## ATTACHMENT K: QUALITY ASSURANCE AND SURVEILLANCE PLAN (QASP)

## **Facility Information**

Facility name: One Carbon Partnership, LP

CCS1

Facility address: 1554 N. 600 E. Union City, IN 47390

Well location: Section 17, Township 20 N, Range 15 E

40.1874°, -84.8646°

# **Table of Contents**

| 1 Title and Approval Sheet                                                   |    |
|------------------------------------------------------------------------------|----|
| 2 Distribution List                                                          |    |
| 3 Project Management                                                         |    |
| 3.1 Project/Task Organization                                                |    |
| 3.1.1 Key Individuals and Responsibilities                                   |    |
| 3.1.2 Independence from Project Quality Assurance Manager and Data Gathering |    |
| 3.1.3 Project Quality Assurance Plan Responsibility                          |    |
| 3.1.4 Organizational Chart for Project Organizational Structure              |    |
| 3.2 A.2. Problem Definition/Background                                       |    |
| 3.2.1 A.2.a. Reasoning                                                       |    |
| 3.2.2 A.2.b. Reasons for Initiating the Project                              |    |
| 3.2.3 A.2.c. Regulatory Information, Applicable Criteria, Action Limits      |    |
| 3.3 A.3. Project/Task Description                                            |    |
| 3.3.1 A.3.a/b. Summary of Work to be Performed                               |    |
| 3.3.2 A.3.c. Geographic Locations                                            |    |
| 3.3.3 A.3.d. Resource and Time Constraints                                   |    |
| 3.4 A.4.Quality Objectives and Criteria                                      |    |
| 3.4.1 A.4.a. Performance/Measurement Criteria                                | 21 |
| 3.4.2 A.4.b. Precision                                                       |    |
| 3.4.3 A.4.c. Bias                                                            |    |
| 3.4.4 A.4.d. Representativeness                                              |    |
| 3.4.5 A.4.e. Completeness                                                    |    |
| 3.4.6 A.4.f. Comparability                                                   |    |
| 3.4.7 A.4.g. Method Sensitivity                                              |    |
| 3.5 A.5. Special Training/Certifications                                     |    |
| 3.5.1 A.5.a. Specialized Training and Certifications                         |    |
| 3.5.2 A.5.b/c. Training Provider and Responsibility                          |    |
| 3.6 A.6. Documentation and Records                                           |    |
| 3.6.1 A.6.a. Report Format and Package Information                           |    |
| 3.6.2 A.6.b. Other Project Documents, Records, and Electronic Files          |    |
| 3.6.3 A.6.c/d. Data Storage and Duration                                     |    |
| 3.6.4 A.6.e. QASP Distribution Responsibility                                |    |
| 4 B. Data Generation and Acquisition                                         |    |
| 4.1 B.1. Sampling Process Design                                             | 41 |
| 4.1.1 B.1.a. Design Strategy                                                 | 41 |
| 4.1.2 B.1.b. Type and Number of Samples/Test Runs                            | 43 |
| 4.1.3 B.1.c. Site/Sampling Locations                                         |    |
| 4.1.4 B.1.d. Sampling Site Contingency                                       |    |
| 4.1.5 B.1.e. Activity Schedule                                               |    |
| 4.1.6 B.1.f. Critical/Informational Data                                     |    |
| 4.1.7 B.1.g. Sources of Variability                                          | 44 |

| 4.2 | B.2. Sampling Methods                                          | 45 |
|-----|----------------------------------------------------------------|----|
| 4.2 | 2.1 B.2.a/b. Sampling SOPs                                     | 45 |
| 4.2 | 2.2 B.2.c. In-situ Monitoring                                  |    |
| 4.2 | 2.3 B.2.d. Continuous Monitoring                               | 46 |
|     | 2.4 B.2.e. Sample Homogenization, Composition, Filtration      |    |
| 4.2 |                                                                |    |
| 4.2 | 2.6 B.2.g. Sample Preservation                                 | 46 |
| 4.2 | 2.7 B.2.h. Cleaning/Decontamination of Sampling Equipment      | 47 |
| 4.2 |                                                                |    |
| 4.2 | 2.9 B.2.j. Corrective Action, Personnel, and Documentation     | 47 |
| 4.3 | B.3. Sample Handling and Custody                               | 47 |
| 4.3 | 3.1 B.3.a. Maximum Hold Time/Time Before Retrieval             | 48 |
| 4.3 | 3.2 B.3.b. Sample Transportation                               | 48 |
| 4.3 | B.3.c. Sampling Documentation                                  | 48 |
| 4.3 | 3.4 B.3.d. Sample Identification                               | 48 |
| 4.3 | 3.5 B.3.e. Sample Chain-of-Custody                             | 49 |
| 4.4 | B.4. Analytical Methods                                        | 50 |
| 4.4 | 4.1 B.4.a. Analytical SOPs                                     | 50 |
|     | 4.2 B.4.b. Equipment/Instrumentation Needed                    |    |
| 4.4 | 4.3 B.4.c. Method Performance Criteria                         | 50 |
| 4.4 | 4.4 B.4.d. Analytical Failure                                  | 50 |
| 4.4 | 4.5 B.4.e. Sample Disposal                                     | 50 |
| 4.4 | 4.6 B.4.f. Laboratory Turnaround                               | 50 |
| 4.4 | 1.7 B.4.g. Method Validation for Nonstandard Methods           | 50 |
| 4.5 | B.5. QC                                                        | 50 |
| 4.5 | 5.1 B.5.a. QC activities                                       | 50 |
| 4.5 | 5.2 B.5.b. Exceeding Control Limits                            | 51 |
| 4.5 | 5.3 B.5.c. Calculating Applicable QC Statistics                | 51 |
| 4.6 | B.6. Instrument/Equipment Testing, Inspection, and Maintenance | 52 |
| 4.7 | B.7. Instrument/Equipment Calibration and Frequency            |    |
| 47  | 7.1 B.7.a. Calibration and Frequency of Calibration            |    |
|     | 7.2 B.7.b. Calibration Methodology                             |    |
|     | 7.3 B.7.c. Calibration Resolution and Documentation            |    |
| 4.8 | B.8. Inspection/Acceptance for Supplies and Consumables        |    |
|     | 3.1 B.8.a/b. Supplies, Consumables, and Responsibilities       |    |
| 4.9 | B.9. Nondirect Measurements – Seismic Monitoring               |    |
| 4.9 |                                                                |    |
|     | 9.2 B.9.b. Relevance to Project                                |    |
|     | 9.3 B.9.c. Acceptance Criteria                                 |    |
|     | 9.4 B.9.d. Resources/Facilities Needed                         |    |
|     | 9.5 B.9.e. Validity Limits and Operating Conditions            |    |
|     |                                                                |    |
|     | B.10. Data Management                                          |    |
| 4.1 | 0.1 B.10.a. Data Management Scheme                             | 34 |

| 4.10.2 B.10.b. Recordkeeping and Tracking Practices                | 54 |
|--------------------------------------------------------------------|----|
| 4.10.3 B.10.c. Data Handling Equipment/Procedures                  |    |
| 4.10.4 B.10.d. Responsibility                                      |    |
| 4.10.5 B.10.e. Data Archival and Retrieval                         | 54 |
| 4.10.6 B.10.f. Hardware and Software Configurations                | 54 |
| 4.10.7 B.10.g. Checklists and Forms                                | 54 |
| 5 C. Assessment and Oversight                                      | 55 |
| 5.1 C.1. Assessments and Response Actions                          | 55 |
| 5.1.1 C.1.a. Activities to be Conducted                            | 55 |
| 5.1.2 C.1.b. Responsibility for Conducting Assessments             | 55 |
| 5.1.3 C.1.c. Assessment Reporting                                  |    |
| 5.1.4 C.1.d. Corrective Action                                     | 55 |
| 5.2 C.2. Reports to Management                                     | 55 |
| 5.2.1 C.2.a/b. QA status Reports                                   | 55 |
| 6 D. Data Validation and Usability                                 | 56 |
| 6.1 D.1. Data Review, Verification, and Validation                 | 56 |
| 6.1.1 D.1.a. Criteria for Accepting, Rejecting, or Qualifying Data | 56 |
| 6.2 D.2. Verification and Validation Methods                       | 56 |
| 6.2.1 D.2.a. Data Verification and Validation Processes            | 56 |
| 6.2.2 D.2.b. Data Verification and Validation Responsibility       | 56 |
| 6.2.3 D.2.c. Issue Resolution Process and Responsibility           | 56 |
| 6.2.4 D.2.d. Checklist, Forms, and Calculations                    |    |
| 6.3 D.3. Reconciliation with User Requirements                     | 56 |
| 6.3.1 D.3.a. Evaluation of Data Uncertainty                        | 56 |
| 6.3.2 D.3.b. Data Limitations Reporting                            |    |
| 7 References                                                       | 57 |

