	mg/l	5.0	30 2540D	1119 13:50 DT
W olatile Organics by GC/MS 8	260			1 8260B	1118 12:26 RY
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		•
Dibromochloromethane	ND	ug/l	0.50	•	•
)1,2-Trichloroethane	ND	ug/l	0.75		
retrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50	•	
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/1	2.5		
Bromoform	ND	ug/1	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	24.	ug/1	0.50		
Toluene	1.7	ug/l	0.75		
Ethylbenzene	0.74	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		•
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ИD	ug/1	0.50		·
trans-1,2-Dichloroethene	ND	ug/l	0.75	•	
Trichloroethene	ND	ug/l	0.50		•
1,2-Dichlorobenzene	ND	ug/l	2.5	•	•
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5	,	•
Methyl tert butyl ether	ND	ug/l	1.0		

mments: Complete list of References and Glossary of Terms found in Addendum I

CERTIFICATE OF ANALYSIS

Laboratory Sample Number: L0311730-01

INFLUENT

PARAMETER	RESULT	UNITS	RDL	REF M	ETHOD	DATE PREP ANAL	ID
							4202
Volatile Organics by GC/MS 82 p/m-Xylene	60 сонстви 6.2	eq ug/l	0.50	1 6	260B	1118 12:	28 RY
• •		- · ·	_				
o-Xylene	1.8	ug/l	0.50			•	-
cis-1,2-Dichloroethene Dibromomethane	ND ND	ug/l ug/l	0.50 5.0		•		
Dibromomethane 1,4-Dichlorobutane	ND.	ug/l ug/l	5.0				
I,4-Dichiofobutane Iodomethane	ND	ug/l ug/l	5.0				
1,2,3-Trichloropropane	ND	ug/l	5.0				
· · · · · · · · · · · · · · · · · · ·	ND	ug/l ug/l	0.50				
Styrene Dichlorodifluoromethane	ND	ug/l	5.0		-	the second	•
Acetone	ND	ug/1 ug/1	5.0		4		
Acetone Carbon disulfide	ND	ug/l	5.0				
carbon disullide 2-Butanone	. 26.	ug/l ug/l	5.0				
Z-Butanone Vinyl acetate	ND	ug/1 ug/l	5.0				
VIIIyI acetate 4-Methyl-2-pentanone	ND	ug/l	5.0			•	
4-methy1-2-pentanone 2-Hexanone	ND	ug/l	5.0				
z-nexamone Ethyl methacrylate	ND	ug/1	5.0			•.	
Acrolein	ND	ug/l	12.	•			
Acrylonitrile	ND	ug/1	5.0			•	
Bromochloromethane	ND	ug/1	2.5				
Tetrahydrofuran	50.	ug/1	10.				
2,2-Dichloropropane	ND	ug/l	2.5				
1,2-Dibromoethane	ND	ug/l	2.5				
1,3-Dichloropropane	ND	ug/l	2.5				
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50			*	
Bromobenzene	ND	ug/l	2.5	•			
n-Butylbenzene	1.3	ug/l	0.50				
sec-Butylbenzene	1.7	ug/l	0.50			•	
tert-Butylbenzene	ND	ug/l	2.5			•	
o-Chlorotoluene	ND	ug/l	2.5				
p-Chlorotoluene	ND	ug/l	2.5				
1,2-Dibromo-3-chloropropane	ND	ug/1	2.5				
Hexachlorobutadiene	ND	ug/l	1.0				
Isopropylbenzene	6.3	ug/l	0.50			•	
p-Isopropyltoluene	ND	ug/l	0.50		-		
Naphthalene	4.5	ug/l	2.5			•	
n-Propylbenzene	4.1	ug/1	0.50				
1,2,3-Trichlorobenzene	ND	ug/1	2.5			-	•
1,2,4-Trichlorobenzene	ND	ug/1	2.5			'.	•
1,3,5-Trimethylbenzene	ND	ug/1	2.5				
1,2,4-Trimethylbenzene	ND	ug/l	2.5				
trans-1, 4-Dichloro-2-butene	ND	ug/1	2.5		•		
Ethyl ether	ND	ug/1	2.5		•		
Surrogate(s)	Recovery		QC Cri	iteria			
1,2-Dichloroethane-d4	93.0	8					
Toluene-d8	100.	ક					
4-Bromofluorobenzene	103.	*				•	
Dibromofluoromethane	90.0	8					

Laboratory Sample Number: L0311730-01

INFLUENT

ARAMETER	RESULT	UNITS	RDL	REF METHOD	DA	TB	ID
					PREP	ANAL	•
PAR by GC/MS SIM 8270M				1 8270C-M	1119 14:10	1120 10	:38 HL
Acenaphthene	25.	ug/l	2.0		200000000000000000000000000000000000000	***************	************
2-Chloronaphthalene	ND	ug/l	2.0		,		
Fluoranthene	7.7	ug/l	2.0				
Naphthalene	ND	ug/l	2.0				
Benzo (a) anthracene	ND	ug/1	2.0				
Benzo (a) pyrene	ND	ug/l	2.0				·
Benzo (b) fluoranthene	ND	ug/l	2.0			•	•
Benzo (k) fluoranthene	ND	ug/l	2.0				
Chrysene	ND	ug/1	2.0	•			
Acenaphthylene	ND	ug/l	2.0				
Anthracene	4.7	ug/l	2.0				
Benzo (ghi) perylene	ND	ug/l	2.0				
Fluorene	10.	ug/l	2.0				
Phenanthrene	2.8	ug/l	2.0	•			
Dibenzo(a,h)anthracene	ND	ug/1	2.0			•	
Indeno (1,2,3-cd) Pyrene	ND	ug/l	2.0		•		
Pyrene	6.0	ug/l	2.0	•.			
1-Methylnaphthalene	34.	ug/l	2.0				
2-Methylnaphthalene	ND	ug/l	2.0				
Perylene	ND	ug/l	2.0				
Biphenyl	ND	ug/1	2.0		·•		
Benzo (e) Pyrene	ND	ug/l	2.0				
(prrogate(s)	Recovery		QC Cr	iteria			
itrobenzene-d5	89.0	ક	23-12	0	•		•
2-Fluorobiphenyl	97.0	*	43-12	0			
4-Terphenyl-d14	96.0	용	33-12	O .			
Hydrocarbon Scan by GC 810				1 8100M	1118 14:45	111,9 22	:20 JB
Mineral Spirits	ND ·	mg/l	0.10	•			
Gasoline	ND	mg/l	0.10				
Fuel Oil #2/Diesel	ND	mg/1	0.10				
Fuel Oil #4	ND	mg/1	0.10				
Fuel Oil #6	ИD	mg/l	0.10				
Motor Oil	ND	mg/l	0.10				*
Kerosene	ND	mg/l	0.10				
Transformer Oil	ND	mg/1	0.10		•		
Unknown Hydrocarbon	5.2	mg/l	0.10				
Surrogate(s)	Recovery		QC Cr	iteria	•		
o-Terphenyl	78.0	8	40-14	0			

mments: Complete list of References and Glossary of Terms found in Addendum I

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0311730-02

Date Collected: 17-NOV-2003 13:00

Sample Matrix:

EFFLUENT WATER Date Received: 17-NOV-2003
Date Reported: 20-NOV-2003

Condition of Sample:

Satisfactory

Field Prep:

None

Number & Type of Containers: 4-Amber, 2-Plastic, 2-Vial

Parameter	RESULT	UNITS	RDL	REF METHOD	DATE ID	
		· · · · · · · · · · · · · · · · · · ·	· .	· · · · · · · · · · · · · · · · · · ·	ERGE AGAI	
Turbidity	ND	NTU	0.20	30 2130B	1117 17:00 LK	
Color, Apparent	6.0	A.P.C.U.	5.0	30 2120B	1117 17:00 LK	
Solids, Total Suspended	ND	mg/l	5.0	30 2540D	1119 13:50 DT	
V olatile Organics by GC/MS 8	260			1 8260B	1219 10:54 RY	
Methylene chloride	ND	ug/1	5.0			
1,1-Dichloroethane	ND	ug/1	0.75			
Chloroform	ND	ug/l	0.75	•		
Carbon tetrachloride	ND	ug/l	0.50	•		
1,2-Dichloropropane	ND	ug/l	1.8			(
Dibromochloromethane	ND	ug/l	0.50		•	1
1,1,2-Trichloroethane	ND	ug/l	0.75			
Tetrachloroethene	ND	ug/l	0.50		•	
Chlorobenzene	ND	ug/l	0.50			
Trichlorofluoromethane	ND	ug/l	2.5			•
1,2-Dichloroethane	ND	ug/l	0.50		•	
1,1,1-Trichloroethane	ND	, ug/l	0.50		•	
Bromodichloromethane	ND	ug/l	0.50		•	
trans-1,3-Dichloropropene	ND	ug/l	0.50			
cis-1,3-Dichloropropene	ND	ug/l	0.50			
1,1-Dichloropropene	ND	ug/l	2.5			
Bromoform	ND	ug/l	2.0			÷
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50			
Benzene	ND	ug/1	0.50			
Toluene	ND	ug/l	0.75			
Ethylbenzene	ND	ug/l	0.50	•		
Chloromethane	ND	ug/l	2.5			
Bromomethane	ND	ug/l	1.0	,		
Vinyl chloride	ND	ug/l	1.0			
Chloroethane	ND	ug/l	1.0			
1,1-Dichloroethene	ND	ug/l	0.50			
trans-1,2-Dichloroethene	ND	ug/l	0.75	•		
Trichloroethene	ND	ug/l	0.50			
1,2-Dichlorobenzene	ND	ug/l	2.5			
1,3-Dichlorobenzene	ИĎ	ug/l	2.5		•	
1,4-Dichlorobenzene	ND	ug/1	2.5	•		
Methyl tert butyl ether	ND	ug/l	1.0			

Laboratory Sample Number: L0311730-02

EFFLUENT

ARAMETER	RESULT	UNITS	RDL	REF METHOD	DA! PREP	te Anal	ID
							·
Volatile Organics by GC/MS 82	60 continu	ied		1 8260B		1119 1 0:	54 RY
o/m-Xylene	ND	ug/l	0.50		.:		
o-Xylene	ND	ug/l	0.50				
cis-1,2-Dichloroethene	ND	ug/1	0.50	•			
Dibromomethane	MD.	ug/l	5.0				
1,4-Dichlorobutane	ND	ug/1	5.0				
Iodomethane	NID	ug/l	5.0				
1,2,3-Trichloropropane	ND	ug/l	5.0	•			
Styrene	ND	_ug/l	0.50				
Dichlorodifluoromethane	ND	ug/l	5.0				
Acetone	ND	ug/l	5.0				
Carbon disulfide	ND	ug/l	5.0				
2-Butanone	ND	ug/l	5.0				
Vinyl acetate	ND	ug/l	5.0	•			
4-Methyl-2-pentanone	ND	ug/l	5.0				
2-Hexanone	ND	ug/l	5.0			•	
Ethyl methacrylate	ND	ug/l	5.0				
Acrolein	ND	ug/l	12.				•
Acrylonitrile	ND	ug/l	5.0				
Bromochloromethane	ND	ug/l	2.5				
Tetrahydrofuran	ND	ug/l	10.				•
2,2-Dichloropropane	ND	ug/l	2.5				
1,2-Dibromoethane	ND	ug/l	2.5				
1,3-Dichloropropane	ND	ug/l	2.5				
1,1,2-Tetrachloroethane	ND	ug/l	0.50				•
bromobenzene	ND	ug/l	2.5				-
n-Butylbenzene	ND	ug/l	0.50				
sec-Butylbenzene	ND	ug/l	0.50		•		
tert-Butylbenzene	ND	ug/l	2.5				
o-Chlorotoluene	ND	ug/l	2.5	•			
p-Chlorotoluene	ND	ug/l	2.5				
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5				
Hexachlorobutadiene	ND	ug/l	1.0				
Isopropylbenzene	ND	ug/l	0.50				
p-Isopropyltoluene	ND	ug/l	0.50				
Naphthalene	ND	ug/l	2.5				
n-Propylbenzene	ND	ug/l	0.50				
1,2,3-Trichlorobenzene	ND	ug/l	2.5	•			
1,2,4-Trichlorobenzene	ND	ug/l	2.5			•	
1,3,5-Trimethylbenzene	ND	ug/l	2.5		•		
1,2,4-Trimethylbenzene	ND	ug/l	2.5		٠		
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5				
Ethyl ether	ND	ug/l	2.5	•			
Surrogate(s)	Recovery		QC Cr	iteria			
1,2-Dichloroethane-d4	102.	ક	_				
Toluene - d8	101.	¥		•			
4-Bromofluorobenzene	108.	ş					
Dibromofluoromethane	99.0	8					

yments: Complete list of References and Glossary of Terms found in Addendum I

CERTIFICATE OF ANALYSIS

Laboratory Sample Number: L0311730-02

EFFLUENT

Parameter	RESULT	UNITS	RDL	REF METHOD	DA PREP	TE ANAL	ID
							
PAH by GC/MS SIN 8270M				1 8270C+M	1119 14:10	1120 112	3 HL
Acenaphthene	ND	ug/l	0.20		***************************************	***********	Secretaria a sa
2-Chloronaphthalene	ND	ug/l	0.20				
Fluoranthene	ND .	ug/l	0.20				*
Naphthalene	ND	ug/l	0.20				•
Benzo(a) anthracene	ND	ug/l	0.20	•			
Benzo(a) pyrene	ND	ug/l	0.20				·
Benzo(b) fluoranthene	ND	ug/1	0.20	•			•
Benzo(k) fluoranthene	ND	ug/1	0.20				
Chrysene	ND	ug/1	0.20	4		•	
Acenaphthylene	ND	ug/1	0.20				
Anthracene	ND	ug/l	0.20				
Benzo(ghi) perylene	ND	ug/l	0.20				
Fluorene	ND	ug/l	0.20	•			
Phenanthrene	ND	ug/l	0.20	4		•	
Dibenzo (a, h) anthracene	ND	ug/l	0.20				
Indeno(1,2,3-cd)Pyrene	ND	ug/l	0.20			. •	•
Pyrene	ND	ug/l	0.20	•			
1-Methylnaphthalene	ND	ug/l	0.20				
2-Methylnaphthalene	NTD	ug/l	0,20				
Perylene	ND	ug/l	0.20				
Biphenyl	ND	ug/l	0.20		•	-	
Benzo(e) Pyrene	ND	ug/l	0.20				
·		~3/ -	0.20			•	\cup
Surrogate(s)	Recovery		QC Cri	teria			
Nitrobenzene-d5	55.0	. %	23-120)			•
2-Fluorobiphenyl	55.0	왐	43-120)			
4-Terphenyl-d14	67.0	*	33-120				
Hydrogarbon Scan by GC 810	ОМ			1 8100M	1118 14:45	1119 23	4 JB
Mineral Spirits	ND	mg/l	0.10	•			
Gasoline	ND	mg/l	0.10				
Fuel Oil #2/Diesel	ND	mg/l	0.10				•
Fuel Oil #4	ND	mg/l	0.10				
Fuel Oil #6	ND	mg/l	0.10				
Motor Oil	ND	mg/l	0.10				
Kerosene	ND	mg/1	0.10				•
Transformer Oil	ND	mg/l	0.10				
Unknown Hydrocarbon	ND	mg/1	0.10			•	
			0.20				
Surrogate(s)	Recovery		OC Cri	iteria			
o-Terphenyl	81.0	*	40-140				

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0311730-03

TRIP BLANK

Date Collected: 17-NOV-2003 08:00

IKIP E

Date Received: 17-NOV-2003

Sample Matrix:

WATER

Date Reported: 20-NOV-2003

Condition of Sample:

Satisfactory

Field Prep:

None

Number & Type of Containers: 1-Vial

PARAMETER	result	UNITS	RDL	REF METHOD	DATE ID
	·.		•		PREP ANAL
Volatile Organics by GC/MS &				1 82608	1118 11:52 RY
Methylene chloride	ND	ug/l	5.0		•
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	ug/l	0.50		•
1,2-Dichloropropane	ND	ug/l	1.8		S
Dibromochloromethane	ND	ug/l	0.50		•
1,1,2-Trichloroethane	ND	ug/l	0.75	•	
Tetrachloroethene	» ND	ug/l	0.50		•
Chlorobenzene	ND	ug/1	0.50		
Trichlorofluoromethane	ND	ug/1	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		·
1,1,1-Trichloroethane	ND	ug/l	0.50		
romodichloromethane	ND	ug/l	0.50		
rans-1,3-Dichloropropene	ND	ug/1	0.50		•
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		·
Chloromethane	ND	ug/l	2.5		•
Bromomethane	ND	ug/l	1.0		· ,
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/1	1.0		•
1,1-Dichloroethene	ND	ug/l	0.50	•	
trans-1,2-Dichloroethene	ND	ug/l	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	· ND	ug/l	2.5	•	
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/1	0.50		
o-Xylene	ND	ug/l	0.50		,
cis-1,2-Dichloroethene	ND	ug/l	0.50		,
Dibromomethane	ND	ug/l	5.0		•
1,4-Dichlorobutane	ND	ug/1 ug/1	5.0		
Iodomethane	ND	ug/1	5.0		
* - MOUNT OTTOTTO	TATA	. ug/ I	5.0		

mments: Complete list of References and Glossary of Terms found in Addendum I

CERTIFICATE OF ANALYSIS

Laboratory Sample Number: L0311730-03

TRIP BLANK

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
		· · · · · · · · · · · · · · · · · · ·		 	FRDF ARALI
Volatile Organics by GC/MS 83				1 8260B	1118 11:52 RY
1,2,3-Trichloropropane	ND	ug/l	5.0		
Styrene	ND	ug/l	0.50	•	•
Dichlorodifluoromethane	ND	ug/l	5.0		
Acetone	ND	ug/l	5.0		
Carbon disulfide	ND	ug/l	5.0	• •	
2-Butanone	ND	ug/l	5.0		
Vinyl acetate	ND	ug/l	5.0		
4-Methyl-2-pentanone	ND	ug/l	5.0		•
2-Hexanone	ND	ug/l	5.0		•
Ethyl methacrylate	ND	ug/l	5.0		•
Acrolein	ND	ug/l	12.		
Acrylonitrile	ND.	ug/l	5.0		•
Bromochloromethane	ND	ug/1	2.5		·
Tetrahydrofuran	ND	ug/l	10.		
2,2-Dichloropropane	ND	ug/l	2.5		
1,2-Dibromoethane	ND	ug/l	2.5		`.
1,3-Dichloropropane	ND	ug/l	2.5		
1,1,1,2-Tetrachloroethane	ND	ug/1	0.50		
Bromobenzene	ND	ug/l	2.5		
n-Butylbenzene	ND	ug/l	0.50		
sec-Butylbenzene	ND	ug/l	0.50		
tert-Butylbenzene	ND	ug/l	2.5		
o-Chlorotoluene	ND	ug/l	2.5		
p-Chlorotoluene	ND	ug/1	2.5	•	<u>.</u>
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	,	
Hexachlorobutadiene	ND	ug/l	1.0		
Isopropylbenzene	ND	ug/l	0.50		
p-Isopropyltoluene	ND	ug/l	0.50		
Naphthalene	ND	ug/l	2.5		
n-Propylbenzene	ND	ug/l	0.50		
1,2,3-Trichlorobenzene	ND	ug/l	2.5		
1,2,4-Trichlorobenzene	ND	ug/1	2.5		
1,3,5-Trimethylbenzene	ND	ug/1	2.5		
1,2,4-Trimethylbenzene	ND	ug/l	2.5		
trans-1, 4-Dichloro-2-butene	ND	ug/l	2.5		
Ethyl ether	ND	ug/l	2.5		
Surrogate(s)	Recovery	• .	QC Cr:	iteria	
1,2-Dichloroethane-d4	100.	**			
Toluene-d8	98.0	, - %			
4-Bromofluorobenzene	104.	ą.			·
Dibromofluoromethane	98.0	ş		·	

Parameter	Value 1	Value 2	Units	RPD	RPD Limits	
Turk Turbidity	nidity for samp) 140	Le(s) 01-02 140	(L0311730- NTU	01, WG15 0	6562)	
TOTALCY	140	140	NIO	. 0		
Color.	Apparent for sa	umple(s) 01	-02 (L03117	30-01, W	G156559)	
Color, Apparent	360	360	A.P.C.U.	0		*****
Hydrocarbon S Mineral Spirits Gasoline Fuel Oil #2/Diesel	ican by GC 8100f ND ND ND	for sampl ND ND ND ND	e(s) 01-02 mg/l mg/l mg/l	(L031173 NC NC NC NC	0-01, WG156636) 40 40 40 40	
Fuel Oil #4 Fuel Oil #6	ND ND	ND ND	mg/1 mg/1 mg/1	NC NC	40 40	
Motor Oil Kerosene	ND ND	ND ND	mg/1 mg/1	NC NC	40 40	
Transformer Oil	ND	ND	mg/l	NC	40	
Unknown Hydrocarbon	5.2	5.2	mg/l	0	40	
Surrogate(s)	Rece	overy			QC Crite	ria
o-Terphenyl	78.0	82.0	ક	5	40-140	

Parameter	% Recovery	QC Criteria
Turbidity LCS Turbidity	for sample(s) 01-02 ((WG156562)
Volatile Organics by GC/A	· · · · · · · · · · · · · · · · · · ·	e(B) 01,03 (WG156600)
Chlorobenzene	94	
Benzene	99	
Toluene	98 93	•
1,1-Dichloroethene Trichloroethene	100	
Trichtoroethene	100	
Surrogate(s)		
1,2-Dichloroethane-d4	100	•
Toluene-d8	. 99	
4-Bromofluorobenzene	101	
Dibromofluoromethane	101	
	•	
Volatile Organics by GC,	/MS 8260 LCS for sampl	le(s) 02 (WG156600)
Chlorobenzene	97	
Benzene	103	
Toluene	100	
1,1-Dichloroethene	99	
Trichloroethene	103	•
Surrogate(s)	100	,
1,2-Dichloroethane-d4	102	•
Toluene-d8	100	
4-Bromofluorobenzene Dibromofluoromethane	101 102	
DIDIOMOL LUOIOMECHANE	102	•
DBH hy @C/MS STM 827	OM LCS for sample(s)	01_02 WG156867
Acenaphthene	48	46-118
2-Chloronaphthalene	46	20 220
Fluoranthene	65	
Anthracene	46	
Pyrene	72	26-127
•		
Surrogate(s)		•
Nitrobenzene-d5	43	23-120
2-Fluorobiphenyl	53	43-120
4-Terphenyl-d14	68	33-120
	OM LCS for sample(s)	
Acenaphthene	50	46-118
2-Chloronaphthalene	52	*
Fluoranthene	71	
Anthracene	47	
Pyrene	75	26-127

Laboratory Job Number: L0311730

Parameter	% Recovery	QC Criteria	
PAR by GC/MS SIM 8	279M LCS for sample(s) 0)1-02 (WG156867)	*
Surrogate(s) Nitrobenzene-d5 2-Fluorobiphenyl 4-Terphenyl-d14	71 63 73	23-120 43-120 33-120	
Hydrocarbon Scan by G Petroleum Spike	EC 8100M LCS for sample(s	s) 01-02 (WG156636) 40-140	
Surrogate(s) o-Terphenyl	95	40-140	

Parameter	MS &	MSD %	RPD	RPD Limit MS/MSD Limits
Volatile Organics by GC/MS 8	260 for samp	le(s) 01-03	(L0311698-	01, W G156600)
Chlorobenzene	84	83	2	
Benzene	90	89	1	
Toluene	88	86	2	
1,1-Dichloroethene	84	84	• 0	
Trichloroethene	94	92	2	
Surrogate(s)		•		
1,2-Dichloroethane-d4	98	97	. 1	
Toluene-d8	105	104	1	
4-Bromofluorobenzene	103	103	0	
Dibromofluoromethane	100	99	1	

PÁRAMETER	result	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
				·	PRSF ANALI
······································	, 				
Blank Analys Turbidity	is for samp 1.1	le(s) 01- NTU	02 (WG15) 0.20	6562-3) 30 2130B	1117 17:00 LK
Idibidity	1.1	NIO	0.20	30 2130B	1117 17:00 DR
Blank Analys	is for samp	le(s) 01-		6717-1)	
Solids, Total Suspended	ND	mg/l	5.0	30 2540D	1119 13:50 DT
Hlank Analys		ole(s) 01,	03 (WG15		
Volatile Organics by GC/MS 8 Methylene chloride	269 ND	ug/l	5.0	1 82609	1118 09:57 RY
	ND				•
1,1-Dichloroethane Chloroform	ND	ug/1 ug/1	0.75 0.75		
Carbon tetrachloride	ND	ug/1 ug/l	0.75		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		``
Tetrachloroethene	ND	ug/l	0.50	•	
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		•
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	. ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
ns-1,3-Dichloropropene	ND	ug/l	0.50		
s-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		•
Benzene	ND	ug/l	0.50		•
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50	•	e e
Chloromethane	ND	ug/l	2.5	*	•
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75	٠.	•
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0	,	
p/m-Xylene	ND	ug/l	0.50		
o-Xylene	ND	ug/l	0.50		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,4-Dichlorobutane	ND	ug/l	5.0		*
Iodomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		

Laboratory Job Number: L0311730

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Blank Amalys)3 (WG15	6600-6)	
Volatile Organics by GC/MS 8				1 82608	1118 09:\$7 RY
Styrene	ND	ug/l	0.50	•	
Dichlorodifluoromethane	ND	ug/l	5.0		·
Acetone	ND	ug/l	5.0		
Carbon disulfide	ND	ug/l	5.0		
2-Butanone	ND	ug/l	5.0		
Vinyl acetate	ND	ug/l	5.0	•	
4-Methyl-2-pentanone	ND	ug/l	5.0		
2-Hexanone	ND	ug/l	5.0		
Ethyl methacrylate	ND	ug/l	5.0		
Acrolein	ND	ug/l	12.	•	
Acrylonitrile	ND	ug/l	5.0	•	
Bromochloromethane	ND	ug/l	2.5		
Tetrahydrofuran	ND	ug/l	10.		•
2,2-Dichloropropane	ND	ug/1	2.5		``
1,2-Dibromoethane	ND	ug/1	2.5		•
1,3-Dichloropropane	ND	ug/l	2.5		
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50		
Bromobenzene	ND	ug/l	2.5		
n-Butylbenzene	ND	ug/l	0.50		
sec-Butylbenzene	ND	ug/l	0.50		
tert-Butylbenzene	ND	ug/l	2.5		
o-Chlorotoluene	ND	ug/l	2.5		
p-Chlorotoluene	ND	ug/l	2.5		
1,2-Dibromo-3-chloropropane	ND	ug/1	2.5		
Hexachlorobutadiene	ND	ug/l	1.0		
Isopropylbenzene	ND	ug/l	0.50		
p-Isopropyltoluene	ND	ug/l	0.50	•	
Naphthalene	ND	ug/l	2.5		
n-Propylbenzene	ND	ug/l	0.50		
1,2,3-Trichlorobenzene	ND	ug/l	2.5		
1,2,4-Trichlorobenzene	ND	ug/l	2.5		
1,3,5-Trimethylbenzene	ND	ug/l	2.5		
1,2,4-Trimethylbenzene	ND	ug/l	2.5		
trans-1, 4-Dichloro-2-butene	ND	ug/1	2.5		•
Ethyl ether	ND	ug/l	2.5		
Surrogate(s)	Recovery		QC Cr	iteria	
1,2-Dichloroethane-d4	107.	ક			
Toluene-d8	100.	8			
4-Bromofluorobenzene	103.	ક	*		
Dibromofluoromethane	100.	*		•	,
Volatile Organics by GC/MS 8	ysis for sa 260	mple(s) 0	2 (WG156	600-8) 1 8260B	1119 10:11 RY
Methylene chloride	ND	ug/l	5.0		,
Mechylene Chiofide					
1,1-Dichloroethane	ND	ug/l	0.75	•	V

Laboratory Job Number: L0311730

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
				<u> </u>	
Blank Anal Volatile Organics by GC/MS 8	ysis for sa		2 (WG156	600-8) 1 8260B	
Carbon tetrachloride	ND	ug/l	0.50	4 0499B	1119 10:11 RY
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		••
1,2-Dichloroethane	NID	ug/l	0.50	`	
1,1,1-Trichloroethane	ND	ug/l	0.50		•
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		•
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		N.
Benzene	ND	ug/1	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50		
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		•
Vinvl chloride	ND	ug/l	1.0		
nloroethane	ND	ug/l	1.0	•	·
1.1-Dichloroethene	ND	ug/l	0.50		•
trans-1,2-Dichloroethene	ND	ug/1	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND '	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/1	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/1	1.0		
p/m-Xylene	ND	ug/1	0.50		
o-Xylene	ND	ug/l	0.50		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0	•	
1,4-Dichlorobutane	ND	ug/l	5.0		· .
Iodomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0	•	,
Styrene	ND	ug/l	0.50		
Dichlorodifluoromethane	ND	ug/l	5.0	•	
Acetone	ND	ug/l	5.0	•	
Carbon disulfide	ND	ug/l	5.0	•	
2-Butanone	ND	ug/1	5.0		
Vinyl acetate	ND	ug/1	5.0		
4-Methyl-2-pentanone	ND	ug/1	5.0		
2-Hexanone	ND	ug/l	5.0		·
Ethyl methacrylate	ND	ug/l	5.0		•
Acrolein	ND	ug/l	12.		
Acrylonitrile	ND	ug/1 ug/l	5.0		•
WOT ATOUTT OF TEG	MD	ug/1	٥.0	,	

Laboratory Job Number: L0311730

Blank Analysis for sample(s) 02 (WG156600-8)	
### Bromochloromethane	
Tetrahydrofuran ND ug/1 10. 2,2-Dichloropropane ND ug/1 2.5 1,2-Dibromoethane ND ug/1 2.5 1,3-Dichloropropane ND ug/1 2.5 1,1,1,2-Tetrachloroethane ND ug/1 0.50 Bromobenzene ND ug/1 0.50 Bromobenzene ND ug/1 0.50 sec-Butylbenzene ND ug/1 0.50 tetrt-Butylbenzene ND ug/1 2.5 p-Chlorotoluene ND ug/1 2.5 p-Chlorotoluene ND ug/1 2.5 1,2-Dibromo-3-chloropropane ND ug/1 2.5 Hexachlorobutadiene ND ug/1 2.5 Resachlorobutadiene ND ug/1 0.50 Isopropylbenzene ND ug/1 0.50 Isopropylbenzene ND ug/1 0.50 Naphthalene ND ug/1 0.50 Naphthalene ND ug/1 2.5 n-Propylbenzene ND ug/1 0.50 1,2,3-Trichlorobenzene ND ug/1 2.5 1,2,4-Trimethylbenzene ND ug/1 2.5 1,2,4-Trimethylbenzene ND ug/1 2.5 1,2,4-Trimethylbenzene ND ug/1 2.5 trans-1,4-Dichloro-2-butene ND ug/1 2.5 trans-1,4-Dichloro-2-butene ND ug/1 2.5	MATERIA DI A
2,2-Dichloropropane ND ug/1 2.5 1,2-Dibromoethane ND ug/1 2.5 1,3-Dichloropropane ND ug/1 2.5 1,1,1,2-Tetrachloroethane ND ug/1 0.50 Bromobenzene ND ug/1 2.5 n-Butylbenzene ND ug/1 0.50 sec-Butylbenzene ND ug/1 0.50 tert-Butylbenzene ND ug/1 2.5 o-Chlorotoluene ND ug/1 2.5 p-Chlorotoluene ND ug/1 2.5 1,2-Dibromo-3-chloropropane ND ug/1 2.5 Hexachlorobutadiene ND ug/1 0.50 p-Isopropylbenzene ND ug/1 0.50 p-Isopropyltoluene ND ug/1 2.5 n-Propylbenzene ND ug/1 2.5 1,2,3-Trichlorobenzene ND ug/1 2.5 1,2,4-Trichlorobenzene ND ug/1 2.5 1,3,5-Trimethylbenzene ND ug/1 2.5 1,2,4-Trimethylbenzene	
1,2-Dibromoethane ND ug/l 2.5 1,3-Dichloropropane ND ug/l 2.5 1,1,1,2-Tetrachloroethane ND ug/l 0.50 Bromobenzene ND ug/l 2.5 n-Butylbenzene ND ug/l 0.50 sec-Butylbenzene ND ug/l 0.50 tert-Butylbenzene ND ug/l 2.5 o-Chlorotoluene ND ug/l 2.5 p-Chlorotoluene ND ug/l 2.5 1,2-Dibromo-3-chloropropane ND ug/l 2.5 Hexachlorobutadiene ND ug/l 1.0 Isopropylbenzene ND ug/l 0.50 p-Isopropyltoluene ND ug/l 0.50 Naphthalene ND ug/l 2.5 n-Propylbenzene ND ug/l 2.5 1,2,3-Trichlorobenzene ND ug/l 2.5 1,3,5-Trimethylbenzene ND ug/l 2.5 1,2,4-Trimethylbenzene ND ug/l 2.5 1,2,4-Trimethylbenzene	
1,3-Dichloropropane ND ug/1 2.5 1,1,1,2-Tetrachloroethane ND ug/1 0.50 Bromobenzene ND ug/1 2.5 n-Butylbenzene ND ug/1 0.50 sec-Butylbenzene ND ug/1 0.50 tert-Butylbenzene ND ug/1 2.5 o-Chlorotoluene ND ug/1 2.5 p-Chlorotoluene ND ug/1 2.5 1,2-Dibromo-3-chloropropane ND ug/1 2.5 Hexachlorobutadiene ND ug/1 0.50 Isopropylbenzene ND ug/1 0.50 p-Isopropyltoluene ND ug/1 0.50 Naphthalene ND ug/1 2.5 n-Propylbenzene ND ug/1 2.5 1,2,3-Trichlorobenzene ND ug/1 2.5 1,3,5-Trimethylbenzene ND ug/1 2.5 1,2,4-Trimethylbenzene ND ug/1 2.5 trans-1,4-Dichloro-2-butene ND ug/1 2.5	
1,1,1,2-Tetrachloroethane ND ug/l 0.50 Bromobenzene ND ug/l 2.5 n-Butylbenzene ND ug/l 0.50 sec-Butylbenzene ND ug/l 0.50 tert-Butylbenzene ND ug/l 2.5 o-Chlorotoluene ND ug/l 2.5 p-Chlorotoluene ND ug/l 2.5 1,2-Dibromo-3-chloropropane ND ug/l 2.5 Hexachlorobutadiene ND ug/l 1.0 Isopropylbenzene ND ug/l 0.50 p-Isopropyltoluene ND ug/l 0.50 Naphthalene ND ug/l 2.5 n-Propylbenzene ND ug/l 2.5 1,2,3-Trichlorobenzene ND ug/l 2.5 1,3,5-Trimethylbenzene ND ug/l 2.5 1,2,4-Trimethylbenzene ND ug/l 2.5 trans-1,4-Dichloro-2-butene ND ug/l 2.5	
### Bromobenzene ND	
n-Butylbenzene ND ug/l 0.50 sec-Butylbenzene ND ug/l 0.50 tert-Butylbenzene ND ug/l 2.5 o-Chlorotoluene ND ug/l 2.5 p-Chlorotoluene ND ug/l 2.5 1,2-Dibromo-3-chloropropane ND ug/l 2.5 Hexachlorobutadiene ND ug/l 1.0 Isopropylbenzene ND ug/l 0.50 p-Isopropyltoluene ND ug/l 2.5 n-Propylbenzene ND ug/l 2.5 n-Propylbenzene ND ug/l 2.5 1,2,4-Trichlorobenzene ND ug/l 2.5 1,2,4-Trimethylbenzene ND ug/l 2.5 1,2,4-Trimethylbenzene ND ug/l 2.5 trans-1,4-Dichloro-2-butene ND ug/l 2.5	
sec-Butylbenzene ND ug/l 0.50 tert-Butylbenzene ND ug/l 2.5 o-Chlorotoluene ND ug/l 2.5 p-Chlorotoluene ND ug/l 2.5 1,2-Dibromo-3-chloropropane ND ug/l 2.5 Hexachlorobutadiene ND ug/l 1.0 Isopropylbenzene ND ug/l 0.50 p-Isopropyltoluene ND ug/l 2.5 n-Propylbenzene ND ug/l 2.5 n-Propylbenzene ND ug/l 2.5 1,2,4-Trichlorobenzene ND ug/l 2.5 1,3,5-Trimethylbenzene ND ug/l 2.5 1,2,4-Trimethylbenzene ND ug/l 2.5 trans-1,4-Dichloro-2-butene ND ug/l 2.5	
tert-Butylbenzene ND ug/l 2.5 o-Chlorotoluene ND ug/l 2.5 p-Chlorotoluene ND ug/l 2.5 1,2-Dibromo-3-chloropropane ND ug/l 2.5 Hexachlorobutadiene ND ug/l 1.0 Isopropylbenzene ND ug/l 0.50 p-Isopropyltoluene ND ug/l 0.50 Naphthalene ND ug/l 2.5 n-Propylbenzene ND ug/l 2.5 n-Propylbenzene ND ug/l 0.50 1,2,3-Trichlorobenzene ND ug/l 2.5 1,2,4-Trichlorobenzene ND ug/l 2.5 1,3,5-Trimethylbenzene ND ug/l 2.5 1,2,4-Trimethylbenzene ND ug/l 2.5 1,2,4-Trimethylbenzene ND ug/l 2.5 trans-1,4-Dichloro-2-butene ND ug/l 2.5 trans-1,4-Dichloro-2-butene ND ug/l 2.5	
o-Chlorotoluene ND ug/l 2.5 p-Chlorotoluene ND ug/l 2.5 1,2-Dibromo-3-chloropropane ND ug/l 2.5 Hexachlorobutadiene ND ug/l 1.0 Isopropylbenzene ND ug/l 0.50 p-Isopropyltoluene ND ug/l 2.5 Naphthalene ND ug/l 2.5 n-Propylbenzene ND ug/l 2.5 1,2,3-Trichlorobenzene ND ug/l 2.5 1,2,4-Trichlorobenzene ND ug/l 2.5 1,3,5-Trimethylbenzene ND ug/l 2.5 trans-1,4-Dichloro-2-butene ND ug/l 2.5	
p-Chlorotoluene ND ug/l 2.5 1,2-Dibromo-3-chloropropane ND ug/l 2.5 Hexachlorobutadiene ND ug/l 1.0 Isopropylbenzene ND ug/l 0.50 p-Isopropyltoluene ND ug/l 0.50 Naphthalene ND ug/l 2.5 n-Propylbenzene ND ug/l 0.50 1,2,3-Trichlorobenzene ND ug/l 0.50 1,2,4-Trichlorobenzene ND ug/l 2.5 1,3,5-Trimethylbenzene ND ug/l 2.5 1,2,4-Trimethylbenzene ND ug/l 2.5 1,2,4-Trimethylbenzene ND ug/l 2.5 trans-1,4-Dichloro-2-butene ND ug/l 2.5 trans-1,4-Dichloro-2-butene ND ug/l 2.5	
1,2-Dibromo-3-chloropropane ND ug/l 2.5 Hexachlorobutadiene ND ug/l 1.0 Isopropylbenzene ND ug/l 0.50 p-Isopropyltoluene ND ug/l 0.50 Naphthalene ND ug/l 2.5 n-Propylbenzene ND ug/l 0.50 1,2,3-Trichlorobenzene ND ug/l 2.5 1,2,4-Trichlorobenzene ND ug/l 2.5 1,3,5-Trimethylbenzene ND ug/l 2.5 1,2,4-Trimethylbenzene ND ug/l 2.5 trans-1,4-Dichloro-2-butene ND ug/l 2.5	
Hexachlorobutadiene ND ug/l 1.0 Isopropylbenzene ND ug/l 0.50 p-Isopropyltoluene ND ug/l 0.50 Naphthalene ND ug/l 2.5 n-Propylbenzene ND ug/l 0.50 1,2,3-Trichlorobenzene ND ug/l 2.5 1,2,4-Trichlorobenzene ND ug/l 2.5 1,3,5-Trimethylbenzene ND ug/l 2.5 1,2,4-Trimethylbenzene ND ug/l 2.5 1,2,4-Trimethylbenzene ND ug/l 2.5 trans-1,4-Dichloro-2-butene ND ug/l 2.5 trans-1,4-Dichloro-2-butene ND ug/l 2.5	
Isopropylbenzene ND ug/l 0.50 p-Isopropyltoluene ND ug/l 0.50 Naphthalene ND ug/l 2.5 n-Propylbenzene ND ug/l 0.50 1,2,3-Trichlorobenzene ND ug/l 2.5 1,2,4-Trichlorobenzene ND ug/l 2.5 1,3,5-Trimethylbenzene ND ug/l 2.5 1,2,4-Trimethylbenzene ND ug/l 2.5 1,2,4-Trimethylbenzene ND ug/l 2.5 trans-1,4-Dichloro-2-butene ND ug/l 2.5	
p-Isopropyltoluene ND ug/l 0.50 Naphthalene ND ug/l 2.5 n-Propylbenzene ND ug/l 0.50 1,2,3-Trichlorobenzene ND ug/l 2.5 1,2,4-Trichlorobenzene ND ug/l 2.5 1,3,5-Trimethylbenzene ND ug/l 2.5 1,2,4-Trimethylbenzene ND ug/l 2.5 trans-1,4-Dichloro-2-butene ND ug/l 2.5	
Naphthalene ND ug/l 2.5 n-Propylbenzene ND ug/l 0.50 1,2,3-Trichlorobenzene ND ug/l 2.5 1,2,4-Trichlorobenzene ND ug/l 2.5 1,3,5-Trimethylbenzene ND ug/l 2.5 1,2,4-Trimethylbenzene ND ug/l 2.5 trans-1,4-Dichloro-2-butene ND ug/l 2.5	
n-Propylbenzene ND ug/l 0.50 1,2,3-Trichlorobenzene ND ug/l 2.5 1,2,4-Trichlorobenzene ND ug/l 2.5 1,3,5-Trimethylbenzene ND ug/l 2.5 1,2,4-Trimethylbenzene ND ug/l 2.5 trans-1,4-Dichloro-2-butene ND ug/l 2.5	
1,2,3-Trichlorobenzene ND ug/l 2.5 1,2,4-Trichlorobenzene ND ug/l 2.5 1,3,5-Trimethylbenzene ND ug/l 2.5 1,2,4-Trimethylbenzene ND ug/l 2.5 trans-1,4-Dichloro-2-butene ND ug/l 2.5	•
1,2,4-Trichlorobenzene ND ug/l 2.5 1,3,5-Trimethylbenzene ND ug/l 2.5 1,2,4-Trimethylbenzene ND ug/l 2.5 trans-1,4-Dichloro-2-butene ND ug/l 2.5	•
1,3,5-Trimethylbenzene ND ug/l 2.5 1,2,4-Trimethylbenzene ND ug/l 2.5 trans-1,4-Dichloro-2-butene ND ug/l 2.5	
1,2,4-Trimethylbenzene ND ug/l 2.5 trans-1,4-Dichloro-2-butene ND ug/l 2.5	(
trans-1,4-Dichloro-2-butene ND ug/l 2.5	-
	-
Surrogate(s) Recovery QC Criteria	
1,2-Dichloroethane-d4 102. %	
Toluene-d8 102. %	
4-Bromofluorobenzene 104. %	
Dibromofluoromethane 99.0 %	·
Blank Analysis for sample(s) 01-02 (WG156867-1)	
PAH by GC/MS SIM 8270M 1 8270C-M 1119 14:10 1128	08:23 HL
Acenaphthene ND ug/1 0.20	
2-Chloronaphthalene ND ug/1 0.20	
Fluoranthene ND ug/l 0.20	•
Naphthalene ND ug/1 0.20	
Benzo (a) anthracene ND ug/1 0.20	
Benzo (a) pyrene ND ug/1 0.20	
Benzo (b) fluoranthene ND ug/1 0.20	
Benzo (k) fluoranthene ND ug/1 0.20	
# · · · · · · · · · · · · · · · · · · ·	
Acenaphthylene ND ug/1 0.20	
Anthracene ND ug/1 0.20	
Benzo (ghi) perylene ND ug/1 0.20	
Fluorene ND ug/1 0.20	
Phenanthrene ND ug/1 0.20	

Laboratory Job Number: L0311730

Parameter	RESULT	UNITS	RDL	REF METHOD	DA!	ID	
•					PREP	ANAL	
Blank Ana	Lysis for samp	le(s) 01-	02 (WG156	5867-1)			
PAH by GC/MS SIM 8270M con				1 8270C-M	1119 14:10	1120 08:2	3 HU
Dibenzo (a,h) anthracene	ND	ug/l	0.20		Stok terrolous er in segment interest	90000000000000000000000000000000000000	ed week ded de
Indeno (1,2,3-cd) Pyrene	ND	ug/l	0.20	•			
Pyrene	ND	ug/l	0.20				
1-Methylnaphthalene	ND	ug/l	0.20				
2-Methylnaphthalene	ND	ug/l	0.20				
Perylene	ND	ug/l	0.20				
Biphenyl	ND	ug/l	0.20	•			
Benzo (e) Pyrene	ND	ug/l	0.20		,		
Surrogate(s)	Recovery		QC Cr	iteria			
Nitrobenzene-d5	55.0	욯	23-12	0			
2-Fluorobiphenyl	55.0	ક્ષ	43-12	0			
4-Terphenyl-d14	72.0	8	33~12	0			
	lysis for samp	ole(s) 01-	02 (WG15	6636-1)	*.		
Hydrocarbon Scan by GC 81	MOO			1 8100M	1118 14:45	1119 19:	lo Ji
Mineral Spirits	ND	mg/l	0.10	•			
Gasoline	ND	mg/1	0.10		•		
Fuel Oil #2/Diesel	ND	mg/1	0.10				
Fuel Oil #4	ND	mg/1	0.10				
Fuel Oil #6	ND	mg/1	0.10				
cor Oil	ND	mg/l	0.10				
Rerosene	ND	mg/1	0.10				-
Transformer Oil	ND	mg/1	, 0.10				
Unknown Hydrocarbon	ND	mg/l	0.10				
Surrogate(s)	Recovery		QC Cr	iteria			
o-Terphenyl	97.0	*	40-14	0			

ALPHA ANALYTICAL LABORATORIES ADDENDUM I

REFERENCES

- 1. Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IIIA, 1997.
- 30. Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.

GLOSSARY OF TERMS AND SYMBOLS

REF Reference number in which test method may be found.

METHOD Method number by which analysis was performed.

ID Initials of the analyst.

ND Not detected in comparison to the reported detection limit.

Please note that all solid samples are reported on dry weight basis unless noted otherwise.

LIMITATION OF LIABILITIES

Alpha Analytical, Inc. performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical, Inc., shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical, Inc. be held liable for any incidental consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical, Inc.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding times and splitting of samples in the field.

ΔPHA	CHAIN OF	~	المام الأرابيون	Section 1	GE1	OF	36.7	1417	21	72.00	-SERVICE.	64 L 10 C	en neither	-0	244 h	. V . C	45000	14.6-5	Job#: L0311730	0
Eight Walkup Drive EL: 508-898-9220	Westborough, MA 01581 FAX: 508-898-9193	Project N	Informat		Chels		بسبا			rmat			Deliv	verab	les				Information as Client info PO#:	
Client Information	The state of the s	 		belses	mes	<u> </u>		FAX ADE				MAIL Id'I D	eliver	ables		-		1110	as Client into PO#:	
:lient: Tigle +	Bush	Project #		33494								ents/l	Repo	rt Lin	nits					
	Grove St	 	lanager:			-			ed Pro		1			Criter	la スー					
	tr mp	ALPHA		· · · · · · · · · · · · · · · · · · ·							VE C	ERTA	YINT				ESTI	ION	SMUSTBE ANSWERED	
hone: JUS -	754-2201	Turn-A	Around Tin	re			0	Yes	S N	0	Are	MCP /	Analyt	ical M	etho	ds R	niupe	ed?		
ax:		☐ Standa	ard	Ø RUSH (uly entitioned to	re-snam-edil		Yes Yes	D N					ter Sa inimul					? ments?	
	/e been previously analyzed by Alpha	Date Du	धीयीक		Time:			SS /		EX.				/		/	/		SAMPLE HANDLING Filtration	,
Other Project Sp	ecific Requirements/Comm	ents/Det	tection Lir	nits:	·		AMA	15.5 J. 1888	elen Turi	4 000 July	# 62.7°		<i>\</i>		/			/	☐ Done ☐ Not needed ☐ Lab to do Preservation ☐ Lab to do	
ALPHA Lab ID (Lab Use Only)	Sample ID		Colle Date	ction Time	Sample Matrix	Sampler's Initials	V.	/\	J 1.	70		Ĭ,	/ /	/ /	/ /	/ /		/	(Please apacity below) Sample Specific Comments	
730	Influt		11/103	12:40	GW	TP6	Q	V	×	φ	V									
, 2	EFFluent		11/17/03	1:00	GW	JP6	p	X	N	X	Ø									
13	Trip Blank		11(17)00	G080							X							1		
			- 1-1-1											1						
																				
\$ 4.45.1																				
														.	\perp		_			
																}.				
	/E MUST BE ANSWERED FOR PR	RESUMPT	IVE CERTA	INTY		iner Type eservative	PA	PA	6 A	6 A	JR				-		-	1	Please print clearly, legibly an completely. Samples can not	be
IS YOU	1 .	Relinqui	shed By:			e/Time					d By:				De	ate/Tir	ne		logged in and turnaround time will not start until any ambiguit	ities
MC	/fee	-P			ulaf	22/2		1	6		4			1	-/7	-03	14	140	resolved. All sample ubmitt subject to Alpha's Feent To See reverse side.	

 $\bigcirc)$

ATTACHMENT B SUMMARY OF GROUND WATER MONITORING DATA (2003 TO 2004)

CHELSEA SANDWICH, LLC
NPDES PERMIT NO. MA0003280

ALPHA ANALYTICAL LABORATORIES

Eight Walkup Drive Westborough, Massachusetts 01581-1019 (508) 898-9220 www.alphalab.com

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

CERTIFICATE OF ANALYSIS

Client: Tighe & Bond Laboratory Job Number: L0311850

Address: 4 Barlows Landing Road

Pocasset, MA 02559 Date Received: 19-NOV-2003

Attn: Mr. Rich Geisler Date Reported: 21-NOV-2003

Project Number: W-33494-01 Delivery Method: Alpha

Site: GLOBAL CHELSEA

ALPHA SAMPLE NUMBER CLIENT IDENTIFICATION SAMPLE LOCATION

L0311850-01 INFLUENT CHELSEA TERMINAL
L0311850-02 EFFLUENT CHELSEA TERMINAL
L0311850-03 BLANK CHELSEA TERMINAL

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized by: <u>James Todaro</u>

This document electronically signed

11210312:47 Page 1 of 13

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0311850-01

INFLUENT

Sample Matrix: WATER

Date Collected: 19-NOV-2003 12:25

Date Received : 19-NOV-2003
Date Reported : 21-NOV-2003

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 2-Plastic, 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
			· · · · ·	· · · · · · · · · · · · · · · · · · ·	······································
Turbidity	90.	ntu	0.20	30 21308	1119 19:00 LK
Color, Apparent	180	A.P.C.U.	50.	30 2120B	1119 19:00 LK
Solids, Total Suspended	30.	mg/1	5.0	30 2540D	1120 11:40 DT
Y olatile Organics by GC/MS 8	260			1 8260B	1120 09:41 BT
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		
Chloroform	ND	ug/l	0.75		,
Carbon tetrachloride	ND	ug/1	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		
Trichlorofluoromethane	ND	ug/l	2.5		
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/l	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	23.	ug/1	0.50		
Toluene	1.6	ug/l	0.75	,	
Ethylbenzene	1.0	ug/1	0.50	•	·
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/1	1.0		
Vinyl chloride	ND	ug/1	1.0		
Chloroethane	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/1	0.50		•
trans-1,2-Dichloroethene	ND	ug/1	0.75		
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/1	2.5		
1,3-Dichlorobenzene	ND	ug/1	2.5	•	
1,4-Dichlorobenzene	ND	ug/1 ug/1	2.5		
·					
Methyl tert butyl ether	ND	ug/l	1.0		

Laboratory Sample Number: L0311850-01 INFLUENT

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DAT	'E	ID
					PREP	ANAL	
Volatile Organics by GC/MS 82	60 continue	ed.		1 82608		1120 09:4	1 BT
p/m-Xylene	7.0	ug/l	0.50	· · · · · · · · · · · · · · · · · · ·		****************	************
o-Xylene	1.8	ug/l	0.50				
cis-1,2-Dichloroethene	ND	ug/l	0.50	•			
Dibromomethane	ND.	ug/1	5.0			*	
.4-Dichlorobutane	ND ·	ug/l	5.0	•	•		
lodomethane	ND	ug/l	5.0				
1,2,3-Trichloropropane	ND	ug/l	5.0			•	
Styrene	ND	ug/1	0.50			•	
Dichlorodifluoromethane	ND	ug/l	5.0				
Acetone	ND	ug/1	5.0				
Carbon disulfide	ND	ug/l	5.0				
2-Butanone	ND	ug/l	5.0	•			
Vinyl acetate	ND	ug/l	5.0				
4-Methyl-2-pentanone	ND	ug/1	5.0				
2-Hexanone	ND	ug/l	5.0				
Ethyl methacrylate	ND	ug/l	5.0				
Acrolein	ND	ug/l	12.				
Acrylonitrile	ND	ug/1	5.0	•			
Bromochloromethane	ND	ug/l	2.5			-	
Tetrahydrofuran	ND	ug/l	10.		·-		*
2,2-Dichloropropane	ND	ug/l	2.5				
1,2-Dibromoethane	ND	ug/l	2.5				
7,3-Dichloropropane	ND	ug/1	2.5				
,1,1,2-Tetrachloroethane	ND	ug/l	0.50				
Bromobenzene	ND	ug/l	2.5				
n-Butylbenzene	1.8	ug/l	0.50				
sec-Butylbenzene	1.8	ug/1	0.50				
tert-Butylbenzene	ND	ug/1	2.5				
o-Chlorotoluene	ND	ug/l	2.5				
p-Chlorotoluene	ND	ug/1 ug/1	2.5				•
1,2-Dibromo-3-chloropropane	ND	ug/1 ug/l	•				
Hexachlorobutadiene	ND ND		2.5				
	6.9	ug/l	1.0	4			
Isopropylbenzene		ug/1	0.50		•		
p-Isopropyltoluene	0.70	ug/1	0.50				
Naphthalene	8.2	ug/l	2.5				
n-Propylbenzene	4.2	ug/l	0.50	•			
1,2,3-Trichlorobenzene	· ND	ug/l	2.5				
1,2,4-Trichlorobenzene	ND	ug/l	2.5	•			
1,3,5-Trimethylbenzene	ND	ug/1	2.5				
1,2,4-Trimethylbenzene	5.8	ug/l	2.5				
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	ı.			
Ethyl ether	ND	ug/1	2.5				
Surrogate(s)	Recovery		QC Cri	teria		-	
1,2-Dichloroethane-d4	97.0	ક					
Toluene-d8	110.	ક					
4-Bromofluorobenzene	108.	& .					
Dibromofluoromethane	94.0	ę.					•

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0311850-02

Sample Matrix: WATER

Date Received: 19-NOV-2003
Date Reported: 21-NOV-2003

Condition of Sample:

Satisfactory

Field Prep: None

Number & Type of Containers: 2-Plastic, 2-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
	·	· · · · · · · · · · · · · · · · · · ·		·	
Turbidity	0.24	NTU	0.20	30 2130B	1119 19:00 LK
Color, Apparent	6.0	A.P.C.U.	5.0	30 2120B	1119 19:00 LK
Solids, Total Suspended	ND	mg/l	5.0	30 2540D	1120 11:40 DT
Volatile Organics by GC/MS 8				1 82608	1120 11:14 BT
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/l	0.75		•
Chloroform	ND	ug/l	0.75		•
Carbon tetrachloride	ND	ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ИD	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75	•	•
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		·
Trichlorofluoromethane	ND	ug/l	2.5		· .
1,2-Dichloroethane	ND	ug/l	0.50	•	
1,1,1-Trichloroethane	ND	ug/l	0.50		
Bromodichloromethane	ND .	ug/l	0.50		•
trans-1,3-Dichloropropene	ND	ug/l	0.50	•	•
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		•
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50	•	
Chloromethane	ND	ug/l	2.5		
Bromomethane	ND	ug/l	1.0		•
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	1.0	,	
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		•
Trichloroethene	ND	ug/l	0.50	•	•
1,2-Dichlorobenzene	ND	ug/l	2.5		* .
1,3-Dichlorobenzene	ND	ug/1	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		•
Methyl tert butyl ether	ND	ug/1	1.0		
weenly cere packy equal	7417	49/±	1.0		

Laboratory Sample Number: L0311850-02 EFFLUENT

ARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE	ID
					PREP ANAL	
Volatile Organics by GC/MB 82	60 confim	eđ		1 82608	717	0 11 14 BT
o/m-Xylene	ND	ug/l	0.50			
o-Xylene	ND	ug/l	0.50			
cis-1,2-Dichloroethene	ND	ug/l	0.50	•		•
Dibromomethane	ND	ug/l	5.0		,	
1,4-Dichlorobutane	ND	ug/1	5.0	•		
Iodomethane	ND	ug/l	5.0			
L,2,3-Trichloropropane	ND	ug/l	5.0			
Styrene	ND.	ug/l	0.50			•
Dichlorodifluoromethane	ND	ug/l	5.0			
Acetone	ND	ug/l	5.0			
Carbon disulfide	ND	ug/l	5.0			
2-Butanone	ND	ug/l	5.0			
Vinyl acetate	ND .	ug/l	5.0			•
4-Methyl-2-pentanone	ND.	ug/l	5.0	i e		
2-Hexanone	ND	ug/l	5.0			
Ethyl methacrylate	ND	ug/1	5.0		V 1	
Acrolein	ND	ug/1	12.		`.	
Acrolein Acrylonitrile	ND	ug/1 ug/l	5.0			-
Bromochloromethane	ND	ug/l	2.5			
retrahydrofuran	ND	ug/l	10.			
2,2-Dichloropropane	ND	ug/l	2.5	•		
1,2-Dibromoethane	ND	ug/1 ug/1	2.5			
~ 3-Dichloropropanè	ND	ug/1 ug/1	2.5			
)1,1,2-Tetrachloroethane	ND ND	ug/l	0.50	•		
Bromobenzene	ND	ug/l	2.5			·
n-Butylbenzene	ND	ug/1 ug/l	0.50	•		
sec-Butylbenzene	ND	ug/l	0.50			
tert-Butylbenzene	ND	ug/l	2.5			
o-Chlorotoluene	ND	ug/1	2.5			
p-Chlorotoluene	ND	ug/l	2.5			
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5			
Hexachlorobutadiene	ND	ug/l	1.0		*	
Isopropylbenzene	ND	ug/l	0.50			•
p-Isopropyltoluene	ND	ug/l	0.50			
Naphthalene	ND	ug/l	2.5	•		
n-Propylbenzene	ND	ug/l	0.50		•	
1,2,3-Trichlorobenzene	ND	ug/l	2.5			
1,2,4-Trichlorobenzene	ND	ug/l	2.5			•
1,3,5-Trimethylbenzene	ND	ug/l	2.5			
1,2,4-Trimethylbenzene	ND	ug/l	2.5			
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5			
Ethyl ether	ND .	ug/l	2.5			
Surrogate(s)	Recovery		QC Cr	iteria		
1,2-Dichloroethane-d4	103.	ક્ષ				
Toluene-d8	101.	ક				
4-Bromofluorobenzene	94.0	8				
Dibromofluoromethane	103.	ş				

mments: Complete list of References and Glossary of Terms found in Addendum I

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0311850-03 Date Collected: 19-NOV-2003 09:50

BLANK Date Received: 19-NOV-2003 sample Matrix: WATER Date Reported: 21-NOV-2003

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 1-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
<u></u>	· · · · · · · · · · · · · · · · · · ·				
Volatile Organics by GC/MS 8	260			1 82608	1120 12401 BT
Methylene chloride	ND	ug/l	5.0		
1,1-Dichloroethane	ND	ug/1	0.75		
Chloroform	ND	ug/l	0.75		
Carbon tetrachloride	ND	úg/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8	A Comment	
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75		
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/1	0.50	•	
Trichlorofluoromethane	ND	ug/1	2.5		, :
1,2-Dichloroethane	ND	ug/1	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50		\mathcal{O}
Bromodichloromethane	ND	ug/l	0.50		
trans-1,3-Dichloropropene	ND	ug/1	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50		
1,1-Dichloropropene	ND	ug/l	2.5		
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/l	0.75		
Ethylbenzene	ND	ug/l	0.50	·	
Chloromethane	ND	ug/1	2,5	•	
Bromomethane	ND	ug/1	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/1	1.0		e e
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75	4	
Trichloroethene	ND	ug/l	0.50		
1,2-Dichlorobenzene	ND	ug/l	2.5		
1,3-Dichlorobenzene	ND	ug/1	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	MD	ug/l	1.0		
p/m-Xylene	ND	ug/l	0.50		
o-Xylene	ND	ug/1	0.50	•	
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/1	5.0		·
1,4-Dichlorobutane	ND	ug/l	5.0		·
Iodomethane	ND	ug/l	5.0		

Laboratory Sample Number: L0311850-03

BLANK

ARAMETER	RESULT	UNITS	RDL	REF METHOD	DA' PREP	ie Anal	ID
Volatile Organics by GC/MS 82	60 continu	ed		1 #2608		1120 122	OL BY
1,2,3-Trichloropropane	ND	ug/l	5.0		**********	**************	*******
Styrene	ND	ug/1	0.50				
Dichlorodifluoromethane	ND	ug/1	5.0	0			
Acetone	ND	ug/l	5.0	•			
Carbon disulfide	ND	ug/1	5.0				
2-Butanone	ND	ug/l	5.0				
Vinyl acetate	ND	ug/l	5.0				
4-Methyl-2-pentanone	ND	ug/l	5.0				
2-Hexanone	ND	ug/l	5.0				
Ethyl methacrylate	ND	ug/l	5.0		•		
Acrolein	ND	ug/l	12.				
Acrylonitrile	ND	ug/l	5.0				•
Bromochloromethane	ND	ug/1	2.5		**		
Tetrahydrofuran	ND	ug/1	10.				
2,2-Dichloropropane	ND	ug/l	2.5				
1,2-Dibromoethane	ND	ug/l	2.5				
1,3-Dichloropropane	ND	ug/1	2.5	•	•		
1,1,1,2-Tetrachloroethane	ND	ug/1	0.50				
Bromobenzene	ND	ug/1	2.5		•		
n-Butylbenzene	ND	ug/l	0.50				
sec-Butylbenzene	ND	ug/l	0.50				
tert-Butylbenzene	ND	ug/1	2.5	•			
A-Chlorotoluene	ND	ug/1	2.5			•	•
Chlorotoluene	ND	ug/1	2.5				
1,2-Dibromo-3-chloropropane	ND	ug/1	2.5				-
Hexachlorobutadiene	ND	ug/1	1.0		*	-	
Isopropylbenzene	ND	ug/l	0.50	•			
p-Isopropyltoluene	ND	ug/l	0.50				
Naphthalene	ND	ug/l	2.5				
n-Propylbenzene	ND	ug/1	0.50				
1,2,3-Trichlorobenzene	ND	ug/1	2.5				
1,2,4-Trichlorobenzene	ND	ug/1	2.5				
1,3,5-Trimethylbenzene	ND	ug/1	2.5				
1,2,4-Trimethylbenzene	ND	ug/l	2.5				
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5				
Ethyl ether	ND	ug/l	2.5				
Surrogate(s)	Recovery	•	QC Cr	iteria			
1,2-Dichloroethane-d4	104.	ક	,				.:
Toluene-d8	99.0	8			* *	•	
4-Bromofluorobenzene	96.0	*					
Dibromofluoromethane	107.	8		•			÷

pmments: Complete list of References and Glossary of Terms found in Addendum I

Parameter	Value 1	Value 2	Units	RPD	RPD Limits
Turbidity	for sample 90.	90.)2 (L0311850+ NTU	01, WG156 0	(946)
Color, Appar Color, Apparent	ent for san 180	mple(s) (180	01-02 (L03118 A.P.C.U.	50401, WG O	3156860)

Parameter	% Recovery QC Criteria
	γ LCS for sample(s) 01-02 (WG156946)
Turbidity	103
Volatile Organica E	ny GC/MS 8260 LCS for sample(s) 01-03 (WG156417)
Chlorobenzene	103
Benzene	103
Toluene	107
1,1-Dichloroethene	85
Trichloroethene	94
• .	
Surrogate(s)	
1,2-Dichloroethane-d4	106
Toluene-d8	110
4-Bromofluorobenzene	97
Dibromofluoromethane	109

Parameter	Ms %	MSD %	RPD	RPD Limit MS/MSD Limits
Volatile Organics by GC/MS	8260 for samp	le(s) 01-03	(10311 578 +	01, WG156417)
Chlorobenzene	111	112	1	
Benzene	100	102	2	
Toluene	108	110	2	,
1,1-Dichloroethene	89	. 93	4	
Trichloroethene	98	102	4	
Surrogate(s)				
1,2-Dichloroethane-d4	104	106	. 2	
Toluene-d8	97	99	2 -	
4-Bromofluorobenzene	74	76	3	
Dibromofluoromethane	104	106	2	

ALPHA ANALYTICAL LABORATORIES QUALITY ASSURANCE BATCH BLANK ANALYSIS

Parameter	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
					
Blank Analys: Turbidity	is for samp	ole(s) 01- NTU	02 (WG15 0.20	6946-1) 30 2130B	1119 19:00 LK
Luiblaicy	ND.	AIO	0.20	30 21308	1119 19:00 11
Blank Analys	is for samp			6842-1)	
Solids, Total Suspended	ND	mg/l	5.0	30 2540D	1120 11:40 DT
Blank Analys		ole(s) 01-	03 (WG15		
Vol atile Organics by GC/MS 8: Methylene chloride	ND	ug/l	5.0	1 8260B	1120 C8:54 BT
1,1-Dichloroethane	ND	ug/1 ug/1	0.75		
Chloroform	ND	ug/1 ug/1	0.75		
Carbon tetrachloride	ND	ug/1 ug/l	0.50		
1,2-Dichloropropane	ND	ug/l	1.8		
Dibromochloromethane	ND	ug/l	0.50		
1,1,2-Trichloroethane	ND	ug/l	0.75	•	` .
Tetrachloroethene	ND	ug/l	0.50		
Chlorobenzene	ND	ug/l	0.50		•
Trichlorofluoromethane	ND	ug/l	2.5		•.
1,2-Dichloroethane	ND	ug/l	0.50		
1,1,1-Trichloroethane	ND	ug/l	0.50	•	
Bromodichloromethane	ND	ug/l	0.50	•	
ans-1,3-Dichloropropene	ND	ug/1	0.50		
cis-1,3-Dichloropropene	ND	ug/l	0.50	•	
1,1-Dichloropropene	ND	ug/l	2.5		•
Bromoform	ND	ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50		
Benzene	ND	ug/l	0.50		
Toluene	ND	ug/1	0.75		•
Ethylbenzene	ND	ug/1	0.50		
Chloromethane	ND	ug/1	2.5	•	
Bromomethane	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/1	1.0		
1,1-Dichloroethene	ND	ug/l	0.50		
trans-1,2-Dichloroethene	ND	ug/l	0.75		•
Trichloroethene	ND	ug/l	0.50		· ·
1,2-Dichlorobenzene	ND	ug/l	2.5	•	
1,3-Dichlorobenzene	ND	ug/l	2.5		
1,4-Dichlorobenzene	ND	ug/l	2.5		
Methyl tert butyl ether	ND	ug/l	1.0		
p/m-Xylene	ND	ug/l	0.50		
o-Xylene	ND	ug/1	0.50		
cis-1,2-Dichloroethene	ND	ug/l	0.50		
Dibromomethane	ND	ug/l	5.0		
1,4-Dichlorobutane	ND	ug/l	5.0		•
Iodomethane	ND	ug/l	5.0		
1,2,3-Trichloropropane	ND	ug/l	5.0		•

ALPHA ANALYTICAL LABORATORIES QUALITY ASSURANCE BATCH BLANK ANALYSIS

Laboratory Job Number: L0311850

Continued

Parameter	result	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Blank Analyg	e for com	le/el al	na (Weaks	(17 <u>2</u> 16)	
Volatile Organics by GC/MS 82			os (MGISO	2 8260B	1220 68:54 BT
Styrene .	ND	uq/l	0.50		***** #11.0% #**
Dichlorodifluoromethane	ND	ug/l	5.0		
Acetone	ND	ug/l	5.0		
Carbon disulfide	ND	ug/l	5.0		,
2-Butanone	ND	ug/l	5.0		•
Vinyl acetate	ND	ug/l	5.0		
4-Methyl-2-pentanone	ND	ug/l	5.0		• •
2-Hexanone	ND	ug/l	5.0		
Sthyl methacrylate	ND	ug/l	5.0		·
Acrolein	ND	ug/l	12.		
Acrylonitrile	ND	ug/l	5.0	•	
Bromochloromethane	ND	ug/l	2.5		
retrahydrofuran	ND	ug/l	10.		
2,2-Dichloropropane	ND	ug/l	2.5		
1,2-Dibromoethane	ND	ug/l	2.5		
L,3-Dichloropropane	ND	ug/l	2.5		
1,1,1,2-Tetrachloroethane	ND	ug/1 ug/l	0.50	•	
Bromobenzene	ND	ug/l	2.5		
	ND		0.50		
n-Butylbenzene		ug/1	0.50	•	
sec-Butylbenzene	ND ND	ug/l	2.5		()
tert-Butylbenzene		ug/l	2.5		
o-Chlorotoluene	ND ND	ug/1	2.5		•
p-Chlorotoluene		ug/1	2.5		
1,2-Dibromo-3-chloropropane Hexachlorobutadiene	ND ND	ug/1	1.0		•
		ug/1			
Isopropylbenzene	ND ND	ug/l	0.50 0.50	·	
p-Isopropyltoluene		ug/1			,
Naphthalene	ND	ug/1	2.5		
n-Propylbenzene	ND	ug/l	0.50 2.5		
1,2,3-Trichlorobenzene	ND	ug/1			
1,2,4-Trichlorobenzene	ND	ug/1	2.5		
1,3,5-Trimethylbenzene	ND	ug/1	2.5		
1,2,4-Trimethylbenzene	ND	ug/1	2.5		
trans-1, 4-Dichloro-2-butene	ND	ug/l	2.5		
Ethyl ether	ND	ug/l	2.5		· · · · · · · · · · · · · · · · · · ·
Surrogate(s)	Recovery		QC Cri	teria	
1,2-Dichloroethane-d4	112.	8	- -	4 · · · · · · · · · · · · · · · · · · ·	
Toluene-d8	99.0	*			
4-Bromofluorobenzene	92.0	ş		*	
Dibromofluoromethane	119.	. %			
		•	•		

ALPHA ANALYTICAL LABORATORIES ADDENDUM I

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IIIA, 1997.
- Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF.
 18th Edition. 1992.

GLOSSARY OF TERMS AND SYMBOLS

REF Reference number in which test method may be found.

METHOD Method number by which analysis was performed.

ID Initials of the analyst.

ND Not detected in comparison to the reported detection limit.

Please note that all solid samples are reported on dry weight basis unless noted otherwise.

LIMITATION OF LIABILITIES

Alpha Analytical, Inc. performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical, Inc., shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical, Inc. be held liable for any incidental consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical, Inc.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding times and splitting of samples in the field.

A	VI IAIN VI	- UU3	IVL	7 🎚 PA	GE()F	Dal	e Rei	'd in	Leb;	1240	$/\!/\!/$	19/	3		A	LPH/) Job	: 4	10311
/ martin		Project Inf	ormatic	m			Re	port	nfor	matic	on - E	Jata D	elive	rable	28	В	illing	Inform	ation	
Eight Walkup Drive We TEL: 508-898-9220 F		Project Name	61° ;	m\ (he so	· J	2 5	¥AX		7	SEM	AIL				Π.	Same	as Clien	t info	PO#:
ClientInformation		Project Locat		مامه	Termi		ò	ADEx	.	Ò	⊒ Add	d'i Del	iverab	es						
Client: Tink & B	Son el	Project #: (2041			Regulatory Requirements/Report Limits													
11915	ws Landing Pol	Project Mana					State	e /Fec	Pro	gram			Cı	iteria						
	MH 0355 9	ALPHA Quot		ald Of	72-5	<u></u>	MCI	2000	SIIN	1DTIV	/E CE	DT A	NTV.	THE	SEU	IIIE.C	TION	2116	TREA	NSWERED
Phone: 508 - 56		Turn-Arou		0					□ No				alytic						I DE A	NOVIENED
Fax:	77-1265	Tutti-Arot					, a	'es	□ No		Are D	rinking	Wate	: Sam	nples	Subi	nitted	?		
EmailRP66'5'er@	Tiche Boxid Com	Date Due:	11/2/0	RUSH (nly confirmed if p	re-approved!)	AVA,	res S	□ No	- /	lave	you m	et mini	mum /	field	<u>QC r</u>	equire	ments?	/	PLE HANDLI
	ific Requirements/Comm	ents/Detect	ion Lim	its:			3		/ ``	3.5	> /	/ /	JK.			' /		//	/ Filte	etion one
	•	;		·			1	A Elo	E E				3/) /	//	//			Pres	ot needed ab to do servation ab to do
ALPHA Lab ID (Lab Use Only)	Sample ID	1	Cotled Date	ction Time	Sample Matrix	Sampler's Initials	1	15	73									San		ecific Comme
LØ311950.1 IN	ufluent	n	19/03	1225	Weder		/			1	1									
7 2	effluent Effluent	id	رد/م	430	inster	10	J	1		1						T				
3 7	Jan K			3952	Lastrofe	A			-											
	,		1											T						
						<u> </u>								1.	+					
											\dashv		+-	+-	+	1				
				·		ļ					}	-	+-	+-	+-	╂	\vdash		 -	· · · · · · · · · · · · · · · · · · ·
					 `							-		+	+-	-				
									` 		+	- -		+	+	-		 	···	
		<u> </u>		 :							_			+	-	 				
									}									,		
QUESTIONS ABOVE	MUST BE ANSWERED FOR P	RESUMPTIVE	CERTAII	NTY	Conta	iner Type												Please	print	dearly, legibly
IS YOUF	γ		·		Pre	servative												comple	stely.	Samples can ri turnaround th
PROJEC		Relinquishet)By7		Date	e/Time		A	Reg	rived	Ву:	11.	j		Pate	/Time	9 	will no	t start (ıntii eny ambi samples subr
MSP	1//20 / /24	Mari	ul		11/1	y las	1		w	1	14	W			171 1915		游	subjec See re	t to Alp	ha'z Paymen
			•				i 0	<i>,</i>	/		٠			۱.۴.	" 7	,	*			

.

ALPHA ANALYTICAL LABORATORIES

Eight Walkup Drive
Westborough, Massachusetts 01581-1019
(508) 898-9220 www.alphalab.com

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

CERTIFICATE OF ANALYSIS

Client: Tighe & Bond

Laboratory Job Number: L0311852

Address: 4 Barlows Landing Road

Pocasset, MA 02559

Date Received: 19-NOV-2003

Attn: Mr. Rich Geisler

Date Reported: 24-NOV-2003

Project Number: W-33494-01

Delivery Method: Alpha

Site:

GLOBAL CHELSEA

ALPHA SAMPLE NUMBER

CLIENT IDENTIFICATION

SAMPLE LOCATION

L0311852-01 L0311852-02 INFLUENT

CHELSEA TERMINAL CHELSEA TERMINAL

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized by: Scott McLean

This document electronically signed

11240313:02

ALPHA ANALYTICAL LABORATORIES NARRATIVE REPORT

Laboratory Job Number: L0311852

PAH

L0311852-01 has elevated limits of detection due to the 10x dilution required by the elevated concentrations of target compounds in the sample.

ALPHA ANALYTICAL LABORATORIES CERTIFICATE OF ANALYSIS

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0311852-01

L0311852-01 Date Collected: 19-NOV-2003 12:25
INFLUENT Date Received: 19-NOV-2003

Sample Matrix:

WATER

Date Reported: 24-NOV-2003

Condition of Sample:

Satisfactory

Field Prep:

None

Number & Type of Containers: 4-Amber

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DAT PREP	e id Anal
PAH by GC/MS SIM 8270M						
Acenaphthene	26.	ug/l	2.0	1 8270C-M	1120 18:20 3	122 03:58 HL
2-Chloronaphthalene	ND	ug/1 ug/1	2.0			•
Fluoranthene	6.3	ug/1 ug/1	2.0			
Naphthalene	2.1	ug/1	2.0			
Benzo (a) anthracene	ND	ug/1 ug/l	2.0		• •	
Benzo (a) pyrene	ND	ug/l ug/l	2.0			
Benzo (b) fluoranthene	ND	ug/1 ug/1	2.0			
Benzo (k) fluoranthene	ND	ug/l	2.0			
Chrysene	ND	ug/l	2.0			•
Acenaphthylene	ND	ug/l	2.0			•
Anthracene	5.8	ug/1 ug/l	2.0			
Renzo (ghi) perylene	NID	ug/1 ug/1	2.0			4
uorene	13.	ug/l	2.0			
Phenanthrene	12.	ug/l	2.0	•		
Dibenzo (a, h) anthracene	ND	ug/1 ug/1	2.0			
Indeno (1,2,3-cd) Pyrene	ND	ug/l	2.0			
Pyrene	4.7	ug/1 ug/1	2.0			
1-Methylnaphthalene	68.	ug/l	2.0			
2-Methylnaphthalene	5.7	ug/1	2.0			
Perylene	ND	ug/1	2.0			
	ND					
Biphenyl	ND	ug/1	2.0			
Benzo (e) Pyrene	ND	ug/l	2.0			
Surrogate(s)	Recovery			iteria		•
Nitrobenzene-d5	60.0	*	23-120			
2-Fluorobiphenyl	76.0	8	43-120	0		
4-Terphenyl-d14	85.0	*	33-120	0		
Hydrocarbon Scan by GC 810	iom			1 8100M	1120 09:00 1	121 03:27 JB
Mineral Spirits	ND	mg/l	0.10			
Gasoline	ND	mg/l	0.10	•		
Fuel Oil #2/Diesel	ND	mg/l	0.10			
Fuel Oil #4	ND	mg/1	0.10			
Fuel Oil #6	ND	mg/l	0.10			
Motor Oil	ND	mg/l	0.10			
Kerosene	ND	mg/1	0.10			
Transformer Oil	ND	mg/1	0.10			•
	5.1		0.10		•	
Unknown Hydrocarbon	2.1	mg/l	0.10			

mments: Complete list of References and Glossary of Terms found in Addendum I

CERTIFICATE OF ANALYSIS

Laboratory Sample Number: L0311852-01

INFLUENT

PARAMETER	result	Units	RDL	REF	METHOD	DAT	'E	ID
	•				•	PREP	ANAL	
· .			 		· · · · · · · · · · · · · · · · · · ·			
					4040.00444			
lydrocarbon Scan by GC 8	100M continued			1	830 0 M	1120 09:00	1121 03).	17 JB
Hydrocarbon Scan by GC 8 Surrogate(s)	100M continued Recovery		*********	i iteri	************	1120 09:00	1121 03).	17 318

ALPHA ANALYTICAL LABORATORIES CERTIFICATE OF ANALYSIS

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0311852-02

Date Collected: 19-NOV-2003 12:30

EFFLUENT

Date Received: 19-NOV-2003

Sample Matrix:

WATER

Date Reported: 24-NOV-2003

Condition of Sample:

Satisfactory

Field Prep:

None

Number & Type of Containers: 4-Amber

Parameter	RESULT	UNITS	RDL	REF METHOD	DAT		ID
			•	•	PREP	ANAL	
PAH by GC/MS SIM 8270M	ND.	/7		1 8279C-M	1120 18:20 1	122 03:	14 HL
Acenaphthene	ND	ug/1	0.20		·		
2-Chloronaphthalene	ND	ug/l	0.20				
?luoranthene	ND	ug/l	0.20				
Naphthalene	MD	ug/l	0.20		·		
Benzo (a) anthracene	ND	ug/l	0.20				
Benzo (a) pyrene	ND	ug/1	0.20	•			
Benzo (b) fluoranthene	ND	ug/l	0.20				
Senzo (k) fluoranthene	ND	ug/l	0.20				
Chrysene	ND	ug/l	0.20				
Acenaphthylene	ND	ug/1	0.20	•			
Anthracene	ND	ug/l	0.20				
Renzo (ghi) perylene	ND	ug/l	0.20				
fluorene	ND	ug/1	0.20				
Phenanthrene	ND	ug/l	0.20				
Dibenzo(a,h)anthracene	ND	ug/l	0.20				
Indeno (1,2,3-cd) Pyrene	ND	ug/l	0.20				
Pyrene	ND	ug/l	0.20				
l-Methylnaphthalene	ND	ug/l	0.20				
2-Methylnaphthalene	ND	ug/l	0.20				
Perylene	ND	ug/l	0.20				
Biphenyl	ND	ug/l	0.20				
Benzo (e) Pyrene	ND	ug/l	0.20				
Surrogate(s)	Recovery		QC Cri	teria.			
Nitrobenzene-d5	49.0	*	23-120)			
2-Fluorobiphenyl	49.0	8 .	43-120)			
4-Terphenyl-d14	87.0	8	33-120) 			
Hydrocarbon Scan by GC 8 10	OM.			1 810QM	1120 09:00 1	121 04:	31 JE
Mineral Spirits	ND	mg/1	~ 0.10				
Gasoline	ND	mg/l	0.10	* .			
Fuel Oil #2/Diesel	ND	mg/1	0.10				
Fuel Oil #4	ND	mg/l	0.10	•			
Fuel Oil #6	ND	mg/1	0.10				
Motor Oil	ND	mg/1	0.10				
Kerosene	ND	mg/l	0.10				
Transformer Oil	ND	mg/1	0.10				
Unknown Hydrocarbon	ND	ma/ T	0.10				

Comments: Complete list of References and Glossary of Terms found in Addendum I

ALPRA ANALIZICAL LINGUANIVALDO CERTIFICATE OF ANALYSIS

Laboratory Sample Number: L0311852-02

EFFLUENT

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE	ID
	•				PREP ANAL	
•						
					· · · · · · · · · · · · · · · · · · ·	
Todayara too Com tos 55 810	pu continued			4-000		
Hydrocarbon Scan by GC 810 Surrogate(s)	OM continued Recovery		*****************	i sione iteria	1120 09:00 1121 04:	31 318

ALPHA ANALYTICAL LABORATORIES QUALITY ASSURANCE BATCH DUPLICATE ANALYSIS

Parameter	Value 1	Value 2	Units	RPD	RPD Limits	
Hydrocarbon :	Scan by GC 8100	M for sampl	.e(s) 01-02	(1.031185	2-02, WG156967)	
Mineral Spirits	ND	ND	mg/l	NC	40	
Gasoline	ND	ND	mg/l	NC	40	
Fuel Oil #2/Diesel	ND	ND	mg/1	NC	40	
Fuel Oil #4	ND	ND	mg/l	NC	40	
Fuel Oil #6	ND	ND	mg/l	NC	40	
Motor Oil	ND	ND	mg/l	NC	40	
Kerosene	ND	ND	mg/l	NC	40	
Transformer Oil	ND	ND	mg/l	NC	40	
Unknown Hydrocarbon	ND	ND	mg/l	NC	40	
Surrogate(s)	Rec	overy			QC Cr	iteria
o-Terphenyl	87.0	98.0	용	12	40-1	40