# **List of Tables**

| Table 1. Summary of Testing and Monitoring                                                            | 4 |
|-------------------------------------------------------------------------------------------------------|---|
| Table 2. Instrumentation Summary                                                                      | 6 |
| Table 3. Geophysical Surveying Summary                                                                | 7 |
| Table 4. Summary of Analytical and Field Parameters for Shallow Groundwater Samples 23                | 3 |
| Table 5. Summary of Analytical and Field Parameters for USDW Groundwater Samples 24                   | 4 |
| Table 6. Summary of Analytical and Field Parameters for Fluid Samples from ACZ1                       | 5 |
| Table 7. Summary of Analytical and Field Parameters for Mt. Simon Groundwater Samples 2               | 7 |
| Table 8. Summary of Analytical Parameters for CO <sub>2</sub> Stream.                                 | 9 |
| Table 9. Summary of Analytical Parameters for Corrosion Coupons                                       | 3 |
| Table 10. Summary of Measurement Parameters for Field Gauges                                          | 3 |
| Table 11. Actionable Testing and Monitoring Outputs                                                   | 5 |
| Table 12. Pressure and Temperature (OBS1/CCS1) – Downhole Gauge Specifications 3'                     | 7 |
| Table 13. Representative Logging Tool Specifications                                                  | 7 |
| Table 14. Temperature Field Probe – Post Compressor                                                   | 7 |
| Table 15. Pressure Field Probe – Post Compressor                                                      | 8 |
| Table 16. Flow Rate Field Flowmeter – Post Compressor                                                 | 8 |
| Table 17. Temperature Field Probe – Injection Tubing                                                  | 8 |
| Table 18. Pressure Field Probe – Injection Tubing                                                     | 8 |
| Table 19. Flow Rate Field Flowmeter – Injection Tubing                                                | 9 |
| Table 20. Pressure Field Probe – CCS1 Annulus.                                                        | 9 |
| Table 21. Pressure Field Probe – OBS1 Annulus, OBS1 Wellhead, ACZ1 Wellhead                           | 9 |
| Table 22. Analog Pressure Gauge – OBS1 Annulus, INJ1 Wellhead, OBS1 Wellhead 39                       | 9 |
| Table 23. Analog Pressure Gauge – OBS1 Wellhead                                                       | 0 |
| Table 24. Analog Pressure Gauge – ACZ1 Wellhead                                                       | 0 |
| Table 25. Stabilization Criteria of Water Quality Parameters During Shallow Well Purging 4:           | 5 |
| Table 26. Sample Containers, Treatments, and Holding Times for CO <sub>2</sub> Gas Stream Analysis 40 | 6 |
| Table 27. Sample Containers, Treatments, and Holding Times for Groundwater Samples 49                 | 9 |

# **List of Figures**

| Figure 1. Organizational chart for key project personnel and responsibilities.  | 11 |
|---------------------------------------------------------------------------------|----|
| Figure 2. Cardinal Ethanol facility and associated CCS related equipment.       | 18 |
| Figure 3. Ethanol facility, flowlines, surface capture facility, well locations | 19 |
| Figure 4. Ethanol facility and OBS1 location                                    | 20 |

## **List of Acronyms**

ACZ above confining zone

ACZ1 proposed above confining zone well

CBL cement bond log

CCS carbon capture and sequestration

CCS1 proposed injection well

CO<sub>2</sub> carbon dioxide

EPA Environmental Protection Agency

MIT mechanical integrity test

N/A not applicable

OBS1 Deep Observation Well OCP One Carbon Partnership, LP

PISC post-injection site care and site closure

PNL pulsed neutron logging QA Quality Assurance

QASP Quality Assurance Surveillance Plan

QC Quality Control

SCADA supervisory control and data acquisition

SOP standard operating procedure

TBD to be determined TDS total dissolved solids

UIC Underground Injection Control

USDW underground source(s) of drinking water USDW1 Proposed Lowermost USDW Monitor Well

## 1 Title and Approval Sheet

This Quality Assurance and Surveillance Plan (QASP) is approved for use and implementation at One Carbon Partnership, LP's (OCP) facility in Union City, IN for the Hoosier #1 Project. The signatures below denote the approval of this document and intent to abide by the procedures outlined within it.

| The Cot                                            | May 28, 2025 |
|----------------------------------------------------|--------------|
| Signature                                          | Date         |
| Hugh Caperton                                      |              |
| Director, OCP                                      |              |
| Senior Vice President, Development,<br>Vault 44.01 |              |

May 28, 2025
Signature Date

Steve Whittaker

Vice President, Subsurface, Vault 44.01

#### 2 Distribution List

The following project participants will receive the completed QASP and all future updates for the duration of the project. The Project Manager will be responsible for ensuring that all people on the distribution list below receive the most current version of the approved QASP.

#### One Carbon Partnership, LP (OCP)

#### Jeremy Herlyn

Plant Manager, Cardinal Ethanol

1554 N. 600 E.

Union City, IN 47390

#### Adam Hunt

Project Manager, Vault 44.01

1125-17th Street, Suite 1275

Denver, Colorado 80202

Email: adamh@vault4401.com

Well Location: 1554 N. 600 E.

Union City, IN 47390

Randolph County

CO<sub>2</sub> Injection Well Location for Cardinal CCS #1

Latitude 40.1874°

Longitude -84.8646°

## 3 Project Management

## 3.1 Project/Task Organization

#### 3.1.1 Key Individuals and Responsibilities

Cardinal Ethanol and Vault 44.01 are the partners in the OCP Project. Testing and monitoring responsibilities through the pre-operational, injection, and post-injection phases of the project will be shared between these two partners with support from various subcontractors. The QASP covers testing and monitoring activities that will take place during the pre-operational testing phase, 30 year injection phase, and 50 year post-injection site care (PISC) phase of the project (Attachment G; Attachment C; Attachment E). Seven subcategories have been identified as part of the testing and monitoring program.

- 1. Shallow Groundwater Sampling and Monitoring,
- 2. Deep Groundwater Sampling and Monitoring,
- 3. Injection Well Monitoring,
- 4. Mechanical Integrity Testing (MIT),
- 5. Pressure and Temperature Monitoring,
- 6. Carbon Dioxide (CO<sub>2</sub>) Stream Analysis,
- 7. Plume Modeling.

#### 3.1.2 Independence from Project Quality Assurance Manager and Data Gathering

The physical samples to be collected, and the data gathered as a part of the monitoring program will be, on occasion, analyzed, processed, and/or witnessed by third party contractors, independent of the laid out project management structure.

#### 3.1.3 Project Quality Assurance Plan Responsibility

OCP will be responsible for maintaining and distributing the official, approved Project QASP. Vault will review the QASP periodically and discuss with the Environmental Protection Agency (EPA) should any changes to the plan be warranted.