ALPHA ANALYTICAL LABORATORIES QUALITY ASSURANCE BATCH SPIKE ANALYSES

Parameter	% Recovery	QC Criteria	· · · · · · · · · · · · · · · · · · ·
PAH by GC/MS SIM 8270	M BCS for sample(s) (1-02 (WG157028)	
Acenaphthene	68	46-118	
2-Chloronaphthalene	63		
Fluoranthene	86	•	
Anthracene	57		
Pyrene	89	26-127	
Surrogate(s)			
Nitrobenzene-d5	. 71	23-120	
2-Fluorobiphenyl	64	43-120	
4-Terphenyl-d14	78	33-120	
Hydrocarbon Scan by GC 8	1100M LCS for sample(s) 01+02 (WG156967)	
Petroleum Spike	105	40-140	
Surrogate(s)			
o-Terphenyl	100	40-140	

ALPHA ANALYTICAL LABORATORIES QUALITY ASSURANCE BATCH MS/MSD ANALYSIS

Parameter	MS %	MSD	% RPD	RPD Limit	MS/MSD Limits
PAR by GC/MS SIM 827	OM for sample(s) 01-02	(L0311852-02	WG157028)	
Acenaphthene	63	54	15	40	46-118
2-Chloronaphthalene	59	54	9	40	
Fluoranthene	86	. 81	6	40	
Anthracene	· 59	54	9	40	
Pyrene	90	81	11	40	26-127
Surrogate(s)	•				
Nitrobenzene-d5	56	- 58	4		23-120
2-Fluorobiphenyl	60	52 ·	14		43-120
4-Terphenyl-d14	77	71	. 8	,	33-120

ALPHA ANALYTICAL LABORATORIES QUALITY ASSURANCE BATCH BLANK ANALYSIS

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE PREP ANAL	ID
		······································				
Blank Anal	ysis for samp	le(s) 01-	02 (WG15	7028-1)		
PAH by GC/MS SIM 8270M				1 8270С-И	1120 18:20 1122 00:	18 BU
Acenaphthene	ND	ug/l	0.20	, , , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·	an read neorgogen
2-Chloronaphthalene	ND	ug/l	0.20		•	
Fluoranthene	ND	ug/l	0.20			
Naphthalene	ND	ug/1	0.20			•
Benzo(a) anthracene	ND	ug/1	0.20			
Benzo(a) pyrene	ND .	ug/l	0.20			
Benzo(b) fluoranthene	ND	ug/1	0.20			
Benzo(k) fluoranthene	ND	ug/1	0.20			
Chrysene	ND	ug/l	0.20			
Acenaphthylene	ND	ug/1	0.20			
Anthracene	ND	ug/1	0.20			
Benzo(ghi) perylene	ND	ug/l	0.20			
Fluorene	ND	ug/l	0.20	•		
Phenanthrene	ND	ug/1	0.20			
Dibenzo (a, h) anthracene	ND	ug/l	0.20			
Indeno(1,2,3-cd)Pyrene	ND	ug/l	0.20			
Pyrene	ND	ug/l	0.20			
1-Methylnaphthalene	ND	ug/1	0.20			
2-Methylnaphthalene	ND	ug/l	0.20			
Perylene	ND	ug/l	0.20			سم
Biphenyl	ND	ug/l	0.20			Į.
Benzo(e) Pyrene	ND	ug/l	0.20			
Surrogate(s)	Recovery	,	QC Cr:	iteria		
Nitrobenzene-d5	66.0	ક	23-12	0	•	
2-Fluorobiphenyl	67.0	욯	43-12	0		
4-Terphenyl-d14	83.0	8	33-12	0		
Blank Anai	ysis for sam	ole(s) 01-	02 (WG15)	5967-1)		
Hydrocarbon Scan by GC 810	OM			1 8100M	1120 09:00 1120 22:	10 JB
Mineral Spirits	ND	mg/l	0.10			
Gasoline	ND	mg/l	0.10			
Fuel 0il #2/Diesel	ND	mg/l	0.10	•		
Fuel Oil #4	ND	mg/l	0.10			_
Fuel Oil #6	ND	mg/l	0.10			••
Motor Oil	ND	mg/1	0.10			
Kerosene	ND	mg/1	0.10			•
Transformer Oil	ND	mg/l	0.10			
Unknown Hydrocarbon	ND	mg/l	0.10			
· · · · · · · · · · · · · · · · · · ·		~~ ~		•		
Surrogate(s)	Recovery		טר כזיי	iteria		
o-Terphenyl	103.	ક્ર	40-14			
O-Terbireni'r	103.	30	40-14	U		

ALPHA ANALYTICAL LABORATORIES ADDENDUM I

REFERENCES

 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IIIA, 1997.

GLOSSARY OF TERMS AND SYMBOLS

REF Reference number in which test method may be found.
METHOD Method number by which analysis was performed.

ID Initials of the analyst.

ND

Not detected in comparison to the reported detection limit.

Please note that all solid samples are reported on dry weight basis unless noted otherwise.

LIMITATION OF LIABILITIES

Alpha Analytical, Inc. performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical, Inc., shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical, Inc. be held liable for any incidental consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical, Inc.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding times and splitting of samples in the field.

AH-A		IN OF CU	ct Informa	100	IGE	Ur	t Miles	19.32	i e'd in Infor	No.	34113) Date	Del	VO.) los				A Job #
Walkup Drive 508-898-922		581	Name (C)		The se	- d	4	TFAX				MAIL				<i>'</i>			as Client info PO#:
itInformatic	in a super that the factor server		t Location()		Termi		<u> </u>	ADE	×	مريد	D.A	id'i C	Pelive	rabie					
Tiche	Bond	Projec	# 10-3	3494					ory R			ents/	Rep			S			
1554 Bar	lows Landin	Project	Manager:	ich 6	cis-o-		Sta	10 //-0	d Pro	gran	<u></u>	<u></u>	\dashv	Crite	V/IB				
Pocass	et MA 0253	ALPH.	A Quote #:				MC	PPR	ESU	MPT	VE C	ERT	AINT	Y-T	HES	EQU	ES	TION	NS MUST BE ANSWERED
: 588 <u>~ </u>	564-7285	Turn	-Around Ti	ne					O No							ods F eles S			
nese samples he	ercyle Boud we been previously analyzo pecific Requirement	ed by Alpha)ue: [[]]	ZM.	Time:	ore-Sparovedi)		weeks.	No.		200		4 7 9	16				guire	SAMPLE HANDLING Filtration Done Not needed Lab to do Preservation Lab to do
HA Lab ID Use Only)	Samp	elD		ection	Sample	Sampler's	1/8	SO O	13		X	叭	\$			/ /	/		(Plesse specify below)
Kare, augusto			Date	Time	Matrix	Initials							-	<u> </u>			\dashv		/ Sample Specific Comments
1882	Influent		11 19/03		water	X	1	1			,			+	-	-	\dashv		
N - 0	Effluent DI V	'. 	11/4/63	0956	Lasting	A			-	_	J	U		-	\dashv	\dashv	井		
	Blank		11/120	01-0	LASTAN	6							\dashv	-		+	\dashv		
				·			-								-	\dashv	\dashv	\dashv	
Y- 33		· 	+		 										\dashv	\dashv	\perp		
		 									_	-		+	\dashv	-	\dashv	\dashv	
			 											_		_	+	-	
				:	,										\dashv	\top	7		
																	1		
TIONS ABO	VE MUST BE ANSWER	ED FOR PRESUMF	TIVE CERTA	INTY		iner Type servative													Riesse print clearly, legibly and completely. Samples can not be logged in and turnament time of
PROJ	ECT	Relip	Phones By T		11/4/2	VIII/S 4/121	1		A A	Mve /	d By:	W	U	1		Pate/T	me	以	will not start until any ambiguitle esolved. All samples submitted subject to Alpha's Payment Ten See reverse side.

ATTACHMENT B

SUMMARY OF GROUND WATER MONITORING DATA

(2003 TO 2004)

CHELSEA SANDWICH, LLC

NPDES PERMIT NO. MA0003280

GeoLabs, Inc.

Environmental Laboratories

LABORATORY REPORT

PREPARED FOR:

Tighe & Bond, Inc. 53 Southampton Road Westfield, MA 01085

Attn: Rich Grisler

PROJECT ID:

W-33494-01

Chelsea Terminal

GEOLABS CERTIFICATION #:

M-MA015

SAMPLE NUMBER:

142618 - 142620

DATE PREPARED:

December 11, 2003

PREPARED BY:

Christine Johnson

APPROVED BY:

Jim Chen, Laboratory Director/Date

Environmental Laboratories

MADEP MCP Response Action Analytical Report Certification Form

Laboratory Name: Project Location:		GeoLabs, Inc. Chelsea Terminal	Project #: MADEP RTN:	W-33494-0	W-33494-01			
								
I his form	provides cer	tifications for the following data	set: <u>142618 - 1426</u>	· · · · · · · · · · · · · · · · · · ·				
Sample m	natrices:	Groundwater (x) Soil /	Sediment () D	rinking Water ()	Other ()			
MCP SW	-846	8260B(x) 8151A() 8330	() 6010B () 74	70/1A () Other: ()	TPH8100M			
Methods	Used	8270C(X) 8081A() VPH 8082 () 8021B() EPH	` ' ()14M ² ()				
As specifie	d in MADEP	1- List Release Tracking Number	r (RTN), if known		·			
Compendi	um of	2- M - SW-846 Method 9014 or I	MADEP Physiologically	Available Cyanide (PAC) Method			
Analytical	Methods	3- S - SW-846 Methods 7000 Se	ries (List individual m	ethod and analyte)				
(Check all	that apply)			·				
An attirm	lative respoi	nse to questions A, B, and C i	s required for "Pres	umptive Certainty"	status			
Α		amples received by the laboratory in oed on the Chain-of-Custody docum	•	•	No ¹ ()			
В		A/QC procedures required for the s			No ¹ ()			
	•	this report followed, including the r	•		140 ()			
		a narrative QC data that did not me	•					
		or guidelines?	ot appropriate perionic					
С		nalytical data included in this repor	meet all the requireme	ents Yes (x)	No ¹ ()			
		nptive Certainty", as described in S			()			
<u> </u>	1	CAM VII A, "Quality Assurance an		1				
		ulsition and Reporting of Analytical						
A respon	se to questi	ons D and E below is required	l for "Presumptive	Certainty" status				
D	Were all Q	C performance standards and reco	mmendations for the	Yes (x)	No ¹ ()			
	specified n	nethods achieved?						
E	Were resulmethod(s)	Its for all analyte-list compounds/ele reported?	ements for the specified	Yes (x)) No ¹ ()			
		nswers must be addressed in an	attached Environme	ntal Laboratory case r	narrative.			
1								
ļ				•				
I, the un	dersigned, a	ttest under the pains and pen	alties of perjury tha	t, based upon my pe	rsonal			
		onsible for obtaining the info of my knowledge and belief, a			nalytical			
		.	s c					
1		Gron Ch						
Signature	∋ :		Position: L	ab Director	_			
			.					
Printed N	lame:	Jim Chen	Date: D	ecember 11, 2003	_			
	•		· .		_			

GeoLabs, Inc. Environmental Laboratories

Case Narrative

Project ID: W-33494-01 Client Name: Tighe & Bond, Inc. Sample Number: 142618 - 142620

Received: 12/05/03

Physical Condition of Samples

This project was received by the laboratory in satisfactory condition. The sample(s) were received undamaged, in appropriate containers with the correct preservation.

Project Documentation

This project was accompanied by satisfactory Chain of Custody documentation. The sample container label(s) agreed with the Chain of Custody.

Analysis of Sample(s)

No analytical anomalies or non-conformances were noted by the laboratory during the processing of these sample(s).

Environmental Laboratories

CLIENT NAME:

TIGHE & BOND

SAMPLE TYPE:

GROUNDWATER

COLLECTION DATE:

12/05/03

REC'D BY LAB:

12/05/03

COLLECTED BY: PRESERVATIVE:

CLIENT

HYDROCHLORIC ACID

PROJECT ID:

REPORT DATE:

E:

W-33494-01 12/11/03

ANALYZED BY:

ZYZ

ANALYSIS DATE:

12/05&09/03

DIGESTION DATE:

N/A

VOLATILE ORGANICS

SAMPLE NUMBER: SAMPLE LOCATION:

142618

142619

INFLUENT

EFFLUENT

SAMPLE LOCATION:	INFLUENT	EFFLUENT		
		ULTS g/L)	DETECTION LIMIT (µg/L)	
Acetone	ND	ND	50.0	
Acrylonitrile	ND	'ND	50.0	-
Benzene	5.05	ND	5.0	
Bromobenzene	ND	ND	5.0	
Bromochloromethane	ND	ND	2.0	
Bromoform	ND	ND	5.0	
Bromomethane	ND	ND	2.8	
2-Butanone	ND	, ND	10.0	
n-Butylbenzene	ND	ND	5.0	
Carbon Tetrachloride	ND	ND	5.0	
Chlorobenzene	ND	ND	5.0	
Chloroethane	ND	ND	5.0	
2-Chloroethylvinylether	ND	ND	5.0	
Chloroform	ND	ND -	. 5.0	
Chloromethane	ND	ND	5.0	
2-Chlorotoluene	ND	ND	5.0	
4-Chlorotoluene	ND	ND	5.0	
Dibromomethane	ND	ND	5.0	
Dibromochloromethane	ND	ND	5.0	
Dichlorobromomethane	ND	ND	5.0	
Dichlorodifluoromethane	ND	ND	5.0	
1,1-Dichloroethane	ND	ND	5.0	
1,1-Dichloroethene	ND	ND	0.96	
1,1-Dichloropropene	ND	ND	0.4	
1,2-Dibromoethane	ND	ND	0.63	
1,2-Dibromo-3-chloropropane	ND	ND	5.0	
1,2-Dichlorobenzene	ND	ND	5.0	
1,2-Dichloroethane	ND	ND	5.0	
1,2-Dichloropropane	ND	ND	5.0	
1,3-Dichlorobenzene	ND	ND	5.0	
1,3-Dichloropropane	ND	ND	5.0	
1,4-Dichlorobenzene	ND	ND	5.0	
2,2-Dichloropropane	ND	ND	5.0	
c-1,2-Dichloroethene	ND	ND ND	5.0 5.0	
c-1,3-Dichloropropene	ND	ND	0.65	
t-1,2-Dichloroethene	ND ND	ND ND	5.0	
			•	
t-1,3-Dichloropropene	ND ND	ND	0.95	
Ethylbenzene Hexachlorobutadiene	ND AID	ND	5.0 0.19	
nexachioroputadiene	ND	ND ND	0.18	

GeoLabs, Inc. **Environmental Laboratories**

CLIENT NAME:

SAMPLE TYPE:

COLLECTION DATE:

REC'D BY LAB:

COLLECTED BY:

PRESERVATIVE:

TIGHE & BOND

GROUNDWATER 12/05/03

12/05/03 CLIENT

HYDROCHLORIC ACID

PROJECT ID:

REPORT DATE:

ANALYZED BY:

ANALYSIS DATE:

ZYZ 12/05&09/03

12/11/03

W-33494-01

N/A

DIGESTION DATE:

VOLATILE ORGANICS

SAMPLE NUMBER: SAMPLE LOCATION:

142618 INFLUENT

142619 **EFFLUENT**

		RESULTS (μg/L)	DETECTION LIMIT (μg/L)	
2-Hexanone	ND	ND	10.0	
Isopropyibenzene	ND	· ND	5.0	
p-Isopropyltoluene	ND	ND	5.0	
Methylene Chloride	ND	ND .	10.0	
4-Methyl-2-pentanone	ND	ND	5.0	•
Methyl tert-butyl ether	ND	ND	5.0	
Naphthalene	ND	ND	20.0	
n-propylbenzene	. ND	/ ND	5.0	
Sec-butylbenzene	ND	ND	5.0	
Styrene	ND	ND	5.0	٠.
tert-butylbenzene	ND	ND	5.0	٠.
Tetrachloroethene	ND	ND	5.0	•
Toluene	ND	ND	5.0	
Trichloroethene	ND	ND	5.0	
Trichlorofluoromethane	ND	ND	5.0	
1,1,1-Trichloroethane	ND	ND	5.0	
1,1,2-Trichloroethane	ND	ND.	5.0	
1,1,2,2-Tetrachloroethane	ND	ND	0.61	
1,1,1,2-Tetrachloroethane	ND	ND	5.0	
1,2,3-Trichloropropane	ND	ND	5.0	
1,2,3-Trichlorobenzene	ND	ND	5.0	
1,2,4-Trichlorobenzene	ND	ND	5.0	
1,2,4-Trimethylbenzene	14.3	ND	5.0	
1,3,5-Trimethylbenzene	ND	ND	5.0	
Vinyl Chloride	ND	ND	2.0	•
Xylenes	ND	ND	5.0	
Surrogate Recoveries:	•			
dibromofluoromethane	106%	96%		
1,2-Dichloroethane	107%	115%		
toluene-d8	102%	102%		
BFB	87%	107%	,	

ND = NOT DETECTED

Method Reference:

EPA Method

8260B (1) GC/MS

Georgia III.

Environmental Laboratories

CLIENT NAME: SAMPLE TYPE:

TIGHE & BOND GROUNDWATER

COLLECTION DATE: REC'D BY LAB:

11/26/03 12/05/03

COLLECTED BY: PRESERVATIVE:

12/05/03 CLIENT

HYDROCHLORIC ACID

PROJECT ID:

REPORT DATE: ANALYZED BY:

12/11/03 ZYZ

W-33494-01

ANALYSIS DATE:
DIGESTION DATE:

12/06/03

N/A

VOLATILE ORGANICS

SAMPLE NUMBER: SAMPLE LOCATION:

142620 TRIP BLANK

	RESULTS (μg/L)	DETECTION LIMIT (µg/L)
Acetone	ND	50.0
Acrylonitrile	· ND	50.0
Benzene	. ND	5.0
Bromobenzene	ND .	5.0
Bromochloromethane	ND	2.0
Bromoform	ND	5.0
Bromomethane	ND	2.8
2-Butanone	. ND	10.0
n-Butylbenzene	ND	5.0
Carbon Tetrachloride	ND	5.0
Chlorobenzene	ND	5.0
Chloroethane	ND	5.0
2-Chloroethylvinylether	ND	5.0
Chloroform	ND	5.0
Chloromethane	ND	5.0
2-Chlorotoluene	ND	5.0
4-Chlorotoluene	ND	5.0
Dibromomethane	ND	5.0
Dibromochloromethane	ND	5.0
Dichlorobromomethane	ND	5.0
Dichlorodifluoromethane	ND ND	5.0
1,1-Dichloroethane	ND	5.0
1,1-Dichloroethene	ND	0.96
1,1-Dichloropropene	ND	0.4
1,2-Dibromoethane	ND	0.63
1,2-Dibromo-3-chloropropane	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,2-Dichloroethane	ND	5.0
1,2-Dichloropropane	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,3-Dichloropropane	ND	5.0
1,4-Dichlorobenzene	ND	5.0
2,2-Dichloropropane	ND	5.0
c-1,2-Dichloroethene	ND	5.0
c-1,3-Dichloropropene	ND	0.65
t-1,2-Dichloroethene	ND	5.0
t-1,3-Dichloropropene	ND	0.95
Ethylbenzene	ND	5.0
Hexachlorobutadiene	ND	0.19

GeoLabs, inc. **Environmental Laboratories**

CLIENT NAME:

SAMPLE TYPE:

TIGHE & BOND GROUNDWATER

COLLECTION DATE: REC'D BY LAB:

11/26/03 12/05/03

COLLECTED BY: PRESERVATIVE: **CLIENT** HYDROCHLORIC ACID PROJECT ID:

REPORT DATE: ANALYZED BY:

12/11/03 **ANALYSIS DATE: DIGESTION DATE:**

ZYZ 12/06/03

W-33494-01

N/A

VOLATILE ORGANICS

SAMPLE NUMBER: SAMPLE LOCATION:

142620 TRIP BLANK

er en	RESULTS (μg/L)	DETECTION LIMIT (μg/L)
2-Hexanone	ND	10.0
Isopropylbenzene	ND	5.0
p-Isopropyltoluene	ND	5.0
Methylene Chloride	ND	10.0
4-Methyl-2-pentanone	ND	5.0
Methyl tert-butyl ether	ND	5.0
Naphthalene	ND	20.0
n-propylbenzene	ND	5.0
Sec-butylbenzene	ND	5.0
Styrene	ND	5.0
tert-butylbenzene	ND	5.0
Tetrachloroethene	ND	5.0
Toluene	ND	5.0
Trichloroethene	ND	5.0
Trichlorofluoromethane	ND	5.0
1,1,1-Trichloroethane	ND	5.0
1,1,2-Trichloroethane	ND	5.0
1,1,2,2-Tetrachloroethane	ND	0.61
1,1,1,2-Tetrachloroethane	ND	5.0
1,2,3-Trichloropropane	ND	5.0
1,2,3-Trichlorobenzene	ND	5.0
1,2,4-Trichlorobenzene	ND	5.0
1,2,4-Trimethylbenzene	ND	5.0
1,3,5-Trimethylbenzene	ND	5.0
Vinyl Chloride	ND	2.0
Xylenes	ND	5.0
Surrogate Recoveries:		
dibromofluoromethane	101%	•
1,2-Dichloroethane	115%	
toluene-d8	110%	•
BFB	117%	
ND = NOT DETECTED	<i>.</i> •	

Method Reference:

EPA Method

8260B (1) GC/MS

1) U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1997, 3rd Ed.

Georgians, no. Environmental Laboratories

BLANK

ND

12/05/03

VOLATILE ORGANICS LCS

%RECOVERY

•	•		
Dichlorodifluoromethane	98%	1,1,2-Trichloroethane	98%
Chloromethane	97%	Tetrachloroethene	101%
Vinyl chloride	100%	1,3-Dichloropropane	101%
Bromomethane	107%	2-Hexanone	90%
Chloroethane	103%	Dibromochloromethane	88%
Trichlorofluoromethane	97%	EDB	88%
Acrolein	88%	Chlorobenzene	98%
1,1-Dichloroethene	100%	1,1,1,2-tetrachloroethane	98%
Acetone	90%	Ethylbenzene	100%
Carbon Disulfide	98%	m.p-Xylene	94%
Methylene chloride	101%	o-Xylene	91%
Acrylonitrile	86%	Styrene	95%
trans-1,2-Dichloroethene	98%	Bromoform	81%
MTBE	91%	Isopropylbenzene	102%
1,1-Dichloroethane	100%	Bromobenzene	99%
2-Butanone	88%	1,1,2,2-Tetrachloroethane	93%
Carbon tetrachloride	96%	1,2,3-Trichloropropane	93%
2,2-Dichloropropane	98%	N-propylbenzene	92%
c-1,2-dichloroethene	105%	2-Chlorotoluene	95%
Bromochloromethane	96%	4-Chiorotojuene	89%
Chloroform	98%	1,3,5-Trimethylbenzene	79%
1,1,1-Trichloroethane	102%	tert-Butylbenzene	92%
1,1-dihloropropene	105%	1,2,4-Trimethylbenzene	74%
Benzene	102%	sec-Butylbenzene	108%
1,2-Dichloroethane	101%	1,3-Dichlorobenzene	101%
Trichloroethene	105%	1,4-Dichlorobenzene	103%
1,2-Dichloropropane	99%	p-Isopropyltoluene	90%
Dibromomethane	98%	1,2-Dichlorobenzene	102%
Bromodichloromethane	97%	N-Butylbenzene	* 87%
2-Chloroethylvinyl Ether	58%	1,2-dibromo-3-chloropropane	97%
c-1,3-Dichloropropene	100%	1,2,4-trichlorobenzene	81%
Toluene	97%	Hexachlorobutadiene	97%
t-1,3-Dichloropropene	107%	Naphthalene	83%
- · • · · · · · · · · · · · · · · ·		1,2,3-Trichlorobenzene	91%
•		• • • • • • • • • • • • • • • • • • • •	

MCP Limits 70%-130%

The majority of recoveries must fall within this range.

GeoLabs, Inc. Environmental Laboratories

CLIENT NAME:

TIGHE & BOND

SAMPLE TYPE:

GROUNDWATER

COLLECTION DATE: REC'D BY LAB:

12/05/03 12/05/03

COLLECTED BY: PRESERVATIVE: **CLIENT**

SULFURIC ACID

PROJECT ID:

W-33494-01

REPORT DATE:

CL ANALYZED BY:

ANALYSIS DATE: DIGESTION DATE: 12/10/03

12/11/03

12/08/03

TOTAL PETROLEUM HYDROCARBONS

SAMPLE NUMBER

SAMPLE LOCATION

TPH (mg/L) **DETECTION LIMIT** (mg/L)

142618

INFLUENT

13.2

0.20

142619

EFFLUENT

ND

0.20

ND = NOT DETECTED

Method Reference:

EPA Method

8100 (1)

Modified

1) U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1986, 3rd Edition.

Environmental Laboratories

CLIENT NAME:

TIGHE & BOND

SAMPLE TYPE:

GROUNDWATER

PROJECT ID:

W-33494-01

COLLECTION DATE:

12/05/03

REPORT DATE: **ANALYZED BY:**

12/11/03

CL

REC'D BY LAB:

12/05/03

COLLECTED BY:

CLIENT

TPH WATER QA/QC

,	BLANK	MDL	LCS %	% REC.
Gasoline	ND	0.2 mg/L		
Kerosene / Jet Fuel	ND	0.2 mg/L		
Diesel Fuel #2	ND	0.2 mg/L	77%	40-140%
Fuel #4	ND	0.2 mg/L		
Fuel #6	ND	0.2 mg/L		
Transformer Oil	ND	0.2 mg/L		
Parafin Oil	ND	0.2 mg/L		<u> </u>
Motor Oil	ND	0.2 mg/L		
			·	
Surrogate				
OTP % Recovery	85%		83%	40-140%

GeoLabs, Inc. Environmental Laboratories

CLIENT NAME:

TIGHE & BOND

SAMPLE TYPE:

GROUNDWATER

COLLECTION DATE:

12/05/03

REC'D BY LAB: COLLECTED BY: 12/05/03 CLIENT

PRESERVATIVE:

N/A

PROJECT ID:

W-33494-01

REPORT DATE:

12/11/03

ANALYZED BY:

RD

ANALYSIS DATE:

12/10/03

DIGESTION DATE:

12/08/03

POLYNUCLEAR AROMATIC HYDROCARBONS

SAMPLE NUMBER: SAMPLE LOCATION:

142618

INFLUENT

142619

EFFLUENT

	RESU (μg	ILTS VL)	DETECTION LIMIT (µg/L)				
Naphthalene	ND	ND	0.750				
2-Methylnaphthalene	6.22	ND	0.750				
Acenaphthylene	ND	ND	0.250	277			
Acenaphthene	8.88	ND	0.500				
Fluorene	ND	ND	0.500	*			
Phenanthrene	ND	ND	0.500				
Anthracene	ND	ND .	0.500				
Fluoranthene	1.63	ND	0.500	•			
Pyrene	1.41	ND	1.25	•			
Benz[a]Anthracene	ND	ND	0.500				
Chrysene	ND	ND	0.500				
Benzo[b]Fluoranthene	ND	ND	0.500				
Benzo[k]Fluoranthene	ND	ND	1.00				
Benzo[a]Pyrene	ND	ND	0.200				
Indeno[1,2,3-Cd]Pyrene	ND	ND	0.500				
Dibenzo[a,h]Anthracene	ND	ND	0.500	*			
Benzo[g,h,i]Perylene	ND	ND	1.00				

ND = NOT DETECTED

Method Reference:

EPA Method

8270C (1)

1) U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1998 3rd Edition.

Environmental Laboratories

POLYNUCLEAR AROMATIC HYDROCARBONS - QC

	BLANK	
Naphthalene	ND	
2-Methylnaphthalene	ND	
Acenaphthylene	ND	,
Acenaphthene	ND	
Fluorene	ND	•
Phenanthrene	ND	
Anthracene	ND	
Fluoranthene	ND	
Pyrene	ND	
Benz[a]Anthracene	ND	
Chrysene	ND	
Benzo[b[Fluoranthene	ND	
Benzo[k]Fluoranthene	ND	
Benzo[a]Pyrene	ND	
Indeno[1,2,3-Cd]Pyrene	ND	
Dibenzo[a,h]Anthracene	ND	
Benzo[g,h,i]Perylene	ND	
	LCSS 1	Limit
Acenaphthene	84%	40-140%
Pyrene	94%	40-140%

GeoLabs, Inc. Environmental Laboratories

CLIENT NAME:

TIGHE & BOND

SAMPLE TYPE: COLLECTION DATE: GROUNDWATER 12/05/03

REC'D BY LAB: COLLECTED BY: PRESERVATIVE: 12/05/03 CLIENT N/A PROJECT ID:

W-33494-01 E: 12/11/03

REPORT DATE: ANALYZED BY:

RP

ANALYSIS DATE:

12/05/03

DIGESTION DATE:

N/A

TURBIDITY

SAMPLE NUMBER

SAMPLE LOCATION

TURBIDITY (N.T.U.)

DETECTION LIMIT (N.T.U.)

142618*

INFLUENT

90.0

0.252

142619

EFFLUENT

0.220

0.0504

ND= NOT DETECTED

*5x dilution

Method Reference:

EPA Method

180.1 (1)

1) U.S. EPA 1983. "Methods for Chemical Analysis of Water and Wastes." EPA-600/4-79-020, EPA, EMSL, Cincinnati, Ohio 45268.

GGULANO, IIIV. Environmental Laboratories

CLIENT NAME:

TIGHE & BOND

SAMPLE TYPE: **COLLECTION DATE:**

GROUNDWATER 12/05/03

REC'D BY LAB: COLLECTED BY: PRESERVATIVE: 12/05/03 **CLIENT**

N/A

PROJECT ID:

REPORT DATE:

W-33494-01 12/11/03

ANALYZED BY:

ANALYSIS DATE:

RP 12/05/03

DIGESTION DATE:

N/A

COLOR

SAMPLE NUMBER

SAMPLE **LOCATION**

COLOR (mg PtCo/L) **DETECTION LIMIT** (mg PtCo/L)

142618

INFLUENT

7.00

5.0

142619

EFFLUENT

31.0

5.0

ND = NOT DETECTED

Method Reference:

EPA Method

110.3 (1)

1) U.S. EPA 1983. "Methods for Chemical Analysis of Water and Wastes." EPA-600/4-79-020, EPA, EMSL, Cincinnati, Ohio 45268.

GeoLabs, Inc. Environmental Laboratories

CLIENT NAME:

TIGHE & BOND

SAMPLE TYPE:

GROUNDWATER

COLLECTION DATE: REC'D BY LAB:

12/05/03 12/05/03 CLIENT

COLLECTED BY: PRESERVATIVE:

N/A

PROJECT ID:

REPORT DATE: ANALYZED BY: W-33494-01 12/11/03

AS

ANALYSIS DATE:

12/10/03

DIGESTION DATE:

N/A

TOTAL SUSPENDED SOLIDS

SAMPLE NUMBER SAMPLE LOCATION

TOTAL SUSPENDED SOLIDS

(mg/L)

DETECTION LIMIT (mg/L)

142618

INFLUENT

8.00

4.00

142619

EFFLUENT

ND

4.00

LT = LESS THAN

Method Reference:

EPA Method

160.3 (1)

1) U.S. EPA 1983. "Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, EPA, EMSL, Cincinnati, Ohio 45268.

GEOLABS, INC. 45 JOHNSON LANE BRAINTREE, MA 02184 M-MA015

LIMITATIONS & EXCLUSIONS

All the professional opinions presented in this report are based solely on the scope of work conducted and sources referred to in our report. The data presented by GeoLabs in this report was collected and analyzed using generally accepted industry methods and practices at the time the report was generated. This report represents the conditions, locations and materials that were observed at the time the work was conducted. No inferences regarding other conditions, locations or materials, at a later or earlier time may be made based on the contents of the report. No other warranty, express or implied is made.

This report was prepared for the sole use of our client. Portions of the report may not be used independent of the entire report.

All analyses were performed within required holding times, in accordance with EPA protocols and using accepted QA/QC procedures. All QA/QC meets acceptable limits unless otherwise noted. The information contained in this report is, to the best of my knowledge, accurate and complete.

Any and all subsequent pages of this report are chain(s) of custody.

46	LACCHAIN O	F CUSTO	DY PA	GEOF_	10									\bigcirc		
ht Walkup Drive	Westborough, MA 01581	Project Informa				Repo	rt Inform	ation -	Data De	liverabl	es 		Information .			
	0 FAX: 508-898-9193	Project Name:	1600	MARIE	HI YOUR							☐ Same as Client info PO#:				
entInformatio	חס	Project Location	helse	aTerm	inal	AD	Ex Criteria Ci	hecker:								
int light	int: Tigher Bond Project #:						Default base Other For		ilatory Criteri	a Indicated)			· ·			
tress: A Ba	Hows Landing Pil	Project Manager:	20ch(Brisle	<u>-</u> _	4 5	AIL (stan		f report)			Regula	tory Requiremen	ts/Report Limits		
	sset MA Cosse	ALPHA Quote #:				□ Add	ditional De	eliverabl	es:			State /Fe	d Program	Criteria		
one: 508-	-564-7285	Turn-Around T	íme			Report	t to: (if differ	ent than Pro	ject (Manager)							
X:		Standard		nly confirmed if pre-e												
nt Mgeis	lored tightbook con	Date Due:	LI KUSH (P	ruy comamea a pre-ei Time:	pprovedi)		1 / 24	\$7	T- T	T T	\mathcal{T}	777		0		
These samples h	ave been previously analyzed by Alpha			1 IIIIe;			0/2	/o/	1/1/	n/,	/ /	/	SAMPLE	HANDLING T		
ther Project S	pecific Requirements/Comm	nents:						R.	16/	4//		///	Done Not nee	eded #		
							100/	KY-5	7£/h	/ /	/ /	/ / /	/ 🚨 Lab to	do		
						JQ/	が大	12/		′ / ;	/ /		Preservat			
	Sample ID	Co	illection Time		ampier's Initials	NA NA		140	14	//		///	Sample Specific			
	Influent	12/5/0		6w			1 2	イノ		1 1			142618	3%		
-	FOCILIT	125/	7/10	GWZ		1				+						
	Effluent Trip Blank		90915	8 W 3		7	1-1				+-		142619			
	1rip Blank	11 / 17/1		3	<u></u>	V							147628	<u></u>		
			<u> </u>								4	_				
		$-\Delta I J$														
			De													
	171	///					Adju	sted	pH <	2						
	1/rel	'ex-			·		with	1 1	SO							
	- Hinda						11		M	203	101	71	_			
								-				MA	1650			
				Otal			 	+			-					
	ราคอสโซ ราครุศสาสาธิกราสยากสโซ	iikatorii;		Containe	rvative		+	-			┼┤					
		Relinquished By:		Date/Ti		15	Rana	ived By:	l		Date/	Time				
	Relati	P.De-		125/03		EH		Ten.		12.57	6	3:31				
	Her	mi Kenn		12/5/03	4:30		har	Ar		1/2	15/05	1630				
	••	•		N I	İ	I //	,			f /	,					

ATTACHMENT B SUMMARY OF GROUND WATER MONITORING DATA (2003 TO 2004)

CHELSEA SANDWICH, LLC
NPDES PERMIT NO. MA0003280

GeoLabs, Inc.

Environmental Laboratories

LABORATORY REPORT

PREPARED FOR:

Chelsea Sandwich, LLC 11 Broadway Chelsea, MA 02150

Attn: Ashwin Patel

PROJECT ID:

Monthly RMS

Chelsea, MA

GEOLABS CERTIFICATION #:

M-MA015

SAMPLE NUMBER:

145768

DATE PREPARED:

March 1, 2004

PREPARED BY:

Christine Johnson

1 of 6

APPROVED BY:

Jim Chen, Laboratory Director

Location: 45 Johnson Lane

Braintree, MA 02184

Phone: (781) 848-7844

Fax: (781) 848-7811

CLIENT NAME:

CHELSEA SANDWICH

SAMPLE TYPE: COLLECTION DATE:

GROUNDWATER

REC'D BY LAB:

02/25/04 02/25/04 **CLIENT**

COLLECTED BY: PRESERVATIVE:

N/A

PROJECT ID:

MONTHLY RMS

REPORT DATE:

03/01/04

ANALYZED BY:

MR

ANALYSIS DATE:

02/25/04

EXTRACTION DATE: 02/25/04

POLYNUCLEAR AROMATIC HYDROCARBONS

SAMPLE NUMBER:

145768

SAMPLE LOCATION: RMS EFF.

	RESULTS (μg/L)	DETECTION LIMIT (μg/L)
Naphthalene	ND	0.750
2-Methylnaphthalene	ND	0.750
Acenaphthylene	ND	0.250
Acenaphthene	ND	0.500
Fluorene	ND	0.500
Phenanthrene	ND	0.500
Anthracene	ND	0.500
Fluoranthene	. ND	0.500
Pyrene	ND	1.25
Benz[a]Anthracene	ND	0.500
Chrysene	ND	0.500
Benzo[b]Fluoranthene	ND	0.500
Benzo[k]Fluoranthene	ND	1.00
Benzo[a]Pyrene	, ND	0.200
Indeno[1,2,3-Cd]Pyrene	ND	0.500
Dibenzo[a,h]Anthracene	ND	0.500
Benzo[g,h,i]Perylene	ND	1.00

ND = NOT DETECTED

Method Reference:

EPA Method

8270C (1)

1) U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1998 3rd Edition.

CLIENT NAME:

CHELSEA SANDWICH

SAMPLE TYPE:

GROUNDWATER

PROJECT ID: REPORT DATE: MONTHLY RMS

COLLECTION DATE:

02/25/04

ANALYZED BY:

03/01/04

REC'D BY LAB:

02/25/04

ANALYSIS DATE:

CG 02/27/04

COLLECTED BY: PRESERVATIVE: CLIENT SULFURIC ACID EXTRACTION DATE: 02/25/04

TOTAL PETROLEUM HYDROCARBONS

SAMPLE NUMBER

SAMPLE **LOCATION**

TPH (mg/L) **DETECTION LIMIT**

(mg/L)

145768

RMS EFF.

ND

0.20

ND = NOT DETECTED Method Reference:

EPA Method

8100 (1)

Modified

1) U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1986, 3rd Edition.

CLIENT NAME:

CHELSEA SANDWICH

SAMPLE TYPE:

GROUNDWATER

COLLECTION DATE: REC'D BY LAB:

02/25/04

COLLECTED BY:

02/25/04 CLIENT

PRESERVATIVE:

HYDROCHLORIC ACID

PROJECT ID:

MONTHLY RMS

REPORT DATE:

03/01/04

ANALYZED BY: ANALYSIS DATE: ZYZ 02/26/04

EXTRACTION DATE: N/A

VOLATILE AROMATIC COMPOUNDS

SAMPLE NUMBER: SAMPLE LOCATION: 145768

RMS EFF.

	RESULTS (μg/L)	DETECTION LIMIT (μg/L)
Methyl tert-butyl ether	ND	5.00
Benzene	ND	5.00
Toluene	ND	5.00
Chlorobenzene	ND	5.00
Ethylbenzene	ND	5.00
Xylenes	ND	5.00
1,2-Dichlorobenzene	ND	5.00
1,3-Dichlorobenzene	ND	5.00
1,4-Dichlorobenzene	ND	5.00

ND = NOT DETECTED

Method Reference:

EPA Method

602 by 624 (1) GC/MS

1) Code of Federal Regulations 40 CFR, Parts 100-149, 1993.

GEOLABS, INC. 45 JOHNSON LANE BRAINTREE, MA 02184 M-MA015

LIMITATIONS & EXCLUSIONS

All the professional opinions presented in this report are based solely on the scope of work conducted and sources referred to in our report. The data presented by GeoLabs in this report was collected and analyzed using generally accepted industry methods and practices at the time the report was generated. This report represents the conditions, locations and materials that were observed at the time the work was conducted. No inferences regarding other conditions, locations or materials, at a later or earlier time may be made based on the contents of the report. No other warranty, express or implied is made.

This report was prepared for the sole use of our client. Portions of the report may not be used independent of the entire report.

All analyses were performed within required holding times, in accordance with EPA protocols and using accepted QA/QC procedures. All QA/QC meets acceptable limits unless otherwise noted. The information contained in this report is, to the best of my knowledge, accurate and complete.

Any and all subsequent pages of this report are chain(s) of custody.

GeoLal	-			_		Turnaround Time RUSH: 24hrs STANDARD:						Pageof SPECIAL INSTRUCTIONS										
Environn 45 Johnso Braintree, Phone: 78 Fax: 78	on Lan MA 02	e 2184 7844	orato	ries 				48hrs 72hrs			Ru	5 Days			S	PECIA	AL IN	SIRUC	JIION	<u> S</u>		
Client: Address: Phone: Fax:	11 Che	3700 Jsee 61=	edu M	1A 02 60 111	150 7		Project Number: Martly Rend by Effluent Project Location: Chelse, MA Purchase Order #:															
Contact:				Patel		_	cted E			AP-	etel					NACS	(0.50)	25011				
E-mail:	Γ			T		CON	TAINER	1	T	T	r	T		T	- ^	NALY T	SES	REQU T	ESTE	D T		
SAMPLE ID	D A T E	T M E	S A M P L E D		MPLE ATION	T Y P E	Q U A N T	M A T R I	C O M P	G R A B	P R E S	GEOLABS SAMPLE NUMBER	PAHS (TOTAL)	Naphthalen	Hdl	Bengen	BVEX	MTGE			TEMPERATURE	L A B P H
RMS-1	25/04	9:00 AM	M	Remed.	Effluent	A	1	GW		V		\	V	1							50	7
	2/25/04		AP	· ·	.1	A	1	GW		V		1145768			1	ļ i						12
	2/25/04	72. 44	A C		1	V	2	GW		V						√	√	Y			Ψ	
CONTAINE	R CODI	ES:		MATRIX	CODES:		PRES	ERVATI	VE C	ODE	s:	Relinquished By:	,	ate/Tii		Rece	ived l	Ву;		Date/		:
A = Amber				1	ound Wat		1 = H		7 =	CE		Som	2/25		11a	120	m		<u>nd.</u>	25-		
B = Bag					astewater		2 = H	-				Relinguished By:	2-23	- 0 y	í -	Rece	ived L	3 <i>y:</i>		10	3/	
G = Glass P = Plastic				SL = Slu	inking Wa dae	ıer	3 = H ₂	₂ SO ₄ a ₂ S ₂ O ₃				Centrollino		1 Ph	7							
S = Summa		ster		S = Soil	age A = Ai	r	5 = N					Relinquished By:				\ 3		_	oLabs ⊋-⊋:		300)
O = Other				O = Oil	OT = 0		6 = M					G	EOL	ABS	СНА		F CL			707		
	······································	 -					<u> </u>															

ATTACHMENT B SUMMARY OF GROUND WATER MONITORING DATA (2003 TO 2004)

CHELSEA SANDWICH, LLC
NPDES PERMIT NO. MA0003280

GeoLabs, Inc.

Environmental Laboratories

LABORATORY REPORT

PREPARED FOR:

Chelsea Terminal 11 Broadway Chelsea, MA 02150

Attn: Ashwin Patel

PROJECT ID:

Remedial System

Chelsea, MA

GEOLABS CERTIFICATION #:

M-MA015

SAMPLE NUMBER:

147077

DATE PREPARED:

April 1, 2004

PREPARED BY:

Christine Johnson

APPROVED BY:

Jim Chen, Laboratory Director

Location:

45 Johnson Lane

Braintree, MA 02184

Phone: (781) 848-7844

Fax: (781) 848-7811

1 of 6

CLIENT NAME:

CHELSEA TERMINAL

SAMPLE TYPE:

COLLECTION DATE: REC'D BY LAB:

03/25/04

COLLECTED BY: PRESERVATIVE: **GROUNDWATER**

03/25/04

CLIENT

SULFURIC ACID

PROJECT ID:

REPORT DATE:

04/01/04

CL

ANALYZED BY: ANALYSIS DATE:

03/29/04

EXTRACTION DATE: 03/26/04

TOTAL PETROLEUM HYDROCARBONS

SAMPLE **NUMBER**

SAMPLE **LOCATION**

TPH (mg/L) **DETECTION LIMIT** (mg/L)

REMEDIAL SYSTEM

147077

REMEDIAL SYS.

ND

0.20

ND = NOT DETECTED

Method Reference:

EPA Method

8100 (1)

Modified

1) U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1986, 3rd Edition.

CLIENT NAME:

CHELSEA TERMINAL

SAMPLE TYPE:

GROUNDWATER

COLLECTION DATE: REC'D BY LAB:

03/25/04 03/25/04

COLLECTED BY: CLIENT

PRESERVATIVE:

HYDROCHLORIC ACID

PROJECT ID:

REMEDIAL SYSTEM

REPORT DATE: ANALYZED BY:

04/01/04 ZYZ

ANALYSIS DATE:

03/27/04

EXTRACTION DATE: N/A

VOLATILE AROMATIC COMPOUNDS

SAMPLE NUMBER: SAMPLE LOCATION: 147077

REMEDIAL SYS.

	RESULTS (μg/L)	DETECTION LIMIT (μg/L)
Naphthalene	ND	20.0
Methyl tert-butyl ether	ND	5.00
Benzene	ND	5.00
Toluene	ND	5.00
Chlorobenzene	ND	5.00
Ethylbenzene	ND	5.00
Xylenes	ND	5.00
1,2-Dichlorobenzene	ND	5.00
1,3-Dichlorobenzene	ND	5.00
1,4-Dichlorobenzene	ND	5.00

ND = NOT DETECTED

Method Reference:

EPA Method

602 by 624 (1) GC/MS

1) Code of Federal Regulations 40 CFR, Parts 100-149, 1993.

CLIENT NAME:

CHELSEA TERMINAL

PROJECT ID: REMEDIAL SYSTEM

SAMPLE TYPE:

GROUNDWATER

04/01/04

COLLECTION DATE: REC'D BY LAB:

03/25/04 03/25/04 RD

COLLECTED BY: PRESERVATIVE: CLIENT N/A

ANALYSIS DATE: 03/31/04 EXTRACTION DATE: 03/29/04

REPORT DATE:

ANALYZED BY:

POLYNUCLEAR AROMATIC HYDROCARBONS

SAMPLE NUMBER:

147077

SAMPLE LOCATION: REMEDIAL SYS.

	RESULTS (μg/L)	DETECTION LIMIT (μg/L)
Naphthalene	ND	0.750
2-Methylnaphthalene	ND	0.750
Acenaphthylene	ND	0.250
Acenaphthene	NÐ	0.500
Fluorene	ND	0.500
Phenanthrene	ND	0.500
Anthracene	ND	0.500
Fluoranthene	ND	0.500
Pyrene	ND	1.25
Benz[a]Anthracene	ND	0.500
Chrysene	ND	0.500
Benzo[b]Fluoranthene	ND	0.500
Benzo[k]Fluoranthene	ND	1.00
Benzo[a]Pyrene	ND	0.200
Indeno[1,2,3-Cd]Pyrene	ND	0.500
Dibenzo[a,h]Anthracene	ND	0.500
Benzo[g,h,i]Perylene	ND	1.00

ND = NOT DETECTED

Method Reference:

EPA Method

8270C(1)

1) U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1998 3rd Edition.

GEOLABS, INC. 45 JOHNSON LANE BRAINTREE, MA 02184 M-MA015

LIMITATIONS & EXCLUSIONS

All the professional opinions presented in this report are based solely on the scope of work conducted and sources referred to in our report. The data presented by GeoLabs in this report was collected and analyzed using generally accepted industry methods and practices at the time the report was generated. This report represents the conditions, locations and materials that were observed at the time the work was conducted. No inferences regarding other conditions, locations or materials, at a later or earlier time may be made based on the contents of the report. No other warranty, express or implied is made.

This report was prepared for the sole use of our client. Portions of the report may not be used independent of the entire report.

All analyses were performed within required holding times, in accordance with EPA protocols and using accepted QA/QC procedures. All QA/QC meets acceptable limits unless otherwise noted. The information contained in this report is, to the best of my knowledge, accurate and complete.

Any and all subsequent pages of this report are chain(s) of custody.

GeoLa	bs. Ir	nc.			-			Tur	nar	والاو	(e)	ime					Page		of	_		
Environn 45 Johnse Braintree Phone: 78	<i>nental</i> on Lan , MA 02	<i>Lab</i> e 2184 7844		ries		RUS	iH;	24hrs 48hrs 72hrs			Rus	ANDARD: 5 Dayssh proved By:			Si	PECIA	L INS	TRUC	CTION	S		e e
Client: Address:	11	BR	AD G	Rai, NA SA? , MA		Proje Proje	Project Number: GW/Si/ Remeder/ Sys Project Location: Chelica															
Phone:				1117				order #:	•		,											
Fax: Contact:			60	Pate/			nase C cted B		A				ł									
E-mail:		73 70	310)	<i>[2]e/</i>		1000	oteu L	· y ·		<u> </u>				-	Α	NALY	SES I	REQU	ESTE	D		
	CO	LEC	TION			CONT	TAINER	1							(P)	ч	3				RE	
SAMPLE ID	E	T I M E	A M P L E D		MPLE ATION	T Y P E	Q U A N T	M A T R I	C O M P	G R A B	P R E S	GEOLABS SAMPLE NUMBER	BTEX	MTBE	TPH Clotel	PATE	Napht he				TEMPERATURE	L A B P H
032504/ Væ	3/20/04	175	N	Remedia	1 Su	V	2	GW		~			1	√							100	*********
0 250 4/	7/25/04	11:24	op	u	L	A	1	GU		5		147077			1							
greet pan,	2/25/1L	11.30	Ar	LC .	ι	A	1	44		V					·	*	V				¥	
CONTAINE	R COD	ES:		MATRIX	CODES:	1	PRES	ERVATI	VE C	ODE:	S:	Relinquished By:	Dá	ate/Tir	ne	Rece	i¥jed,i	3/1/-	<u> </u>	Date/	Time);
A = Amber	-			GW = G	ound Wat	er	1 = H	CI	7 = 1	CE		(All)	h	251		Der	Mr Z	lur	<u>~3</u>	25/	<u>94</u>	
B = Bag					astewater		2 = H	_				Relinquished By:	3/2	5/64	/	Rece	ived l	3 <i>y∶</i>	,	12:	5/	
G = Glass				1	inking Wa	ter	3 = H					Cen Walan		ý pr	2					100	<u></u>	
? = Plastic S = Summ		ster		SL = Slu S = Soil	dge A = Aiı	r	4 = Na 5 = Na	a ₂ S ₂ O ₃ aOH				Relinquished By:	,							s: \60 -25		ı
O = Other				O = Oil	OT = 0		6 = M					G	EOL	ABS	СНА	INO	F Cl	ISTO	DY			de la constante de la constant

ATTACHMENT B SUMMARY OF GROUND WATER MONITORING DATA (2003 TO 2004)

CHELSEA SANDWICH, LLC
NPDES PERMIT NO. MA0003280

GeoLabs, Inc.

Environmental Laboratories

LABORATORY REPORT

PREPARED FOR:

Chelsea Terminal 11 Broadway Chelsea, MA 02150

Attn: Ashwin Patel

PROJECT ID:

Chelsea, MA

GEOLABS CERTIFICATION #:

M-MA015

SAMPLE NUMBER:

147081 - 147082

DATE PREPARED:

April 1, 2004

PREPARED BY:

Christine Johnson

APPROVED BY:

Jim Chen, Laboratory Director

Fax: (781) 848-7811

CLIENT NAME:

CHELSEA TERMINAL

SAMPLE TYPE:

GROUNDWATER

COLLECTION DATE: REC'D BY LAB:

03/25/04

COLLECTED BY:

03/25/04 CLIENT PROJECT ID:

REPORT DATE:

CHELSEA 04/01/04

ANALYZED BY:

ANALYSIS DATE:

SB 03/25/04

ANALYSIS TIME:

16:40

рΗ

SAMPLE NUMBER SAMPLE LOCATION

pH (S.U.)

147081

032504/pH1

6.7

147082

032504/pH2

6.6

Method Reference:

EPA Method

150.1 (1)

1) U.S. EPA 1983. "Methods for Chemical Analysis of Water and Wastes." EPA-600/4-79-020, EPA, EMSL, Cincinnati, Ohio 45268.

CLIENT NAME:

CHELSEA TERMINAL

SAMPLE TYPE:

GROUNDWATER

COLLECTION DATE: REC'D BY LAB:

03/25/04

COLLECTED BY:

03/25/04

PRESERVATIVE: N/A

CLIENT

PROJECT ID:

REPORT DATE:

04/01/04

ANALYZED BY:

RP

ANALYSIS DATE:

03/26/04

CHELSEA

TURBIDITY

SAMPLE NUMBER

SAMPLE **LOCATION** **TURBIDITY** (N.T.U.)

DETECTION LIMIT (N.T.U.)

147081 *

032504/TU1

319

0.544

147082

032504/TU2

1.19

0.0544

ND= NOT DETECTED

* 10x dilution

Method Reference:

EPA Method

180.1 (1)

1) U.S. EPA 1983. "Methods for Chemical Analysis of Water and Wastes." EPA-600/4-79-020, EPA, EMSL, Cincinnati, Ohio 45268.

CLIENT NAME:

CHELSEA TERMINAL

SAMPLE TYPE:

GROUNDWATER

COLLECTION DATE: REC'D BY LAB:

03/25/04 03/25/04

COLLECTED BY: PRESERVATIVE:

CLIENT NITRIC ACID PROJECT ID:

REPORT DATE:

ANALYZED BY: ANALYSIS DATE: 04/01/04 QS/GP 03/30/04

CHELSEA

DIGESTION DATE:

03/30/04

HARDNESS

SAMPLE NUMBER

SAMPLE **LOCATION** **HARDNESS mg EQUIVALENT** (CaCO3/L)

DETECTION LIMIT (CaCO3/L)

147081 *

032504/HA1

232

4.0

147082 *

032504/HA2

233

4.0

* 20x dilution

Method Reference:

Standard Method

2340B (1)

1) APHA-AWWA-WPCF "Standard Methods for the Examiniation of Water and Wastewater 1992, 18th Edition.

CLIENT NAME:

CHELSEA TERMINAL

SAMPLE TYPE:

GROUNDWATER

COLLECTION DATE: REC'D BY LAB:

03/25/04 03/25/04

COLLECTED BY: PRESERVATIVE: CLIENT

NITRIC ACID

PROJECT ID:

REPORT DATE:

04/01/04 QS/GP

ANALYZED BY: ANALYSIS DATE:

03/30/04

CHELSEA

DIGESTION DATE:

03/30/04

TOTAL IRON

SAMPLE NUMBER

SAMPLE **LOCATION** **TOTAL IRON** (mg/L)

DETECTION LIMIT (mg/L)

147081 *

032504/FE1

23.2

1.20

147082 *

032504/FE2

ND

1.20

ND = NOT DETECTED

* 20x dilution

Method Reference:

EPA Method

3010A (1) Metal Preparation

EPA Method

6010B (1) Inductively Coupled Plasma

1) U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1997, 3rd Edition.

GEOLABS, INC. 45 JOHNSON LANE BRAINTREE, MA 02184 M-MA015

LIMITATIONS & EXCLUSIONS

All the professional opinions presented in this report are based solely on the scope of work conducted and sources referred to in our report. The data presented by GeoLabs in this report was collected and analyzed using generally accepted industry methods and practices at the time the report was generated. This report represents the conditions, locations and materials that were observed at the time the work was conducted. No inferences regarding other conditions, locations or materials, at a later or earlier time may be made based on the contents of the report. No other warranty, express or implied is made.