Attachment K

## 3.1.4 Organizational Chart for Project Organizational Structure

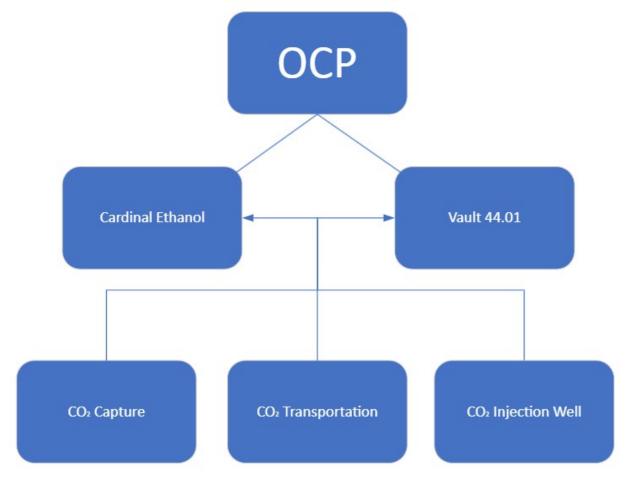



Figure 1. Organizational chart for key project personnel and responsibilities.

#### 3.2 A.2. Problem Definition/Background

#### 3.2.1 A.2.a. Reasoning

The OCP carbon capture and sequestration (CCS) project has a robust monitoring program, which includes operational, plume, and environmental components.

Operational monitoring serves to ensure that all procedures and processes associated with the project are safe. Data will be collected to monitor the response of the sequestration unit and layers overlying the confining zone by monitoring the following parameters:

- Injection pressure,
- Injection well annulus pressure,
- Injection zone pressure,
- Above confining zone (ACZ) formation pressure,
- Lowermost underground source of drinking water (USDW) pressure.

In addition to the pressure components of the operational monitoring, additional parameters such as injection rate, total volume/mass injected, injection well temperature profile, and passive seismic data will be collected and evaluated.

The plume monitoring component of the program will provide information to evaluate the extent to which the CO<sub>2</sub> plume has spread and whether any leakage of the CO<sub>2</sub> through the caprock has occurred. The primary component of this monitoring is Pulsed Neutron Logging (PNL), but additional data will be gathered from pressure and temperature monitoring.

The environmental component of the monitoring program is meant to determine if CO<sub>2</sub> is being released into the shallow groundwater layers or the environment. The primary component of this monitoring consists of fluid sampling and monitoring, with additional monitoring from the PNL, which is a primary component of the plume monitoring program.

The robust monitoring program developed for this project is based on experience gained from other approved Class VI projects, as well as extensive geologic evaluation, reservoir modeling, and understanding of federal regulations on the matter. The result of this experience yields a high level of confidence that the Mt. Simon Sandstone is a suitable injection formation, and that the Eau Claire is a sufficient caprock, capable of ensuring the injected  $CO_2$  will remain permanently sequestered in the Mt. Simon Sandstone.

The primary goal of the monitoring program is to continue to demonstrate the activities of this project are safe for the health of the general public and environment. In order to help facilitate this demonstration, the QASP was developed to ensure the quality of the demonstration methods meets the requirements of the EPA Underground Injection Control (UIC) Program for Class VI wells.

#### 3.2.2 A.2.b. Reasons for Initiating the Project

The purpose of the OCP CCS project is to store CO<sub>2</sub> in the Mt. Simon Sandstone in eastern Indiana. This project intends to reduce the amount of CO<sub>2</sub> emissions from the ethanol facility into the atmosphere. In order to demonstrate the efficacy of this project and the long-term sequestration of CO<sub>2</sub>, the rigorous testing and monitoring program presented in this application will be implemented during the preoperational, injection, and post-injection phases of the project.

Attachment K

#### 3.2.3 A.2.c. Regulatory Information, Applicable Criteria, Action Limits

Class VI regulations stipulate that the owners or operators of Class VI wells perform several types of activities throughout the life of the project to ensure the following:

- i. That the wells maintain their mechanical integrity,
- ii. That injected fluid migration and pressure changes are within the limits described in the permit application, and
- iii. That USDWs are not endangered during or after operations.

The activities to demonstrate the objectives detailed above consist of, but are not limited to, the following:

- MIT,
- Well tests performed on the injection well during operation,
- Groundwater monitoring from several zones, and
- CO<sub>2</sub> plume and pressure front tracking.

This document is intended to detail the methods of measurement and the steps that will be taken to ensure the quality of the collected data so that confident informed decisions can be made during the project.

#### 3.3 A.3. Project/Task Description

#### 3.3.1 A.3.a/b. Summary of Work to be Performed

Table 1 displays the major tasks for the testing and monitoring program described in Testing and Monitoring and PISC sections of this permit application (Attachment C; Attachment E). This table displays the location of monitoring points, method of sampling, analytical technique applied, lab/custody procedures to be followed (if applicable), and the purpose of each item. Details on the frequency of the testing and monitoring program activities can be found in the Pre-Operational Testing Plan, Testing and Monitoring Plan, and the PISC attachments of this application (Attachment G; Attachment C; Attachment E).

Table 2 and Table 3 display details of the instrumentation used at each monitoring location, and geophysical surveys, respectively.

Attachment K

Table 1. Summary of Testing and Monitoring

| Activity                                                                       | Location(s)                     | Method                        | Analytical Technique                | Lab/Custody            | Purpose                                       |  |  |
|--------------------------------------------------------------------------------|---------------------------------|-------------------------------|-------------------------------------|------------------------|-----------------------------------------------|--|--|
| CO <sub>2</sub> stream analysis                                                | CO <sub>2</sub> stream analysis |                               |                                     |                        |                                               |  |  |
| CO <sub>2</sub> stream analysis – downstream CO <sub>2</sub> Delivery Flowline |                                 | Direct Sampling               | Chemical Analysis                   | to be determined (TBD) | Monitor injectate quality and composition     |  |  |
| <b>Continuous Recording</b>                                                    |                                 |                               |                                     |                        |                                               |  |  |
| Injection rate                                                                 | CCS1 Wellhead                   | Flowmeter                     | Direct Measure                      | Not Applicable (N/A)   | Monitoring injection rate                     |  |  |
| Injection volume                                                               | CCS1 Wellhead                   | Flowmeter                     | Direct Measure                      | N/A                    | Calculated injection volume                   |  |  |
| Injection pressure                                                             | CCS1 Wellhead                   | Continuous Monitoring         | Direct Measure                      | N/A                    | Monitoring injection pressure                 |  |  |
| Wellhead pressure  ACZ1 Wellhead  Deep Observation Well  (OBS1) Wellhead       |                                 | Continuous Monitoring         | Direct Measure                      | N/A                    |                                               |  |  |
| Annular pressure                                                               | CCS1 Wellhead<br>OBS1 Wellhead  | Continuous Monitoring         | Direct Measure                      | N/A                    | Monitoring annulus pressure                   |  |  |
| Downhole pressure CCS1 Injection Interval OBS1 Injection Interval Downhole     |                                 | Downhole Gauge                | Direct Measure                      | N/A                    | Monitoring injection zone                     |  |  |
| Downhole temperature CCS1 Wellbore Downh                                       |                                 | Downhole Gauge                | Direct Measure                      | N/A                    | Monitoring injection zone, wellbore integrity |  |  |
| Microseismic Various Monitoring Stations                                       |                                 | Geophones and<br>Seismometers | Direct Measure                      | N/A                    | Injection zone and confining zone integrity   |  |  |
| Well Integrity                                                                 |                                 |                               |                                     |                        |                                               |  |  |
| Corrosion monitoring CO <sub>2</sub> Delivery Pipeline Coupon                  |                                 | Coupon                        | Direct Measure<br>Chemical Analysis | TBD                    | Monitoring injectate, wellbore integrity      |  |  |
| Annular fluid volume                                                           | CCS1 Wellhead<br>OBS1 Wellhead  | Sight Glass Readings          | Direct Measure                      | N/A                    | Monitoring annulus fluid volume changes       |  |  |
| Mechanical integrity (internal)                                                | CCS1 Wellhead<br>OBS1 Wellhead  | Annulus Pressure Test         | 40 CFR 146.89 (b)                   | N/A                    | Wellbore integrity                            |  |  |

Attachment K

| Activity                                                                   | Location(s)                                            | Method                               | Analytical Technique                                               | Lab/Custody            | Purpose                                                                                 |
|----------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------|
| Mechanical integrity (external)                                            | CCS1 Wellbore<br>OBS1 Wellbore<br>(temp log only)      | Various                              | 40 CFR 146.87 (a)(4)<br>40 CFR 146.89 (c)(2)<br>Log Interpretation | N/A                    | Wellbore integrity                                                                      |
| Cement Evaluation                                                          | CCS1 Wellbore<br>OBS1 Wellbore<br>ACZ1 Wellbore        | Logging                              | Direct Measure<br>Log Interpretation                               | N/A                    | Wellbore integrity                                                                      |
| Plume Tracking                                                             |                                                        |                                      |                                                                    |                        |                                                                                         |
| PNL                                                                        | CCS1 Wellbore<br>OBS1 Wellbore                         | Logging                              | Direct Measure<br>Log Interpretation                               | N/A                    | CO <sub>2</sub> saturation, vertical plume development                                  |
| Downhole pressure                                                          | OBS1 Injection Interval<br>CCS1 Injection Interval     | Direct Sampling                      | Direct Measure                                                     | N/A                    | Monitoring injection<br>zone pressure, plume<br>monitoring, confining<br>zone integrity |
| Microseismic<br>Monitoring                                                 | Minimum of 5 stations<br>TBD                           | Geophones and<br>Seismometers        | Direct Measure                                                     | N/A                    | Injection zone and confining zone integrity                                             |
| Time-lapse 3D Seismic<br>Data                                              | Area sufficient to image an 8.97 mi <sup>2</sup> plume | 3D Seismic Surface<br>Seismic Survey | Data Analysis and<br>Interpretation                                | N/A                    | Indirect measurement of plume development                                               |
| Fluid Sampling                                                             |                                                        |                                      |                                                                    |                        |                                                                                         |
| Shallow Groundwater<br>Sampling<br>(Glacial Drift)                         | 12 wells spatially distributed throughout the AoR      | Sample at surface                    | Chemical Analysis                                                  | Table 4 for parameters | Detection of changes in groundwater quality for the shallow USDWs.                      |
| Lowermost USDW<br>Sampling<br>(Maquoketa Shale)                            | USDW1                                                  | Pump and sample at surface           | Chemical Analysis                                                  | Table 5 for parameters | Detection of changes in the groundwater quality in the lowermost USDW.                  |
| Above Confining Zone<br>Sampling<br>(Knox Formation)                       | ACZ1 1001 sample at formation                          |                                      | Chemical Analysis                                                  | Table 6 for parameters | Detection of changes in groundwater quality above the confining zone.                   |
| Injection Interval<br>Monitoring<br>(Mt. Simon Sandstone)<br>Baseline only | OBS1 or CCS1                                           | Tool sample at formation depth       | Chemical Analysis                                                  | Table 7 for parameters | Baseline water quality only                                                             |

Attachment K

**Table 2. Instrumentation Summary** 

| Monitoring Location      | Instrument<br>Type              | Monitoring<br>Target/Interval                           | Data Collection<br>Location(s)         | Explanation                                                                                               |  |
|--------------------------|---------------------------------|---------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------|--|
| CO <sub>2</sub> Facility | Gas sampling port               | Surface                                                 | Downstream of Compressor               | Monitoring injectate quality and composition                                                              |  |
|                          | Temperature<br>Pressure<br>Flow | Wellhead - injection<br>Wellhead - injection<br>Surface | Tubing<br>Tubing<br>Flowline           | Monitoring operational parameters of surface and well equipment.                                          |  |
|                          |                                 | Wellbore - injection<br>Wellbore - injection            | Packer<br>Packer                       | Monitoring operational parameters at bottom hole conditions.                                              |  |
|                          | Pressure                        | Wellhead - annulus<br>Wellhead - MIT (internal)         | Annulus<br>Annulus                     | Monitoring well integrity.                                                                                |  |
|                          | Corrosion                       | Surface                                                 | Upstream from<br>Wellhead              | Monitoring corrosion of the wellhead equipment and tubulars before potential future equipment failure.    |  |
|                          | Pressure                        | Wellbore – injection zone                               | Packer                                 | Monitoring bottomhole injection pressure in injection zone                                                |  |
| OBS1                     | Pressure                        | Wellhead - annulus<br>Wellhead - MIT (internal)         | Annulus<br>Annulus                     | Monitoring well integrity.                                                                                |  |
| ACZ1                     | Pressure                        | Wellhead - ACZ zone                                     | Surface                                |                                                                                                           |  |
| Seismic<br>Stations      | Seismometer(s)<br>Geophones     | Surface and borehole                                    | All Strata<br>Various Locations<br>TBD | Passive seismic monitoring equipment to be used to monitor and detect seismic events over within the AoR. |  |

**Table 3. Geophysical Surveying Summary** 

| Survey Activity Well Tool/Survey Description             |      | Tool/Survey Description       | Explanation                                                                   |
|----------------------------------------------------------|------|-------------------------------|-------------------------------------------------------------------------------|
|                                                          |      | Temperature                   | Mechanical Integrity, Fluid Movement, CO <sub>2</sub> Detection               |
|                                                          | CCS1 | Pressure Falloff Test         | Injection Zone Pressure Response, Geophysical and Geomechanical<br>Monitoring |
|                                                          |      | Pre-operation Testing Logging | Well characterization                                                         |
| Logging                                                  |      | PNL                           | Mechanical Integrity, Fluid Movement, CO <sub>2</sub> Detection               |
|                                                          | OBS1 | Temperature Log               | Mechanical Integrity, Fluid Movement, CO <sub>2</sub> Detection               |
|                                                          |      | Pre-operation Testing Logging | Well characterization                                                         |
|                                                          |      | PNL                           | Mechanical Integrity, Fluid Movement, CO <sub>2</sub> Detection               |
|                                                          | ACZ1 | Cement Bond Log (CBL)         | Mechanical Integrity                                                          |
| Seismic Stations  Surface Survey Area  3D Seismic Survey |      | 3D Seismic Survey             | Monitor extent of CO <sub>2</sub> plume.                                      |

## 3.3.2 A.3.c. Geographic Locations



Figure 2. Cardinal Ethanol facility and associated CCS related equipment.

Page 18



Figure 3. Ethanol facility, flowlines, surface capture facility, CCS1, proposed lowermost USDW monitor well (USDW1), and proposed above confining zone monitoring well (ACZ1) location



Figure 4. Ethanol facility and OBS1 location

#### 3.3.3 A.3.d. Resource and Time Constraints

No major time or resource constraints have been identified for the Hoosier #1 Project. Wells drilled, tested, and monitored as laid out in the permit application will serve their purpose for pre-operation, active operations, and post closure care.

Following the full closure of the project and the post operational monitoring period OCP plans to plug and abandon all wells associated with the project in a manner consistent with federal regulations. As part of the financial assurance package, money will be allocated to ensure these activities are fully funded.

#### 3.4 A.4. Quality Objectives and Criteria

#### 3.4.1 A.4.a. Performance/Measurement Criteria

The objective of the Quality Assurance (QA) system for the monitoring program is to develop and utilize procedures for surface and subsurface monitoring, field samples, laboratory analysis, and routine reporting. The results of these activities will demonstrate the viability, characterization, and non-endangerment objectives of the project.

Groundwater monitoring will be conducted:

- Before injection begins,
- During injection operations,
- Post-injection operations.