This report was prepared for the sole use of our client. Portions of the report may not be used independent of the entire report.

All analyses were performed within required holding times, in accordance with EPA protocols and using accepted QA/QC procedures. All QA/QC meets acceptable limits unless otherwise noted. The information contained in this report is, to the best of my knowledge, accurate and complete.

Any and all subsequent pages of this report are chain(s) of custody.

GeoLa	bs, lı	nc.			Turnaround Time							Pageof SPECIAL INSTRUCTIONS										
Environn 45 Johns Braintree Phone: 78 Fax: 78	on Lar , MA 0	ne 2184 -7844		ries	RU	SH:	24hrs 48hrs 72hrs			Ru	ANDARD: 5 Dayssh sh proved By:		100-1	S	SPECIA	AL IN	STRU	CTION	18			
Client: Address: Phone: Fax: Contact: E-mail:	11 CH 613	BRG ELGG	200) EA 660 660	ERMINAL 1887 NA 02150 1117 1140	Project Number: GW/Sock Remedial Sys Project Location: CHELSER MA Purchase Order #: Verbel Collected By: AP.							ANALYSES REQUESTED										
SAMPLE ID	D	T I M E	TION S A M P L E	SAMPLE LOCATION	T Y P E	Q U A N T	M A T R I	C O M P	G R A B	P R E S	GEOLABS SAMPLE NUMBER	Fe G	Hardness	→	40					TEMPERATURE	L A B P H	
032504/	2/25 /04	11:30	Ago	Remedial Sign (IN)	P	1	Ogl		V			~	V				1	1	<u>† </u>	1P		
/FeU											147081		1							Ш		
032504/TW	t.	u	i	b	P	ŧ	4W		~					~	V					\prod		
03/2504/	,	4		٧	р	1	GW		V		147082	1	V									
(Fe(2)	8	ð	u		r	,	CM		V		7			~	~					1		
CONTAINEI A = Amber		ES:		MATRIX CODES: GW = Ground Wate	er	PRES	L ERVATI CI	VE C		S:	Relinquished By:	Dá	ite/Tir	ne	Rece	iyed I	By: Der	w.	Date/	Time 10 Y	 ÿ	
B = Bag				ww = Wastewater		2 = HI	-				Relinguished By:	3/2		/	Rece			/		3 .3	2	
G = Glass				DW = Drinking Wat	er	3 = H ₂					Ken William	, (IrV	つ	 							
P = Plastic				SL = Sludge		4	a ₂ S ₂ O ₃			,	Relinquished By:	•					By Ge			660		
S = Summa				S = Soil A = Air		5 = Na		-				F 61	A D.C.	Ć I I A	<u> 20</u>	بخج	<u> </u>	3-	3 5-	0-1		
O = Other	V = V	AC		O = Oil OT = Ot	her	6 = M	eOH				G	GEOLABS CHAIN OF CUSTODY										

.

ATTACHMENT B SUMMARY OF GROUND WATER MONITORING DATA (2003 TO 2004)

CHELSEA SANDWICH, LLC
NPDES PERMIT NO. MA0003280

GeoLabs, Inc.

Environmental Laboratories

LABORATORY REPORT

PREPARED FOR:

Chelsea Terminal 11 Broadway Chelsea, MA 02150

Attn: Ashwin Patel

PROJECT ID:

Remedial System

Chelsea

GEOLABS CERTIFICATION #:

M-MA015

SAMPLE NUMBER:

148357

DATE PREPARED:

May 4, 2004

PREPARED BY:

Christine Johnson

APPROVED BY:

Jim Chen, Laboratory Director

En Cha

Location: 45 Johnson Lane

Braintree, MA 02184

Phone: (781) 848-7844

1 of 6

Fax: (781) 848-7811

CLIENT NAME: SAMPLE TYPE: **CHELSEA TERMINAL**

GROUNDWATER

COLLECTION DATE: REC'D BY LAB: **COLLECTED BY:**

04/27/04 04/27/04

PRESERVATIVE:

CLIENT

SULFURIC ACID

PROJECT ID:

REMEDIAL SYSTEM

REPORT DATE: 05/04/04

ANALYZED BY: CG

04/29/04

ANALYSIS DATE: EXTRACTION DATE: 04/28/04

TOTAL PETROLEUM HYDROCARBONS

SAMPLE **NUMBER**

SAMPLE **LOCATION**

TPH (mg/L) **DETECTION LIMIT** (mg/L)

148357

REMEDIAL SYS.

ND

0.20

ND = NOT DETECTED

Method Reference:

EPA Method

8100 (1)

Modified

1) U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1986, 3rd Edition.

CLIENT NAME:

CHELSEA TERMINAL

SAMPLE TYPE:

GROUNDWATER

COLLECTION DATE: 04/27/04 REC'D BY LAB:

04/27/04

COLLECTED BY:

CLIENT

PRESERVATIVE:

HYDROCHLORIC ACID

PROJECT ID:

05/04/04

REMEDIAL SYSTEM

REPORT DATE: ANALYZED BY:

ZYZ

ANALYSIS DATE:

04/29/04

EXTRACTION DATE: N/A

VOLATILE AROMATIC COMPOUNDS

SAMPLE NUMBER: SAMPLE LOCATION: 148357

REMEDIAL SYS.

	RESULTS (μg/L)	DETECTION LIMIT (μg/L)
Naphthalene	ND	20.0
Methyl tert-butyl ether	ND	5.00
Benzene	ND	5.00
Toluene	ND	5.00
Chlorobenzene	ND	5.00
Ethylbenzene	ND	5.00
Xylenes	ND	5.00
1,2-Dichlorobenzene	ND	5.00
1,3-Dichlorobenzene	ND	5.00
1,4-Dichlorobenzene	ND	5.00

ND = NOT DETECTED

Method Reference:

EPA Method

602 by 624 (1) GC/MS

¹⁾ Code of Federal Regulations 40 CFR, Parts 100-149, 1993.

CLIENT NAME:

CHELSEA TERMINAL

GROUNDWATER

REMEDIAL SYSTEM

SAMPLE TYPE:

COLLECTION DATE: 04/27/04

REC'D BY LAB:

04/27/04 CLIENT REPORT DATE: 05/04/04 ANALYZED BY: RD

ANALYSIS DATE:

PROJECT ID:

04/29/04

COLLECTED BY: PRESERVATIVE:

N/A

EXTRACTION DATE: 04/28/04

POLYNUCLEAR AROMATIC HYDROCARBONS

SAMPLE NUMBER: SAMPLE LOCATION:

148357 REMEDIAL SYS.

·	RESULTS (μg/L)	DETECTION LIMIT (μg/L)
Naphthalene	ND	0.750
2-Methylnaphthalene	ND	0.750
Acenaphthylene	ND	0.250
Acenaphthene	ND	0.500
Fluorene	ND	0.500
Phenanthrene	ND	0.500
Anthracene	. ND	0.500
Fluoranthene	ND	0.500
Pyrene	ND	1.25
Benz[a]Anthracene	ND	0.500
Chrysene	ND	0.500
Benzo[b]Fluoranthene	ND	0.500
Benzo[k]Fluoranthene	ND	1.00
Benzo[a]Pyrene	ND	0.200
Indeno[1,2,3-Cd]Pyrene	ND	0.500
Dibenzo[a,h]Anthracene	ND	0.500
Benzo[g,h,i]Perylene	ND	1.00

ND = NOT DETECTED

Method Reference:

EPA Method

8270C (1)

¹⁾ U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1998 3rd Edition.

GEOLABS, INC. 45 JOHNSON LANE BRAINTREE, MA 02184 M-MA015

LIMITATIONS & EXCLUSIONS

All the professional opinions presented in this report are based solely on the scope of work conducted and sources referred to in our report. The data presented by GeoLabs in this report was collected and analyzed using generally accepted industry methods and practices at the time the report was generated. This report represents the conditions, locations and materials that were observed at the time the work was conducted. No inferences regarding other conditions, locations or materials, at a later or earlier time may be made based on the contents of the report. No other warranty, express or implied is made.

This report was prepared for the sole use of our client. Portions of the report may not be used independent of the entire report.

All analyses were performed within required holding times, in accordance with EPA protocols and using accepted QA/QC procedures. All QA/QC meets acceptable limits unless otherwise noted. The information contained in this report is, to the best of my knowledge, accurate and complete.

Any and all subsequent pages of this report are chain(s) of custody.

GeoLal	bs, Ir	nc.	******		#10 - 72 - 72 - 72 - 72 - 72 - 72 - 72 - 7		The second section of the second	V . C. M	our	in the same and the	ime					Page		of			
Environn 45 Johnso Braintree, Phone: 78 Fax: 78	on Lan MA 02	e 2184 7844		ries	RUS	SH4	24hrs 48hrs 72hrs	e de la companya de l		Rus	ANDARD: 5 Days V sh proved By:			S	<u>PECIA</u>	AL INS	STRUC	CTION	<u>S</u>		
Client: Address: Phone: Fax: Contact:	CHE	BRO LSA E17	1404 4 M 66	A-02150	Proje	Project Number: GW/Stail Remedica Sup Project Location: CHELSER Purchase Order #: VERSAL Collected By:									·						
E-mail:	I				1		T	1	T	_	T	 	Т		,	SES I	REQU	ESTE	D T		
SAMPLE ID	D A T E	T I M E	S A M B P L E D	SAMPLE LOCATION	T Y P E	Q U A N T	M A T R I	C O M P	G R A B	P R E S	GEOLABS SAMPLE NUMBER	BTER	MTBE	TPH (TOTAL)	l '	Nexp Herr				TEMPERATURE	L A B P H
042704/Voc	4/27/	9:30	AP	Remad Sys	V	Z	GW		V			V	V							11,6	
047704/ 1P4	4	u	a	es es	A	2	.,	1	¥		148357			V	1						
PAL	4	4	,	4	٩	4	٩				/				V	~				V	
CONTAINE A = Amber		ES:		MATRIX CODES: GW = Ground Wat	er	PRES 1 = H	L ERVATI CI	VE C		S:	Relinguished By:		ate/Tii			ived I	17/4	114-	Date/	76	7
B = Bag				WW = Wastewater		2 = H	-				Relinguished By:	4/2	7/5		Rece	ived l	By:	-	'/	3.6	ð
G = Glass				DW = Drinking Wa	ter .	3 = H				/	len n Here	·	#:1	10	<u> </u>					-4 - X	
P = Plastic S = Summ		ster		SL = Sludge S = Soil A = Ai	r	4 = N 5 = N	a₂S₂O₃ aOH				Relinquished By:							oLabs	, ,	34C	>
O = Other				O = Oil OT = C		6 = M			GEOLABS CHAIN OF CUSTODY						_,						

.

ATTACHMENT B SUMMARY OF GROUND WATER MONITORING DATA (2003 TO 2004)

CHELSEA SANDWICH, LLC
NPDES PERMIT NO. MA0003280

GeoLabs, Inc.

Environmental Laboratories

LABORATORY REPORT

PREPARED FOR:

Chelsea Terminal 11 Broadway Chelsea, MA 02150

Attn: Ashwin Patel

PROJECT ID:

Remedial Systems

Chelsea, MA

GEOLABS CERTIFICATION #:

M-MA015

SAMPLE NUMBER:

149649

DATE PREPARED:

June 4, 2004

PREPARED BY:

Christine Johnson

APPROVED BY:

Jim Chen, Laboratory Director

Location: 45 Johnson Lane

Braintree, MA 02184

Phone: (781) 848-7844

Fax: (781) 848-7811

CLIENT NAME:

CHELSEA TERMINAL

PROJECT ID: REPORT DATE: REMEDIAL SYSTEMS

SAMPLE TYPE:

GROUNDWATER

ANALYZED BY:

06/04/04

REC'D BY LAB:

COLLECTION DATE:

05/28/04 06/01/04

CL 06/02/04

COLLECTED BY:

CLIENT

ANALYSIS DATE:

PRESERVATIVE:

SULFURIC ACID

EXTRACTION DATE:

06/01/04

TOTAL PETROLEUM HYDROCARBONS

SAMPLE **NUMBER**

SAMPLE **LOCATION**

TPH (mg/L) **DETECTION LIMIT** (mg/L)

149649

REMEDIAL SYSTEMS

ND

0.20

ND = NOT DETECTED

Method Reference:

EPA Method

8100 (1)

Modified

1) U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1986, 3rd Edition.

CLIENT NAME:

CHELSEA TERMINAL

SAMPLE TYPE:

GROUNDWATER

COLLECTION DATE: REC'D BY LAB:

05/28/04 06/01/04

COLLECTED BY:

06/01/04 CLIENT

PRESERVATIVE:

HYDROCHLORIC ACID

PROJECT ID:

REMEDIAL SYSTEMS

REPORT DATE:

06/04/04

ANALYZED BY:

ZYZ

ANALYSIS DATE:

06/03/04

EXTRACTION DATE: N/A

VOLATILE AROMATIC COMPOUNDS

SAMPLE NUMBER:

149649

SAMPLE LOCATION:

REMEDIAL SYSTEMS

	RESULTS (μg/L)	DETECTION LIMIT (μg/L)
Naphthalene	ND	20.0
Methyl tert-butyl ether	ND	5.00
Benzene	ND	5.00
Toluene	ND	5.00
Chlorobenzene	ND	5.00
Ethylbenzene	ND	5.00
Xylenes	ND	5.00
1,2-Dichlorobenzene	ND	5.00
1,3-Dichlorobenzene	ND	5.00
1,4-Dichlorobenzene	ND	5.00
Surrogate Recoveries: dibromofluoromethane 1,2-Dichloroethane toluene-d8 BFB	102% 90% 101% 96%	

ND = NOT DETECTED

Method Reference:

EPA Method

602 by 624 (1) GC/MS

¹⁾ Code of Federal Regulations 40 CFR, Parts 100-149, 1993.

CLIENT NAME:

CHELSEA TERMINAL

PROJECT ID:

REMEDIAL SYSTEMS

SAMPLE TYPE:

GROUNDWATER

REPORT DATE: ANALYZED BY:

06/04/04

COLLECTION DATE: REC'D BY LAB:

05/28/04 06/01/04

ANALYSIS DATE:

06/01/04

rd

COLLECTED BY: PRESERVATIVE: CLIENT N/A

EXTRACTION DATE: 06/01/04

POLYNUCLEAR AROMATIC HYDROCARBONS

SAMPLE NUMBER:

149649

SAMPLE LOCATION:

REMEDIAL SYSTEMS

	RESULTS (μg/L)	DETECTION LIMIT (μg/L)
Naphthalene	ND	0.750
2-Methylnaphthalene	ND	0.750
Acenaphthylene	ND	0.250
Acenaphthene	ND	0.500
Fluorene	ND	0.500
Phenanthrene	ND	0.500
Anthracene	ND	0.500
Fluoranthene	ND	0.500
Pyrene	ND	1.25
Benz[a]Anthracene	ND	0.500
Chrysene	ND	0.500
Benzo[b]Fluoranthene	ND	0.500
Benzo[k]Fluoranthene	ND	1.00
Benzo[a]Pyrene	ND	0.200
Indeno[1,2,3-Cd]Pyrene	ND	0.500
Dibenzo[a,h]Anthracene	ND	0.500
Benzo[g,h,i]Perylene	ND	1.00
e e		

ND = NOT DETECTED

Method Reference:

EPA Method

8270C (1)

1) U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1998 3rd Edition.

GEOLABS, INC. 45 JOHNSON LANE BRAINTREE, MA 02184 M-MA015

LIMITATIONS & EXCLUSIONS

All the professional opinions presented in this report are based solely on the scope of work conducted and sources referred to in our report. The data presented by GeoLabs in this report was collected and analyzed using generally accepted industry methods and practices at the time the report was generated. This report represents the conditions, locations and materials that were observed at the time the work was conducted. No inferences regarding other conditions, locations or materials, at a later or earlier time may be made based on the contents of the report. No other warranty, express or implied is made.

This report was prepared for the sole use of our client. Portions of the report may not be used independent of the entire report.

All analyses were performed within required holding times, in accordance with EPA protocols and using accepted QA/QC procedures. All QA/QC meets acceptable limits unless otherwise noted. The information contained in this report is, to the best of my knowledge, accurate and complete.

Any and all subsequent pages of this report are chain(s) of custody.

GeoLabs, Inc.	Turnaround Time RUSH: 24hrs STANDARD: 48hrs Standard: 5 Days 72hrs Rush Approved By			Pageof SPECIAL INSTRUCTIONS Pl. attacket @Afac info to the report - FIELL Make ale		
Environmental Laboratories 45 Johnson Lane Braintree, MA 02184 Phone: 781-848-7844 Fax: 781-848-7811						
Client: CHELSEA TERMINAL Address: 1/ BROADWAY CHELSEA MA 02150 Phone: 617 660 1117 Fax: 617 660 1140 Contact: ASKNIN PASEL	Project Number: Project Location: Purchase Order # Collected By:	CHELSE	a m	rendon	ANALYSES REQUES	
SAMPLE A I B B SAMPLE LOCATION E E D	CONTAINER T Q M Y A P N I T X	C G P O R R M A E P B S	SAMPLE	BEEX MTSE TPH (FOL. 1)	4	TEMPERATURE
SS 280 you Stepley 9:00 AP Remodel Go. Sep 85 280 your Stepley 9:00 AF Remodel Go. Sep 85 280 your Stepley 9:00 AF Remodel Go. Sep	V 2 4N A 2 4N A 2 41		149649			
CONTAINER CODES: A = Amber B = Bag MATRIX CODES: GW = Ground Wa WW = Wastewate	r 2 = HNO ₃	VE CODES: 7 = ICE	Refinguished By: Refinguished By:	1-1-04 10:30	Received By: Received By:	Date/Time: _[/0//64
G = Glass DW = Drinking Wa P = Plastic SL = Sludge S = Summa Canister S = Soil A = A O = Other V = VOA O = Oil OT = O	$4 = Na_2S_2O_3$ ir $5 = NaOH$	4 = Na ₂ S ₂ O ₃ 5 = NaOH		EOLABS CH	Received By GeoLabs: DUS	

•

ATTACHMENT B SUMMARY OF GROUND WATER MONITORING DATA (2003 TO 2004)

CHELSEA SANDWICH, LLC
NPDES PERMIT NO. MA0003280

GeoLabs, Inc.

Environmental Laboratories

LABORATORY REPORT

PREPARED FOR:

Chelsea Terminal 11 Broadway Chelsea, MA 02150

Attn: Ashwin Patel

PROJECT ID:

EPA 40CFR 423-APP-A-TEST

Chelsea Terminal

GEOLABS CERTIFICATION #:

M-MA015

SAMPLE NUMBER:

150584

DATE PREPARED:

June 28, 2004

PREPARED BY:

Jennifer McAlpine

APPROVED BY:

Jim Chen, Laboratory Director

Location: 45 Johnson Lane

Braintree, MA 02184

Phone: (781) 848-7844

Fax: (781) 848-7811

GeoLabs, Inc.

Environmental Laboratories

Case Narrative

Project ID: EPA40CFR
Client Name: Chelsea Sandwich

Sample Number: 150584 Received: 06/30/04

Physical Condition of Samples

This project was received by the laboratory in satisfactory condition. The sample(s) were received undamaged, in appropriate containers with the correct preservation.

Project Documentation

This project was accompanied by satisfactory Chain of Custody documentation. The sample container label(s) agreed with the Chain of Custody.

Analysis of Sample(s)

No analytical anomalies or non-conformances were noted by the laboratory during the processing of these sample(s).

CLIENT NAME:

CHELSEA

SAMPLE TYPE: COLLECTION DATE:

WATER

REC'D BY LAB: COLLECTED BY: PRESERVATIVE: 6/14/04 6/14/04 CLIENT NITRIC ACID PROJECT ID: REPORT DATE: EPA40CFR 6/28/04 QS/GP

ANALYZED BY: ANALYSIS DATE:

SEE BELOW

DIGESTION DATE:

SEE BELOW

TOTAL METALS

SAMPLE NUMBER:

150584

SAMPLE LOCATION: GW/SOIL REMED SYS

	RESULTS (mg/L)	DETECTION LIMIT (mg/L)	DIGESTION DATE	ANALYSIS DATE
ANTIMONY	ND	0.05	6/15/04	6/16/04
ARSENIC	ND	0.05	6/15/04	6/16/04
BERYLLIUM	ND	0.00	6/15/04	6/16/04
CADMIUM	ND	0.01	6/16/04	6/16/04
CHROMIUM	· ND	0.06	6/15/04	6/16/04
COPPER	ND	0.01	6/15/04	6/16/04
LEAD	ND	0.01	6/15/04	6/16/04
MERCURY	ND	0.00	6/29/04	6/29/04
NICKEL	. ND	0.01	6/29/04	6/16/04
SELENIUM	· ND	0.05	6/29/04	6/16/04
SILVER	ND	0.01	6/29/04	6/16/04
THALLIUM	ИĎ	0.20	6/29/04	6/16/04
ZINC	ND	0.10	6/29/04	6/16/04

ND = NOT DETECTED

Method Reference:

EPA Method

3010A (1) Metal Preparation

EPA Method

6010B (1) Inductively Coupled Plasma

EPA Metnod

245.1 (2) Manual Cold Vapor (Mercury)

¹⁾ U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1986, 3rd Edition.

²⁾ U.S. EPA 1994. "Methods for the Determination of Metals in Environmental Samples",-Supplement I-EPA/600/R-94-111-May 1994. 3 of 20

CLIENT NAME: SAMPLE TYPE: CHELSEA WATER PROJECT ID:

EPA40CFR

REPORT DATE:

6/28/04

METALS QC

		Spike	
	Blank	% Rec.	Limits
Mercury	ND	97%	80-120%
Thallium	IND CO	82%	80-120%
Arsenic	ND	89%	80-120%
	ar all tayet any	en en de tra estados. Como maio en acesar en a	
Selenium	ND.	92%	80-120%
		30 V V V V V V V V V V V V V V V V V V V	
Zinc	ND	93%	80-120%
	The State of the S		
Antimony	ND	88%	80-120%
Chromium	ND	91%	80-120%
	- are not contain		
Cadmium	ND	87%	80-120%
1	N. 15		00.4000/
Lead	ND	91%	80-120%
Nickel	ND	91%	80-120%
HORE		7.000	00-12070
Beryllium	ND	90%	80-120%
		N	20 100 10
Copper	a and a	-88%	80-120%
	A CONTRACT OF THE SECOND	A 100 CO	
Silver	75. Att ND:	86%	80-120%

CLIENT NAME:

CHELSEA TERMINAL

SAMPLE TYPE: COLLECTION DATE:

GROUNDWATER

REC'D BY LAB:

06/14/04 06/14/04

COLLECTED BY: CLIENT

PRESERVATIVE:

SODIUM HYDROXIDE

PROJECT ID:

REPORT DATE:

EPA 40 CFR 06/28/04

ANALYZED BY:

RP

ANALYSIS DATE:

06/16/04

DIGESTION DATE:

N/A

TOTAL CYANIDE

SAMPLE **NUMBER**

SAMPLE LOCATION TOTAL CYANIDE (mg/L)

DETECTION LIMIT (mg/L)

150584

GW/SOIL REMED SYS EF

ND

0.0961

ND = NOT DETECTED

Method Reference:

EPA Method

335.2 (1)

1) U.S. EPA 1983. "Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, EPA, EMSL, Cincinnati, Ohio 45268.

CLIENT NAME:

CHELSEA TERMINAL

SAMPLE TYPE: COLLECTION DATE: 06/14/04

GROUNDWATER

REC'D BY LAB: COLLECTED BY: 06/14/04 CLIENT

PRESERVATIVE:

N/A

PROJECT ID:

EPA40CFR 423

REPORT DATE: ANALYZED BY:

06/28/04

ANALYSIS DATE:

CG

EXTRACTION DATE: 06/15/04

06/17/04

PESTICIDES

SAMPLE NUMBER:

150584

SAMPLE LOCATION:

GW/SOIL REMD SYS EFF

	RESULTS (μg/L)	DETECTION LIMIT (μg/L)
ALDRIN	ND	0.2
a-BHC	ND	0.2
b-BHC	ND	0.2
d-BHC	ND	0.2
g-BHC	ND	0.2
CHLORDANE	ND	0.2
4,4-DDD	ND	0.2
4,4-DDE	ND	0.1
4,4-DDT	ND	0.2
DIELDRIN	ND	0.1
ENDOSULFAN I	ND .	0.1
ENDOSULFAN II	, ND	0.1
ENDOSULFAN SULFATE	ND	0.2
ENDRIN	ND	0.2
ENDRIN ALDEHYDE	ND	0.2
HEPTACHLOR	ND	0.2
HEPTACHLOR EPOXIDE	ND	0.2
METHOXYCHLOR	ND	0.2
TOXAPHENE	ND	0.7
Recovery: (30-150%)		Limit
TCMX Signal 1	60%	30-150%
DCBP Signal 1	72%	30-150%
TCMX Signal 2	76%	30-150%
DCBP Signal 2	88%	30-150%
ND - NOT DETECTED		

ND = NOT DETECTED Method Reference:

EPA Method

8081A (1)

¹⁾ U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1997, 3rd Edition.