Specific monitoring frequency and timing is provided in the preoperational testing plan, the testing and monitoring plan, and the PISC portions of the application (Attachment G; Attachment C; Attachment E). This monitoring will be performed on shallow and deep groundwater wells. Analytical and monitoring parameters for groundwater samples are provided in Table 4, Table 5, Table 6, and Table 7.

```
Note for Tables 4-7:

ICP – inductively coupled plasma

MS – mass spectrometry

OES – optical emission spectrometry

GC-P – gas chromatography – pyrolysis
```

Table 8 contains analytes for CO<sub>2</sub> stream analysis.

Table 9 and Table 10 show other CO<sub>2</sub> and injection related parameters, instrumentation, and standards of analysis.

Table 11 contains detail on the major monitoring outputs for the testing and monitoring plan.

The list of analytes provided herein may be reassessed periodically and adjusted as necessary based on the effectiveness of the current testing and monitoring program with respect to its objectives.

Key monitoring areas and their major methods and analytes include (but are not limited to):

- i. Shallow Groundwater Sampling
  - a. Aqueous chemical concentrations (Table 4, Table 5)
- ii. Deep Groundwater Sampling
  - a. Aqueous chemical concentrations (Table 6, and Table 7)
- iii. Well Logging
  - a. PNL
- iv. MIT and Corrosion Monitoring
  - a. PNL (external)
  - b. Temperature (external)
  - c. Annulus Pressure Test (internal)
  - d. CBL (external)
  - e. Coupon monitoring
- v. Pressure and Temperature Monitoring

Attachment K

- a. In-situ pressure/temperature gauges
- b. Baseline data
- c. Surface pressure/temperature gauges
- vi. CO<sub>2</sub> Stream Analysis
  - a. CO<sub>2</sub> Purity
  - b. Total Hydrocarbons as Methane
  - c. Carbon Monoxide
  - d. Oxides of Nitrogen
  - e. Nitrogen
  - f. Oxygen
  - g. Methane
  - h. Hydrogen Sulfide
  - i. Sulphur Dioxide
  - j. Acetaldehyde
  - k. Ethanol
- vii. Geophysical Monitoring
  - a. 3D seismic profile
  - b. Time-lapse reporting
  - c. Seismic activity monitoring

Table 4. Summary of Analytical and Field Parameters for Fluid Samples from Shallow Groundwater (GW2-13) Samples (All analysis to be performed by OCP or a designated third party laboratory to be identified.)

| Parameters                                                  | Analytical Methods(1)                  | Detection Limit/Range                      | Typical Precisions | Quality Control<br>Requirements                                             |
|-------------------------------------------------------------|----------------------------------------|--------------------------------------------|--------------------|-----------------------------------------------------------------------------|
| Cations: Al, Ba, Mn, As, Cd, Cr, Cu, Pb, Sb, Se, and Tl     | ICP-MS<br>EPA Method 6020              | 0.001 to 0.1 mg/L <sup>(2)</sup>           | ±15%               | Daily calibration, blanks, duplicates, and matrix spikes at 10% or greater. |
| Ca, Fe, K, Mg, Na, and Si                                   | ICP-OES<br>EPA Method 6010B            | $0.005 \text{ to } 0.5 \text{ mg/L}^{(2)}$ | ±15%               | Daily calibration, blanks, duplicates, and matrix spikes at 10% or greater. |
| Anions:<br>Br, Cl, F, NO <sub>3</sub> , and SO <sub>4</sub> | Ion Chromatography<br>EPA Method 300.0 | 0.02 to 0.13 mg/L <sup>(2)</sup>           | ±15%               | Daily calibration, blanks, and duplicated at 10% or greater frequency.      |
| Dissolved CO <sub>2</sub>                                   | Coulometric Titration<br>ASTM D513-11  | 25 mg/L                                    | ±15%               | Duplicate measurement;<br>standards at 10% or greater<br>frequency          |
| Total Dissolved Solids                                      | Gravimetry<br>APHA 2540C               | 12 mg/L                                    | ±10%               | Balance calibration, duplicate analysis                                     |
| Alkalinity                                                  | APHA 2320B                             | 4 mg/L                                     | ±3 mg/L            | Duplicate analysis                                                          |
| pH (field)                                                  | EPA 150.1                              | 2 to 12 pH units                           | ±0.2 pH units      | Calibration per manufacturer specifications                                 |
| Specific conductance (field)                                | APHA 2510                              | 0 to 200 mS/cm                             | ±1% of reading     | Calibration per manufacturer specifications                                 |
| Temperature (field)                                         | Thermocouple                           | -5 to 50°C                                 | ±0.2°C             | Calibration per manufacturer specifications                                 |

Note 1: An equivalent method may be employed with the prior approval of the UIC Program Director. Note 2: Analyte, dilution, and matrix dependent.

Attachment K

Table 5. Summary of Analytical and Field Parameters for Fluid Samples from Lowermost USDW Groundwater (USDW1) Samples.

(All analysis to be performed by OCP or a designated third party laboratory to be identified.)

| Parameters                                                  | Analytical Methods(1)                          | Detection Limit/Range                                 | Typical Precisions               | QC Requirements                                                                   |
|-------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------|
| Cations: Al, Ba, Mn, As, Cd, Cr, Cu, Pb, Sb, Se, and Tl     | ICP-MS<br>EPA Method 6020                      | 0.001 to 0.1 mg/L <sup>(2)</sup>                      | ±15%                             | Daily calibration, blanks, duplicates, and matrix spikes at 10% or greater.       |
| Ca, Fe, K, Mg, Na, and Si                                   | ICP-OES EPA Method 6010B                       | $0.005 \text{ to } 0.5 \text{ mg/L}^{(2)}$            | ±15%                             | Daily calibration, blanks,<br>duplicates, and matrix spikes<br>at 10% or greater. |
| Anions:<br>Br, Cl, F, NO <sub>3</sub> , and SO <sub>4</sub> | Ion Chromatography EPA Method 300.0            | 0.02 to 0.13 mg/L <sup>(2)</sup>                      | ±15%                             | Daily calibration, blanks, and duplicated at 10% or greater frequency.            |
| Dissolved CO <sub>2</sub>                                   | Coulometric Titration ASTM D513-11             | 25 mg/L                                               | ±15%                             | Duplicate measurement;<br>standards at 10% or greater<br>frequency                |
| <u>Isotopes:</u> δ <sup>13</sup> C of DIC                   | Isotope ratio mass spectrometry <sup>(3)</sup> | $12.2 \text{ mg/L HCO}_3$ - for $\delta^{13}\text{C}$ | $\pm 0.15\%$ for $\delta^{13}$ C | 10% duplicates; 4<br>standards/batch                                              |
| Total Dissolved Solids                                      | Gravimetry APHA 2540C                          | 12 mg/L                                               | ±10%                             | Balance calibration, duplicate analysis                                           |
| Water Density (field)                                       | Oscillating body method                        | 0.0000 to 2.0000                                      | ±0.0002 g/mL                     | Duplicate measurements                                                            |
| Alkalinity                                                  | APHA 2320B                                     | 4 mg/L                                                | ±3 mg/L                          | Duplicate analysis                                                                |

Attachment K

Plan revision number: R10 Plan rev

| Parameters                   | Analytical Methods(1) | Detection Limit/Range | Typical Precisions | QC Requirements                             |
|------------------------------|-----------------------|-----------------------|--------------------|---------------------------------------------|
| pH (field)                   | EPA 150.1             | 2 to 12 pH units      | ±0.2 pH units      | Calibration per manufacturer specifications |
| Specific conductance (field) | APHA 2510             | 0 to 200 mS/cm        | ±1% of reading     | Calibration per manufacturer specifications |
| Temperature (field)          | Thermocouple          | -5 to 50°C            | ±0.2°C             | Calibration per manufacturer specifications |

Note 1: An equivalent method may be employed with the prior approval of the UIC Program Director.

Note 2: Analyte, dilution, and matrix dependent

Note 3: Gas evolution technique by Atekwana and Krishnamurthy (1998), with modifications made by Hackley et al. (2007)

Table 6. Summary of Analytical and Field Parameters for Fluid Samples from ACZ1
(Cation, anion, TDS, and alkalinity analyte measurements will be performed by a laboratory meeting the requirements outlined in the EPA Environmental Laboratory Accreditation program. All other analysis to be performed by OCP or a designated third party laboratory, to be identified.)

**Parameters** Analytical Methods<sup>(1)</sup> **Detection Limit/Range Typical Precisions QC** Requirements Cations:  $0.001 \text{ to } 0.1 \text{ mg/L}^{(2)}$ Daily calibration, blanks, ±15% Al, Ba, Mn, As, Cd, Cr, Cu, **ICP-MS** Pb, Sb, Se, and Tl duplicates, and matrix spikes EPA Method 6020 at 10% or greater. Daily calibration, blanks, Ca, Fe, K, Mg, Na, and Si 0.005 to  $0.5 \text{ mg/L}^{(2)}$ duplicates, and matrix spikes **ICP-OES**  $\pm 15\%$ at 10% or greater. EPA Method 6010B Anions:  $0.02 \text{ to } 0.13 \text{ mg/L}^{(2)}$ Br, Cl, F, NO<sub>3</sub>, and SO<sub>4</sub> Ion Chromatography  $\pm 15\%$ Daily calibration, blanks, and duplicated at 10% or greater EPA Method 300.0 frequency.

Attachment K

| Parameters                              | Analytical Methods(1)                          | Detection Limit/Range                               | Typical Precisions               | QC Requirements                                                    |
|-----------------------------------------|------------------------------------------------|-----------------------------------------------------|----------------------------------|--------------------------------------------------------------------|
| Dissolved CO <sub>2</sub>               | Coulometric Titration ASTM D513-11             | 25 mg/L                                             | ±15%                             | Duplicate measurement;<br>standards at 10% or greater<br>frequency |
| <u>Isotopes:</u> $\delta^{13}$ C of DIC | Isotope ratio mass spectrometry <sup>(3)</sup> | $12.2 \text{ mg/L HCO}_3$ for $\delta^{13}\text{C}$ | $\pm 0.15\%$ for $\delta^{13}$ C | 10% duplicates; 4<br>standards/batch                               |
| Total Dissolved Solids                  | Gravimetry APHA 2540C                          | 12 mg/L                                             | ±10%                             | Balance calibration, duplicate analysis                            |
| Water Density (field)                   | Oscillating body method                        | 0.0000 to 2.0000                                    | ±0.0002 g/mL                     | Duplicate measurements                                             |
| Alkalinity                              | APHA 2320B                                     | 4 mg/L                                              | ±3 mg/L                          | Duplicate analysis                                                 |
| pH (field)                              | EPA 150.1                                      | 2 to 12 pH units                                    | ±0.2 pH units                    | Calibration per manufacturer specifications                        |
| Specific conductance (field)            | АРНА 2510                                      | 0 to 200 mS/cm                                      | ±1% of reading                   | Calibration per manufacturer specifications                        |
| Temperature (field)                     | Thermocouple                                   | -5 to 50°C                                          | ±0.2°C                           | Calibration per manufacturer specifications                        |

Note 1: An equivalent method may be employed with the prior approval of the UIC Program Director.

Note 2: Analyte, dilution, and matrix dependent

Note 3: Gas evolution technique by Atekwana and Krishnamurthy (1998), with modifications made by Hackley et al. (2007)

Attachment K

Table 7. Summary of Analytical and Field Parameters for Fluid Samples from Mt. Simon Sandstone Groundwater (CCS1 or OBS1) Samples, baseline only.

(All analysis to be performed by OCP or a designated third party laboratory to be identified.)

| Parameters                                                  | Analytical Methods(1)                          | Detection Limit/Range                  | Typical Precisions               | QC Requirements                                                             |
|-------------------------------------------------------------|------------------------------------------------|----------------------------------------|----------------------------------|-----------------------------------------------------------------------------|
| Cations: Al, Ba, Mn, As, Cd, Cr, Cu, Pb, Sb, Se, and Tl     | ICP-MS<br>EPA Method 6020                      | 0.001 to 0.1 mg/L <sup>(2)</sup>       | ±15%                             | Daily calibration, blanks, duplicates, and matrix spikes at 10% or greater. |
| Ca, Fe, K, Mg, Na, and Si                                   | ICP-OES EPA Method 6010B                       | $0.005$ to $0.5~{ m mg/L^{(2)}}$       | ±15%                             | Daily calibration, blanks, duplicates, and matrix spikes at 10% or greater. |
| Anions:<br>Br, Cl, F, NO <sub>3</sub> , and SO <sub>4</sub> | Ion Chromatography EPA Method 300.0            | 0.02 to 0.13 mg/L <sup>(2)</sup>       | ±15%                             | Daily calibration, blanks, and duplicated at 10% or greater frequency.      |
| Dissolved CO <sub>2</sub>                                   | Coulometric Titration ASTM D513-11             | 25 mg/L                                | ±15%                             | Duplicate measurement;<br>standards at 10% or greater<br>frequency          |
| Isotopes: $\delta^{13}$ C of DIC                            | Isotope ratio mass spectrometry <sup>(3)</sup> | 12.2 mg/L HCO $_3$ for $\delta^{13}$ C | $\pm 0.15\%$ for $\delta^{13}$ C | 10% duplicates; 4<br>standards/batch                                        |
| Total Dissolved Solids                                      | Gravimetry APHA 2540C                          | 12 mg/L                                | ±10%                             | Balance calibration, duplicate analysis                                     |
| Water Density (field)                                       | Oscillating body method                        | 0.0000 to 2.0000                       | ±0.0002 g/mL                     | Duplicate measurements                                                      |
| Alkalinity                                                  | APHA 2320B                                     | 4 mg/L                                 | ±3 mg/L                          | Duplicate analysis                                                          |

Attachment K

| Parameters                   | Analytical Methods <sup>(1)</sup> | Detection Limit/Range | Typical Precisions | QC Requirements                             |
|------------------------------|-----------------------------------|-----------------------|--------------------|---------------------------------------------|
| pH (field)                   | EPA 150.1                         | 2 to 12 pH units      | ±0.2 pH units      | Calibration per manufacturer specifications |
| Specific conductance (field) | APHA 2510                         | 0 to 200 mS/cm        | ±1% of reading     | Calibration per manufacturer specifications |
| Temperature (field)          | Thermocouple                      | -5 to 50°C            | ±0.2°C             | Calibration per manufacturer specifications |

Note 1: An equivalent method may be employed with the prior approval of the UIC Program Director.

Note 2: Analyte, dilution, and matrix dependent

Note 3: Gas evolution technique by Atekwana and Krishnamurthy (1998), with modifications made by Hackley et al. (2007)

Attachment K

Table 8. Summary of Analytical Parameters for CO<sub>2</sub> Stream.