CLIENT NAME:

CHELSEA TERMINAL

PROJECT ID:

EPA40CFR 423

SAMPLE TYPE:

GROUNDWATER

REPORT DATE:

06/28/04

COLLECTION DATE: 06/14/04 REC'D BY LAB:

ANALYZED BY:

CG

COLLECTED BY:

06/14/04 CLIENT

ANALYSIS DATE:

06/17/04

PRESERVATIVE:

N/A

EXTRACTION DATE: 06/15/04

PESTICIDE LIQUID QC

			LCS			
	BLANK	MDL μg/L	% Rec.	% Rec.	RPD	Limit
Aldrin	ND	0.2	58	42-122	23.1	30
alpha-BHC	ND	0.2	56	37-134	26.4	30
beta-BHC	ND	0.2	58	17-147	24.2	30
gamma-BHC (indane)	ND	0.2	50	19-140	27.6	30
delta-BHC	ND	0.2	50	32-127	27.6	30
4,4-DDD	ND	0.2	54	31-141	28.6	30
4,4-DDE	ND	0.1	52	30-145	26.7	30
4,4-DDT	ND	0.2	52	25-160	32.3	30
Dieldrin	ND	0.1	56	36-146	27.7	30
Endosulfan I	ND	0.1	58	45-153	24.2	30
Endosulfan II	ND	0.1	56	0-202	27.7	30
Endosulfan sulfate	ND	0.2	56	26-144	25.0	30
Endrin	ND	0.2	58	30-147	24.2	30
Endrin aldehyde	ND	0.2	12	30-150	66.7	30
Heptachlor	ND	0.2	54	34-111	25.8	30
Heptachlorepoxide	ND	0.2	58	37-142	26.9	30
Hexachlorobenzene	ND	0.2	64	30-150	22.2	30
Methoxychlor	ND	0.2	69	30-150	24.9	30

Surrogate (30-150%)	Blank	LCS % Recovery
TCMX SIGNAL 1	80	80%
DCBP SIGNAL 1	102	104%
TCMX SIGNAL 2	68	70%
DCBP SIGNAL 2	106	104%

CLIENT NAME:

CHELSEA TERMINAL

SAMPLE TYPE:

GROUNDWATER

COLLECTION DATE: 06/14/04 REC'D BY LAB: **COLLECTED BY:**

06/14/04 CLIENT

PRESERVATIVE:

N/A

PROJECT ID:

EPA40CFR 423

REPORT DATE: ANALYZED BY:

06/28/04

ANALYSIS DATE:

CG 06/17/04

EXTRACTION DATE: 06/15/04

POLYCHLORINATED BIPHENYLS

SAMPLE NUMBER: SAMPLE LOCATION: 150584

GW/SOIL REMED. SYS EFF

	RESULTS (μg/L)	DETECTION LIMIT (μg/L)
Arochlor 1221	ND	0.30
Arochlor 1232	ND	0.30
Arochlor 1016/1242	ND	0.30
Arochior 1248	ND	0.30
Arochlor 1254	ND.	0.30
Arochlor 1260	ND	0.30
Arochlor 1262	ND	0.30
Arochlor 1268	ND	0.30
Recovery: (30-150%) TCMX Signal 1 DCBP Signal 1 TCMX Signal 2 DCBP Signal 2	52% 52% 52% 58%	Limit 30-150% 30-150% 30-150% 30-150%

ND = NOT DETECTED

Method Reference:

EPA Method

8082 Arochlor (1)

¹⁾ U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1997, 3rd Edition. 8 of 19

PCB WATER MCP QC SHEET

BLANK = ND

MDL = $0.30 \mu g/L$

	LCS %	MS	MSD	% Rec. Limits	RPD	LIMIT
Arochlor 1221	N/A	N/A	N/A	40-140	N/A	50
Arochlor 1232	N/A	N/A	N/A	40-140	N/A	50
Arochlor 1016	65	N/A	N/A	40-140	N/A	50
Arochlor 1248	N/A	N/A	N/A	40-140	N/A	50
Arochlor 1254	N/A	N/A	N/A	40-140	N/A	50
Arochlor 1260	88	WA	N/A	40-140	N/A	50
SURROGATE: (30-150%)	BLANK	LCS				
TCMX SIGNAL 1	56	54				
DCBP SIGNAL 1	73	88				
TCMX SIGNAL 2	56	54				
DCBP SIGNAL 2	84	82				

CLIENT NAME:

CHELSEA TERMINAL

SAMPLE TYPE: COLLECTION DATE: 06/14/04

GROUNDWATER

REPORT DATE: ANALYZED BY:

PROJECT ID:

EPA 40 CFR 423

06/28/04 RD

REC'D BY LAB: **COLLECTED BY:** 06/14/04 **CLIENT**

ANALYSIS DATE:

06/15/04

PRESERVATIVE:

N/A

EXTRACTION DATE: 06/15/04

SEMI-VOLATILE ORGANICS

SAMPLE NUMBER:

150584

SAMPLE LOCATION:

GW/SOIL REMED. SYS EFF

	RESULTS (μg/L)	DETECTION LIMIT (μg/L)
Acenaphthene	ND	0.500
Acenaphthylene	ND	0.250
Acetophenone	ND	0.750
Aniline	ND	2.250
Anthracene	ND	0.500
Azobenzene	ND	5.000
Benzo [a] anthracene	ND	0.500
Benzo [b] fluoranthene	ND	0.500
Benzo k] fluoranthene	ND	1.000
Benzo [ghi] perylene	ND	1.000
Benzo [a] pyrene	ND	0.200
Benzyl alcohol	ND	1.000
Bis-(2-chloroethoxy)methane	ND	0.500
Bis-(2-chloroethyl) ether	ND	0.500
Bis-(2-chloroisopropyl) ether	ND	0.750
Bis-(2-ethylhexyl)phthalate	ND	2.000
4-Bromophenyl phenyl ether	ND	0.750
Butyl benzyl phthalate	ND	1.250
Carbazole	ND	0.750
4-Chloroaniline	ND	2.500
4-Chloro-3-methylphenol	ND	0.500
2-Chloronaphthalene	ND	0.500
2-Chlorophenol	ND	0.500
4-Chlorophenyl-phenylether	ND	0.500
Chrysene	ND	0.500
Dibenz [a,h] anthracene	ND	0.500
Dibenzofuran	ND	0.500

CLIENT NAME:

CHELSEA TERMINAL

SAMPLE TYPE:

GROUNDWATER

COLLECTION DATE: 06/14/04 REC'D BY LAB:

COLLECTED BY:

06/14/04 CLIENT

PROJECT ID:

EPA 40 CFR 423

REPORT DATE:

06/28/04

ANALYZED BY:

RD

ANALYSIS DATE:

06/15/04

EXTRACTION DATE: 06/15/04

SEMI-VOLATILE ORGANICS

SAMPLE NUMBER:

150584

SAMPLE LOCATION:

GW/SOIL REMED. SYS EFF

	RESULTS (μg/L)	DETECTION LIMIT (μg/L)
1,2-Dichlorobenzene	ND	1.000
1,3-Dichlorobenzene	ND .	1.000
1,4-Dichlorobenzene	ND .	1.000
3,3'-dichlorobenzidine	ND	2.500
2,4-Dichlorophenol	ND	0.500
Diethyl phthalate	ND	1.250
2,4-Dimethylphenol	ND	3.750
Dimethylphthalate	ND	1.750
Di-n-butylphthalate	ND	0.750
Di-n-octyl phthalate	ND	2.000
1,2-Dinitrobenzene	ЙD	5.000
1,3-Dinitrobenzene	ND	0.750
1,4-Dinitrobenzene	ND	5.000
4,6-Dinitro-2-methylphenol	ND	1.000
2,4-Dinitrophenol	ND	0.250
2,4-Dinitrotoluene	ND	0.500
2,6-Dinitrotoluene	ND	0.250
Fluoranthene	ND	0.500
Fluorene	ND	0.500
Hexachlorobenzene	ND	1.000
Hexachlorobutadiene	ND	0.500
Hexachlorocyclopentadiene	ND	10.000
Hexachloroethane	ND ·	2.000
Indeno [1,2,3-cd] pyrene	ND	0.500
Isophorone	ND	0.500
2-Methylnaphthalene	ND	0.750
2-Methylphenol	ND	1.000
3-Methylphenol/4-methylphenol	ND	1.500

CLIENT NAME:

CHELSEA TERMINAL

PROJECT ID:

EPA 40 CFR 423

SAMPLE TYPE:

GROUNDWATER

REPORT DATE: ANALYZED BY: 06/28/04

COLLECTION DATE: 06/14/04 REC'D BY LAB:

06/14/04

ANALYSIS DATE:

06/15/04

RD

COLLECTED BY:

CLIENT

EXTRACTION DATE: 06/15/04

SEMI-VOLATILE ORGANICS

SAMPLE NUMBER:

150584

SAMPLE LOCATION:

GW/SOIL REMED. SYS EFF

	RESULTS (μg/L)	DETECTION LIMIT (μg/L)
Naphthalene	ND	0.750
2-Nitroaniline	ND	0.750
3-Nitroaniline	ND	1.500
4-Nitroaniline	ND ND	1.000
Nitrobenzene	ND	0.750
2-Nitrophenol	ND	0.500
4-Nitrophenol	ND	0.500
N-Nitrosodimethylamine	ND	1.000
N-Nitrosodiphenylamine	ND	5.000
N-nitroso-di-n-propylamine	ND	1.000
Pentachlorophenol	ND	1.000
Phenanthrene	ND	0.500
Phenol	ND	0.250
Pyrene	ND	1.250
Pyridine	ND	1.250
2,3,4,6-Tetrachlorophenol	ND	1.000
1,2,4-Trichlorobenzene	ND	0.750
2,4,5-Trichlorophenol	ND	0.750
2,4,6-Trichlorophenol	ND	0.500
Surrogate Recoveries		
2-Fluorophenol	43%	
Phenol-d6	35%	
Nitrobenzene-d5	52%	
2-Fluorobiphenyl	51%	
2,4,6-Tribromophenol Terphenyl-d14	90% 94%	
ND = NOT DETECTED	CALCULATIONS BASED ON DR	RY WEIGHT

Method Reference:

EPA Method

8270C (1)

1) U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1997, 3rd Ed.

CLIENT NAME:

CHELSEA TERMINAL

PROJECT ID:

EPA 40 CFR 423

SAMPLE TYPE: GROUND COLLECTION DATE: 06/14/04

GROUNDWATER

REPORT DATE:

06/28/04

REC'D BY LAB:

06/14/04

ANALYZED BY:

RD 06/15/04

COLLECTED BY:

CLIENT

ANALYSIS DATE:

EXTRACTION DATE: 06/15/04

SEMI-VOLATILE ORGANICS - QC

		Spike	
	Blank	% Rec.	Limits
Phenol	ND	38%	30-130%
2-chlorophenol	ND	68%	30-130%
1,4-Dichlorobenzene	ND	52%	40-140%
N-Nitroso-di-n-propylamine	ND	67%	40-140%
1,2,4-Trichlorobenzene	ND	56%	40-140%
4-Chloro-3-methylphenol	ND	92%	30-130%
Acenaphthene	ND	74%	40-140%
4-Nitrophenol	ND	55%	30-130%
2,4-Dinitrotoluene	ND	53%	40-140%
Pentachlorophenol	ND	98%	30-130%
Pyrene	ND	109%	40-140%

Surrogate Recoveries:	% Rec.	% Rec.	Limits
2-Fluorophenol	45%	49%	30-130%
Phenol-d6	32%	38%	30-130%
Nitrobenzene-d5	52%	57%	30-130%
2-Fluorobiphenyl	57%	62%	30-130%
2,4,6-Tribromophenol	94%	107%	30-130%
Terphenyl-d14	96%	98%	30-130%

CLIENT NAME:

CHELSEA TERMINAL

SAMPLE TYPE:

GROUNDWATER

COLLECTION DATE: 06/14/04 REC'D BY LAB:

06/14/04

COLLECTED BY: PRESERVATIVE: CLIENT SULFURIC ACID PROJECT ID:

EPA 40 CFR 423 06/28/04

REPORT DATE: ANALYZED BY:

MA CT 008

ANALYSIS DATE:

06/24/04

DIGESTION DATE: N/A

PHENOLS

SAMPLE **NUMBER**

SAMPLE LOCATION **PHENOLS** (mg/L)

DETECTION LIMIT (mg/L)

150584

GW/SOIL REMED.SYS EFF

ND

0.030

ND = NOT DETECTED

Method Reference:

EPA Method

420.1 (1)

1) U.S. EPA 1983. "Methods for Chemical Analysis of Water and Wastes." EPA-600/4-79-020, EPA, EMSL, Cincinnati, Ohio 45268.

CLIENT NAME:

CHELSEA TERMINAL

PROJECT ID: REPORT DATE: EPA 40 CFR 423

SAMPLE TYPE: COLLECTION DATE: 06/14/04

GROUNDWATER

ANALYZED BY:

06/28/04

REC'D BY LAB:

06/14/04

ANALYSIS DATE:

ZYZ

COLLECTED BY:

CLIENT

DIGESTION DATE:

06/15/04 N/A

PRESERVATIVE:

HYDROCHLORIC ACID

VOLATILE ORGANICS

SAMPLE NUMBER:

150584

SAMPLE LOCATION:

GW/SOIL REMED SYS EFF

	RESULTS	DETECTION LIMIT
	(μg/ L)	(μg/L)
Acetone	ND ND	50.0
Acrylonitrile	ND	50.0
Benzene	ND	5.0
Bromobenzene	ND	5.0
Bromochloromethane	ND	2.0
Bromoform	ND	5.0
Bromomethane	ND	2.00
2-Butanone	ND	10.0
n-Butylbenzene	ND	5.0
Carbon Tetrachloride	ND	5.0
Chlorobenzene	ND	5.0
Chloroethane	ND	5.0
2-Chloroethylvinylether	ND	5.0
Chloroform	ND	5.0
Chloromethane	ND	5.0
2-Chlorotoluene	ND	5.0
4-Chlorotoluene	ND	5.0
Dibromomethane	ND	5.0
Dibromochloromethane	ND .	5.0
Dichlorobromomethane	ND	5.0
Dichlorodifluoromethane	ND	5.0
1,1-Dichloroethane	ND	5.0
1,1-Dichloroethene	ND	0.96
1,1-Dichloropropene	ND	0.4
1,2-Dibromoethane	ND	1.00
1,2-Dibromo-3-chloropropane	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,2-Dichloroethane	ND	5.0
1,2-Dichloropropane	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,3-Dichloropropane	ND	5.0
1,4-Dichlorobenzene	ND	5.0
2,2-Dichloropropane	ND	5.0
c-1,2-Dichloroethene	ND	5.0
c-1,3-Dichloropropene	ND	0.65
t-1,2-Dichloroethene	ND	5.0
t-1,3-Dichloropropene	ND	0.95
Ethylbenzene	ND	5.0
Hexachlorobutadiene	ND	0.50
	15 of 19	

GeoLabs, Inc.

Environmental Laboratories

CLIENT NAME:

CHELSEA TERMINAL

PROJECT ID:

EPA 40 CFR 423

SAMPLE TYPE: GROUNI COLLECTION DATE: 06/14/04

GROUNDWATER

REPORT DATE:

06/28/04

REC'D BY LAB:

06/14/04

ANALYZED BY:

ZYZ

COLLECTED BY:

CLIENT

ANALYSIS DATE: DIGESTION DATE: 06/15/04 N/A

PRESERVATIVE:

HYDROCHLORIC ACID

VOLATILE ORGANICS

SAMPLE NUMBER:

150584

SAMPLE LOCATION:

GW/SOIL REMED SYS EFF

	RESULTS (μg/L)	DETECTION LIMIT (μg/L)
2-Hexanone	ND	10.0
Isopropylbenzene	ND	5.0
p-Isopropyltoluene	ND	5.0
Methylene Chloride	ND	10.0
4-Methyl-2-pentanone	ND	5.0
Methyl tert-butyl ether	ND	5.0
Naphthalene	ND	20.0
n-propylbenzene	ND	5.0
Sec-butylbenzene	ND	5.0
Styrene	ND	5.0
tert-butylbenzene	ND	5.0
Tetrachloroethene	ND	5.0
Toluene	ND	5.0
Trichloroethene	ND	5.0
Trichlorofluoromethane	ND	5.0
1,1,1-Trichloroethane	ND	5.0
1,1,2-Trichloroethane	ND	5.0
1,1,2,2-Tetrachloroethane	ND	0.61
1,1,1,2-Tetrachloroethane	ND	5.0
1,2,3-Trichloropropane	ND	5.0
1,2,3-Trichlorobenzene	ND	5.0
1,2,4-Trichlorobenzene	ND	5.0
1,2,4-Trimethylbenzene	ND	5.0
1,3,5-Trimethylbenzene	, ND	5.0
Vinyl Chloride	ND	2.0
Xylenes	ND	5.0
Surrogate Recoveries:		
dibromofluoromethane	96%	
1,2-Dichloroethane	83%	
toluene-d8	102%	
BFB	94%	
ND = NOT DETECTED		

Method Reference:

EPA Method

8260B (1) GC/MS

BLANK

ND

06/15/04

VOLATILE ORGANICS LCS

PECOVERY												
	%REG	COVERY										
Dichlorodifluoromethane	86%	1,1,2-Trichloroethane	107%									
Chloromethane	98%	Tetrachloroethene	109%									
Vinyl chloride	97%	1,3-Dichloropropane	107%									
Bromomethane	125%	2-Hexanone	99%									
Chloroethane	113%	Dibromochloromethane	94%									
Trichlorofluoromethane	98%	EDB	105%									
Acrolein	91%	Chlorobenzene	111%									
1,1-Dichloroethene	99%	1,1,1,2-tetrachloroethane	101%									
Acetone	87%	Ethylbenzene	106%									
Carbon Disulfide	101%	m,p-Xylene	110%									
Methylene chloride	113%	o-xylene	108%									
Acrylonitrile	109%	Styrene	114%									
trans-1,2-Dichloroethene	89%	Bromoform	90%									
MTBE	100%	Isopropylbenzene	112%									
1,1-Dichloroethane	99%	Bromobenzene	110%									
2-Butanone	108%	1,1,2,2-Tetrachloroethane	113%									
Carbon tetrachloride	86%	1,2,3-Trichloropropane	112%									
2,2-Dichloropropane	94%	N-propylbenzene	114%									
c-1,2-dichloroethene	88%	2-Chlorotoluene	113%									
Bromochloromethane	98%	4-Chlorotoluene	113%									
Chloroform	95%	1,3,5-Trimethylbenzene	106%									
1,1,1-Trichloroethane	89%	tert-Butylbenzene	104%									
1,1-dichloropropene	105%	1,2,4-Trimethylbenzene	107%									
Benzene	103%	sec-Butylbenzene	113%									
1,2-Dichloroethane	102%	1,3-Dichlorobenzene	110%									
Trichloroethene	96%	1,4-Dichlorobenzene	109%									
1,2-Dichloropropane	102%	p-Isopropyltoluene	111%									
Dibromomethane	80%	1,2-Dichlorobenzene	112%									
Bromodichloromethane	92%	N-Butylbenzene	107%									
2-Chloroethylvinyl Ether	80%	1,2-dibromo-3-chloropropane	102%									
c-1,3-Dichloropropene	98%	1,2,4-trichlorobenzene	103%									
Toluene	106%	Hexachlorobutadiene	115%									
t-1,3-Dichloropropene	98%	Naphthalene	95%									
		1,2,3-Trichlorobenzene	106%									

MCP Limits 70%-130%

The majority of recoveries must fall within this range.

GEOLABS, INC. 45 JOHNSON LANE BRAINTREE, MA 02184 M-MA015

LIMITATIONS & EXCLUSIONS

All the professional opinions presented in this report are based solely on the scope of work conducted and sources referred to in our report. The data presented by GeoLabs in this report was collected and analyzed using generally accepted industry methods and practices at the time the report was generated. This report represents the conditions, locations and materials that were observed at the time the work was conducted. No inferences regarding other conditions, locations or materials, at a later or earlier time may be made based on the contents of the report. No other warranty, express or implied is made.

This report was prepared for the sole use of our client. Portions of the report may not be used independent of the entire report.

All analyses were performed within required holding times, in accordance with EPA protocols and using accepted QA/QC procedures. All QA/QC meets acceptable limits unless otherwise noted. The information contained in this report is, to the best of my knowledge, accurate and complete.

Any and all subsequent pages of this report are chain(s) of custody.

GeoLal	os, Ir	ıc.						Tur	nar	oui	487-116-120-2	Time	1400				Page		of			
Environn 45 Johnso Braintree, Phone: 78	nental on Lan MA 02	<i>Lab</i> e 2184 7844	orato	ries		RUS	H:	24hrs 48hrs 72hrs			S7 Ru: Ap	ANDARD: 5 Days_ <u>//</u> sh proved By:	<u>V</u>	OTE :	S Ph Q	PECIA Lease A/O	L INS	TRUC Povida Last	e a	S Il		
Client: Address: Phone:	_11 _Cr	BK relse	ROAD.	Erminal WAY WA O21	50						OCH	R423-App-A-Te Terminal	1.				•••		,			
Fax:		S17 S17		60 1117 60 1140	· 	Purcl	hasa C	rder #:	. /	lere	2-0		ł									
Contact:				PAREZ		-	cted B					Prose		617	محد	<u> </u>						
E-mail:		T DA	WIN	PAVEL		1000	0.04 -	y •		300	71011	y / 1 - 2	 	<u>uu</u>	A	NALY	SES F	REQU	ESTE	D		
SAMPLE ID	D A T E	T I M E	S A M B P Y E D	SAMI LOCA		T Y P E	Q U A N T	M A T R I	C O M P	G R A B	P R E S	GEOLABS SAMPLE NUMBER	Metals &	0 NO	Deshesde 1	PCB3 1	82707	Therets &	Macs		TEMPERATURE	L A B P H
GIIO4/Metals	6/4/14	9:20	AP	GW/soil Re	mod Sys. E	P	/	GW		V	2		7								70	
61164/CN	y	μ	11	l,	EHlu	1 10	1	"		V	5			V								
61104/Pest	1,	1.	lı	1,		A	2	4		V	4				V							
61164 PCB	4	4	17	લ	7	4	ù	*		V	4	150584				V						
61104/8270	,,	2,	t _j	7.	G	4	1,	6		V	4						V				\top	
61164/Phends	11	,	4	1	. •	1,	1	1		V	3	/						V				
6 1104 VCCs+	7	te .	,		1	V	Z	ч		V	1	/							V		9)	
CONTAINE A = Amber		ES:		MATRIX CO		l er	PRES	<u> </u> ERVATI CI	VE C 7 =		s:	Relinguished By:	D	ate/Tij	me,	3/	ived I	By:	L.	Date/	Time	
B = Bag				ww = Wa	stewater		2 = H	NO_3				Relinquished By:	6.0	4.04	·	Rece				**************************************	3.8	0
G = Glass				DW = Drin	king Wat	ter	$3 = H_2$	₂ SO₄				Centri Gens		3.5.		<u> </u>						
P = Plastic S = Summ	a Cani	ster		SL = Sludg S = Soil	ge A = Air	. .	4 = Na 5 = Na	a ₂ S ₂ O ₃ aOH			/	Relinquished By:							oLabs	s: 1 Y-04	155 	>
O = Other				O = Oil	OT = 0		6 = M						EOL	ABS	CHA	INO					-	

.

Date: July 12, 2004

Ms. Linda M. Murphy, Director Office of Ecosystem Protection EPA – Region 1 One Congress Street, Suite 1100 Boston, MA 02114-2023 Mr. Neil Handler, Project Manager Office of Ecosystem Protection EPA – Region 1 One Congress Street, Suite 1100 Boston, MA 02114-2023

Re:

Chelsea Terminal – NPDES Permit No. MA0003280,

Responses to the EPA Information Request dated June 9, 2004

Dear Ms. Murphy and Mr. Handler:

In response to the subject information request,

attached are:

- 1. Analytical results for the metals you requested (Attachment 1). Inadvertently, the laboratory missed to fax pages 3 and 4 of the report.
- 2. Sample collection method is discussed in the attachment 2.

Should you have further questions concerning the above matter, please call me 617-660-1117

Sincerely

Ashwin Patel

Manager - Environmental Compliance

Cc File

ATTACHMENT 1

CLIENT NAME: SAMPLE TYPE: **COLLECTION DATE:** REC'D BY LAB: COLLECTED BY:

CHELSEA WATER 6/14/04 6/14/04 CLIENT

PROJECT ID: REPORT DATE: ANALYZED BY: ANALYSIS DATE: DIGESTION DATE: EPA40CFR 6/28/04 QS/GP SEE BELOW SEE BELOW

PRESERVATIVE: NITRIC ACID

TOTAL METALS

SAMPLE NUMBER:

150584

SAMPLE LOCATION: GW/SOIL REMED SYS

	RESULTS (mg/L)	DETECTION LIMIT (mg/L)	DIGESTION DATE	ANALYSIS DATE
ANTIMONY	ND .	0.05	6/15/04	6/16/04
ARSENIC	ND	0.05	6/15/04	6/16/04
BERYLLIUM	ND	0.00	6/15/04	6/16/04
CADMIUM	ND	0.01	6/16/04	6/16/04
CHROMIUM	ND	0.06	6/15/04	6/16/04
COPPER	ND.	0.01	6/15/04	6/16/04
LEAD	ND	0.01	6/15/04	6/16/04
MERCURY	ND	0.00	6/29/04	6/29/04
NICKEL	. ND	0.01	6/29/04	6/16/04
SELENIUM	. 'ND	0.06	6/29/04	6/16/04
SILVER	ND	0.01	6/29/04	6/16/04
THALLIUM	ND	0.20	6/29/04	6/16/04
ZINC	ND	0.10	6/29/04	6/16/04

ND = NOT DETECTED

Method Reference:

EPA Method

3010A (1) Metal Preparation

EPA Method

6010B (1) Inductively Coupled Plasma

EPA Method

245.1 (2) Manual Cold Vapor (Mercury)

¹⁾ U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1986, 3rd Edition.

²⁾ U.S. EPA 1994. "Methods for the Determination of Metals in Environmental Samples",-Supplement I-EPA/600/R-94-111-May 1994. 3 of 20

CLIENT NAME:

CHELSEA

PROJECT ID:

EPA40CFR

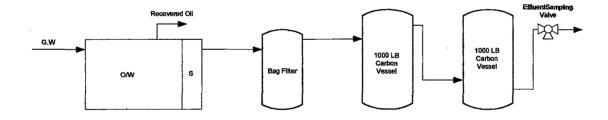
SAMPLE TYPE:

WATER

REPORT DATE:

6/28/04

METALS QC


		Spike	ĺ
	Blank	% Rec.	Limits
Mercury	- ND	97%	80-120%
		200	
Thallium		82%	80-120%
Arsenic	ND.	89%	80-120%
		andraid (Corp. 11 or 12 Capacita (Corp. 12 or 12 o	
Selenium	ND	92%	80-120%
Zinc	ND:	93%	80-120%
Antimony	MAND	88%	80-120%
Chromium	ND.	91%	80-120%
	1 10 1 10 10 10 10 10 10 10 10 10 10 10		
Cadmium	ND	87%	80-120%
ļ	A grant had be taken		
Lead	ND	91%	80-120%
	army are made by		
Nickel	ND	91%	80-120%
5 "	A CONTRACTOR	An a sale attached	
Beryllium	n. MD	90%	80-120%
Conner	ND:	0007	00.4000/
Copper	a saNDr c	88%	80-120%
Silver	ND.	86%	80-120%
CIIVEI	The state of	- 00 w	00-120%

Chelsea Terminal NPDES Permit # MA 0003280

Attachment 2

The groundwater and soil remediation system operates continuously however it poses during the time when the water table is fully depressed until recovered. Thus, effluent flow is continuously except times when ground water wells are being recharged. Effluent samples are collected when the system in continuous operational mode. Effluent samples are collected after 24 hours when the system is restarted after maintenance or downtime.

Sampling Point. The effluent sampling point is located after the last carbon vessel where the treated water exits the treatment system

Samples are grabbed directly into the containers (including vials) provided by the laboratory. The containers are pre labeled and properly marked and contain preservative when necessary. Collected samples are immediately stored in a refrigerator until picked up by a carrier

Chelsea terminal
11 Braodway - Chelsea
NPDES Permit # 0003280
Responses to the EPA information
Request dated May 19, 2004

NPDES PERMIT UNIT

Date: July 1, 2004

Ms. Linda M. Murphy, Director Office of Ecosystem Protection EPA – Region 1 One Congress Street, Suite 1100 Boston, MA 02114-2023 Mr. Neil Handler, Project Manager Office of Ecosystem Protection EPA – Region 1 One Congress Street, Suite 1100 Boston, MA 02114-2023

Re:

Chelsea Terminal – NPDES Permit No. MA0003280 Responses to the EPA Information Request dated May 19, 2004 IR # 3 (10) Groundwater Treatment System Effluent Quality:

Dear Ms. Murphy and Mr. Handler:

Pursuant to the EPA request, the groundwater treatment system's effluent samples were obtained on June 14, 2004 and analyzed for the EPA 40CFR 423, Appendix A listed priority pollutants. The samples were submitted to the GeoLab of Braintree (Massachusetts Certification # M-MA015) for analytical work. The laboratory report is attached.

Should you have further questions concerning the above matter, please call me 617-660-1117

Sincerely

Ashwin Patel

Manager - Environmental Compliance

Cc File

ATTACHMENT B SUMMARY OF GROUND WATER MONITORING DATA (2003 TO 2004)

CHELSEA SANDWICH, LLC
NPDES PERMIT NO. MA0003280

GeoLabs, Inc.

Environmental Laboratories

LABORATORY REPORT

Ρ	RE	P/	۱RE	ED F	OR:
---	----	----	-----	------	-----

Chelsea Terminal 11 Broadway Chelsea, MA 02150

Attn: Ashwin Patel

PROJECT ID:

Monthly Remed. Sys. Effluent

Chelsea, MA

GEOLABS CERTIFICATION #:

M-MA015

SAMPLE NUMBER:

152947

DATE PREPARED:

August 6, 2004

PREPARED BY:

Karen Mullally

1 of 7

APPROVED BY:

Jim Chen, Laboratory Director

Location: 45 Johnson Lane

Braintree, MA 02184

Phone: (781) 848-7844

Fax: (781) 848-7811

CLIENT NAME:

Chelsea Terminal

PROJECT ID:

Monthly Remed

SAMPLE TYPE: COLLECTION DATE:

WATER 07/29/04 REPORT DATE: ANALYZED BY:

08/06/04 ZYZ

REC'D BY LAB:

07/30/04 CLIENT

ANALYSIS DATE:

08/04/04

COLLECTED BY: PRESERVATIVE:

HYDROCHLORIC ACID

DIGESTION DATE:

N/A

VOLATILE AROMATIC COMPOUNDS

SAMPLE NUMBER:

152947 Rem. Sys Eff

SAMPLE LOCATION:

	RESULTS (μg/L)	DETECTION LIMIT (μg/L)
	·	
Methyl tert-butyl ether	ND	5.00
Benzene	ND	5.00
Toluene	ND	5.00
Ethylbenzene	ND	5.00
Xylenes	ND	5.00
Naphthalene	ND	20.0
Surrogate Recoveries: dibromofluoromethane 1,2-Dichloroethane toluene-d8 BFB	95% 87% 97% 104%	

ND = NOT DETECTED

Method Reference:

EPA Method

602 by 624 (1) GC/MS

1) Code of Federal Regulations 40 CFR, Parts 100-149, 1993.