All analysis to be performed by OCP or a designated third party laboratory, to be identified. Primary constituents to be reported are in bold.

| Parameters                                        | Analytical Methods <sup>(1)</sup> | Detection Limit/Range          | Typical Precisions  | QC Requirements                                                                             |
|---------------------------------------------------|-----------------------------------|--------------------------------|---------------------|---------------------------------------------------------------------------------------------|
| CO <sub>2</sub> Purity                            | ISBT 2.0                          | 5 % v/v                        | ±10 % of reading    | Calibration per manufacturer specifications                                                 |
| Water (H <sub>2</sub> O)                          | ISBT 3.0                          | 0-100 ppm v/v                  | 5 to 10% of reading | Daily blank, daily standard within 10% of calibration, secondary standard after calibration |
| Total Hydrocarbons as<br>Methane                  | ISBT 10.0                         | 0.1 ppm v/v as CH <sub>4</sub> | 5-10% of reading    | Daily blank, daily standard within 10% of calibration, secondary standard after calibration |
| Total Non-Methane<br>Hydrocarbons (TNMHC)         | ISBT 10.1                         | 0.1 ppm v/v as CH <sub>4</sub> |                     |                                                                                             |
| Carbon Monoxide (CO)                              | ISBT 5.0                          | 0.5 ppm v/v                    | ±20% of reading     | Duplicate analysis                                                                          |
| Ammonia (NH <sub>3</sub> )                        | ISBT 6.0                          | 0.5 ppm v/v                    |                     |                                                                                             |
| Oxides of Nitrogen (NO <sub>x</sub> )             | ISBT 7.0                          | 0.5 ppm v/v                    | ±20% of reading     | Duplicate analysis                                                                          |
| Nitrogen Dioxide (NO <sub>2</sub> )               | ISBT 7.1                          | 0.5 ppm v/v                    |                     |                                                                                             |
| Nitric Oxide (NO)                                 | ISBT 7.2                          | 0.5 ppm v/v                    |                     |                                                                                             |
| Source Specific Parameters:                       |                                   |                                |                     |                                                                                             |
| Hydrogen Cyanide (HCN)                            | ISBT 17.0                         | 0.5 ppm v/v                    |                     |                                                                                             |
| Vinyl Chloride (C <sub>2</sub> H <sub>3</sub> Cl) | ISBT 18.0                         | 0.1 ppm v/v                    |                     |                                                                                             |
| Phosphine (PH <sub>3</sub> )                      | ISBT 19.0                         | 0.1 ppm v/v                    |                     |                                                                                             |
| Ethylene Oxide (C <sub>2</sub> H <sub>4</sub> O)  | ISBT 20.0                         | 0.1 ppm v/v                    |                     |                                                                                             |

| Parameters                    | Analytical Methods <sup>(1)</sup> | Detection Limit/Range | Typical Precisions | QC Requirements                                          |
|-------------------------------|-----------------------------------|-----------------------|--------------------|----------------------------------------------------------|
| Non-Condensable Gases:        |                                   |                       |                    |                                                          |
| Nitrogen (N <sub>2</sub> )    | ISBT 4.0                          | 4.0 ppm v/v           | ±10% of reading    | Daily standard within 10% of                             |
| Oxygen (O2)                   | ISBT 4.0                          | 4.0 ppm v/v           | ±10% of reading    | calibration, secondary standard after calibration        |
| Argon (Ar)                    | ISBT 4.0                          | 4.0 ppm v/v           |                    | Canoranon                                                |
| Hydrogen (H <sub>2</sub> )    | ISBT 4.0                          | 10.0 ppm v/v          |                    |                                                          |
| Helium (He)                   | ISBT 4.0                          | 10.0 ppm v/v          |                    |                                                          |
| Volatile Hydrocarbons:        |                                   |                       |                    |                                                          |
| Methane                       | ISBT 10.1                         | 0.5 ppm v/v           | 5-10% of reading   | Daily blank, daily standard within                       |
| Ethylene                      | ISBT 10.1                         | 0.5 ppm v/v           |                    | 10% of calibration, secondary standard after calibration |
| Ethane                        | ISBT 10.1                         | 0.5 ppm v/v           |                    |                                                          |
| Propylene                     | ISBT 10.1                         | 0.5 ppm v/v           |                    |                                                          |
| Volatile Hydrocarbons cont'd: |                                   |                       |                    |                                                          |
| Propane                       | ISBT 10.1                         | 0.5 ppm v/v           |                    |                                                          |
| Isobutane                     | ISBT 10.1                         | 0.5 ppm v/v           |                    |                                                          |
| n-Butane                      | ISBT 10.1                         | 0.5 ppm v/v           |                    |                                                          |
| Butenes                       | ISBT 10.1                         | 0.5 ppm v/v           |                    |                                                          |
| Isopentane                    | ISBT 10.1                         | 0.5 ppm v/v           |                    |                                                          |
| n-Pentane                     | ISBT 10.1                         | 0.5 ppm v/v           |                    |                                                          |
| Pentenes                      | ISBT 10.1                         | 0.5 ppm v/v           |                    |                                                          |
| C <sub>6+</sub>               | ISBT 10.1                         | 0.5 ppm v/v           |                    |                                                          |
| Aromatic Hydrocarbons:        |                                   |                       |                    |                                                          |
| Benzene (AHC)                 | ISBT 12.0                         | 0.002 ppm v/v         |                    |                                                          |
| Toluene                       | ISBT 12.0                         | 0.002 ppm v/v         |                    |                                                          |

Attachment K

| Parameters                          | Analytical Methods <sup>(1)</sup> | Detection Limit/Range | Typical Precisions | QC Requirements                                          |
|-------------------------------------|-----------------------------------|-----------------------|--------------------|----------------------------------------------------------|
| Ethyl Benzene                       | ISBT 12.0                         | 0.002 ppm v/v         |                    |                                                          |
| m+p Xylene                          | ISBT 12.0                         | 0.002 ppm v/v         |                    |                                                          |
| o-Xylene                            | ISBT 12.0                         | 0.002 ppm v/v         |                    |                                                          |
| Volatile Sulfur Compounds:          |                                   |                       |                    |                                                          |
| Hydrogen Sulfide (H <sub>2</sub> S) | ISBT 14.0                         | 0.02 ppm v/v          | 5-10% of reading   | Daily blank, daily standard within                       |
| Carbonyl Sulfide (COS)              | ISBT 14.0                         | 0.02 ppm v/v          |                    | 10% of calibration, secondary standard after calibration |
| Sulphur Dioxide (SO <sub>2</sub> )  | ISBT 14.0                         | 0.02 ppm v/v          | 5-10% of reading   |                                                          |
| Methyl Mercaptan                    | ISBT 14.0                         | 0.02 ppm v/v          |                    |                                                          |
| Ethyl Mercaptan                     | ISBT 14.0                         | 0.02 ppm v/v          |                    |                                                          |
| Dimethyl Sulfide                    | ISBT 14.0                         | 0.02 ppm v/v          |                    |                                                          |
| Carbon Disulfide                    | ISBT 14.0                         | 0.02 ppm v/v          |                    |                                                          |
| i-Propyl Mercaptan                  | ISBT 14.0                         | 0.02 ppm v/v          |                    |                                                          |
| t-Butyl Mercaptan                   | ISBT 14.0                         | 0.02 ppm v/v          |                    |                                                          |
| n-Propyl Mercaptan                  | ISBT 14.0                         | 0.02 ppm v/v          |                    |                                                          |
| Methyl Ethyl Sulfide                | ISBT 14.0                         | 0.02 ppm v/v          |                    |                                                          |
| sec-Butyl Mercaptan                 | ISBT 14.0                         | 0.02 ppm v/v          |                    |                                                          |
| i-Butyl Mercaptan                   | ISBT 14.0                         | 0.02 ppm v/v          |                    |                                                          |
| Dimethyl Disulfide                  | ISBT 14.0                         | 0.02 ppm v/v          |                    |                                                          |
| n-Butyl Mercaptan                   | ISBT 14.0                         | 0.02 ppm v/v          |                    |                                                          |
| Dimethyl Disulfide                  | ISBT 14.0                         | 0.02 ppm v/v          |                    |                                                          |
| Other Sulfurs                       | ISBT 14.0                         | 0.02 ppm v/v          |                    |                                                          |
| Total Sulfur Content (TSC)          | ISBT 13.0                         | 0.02 ppm v/v          |                    |                                                          |
|                                     |                                   |                       |                    |                                                          |