CLIENT NAME:

Chelsea Terminal

SAMPLE TYPE: **COLLECTION DATE:** REC'D BY LAB:

COLLECTED BY:

PRESERVATIVE:

WATER 07/29/04 07/30/04 CLIENT

N/A

PROJECT ID:

Monthly Remed.

REPORT DATE: ANALYZED BY: RD

08/06/04

ANALYSIS DATE: EXTRACTION DATE: 08/02/04

08/03/04

POLYNUCLEAR AROMATIC HYDROCARBONS

SAMPLE NUMBER: SAMPLE LOCATION:

152947 Rem Sys Eff

	RESULTS (μg/L)	DETECTION LIMIT (μg/L)
Naphthalene	·ND	0.750
2-Methylnaphthalene	· ND	0.750
Acenaphthylene	ND	0.250
Acenaphthene	ND	0.500
Fluorene	ND	0.500
Phenanthrene	NÐ	0.500
Anthracene	ND	0.500
Fluoranthene	ND	0.500
Pyrene	ND .	1.25
Benz[a]Anthracene	N D	0.500
Chrysene	ND	0.500
Benzo[b]Fluoranthene	ND	0.500
Benzo[k]Fluoranthene	ND	1.00
Benzo[a]Pyrene	ND	0.200
Indeno[1,2,3-Cd]Pyrene	ND	0.500
Dibenzo[a,h]Anthracene	ND	0.500
Benzo[g,h,i]Perylene	ND	1.00

ND = NOT DETECTED

Method Reference:

EPA Method

8270C (1)

1) U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1998 3rd Edition.

POLYNUCLEAR AROMATIC HYDROCARBONS - QC

	BLANK	
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz[a]Anthracene Chrysene Benzo[b[Fluoranthene Benzo[a]Pyrene Indeno[1,2,3-Cd]Pyrene Dibenzo[a,h]Anthracene Benzo[g,h,i]Perylene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
	LCSS 1	Limit
Acenaphthene Pyrene	80% 91%	40-140% 40-140%

CLIENT NAME:

Chelsea Terminal

Monthly Remed

SAMPLE TYPE: COLLECTION DATE:

WATER 07/29/04

08/06/04 REPORT DATE: GP

REC'D BY LAB: COLLECTED BY: 07/30/04 CLIENT

ANALYZED BY: **ANALYSIS DATE:**

PROJECT ID:

08/03/04

PRESERVATIVE:

SULFURIC ACID

DIGESTION DATE:

08/02/04

TOTAL PETROLEUM HYDROCARBONS

SAMPLE **NUMBER**

SAMPLE LOCATION

TPH (mg/L) **DETECTION LIMIT** (mg/L)

152947

Remed. Sys. Eff.

ND

0.20

ND = NOT DETECTED

Method Reference:

EPA Method

8100 (1)

Modified

1) U.S. EPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 1986, 3rd Edition.

GEOLABS, INC. 45 JOHNSON LANE BRAINTREE, MA 02184 M-MA015

LIMITATIONS & EXCLUSIONS

All the professional opinions presented in this report are based solely on the scope of work conducted and sources referred to in our report. The data presented by GeoLabs in this report was collected and analyzed using generally accepted industry methods and practices at the time the report was generated. This report represents the conditions, locations and materials that were observed at the time the work was conducted. No inferences regarding other conditions, locations or materials, at a later or earlier time may be made based on the contents of the report. No other warranty, express or implied is made.

This report was prepared for the sole use of our client. Portions of the report may not be used independent of the entire report.

All analyses were performed within required holding times, in accordance with EPA protocols and using accepted QA/QC procedures. All QA/QC meets acceptable limits unless otherwise noted. The information contained in this report is, to the best of my knowledge, accurate and complete.

Any and all subsequent pages of this report are chain(s) of custody.

July Simples

GeoLa	bs, I	nc.					The same of the sa		oui		Time					Pag	e(of			
Environr 45 Johns Braintree Phone: 78 Fax: 78	on Lar , MA 0	ne 2184 ·7844	,	ories	RU	SH:	24hrs 48hrs 72hrs			Ru	ANDARD; 5 Dayssh proved By:			S	PECIA	AL INS	STRUC	CTION	IS		
Client: Address: Phone: Fax: Contact:		13- 51- 51-	roq ea t e	Terminal dway MA 02150 360 1117 560 1140 Patal	Proje	ect Loc	ation: Order #:		thi he	1se	emed Sys Egglud MA					U	<u></u>				
E-mail:			111-71		1							ANALYSES REQUESTED									
SAMPLE ID	D	T I M E	S A M P L E D		T Y P E	Q U A N T	M A T R I X	C O M P	G R A B	P R E S	GEOLABS SAMPLE NUMBER	DAMS (TOBELL)	Naphlem	or Hall	Demzere J	BIER O	HOBE V			TEMPERATURE	L A B P H
072904/2004	7/29/04	11:10	AP	Remed Sy Egglat	Α	Z	GW		V			/	V							3°	
072904 APN	t	u	4		A	2	વ		٨)152947			1							
172064/102	ι	•	,		V	2	pi		Įι	l	/				V	V	V				
CONTAINE	R COD	ES:		MATRIX CODES:		i .	RVATI			S:	Relinquished By:	- /	te/Tin	ne	Rece	ived E	3 <i>y: </i>		Date/		. 1
A = Amber B = Bag G = Glass				GW = Ground Wate WW = Wastewater DW = Drinking Wat		1 = H0 2 = H1 3 = H ₂	1O3	7 = j	CE		AMO Refinquished by: INN INN	7/20	3970	0 <u>4</u> ′	Recei	ived E	ZAA By:	М ~	7.30 9	7,4e	
P = Plastic				SL = Sludge		4 = Na					Relinquished By:				Recei	ved E	By Geo	Labs	7/30/	104	
S = Summa				S = Soil A = Air		5 = Na						F 6.1	A D C	<u> </u>	VA A	<u> 11 (7</u>	4 <u>/ </u>			100	5
O = Other	V = V(DA		O = Oil OT = O	ther	6 = Me	OH		_		G	<u> EOL</u>	ARS	CHA	4NO	r CU	STO	IJΥ			

ATTACHMENT C

SUMMARY OF DISCHARGE MONITORING REPORT (DMR) RESULTS

(2001 TO 2003)

FOR POLYNUCLEAR AROMATIC COMPOUNDS

CHELSEA SANDWICH, LLC

NPDES PERMIT NO. MA0003280

Chelsea Sandwich LLC Terminal (Permit No. MA0003280) 2001-2003 Quarterly Storm Water Monitoring Results for PAHs (1) / Outfall 001

PAH Compounds	1 st Quarter 2001 (ug/L)	2 nd Quarter 2001 (ug/L)	3 rd Quarter 2001 (ug/L)	4 th Quarter 2001 (ug/L)	1 st Quarter 2002 (ug/L)	2 nd Quarter 2002 (ug/L)	3 rd Quarter 2002 (ug/L)	4 th Quarter 2002 (ug/L)	1 st Quarter 2003 ⁽²⁾ (ug/L)	2 nd Quarter 2003 (ug/L)	3 rd Quarter 2003 (ug/L)	4 th Quarter 2003 (ug/L)
Benzo(a)anthracene	<5.2	<5.2	<0.5	<0.5	<0.5	<0.5	<0.5 ·	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	<5.2	<5.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(b)fluoranthene	<5.2	<5.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	. <0.5
Benzo(k)fluoranthene	<5.2	<5.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chrysene	<5.2	<5.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenzo(a,h)anthracene	<5.2	<5.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1,2,3-cd)pyrene	<5,2	<5.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

⁽¹⁾ PAHs or Polynuclear Aromatic Hydrocarbons

ATTACHMENT D ENDANGERED SPECIES LIST

"conserving protected marine resources and maintaining marine biodiversity"

Home

Endangered Species Marine Mammal Conservation Permit Information Coral Reels and Biodiversity International Activities Reports and Publications

Species Listed under the Endangered Species Act of 1973

The authority to list species as threatened or endangered is shared by the National Marine Fisheries Service (NMFS), which is responsible for listing most marine species, and the Fish and Wildlife Service (FWS), which administers the listing of all other plants and animals. There are two classifications under which a species may be listed.

 Species determined to be in imminent danger of extinction throughout all of a significant portion of their range are listed as "endangered."

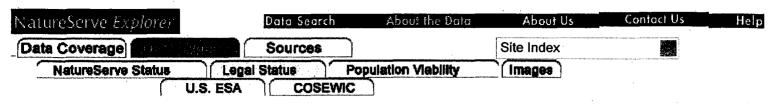
 Species determined likely to become endangered in the foreseeable future are listed as "threatened."

Further, distinct populations may be listed even if a species is abundant in other portions of its range. The criteria for endangerment must be based solely on biological evidence and the best scientific and/or commercial data available. Moreover, additions or deletions may be proposed by anyone who presents adequate evidence of the endangered status of a

species.

Domestic Endangered Species					
Atlantic salmon	Green sea turtle	Leatherback sea turtle	Sperm whale		
Blue whale	Hawaiian monk seal	Northern right whale	Steelhead		
Bowhead whale	Hawksbill sea turtle	Olive ridley sea turtle	White abalone		
Caribbean monk seal	Humpback whale	<u>Sei whale</u>	Smalltooth sawfish		
Fin whale	Kemp's ridley sea turtle	Shortnose sturgeon			

Domestic Threatened Species					
Chinook salmon	Green sea turtle	Johnson's sea grass	Sockeye salmon		
			-\		


Coho salmon	Guadalupe fur seal	Loggerhead sea turtle	<u>Steelhead</u>
Chum salmon	Gulf sturgeon	Olive ridley sea turtle	Steller sea lion

Domestic Species Proposed	for Listing	· · · · · · · · · · · · · · · · · · ·		
				\neg

International Species Listed as Endangered or Threatened Under the ESA					
IIChinese River golphin linarpor porpoise II		Mediterranean monk seal	Southern right whale		
Gray whale - Western North Pacific population	Indus River dolphin	Ringed seal (Siamma seal)	Totoaba		

Contact Us | Related Links | Search | Regional Offices | Privacy Statement | Disclaimer |

NOAA Fisheries, Office of Protected Resources, 1315 East West Highway, Silver Spring, MD 20910 Fax:301-713-0376 Phone:301-713-2332

U.S. Endangered Species Act

- Listings under the U.S. Endangered Species Act
- ESA Status Definitions in NatureServe Explorer
- Status Due to Taxonomic Relationship ("Implied USESA Status")
- Status of Geopolitically or Administratively Defined Populations

Listings under the U.S. Endangered Species Act

The U.S. Endangered Species Act (U.S. ESA) is the primary legislation that affords federal legal protections to threatened and endangered species in the United States, and is administered by the U.S. Fish and Wildlife Service (USFWS) (http://endangered.fws.gov/) and U.S. National Marine Fisheries Service (NMFS) (http://endangered.fws.gov/) and U.S. National Marine Fisheries Service (NMFS) (http://www.nmfs.noaa.gov/prot_res/overview/es.html). As defined by the Act, endangered refers to species that are "in danger of extinction within the foreseeable future throughout all or a significant portion of its range," while threatened refers to "those animals and plants likely to become endangered within the foreseeable future throughout all or a significant portion of their ranges." Plant species and varieties (including fungi and lichens), animal species and subspecies, and vertebrate animal populations are eligible for listing under the Act.

Status under the U.S. Endangered Species Act provided by *NatureServe Explorer* is based on formal notices published by USFWS or NMFS in the Federal Register. The date shown alongside the status (in parentheses) refers to the formal Federal Register publication date regarding the status designation. Dates appear only for taxa and populations that are specifically named in a Federal Register Notice of Review Table or in the section of a Federal Register Proposed or Final Rule that proposes or declares an amendment to 50 Code of Federal Regulations Part 17 Section 11 or 12 (i.e., changes to the Lists of Endangered and Threatened Wildlife and Plants).

Specifically, dates represent:

For listed endangered and threatened taxa and populations: the date of publication of the Federal Register "Final Rule" for the taxon or population.

For proposed taxa and populations: the date of publication of the most recent Federal Register "Proposed Rule" for the taxon or population.

For candidate taxa and populations: the date of publication of the most recent "Notice of Reclassification" or "Notice of Review" in which the candidate appears.

NatureServe staff update the central databases with changes in status due to proposals and determinations to add taxa to the Lists of Endangered and Threatened Wildlife and Plants within two weeks of publication in the Federal Register. Addition and removal of candidates in Notices of Review or Notices of Reclassification are entered within four weeks of their publication. *NatureServe Explorer* is updated periodically from the NatureServe Central Databases and reflects the federal status current at the time of update.

ESA Status Definitions in NatureServe Explorer

NatureServe Explorer generally uses the same scientific name as USFWS for species with status under the Endangered Species Act. For listed population segments of vertebrate animals, NatureServe Explorer information can typically be found in the species record associated with the subspecies or population. Where names used by the USFWS differ from those used by NatureServe, NatureServe Explorer records are cross-referenced and can be

found using either name. The following table provides abbreviations and definitions for various listing statuses under the U.S. Endangered Species Act.

U.S. Endangered Species Act Abbreviations				
NatureServe Explorer Abbreviation	Status Under the U.S. Endangered Species Act			
LE	Listed endangered			
LT	Listed threatened			
PE	Proposed endangered			
PT	Proposed threatened			
С	Candidate			
PDL	Proposed for delisting			
SAE or SAT	Listed endangered or threatened because of similarity of appearance			
PSAE or PSAT	Proposed endangered or threatened because of similarity of appearance			
XE	Essential experimental population			
XN	Nonessential experimental population			
Null value	Usually indicates that the taxon does not have any federal status. However, because of potential lag time between publication in the Federal Register and entry in the central databases and refresh of this website, some taxa may have a status which does not yet appear.			

Status Due to Taxonomic Relationship ("Implied USESA Status")

In some cases species or infraspecific taxa may not be named in a federal register notice, but may still have federal protection due to their taxonomic relationship with formally listed taxa. Section 17.11(g) of the Endangered Species Act states, "the listing of a particular taxon includes all lower taxonomic units." Also, if an infraspecific taxon or population has federal status, then by default, some part of the species has federal protection. NatureServe Explorer notes where federal protection of a taxon is "implied" through such taxonomic relationships. Where federal status is implied due to a taxonomic relationship alone, the status abbreviation appears with a flag (1) and no date of listing is given.

Status of Geopolitically or Administratively Defined Populations

Distinct population segments of vertebrate animals may be listed as threatened or endangered under the Endangered Species Act. Listed populations may be defined by geopolitical boundaries (i.e., the status applies to the species or subspecies only within those boundaries, even though the taxon may range more broadly), or populations may be defined administratively (e.g., experimental populations). Because such populations do not typically have individual records in NatureServe Explorer, the U.S. ESA status is recorded for the species or subspecies to which that

population belongs. In these cases, the status abbreviation appears with a flag (a), after the abbreviation "PS" for "partial status" - indicating that the status applies only to a portion of the species' range.


Implied ESA Status	mplied ESA Status Notations (Status Due to Taxonomic Relationship)					
Example	Explanation	Definition				
value,value	Combination values	The taxon has one status currently, but a more recent proposal has been made to change that status with no final action yet published. For example, "LE, PDL" indicates that the species is currently listed as endangered, but has been proposed for delisting. Or, taxon has two different statuses throughout its range. More specifically, it has a status in one portion of its range and a different status in the remainder of its range.				
(Value)	Flagged Values	The taxon itself is not named in the Federal Register as having U.S. ESA status; however, it does have U.S. ESA status as a result of its taxonomic relationship to a named entity. For example, if a species is federally listed as endangered, then by default, all of its recognized subspecies also have endangered status. The subspecies in this example would have the value "LE (1)" under U.S. ESA Status. Likewise, if all of a species' infraspecific taxa (rangewide) have the same U.S. ESA status, then that status appears in the record for the "full" species as well. In this case, if the taxon at the species level is not mentioned in the Federal Register, the status appears in NatureServe Explorer with a flag (1).				
(value,value)	Combination flagged values	The taxon itself is not named in the Federal Register as having U.S. ESA status; however, all of its infraspecific taxa (rangewide) have official status but two or more of the taxa do not have the same status. In this case, a combination of the statuses shown with a flag (7) indicates the statuses that apply to infraspecific taxa or populations within this taxon.				
(PS)	partial status	Indicates "partial status"—status in only a portion of the species' range. Typically indicated in a "full" species record where at least one but not all of a species' infraspecific taxa or populations has U.S. ESA status.				
(PS:value)	partial status	Indicates "partial status"—status in only a portion of the species' range. The value of that status appears because the listed entity (usually a population defined by geopolitical boundaries or defined administratively, such as experimental populations) does not have an individual entry in NatureServe Explorer. Information about the listed entity can be found in reports for the associated species.				

Version 4.1 (11 November 2004) Data last updated: October 2004

Site	Index	•

ATTACHMENT E ESSENTIAL FISH HABITAT DESIGNATION

Guide to Essential Fish Habitat Designations in the Northeastern United States

Important Note To Users

This guide provides a geographic species list of Essential Fish Habitat (EFH) designations completed by the New England Fishery Management Council, Mid-Atlantic Fishery Management Council, South Atlantic Fishery Management Council, and the National Marine Fisheries Service (NMFS) in the Northeastern United States pursuant to the Magnuson-Stevens Fishery Conservation and Management Act. The guide is designed to provide government agencies and other interested parties with a quick reference to determine the species and life stages of fish, shellfish, and mollusks for which EFH has been designated in a particular area. Using a "point and click" format, it lists the EFH species in selected 10' x 10' squares of latitude and longitude along the coast. Although not provided in this guide, EFH has also been designated in offshore areas throughout the Exclusive Economic Zone. This guide lists the EFH species within an area and is not intended for use on its own. The actual EFH descriptions, the species habitat preferences and life history parameters are provided in Guide to EFH Descriptions. The Councils' Fishery Management Plans (FMPs) should be referred to for more extensive information regarding EFH whenever necessary.

To skip the introduction, click here.

To view EFH Designations for Skate Species, which are not in the map below, click here.

Background

The 1996 amendments to the Magnuson-Stevens Act strengthened the ability of NMFS and the Councils to protect and conserve the habitat of marine, estuarine, and anadromous finfish, mollusks, and crustaceans. This habitat is termed "essential fish habitat" and is broadly defined to include "those waters and substrate necessary to fish for spawning, breeding, feeding, or growth to maturity." The Act requires the Councils to describe and identify the essential habitat for the managed species, minimize to the extent practicable adverse effects on EFH caused by fishing, and identify other actions to encourage the conservation and enhancement of EFH.

The Act also establishes measures to protect EFH. NMFS must coordinate with other federal agencies to conserve and enhance EFH, and federal agencies must consult with NMFS on all actions or proposed actions authorized, funded, or undertaken by the agency that may adversely affect EFH. In turn NMFS must provide recommendations to federal and state agencies on such activities to conserve EFH. These recommendations may include measures to avoid, minimize, mitigate, or otherwise offset adverse effects on EFH resulting from actions or proposed actions authorized, funded, or

undertaken by that agency.

Description of the Guide

To facilitate the EFH consultation process, this guide provides a quick method of ascertaining what species and lifestages have EFH in a given geographic area. The information is presented as tabular summaries for selected 10' x 10' squares of latitude and longitude. Each table includes a short but detailed description of the square, including a table of coordinates, as well as landmarks along the coastline such as towns, cities, necks, points, rocks, islands, bays, coves, shoals, marshes, beaches, banks, estuaries, creeks, thorofares, or rivers. The information for the square descriptions was taken from National Oceanic and Atmospheric Administration (NOAA) Coast Survey nautical charts. An attempt was made to ensure the names used in the description are as thorough as possible. However, if a question arises in regards to a location, please refer to the nautical charts or any reference map. Also, when in doubt concerning whether a project is divided by a square boundary, please refer to a map or chart.

For the offshore squares, the information is based primarily on the offshore trawl survey data that was used to support the Councils' EFH designations. For squares located within major estuaries and bays, the EFH designations are based on Estuarine Living Marine Resources data along with some trawl survey data. For detailed species lists for the major estuaries, select from the estuaries list instead of the 10 minute square. The Guide to EFH Descriptions provides an overall species list categorized by the Council's jurisdictions. Click on the species name to retrieve the EFH Designations as well as additional habitat information, where available. These summaries are not a substitute for the actual EFH designations provided in the Council's FMPs. Users should refer to the Councils' FMPs when questions arise.

Definitions

The tables are fairly straightforward, but the following definitions will help clarify exactly what each summary shows:

10 Minute Square Tables

The notation "X" in a table indicates that EFH has been designated within the square for a given species and life stage.

The notation "n/a" in the tables indicates some of the species either have no data available on the designated lifestages, or those lifestages are not present in the species' reproductive cycle. These species are:

- redfish, which have no eggs (larvae born already hatched);
- long finned squid, short finned squid, surf clam, and ocean quahog which are referred to as pre-recruits and recruits (this corresponds with juveniles and adults in the tables);
- spiny dogfish, which have no eggs or larvae (juveniles born live);
- scup and black sea bass, for which there is insufficient data for the life stages listed, and no EFH designation has been made as of yet (some estuary data is available for all the life stages of these species, and some of the estuary squares will reflect this)

The Highly Migratory Species' life stages that are summarized within the squares are broken down into neonates, juveniles, and adults. For these species there are no 'egg' designations, and neonates correspond to the heading larvae within each summary table.

Estuaries Tables

S = The EFH designation for this species includes the seawater salinity zone of this bay or estuary (salinity > or = 25.0%).

M = The EFH designation for this species includes the mixing water/ brackish salinity zone of this bay or estuary (0.5% < salinity < 25.0%).

F = The EFH designation for this species includes the tidal freshwater salinity zone of this bay or estuary (0.0% < or = salinity < or = 0.5%).

n/a = The species does not have this lifestage in its life history (dogfish/ redfish), or has no EFH designation for this lifestage (squids, surf clam, ocean quahog). With regard to the squids, the surf clam, and the ocean quahog, juvenile corresponds with pre-recruits, and adult corresponds with recruits in these species' life histories.

These EFH designations of estuaries and embayments are based on the NOAA Estuarine Living Marine Resources (ELMR) program (Jury et al. 1994; Stone et al. 1994).

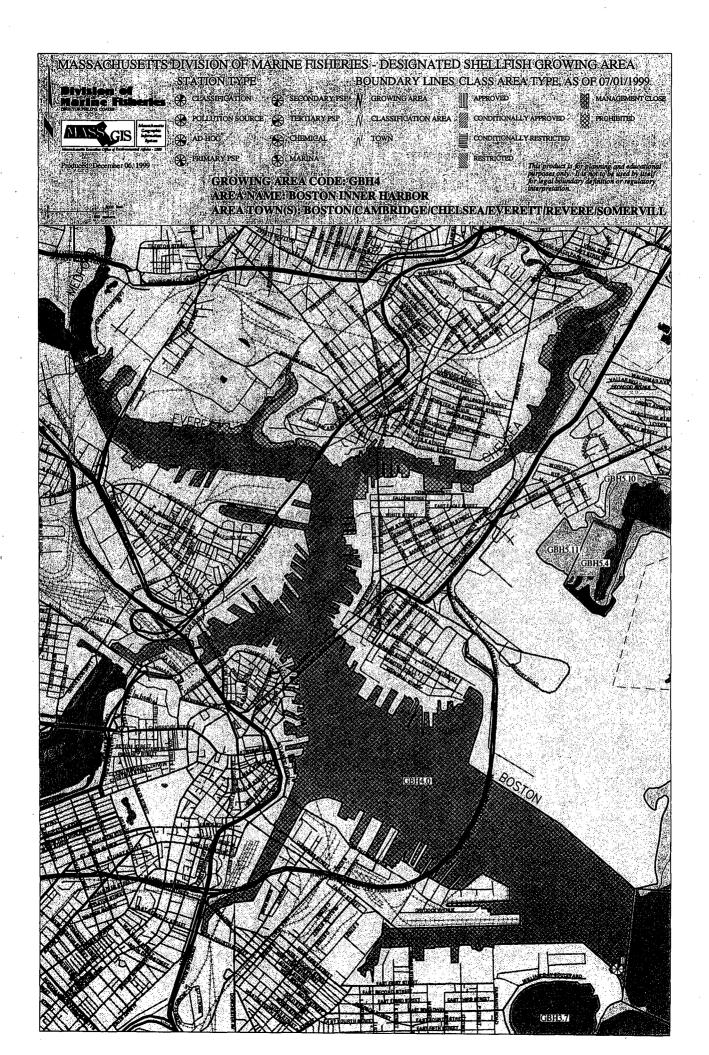
Disclaimer

The process involved in converting the EFH designations into this format was tedious. It consisted of determining the designations within each square, square by square and species life stage by species life stage, and then compiling the information into each table. Information has been double checked, but some errors may appear. When questions arise, the Councils' Fishery Management Plans are ultimately and legally determinative of the geographic limits of EFH.

To use the Guide, click here.

If you have comments on the Guide, send an e-mail message to ill.ortiz@noaa.gov.

Summary of Essential Fish Habitat (EFH) Designations


Name of Estuary/ Bay/ River: Boston Harbor, Massachusetts

10' x 10' latitude and longitude squares included in this bay or estuary or river (southeast corner boundaries):

4220/7100; 4210/7050; 4210/7100

Species	Eggs	Larvae	Juveniles	Adults	Spawning Adults
Atlantic salmon (Salmo salar)					
Atlantic cod (Gadus morhua)	S	S	M,S	M,S	s
haddock (Melanogrammus aeglefinus)	S	S			
pollock (Pollachius virens)	S	s	M,S		
whiting (Merluccius bilinearis)	S	S	M,S	M,S	
offshore hake (Merluccius albidus)					
red hake (Urophycis chuss)		S	S	S	
white hake (Urophycis tenuis)	s	s	S	S	
redfish (Sebastes fasciatus)	n/a				
witch flounder (Glyptocephalus cynoglossus)					
winter flounder (Pleuronectes americanus)	M,S	M,S	M,S	M,S	M,S
yellowtail flounder (Pleuronectes ferruginea)	S	S	S	S	s
windowpane flounder (Scopthalmus aquosus)	M,S	M,S	M,S	M,S	M,S
American plaice (Hippoglossoides platessoides)	S	S	S	S	S
ocean pout (Macrozoarces americanus)			S	S	
Atlantic halibut (Hippoglossus hippoglossus)	S	S	S	S	s
Atlantic sea scallop (Placopecten magellanicus)					
Atlantic sea herring (Clupea harengus)		s	M,S	M,S	
monkfish (Lophius americanus)					

bluefish (Pomatomus saltatrix)			M,S	M,S	
long finned squid (Loligo pealei)	n/a	n/a			
short finned squid (Illex illecebrosus)	n/a	n/a			
Atlantic butterfish (Peprilus triacanthus)	s	s			
Atlantic mackerel (Scomber scombrus)	M,S	M,S	M,S	M,S	
summer flounder (Paralicthys dentatus)		,			
scup (Stenotomus chrysops)					
black sea bass (Centropristus striata)			·		
surf clam (Spisula solidissima)	n/a	n/a			
ocean quahog (Artica islandica)	n/a	n/a			
spiny dogfish (Squalus acanthias)	n/a	n/a			
tilefish (Lopholatilus chamaeleonticeps)				,	