| Parameters           | Analytical Methods(1) | Detection Limit/Range | Typical Precisions | QC Requirements                                          |
|----------------------|-----------------------|-----------------------|--------------------|----------------------------------------------------------|
| Volatile Oxygenates: |                       |                       |                    |                                                          |
| Acetaldehyde (AA)    | ISBT 11.0             | 0.05 ppm v/v          | 5-10% of reading   | Daily blank, daily standard within                       |
| Ethyl Oxide          | ISBT 20.0             | 0.1 ppm v/v           |                    | 10% of calibration, secondary standard after calibration |
| Dimethyl Ether       | ISBT 11.0             | 0.1 ppm v/v           |                    | Standard dreet canonamen                                 |
| Methyl Ethyl Ether   | ISBT 11.0             | 0.2 ppm v/v           |                    |                                                          |
| Methanol (MeOH)      | ISBT 9.0              | 0.2 ppm v/v           |                    |                                                          |
| Propionaldehyde      | ISBT 11.0             | 0.2 ppm v/v           |                    |                                                          |
| Acetone              | ISBT 11.0             | 0.2 ppm v/v           |                    | Daily blank, daily standard within                       |
| Ethanol              | ISBT 11.0             | 0.2 ppm v/v           | 5-10% of reading   | 10% of calibration, secondary                            |
| Isopropanol          | ISBT 11.0             | 0.2 ppm v/v           |                    | standard after calibration                               |
| Ethyl Acetate        | ISBT 11.0             | 0.2 ppm v/v           |                    |                                                          |
| t-Butanol            | ISBT 11.0             | 0.2 ppm v/v           |                    |                                                          |
| n-Propanol           | ISBT 11.0             | 0.2 ppm v/v           |                    |                                                          |
| 2-Butanol            | ISBT 11.0             | 0.2 ppm v/v           |                    |                                                          |
| Isobutanol           | ISBT 11.0             | 0.2 ppm v/v           |                    |                                                          |
| n-Butanol            | ISBT 11.0             | 0.2 ppm v/v           |                    |                                                          |
| Isoamyl Alcohol      | ISBT 11.0             | 0.2 ppm v/v           |                    |                                                          |
| Isoamyl Acetate      | ISBT 11.0             | 0.2 ppm v/v           |                    |                                                          |

Note 1: An equivalent method may be employed with the prior approval of the UIC Program Director.

Attachment K

Table 9. Summary of Analytical Parameters for Corrosion Coupons.

| Parameters | Analytical Methods | Detection Limit/Range | Typical Precisions | QC Requirements                                                               |
|------------|--------------------|-----------------------|--------------------|-------------------------------------------------------------------------------|
| Mass       | NACE RP0775-2005   | 0.005 mg              | + /0/2             | Annual third party calibration of scale (certification number to be provided) |
| Thickness  | NACE RP0775-2005   | 0.001 mm              | ±0.005             | Factory calibration                                                           |

Table 10. Summary of Measurement Parameters for Field Gauges.\*

| Parameters                   | Methods          | Detection Limit/Range    | Typical Precisions   | QC Requirements                                                               |
|------------------------------|------------------|--------------------------|----------------------|-------------------------------------------------------------------------------|
| Injection tubing temperature | ANSI Z540-1-1994 | ±0.001 °F, 0-500 °F      | ±0.01 °F             | Annual third party calibration of scale (certification number to be provided) |
| Injection tubing pressure    | ANSI Z540-1-1994 | ±0.001 psi, 0-3,000 psi  | ±0.01 psi            | Annual third party calibration of scale (certification number to be provided) |
| Injection flow rate          | N/A              | $\pm$ 0.1% of rate       | 50,522-303-133 lb/hr | Annual third party calibration of scale (certification number to be provided) |
| CCS1 annulus pressure        | ANSI Z540-1-1994 | ±0.001 psi, 0-3,000 psi  | ±0.01 psi            | Annual third party calibration of scale (certification number to be provided) |
| CCS1 downhole pressure       | ANSI Z540-1-1994 | ±0.001 psi, 0-10,000 psi | ±0.01 psi            | Annual third party calibration of scale (certification number to be provided) |
| CCS1 downhole temperature    | ANSI Z540-1-1994 | ±0.001 °F, 0-300 °F      | ±0.01 °F             | Annual third party calibration of scale (certification number to be provided) |
| OBS1 annulus pressure        | ANSI Z540-1-1994 | ±0.001 psi, 0-3,000 psi  | ±0.01 psi            | Annual third party calibration of scale (certification number to be provided) |
| OBS1 downhole pressure       | ANSI Z540-1-1994 | ±0.001 psi, 0-10,000 psi | ±0.01 psi            | Annual third party calibration of scale (certification number to be provided) |

Attachment K

| Parameters             | Methods          | Detection Limit/Range   | Typical Precisions         | QC Requirements                                                               |
|------------------------|------------------|-------------------------|----------------------------|-------------------------------------------------------------------------------|
| ACZ1 wellhead pressure | ANSI Z540-1-1994 | ±0.001 psi, 0-3,000 psi | ±0.001 psi, 0-3,000<br>psi | Annual third party calibration of scale (certification number to be provided) |
| OBS1 wellhead pressure | ANSI Z540-1-1994 | ±0.001 psi, 0-3,000 psi | ±0.001 psi, 0-3,000<br>psi | Annual third party calibration of scale (certification number to be provided) |

Note 1: An equivalent method may be employed with the prior approval of the UIC Program Director.

Attachment K

<sup>\*</sup>Standards, detection limits/ranges, and precision parameters are subject to change based on the finalization of equipment

Table 11. Actionable Testing and Monitoring Outputs.

| Activity or Parameter                                | Project Action Limit                                                                                                | Detection Limit                                                                             | Anticipated Reading                                                       |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Logging PNL                                          | Action to be taken if CO <sub>2</sub> is outside of anticipated range or location.                                  | TBD based on contractor tool specifications                                                 | TBD based on results of baseline logs Readings vary by zone.              |
| External MIT Temperature Logging                     | Action to be taken if an anomaly in the temperature/GR profile is identified.                                       | TBD based on contractor tool specifications                                                 | TBD based on results of baseline logs Readings vary by zone.              |
| Internal MIT Annulus Pressure Test                   | Action to be taken if pressure change is greater than 3% in one hour.                                               | See Table 10                                                                                | Less than 3% pressure change in one hour.                                 |
| Surface pressure Injection tubing and annulus (CCS1) | Action to taken if injection pressure is above MAIP.                                                                | See Table 10                                                                                | Less than the MAIP as detailed in Attachment A                            |
| Downhole pressure/temperature (CCS1)                 | Action to taken if pressure is above maximum allowable bottom hole pressure (MABHP).                                | See Table 10                                                                                | Less than the corresponding BHP as determined in the MAIP in Attachment A |
| Downhole pressure (OBS1)                             | Action to be taken if pressure varies significantly from modeled values or is above MABHP.                          | See Table 10                                                                                | TBD based on results of a baseline pressure and temperature survey        |
| Water quality                                        | Action to be taken if ACZ or USDW/GW water quality deviates significantly from baseline water quality measurements. | See Table 4 to Table 7                                                                      | TBD based on baseline samples to be taken prior to injection.             |
| 3D time-lapse seismic surveys                        | Action to be taken if CO <sub>2</sub> plume is detected outside of modeled plume/AoR.                               | Variable dependent on fluid saturation, formation velocities, etc.                          | Similar CO <sub>2</sub> plume migration in comparison to the model.       |
| Passive seismic monitoring                           | Action to be taken if notable seismic activity is measured concurrent with injection operations.                    | Refer to ERRP section for<br>further discussion on<br>detection limits and action<br>items. | Consistent with baseline/background seismic measurements.                 |

#### 3.4.2 A.4.b. Precision

For groundwater sampling, data accuracy will be assessed regularly by the collection and analysis of blanks to test procedures and matrix spikes to test lab and sampling procedures. Field blanks will be taken no less than one per sampling event to spot check for sample container contamination. Laboratory assessment of the precision of the analytes will be the responsibility of the laboratory chosen to analyze the field samples based on acceptable operating procedures.

Table 12 presents the specifications and precision information for the downhole pressure and temperature gauges to be used for downhole pressure and temperature monitoring in the injection and above confining zone intervals.

Table 13 presents the parameters and specifications for the logging tools to be used as part of the testing and monitoring plan in the pre-operational, injection, and PISC phases of the project.

#### 3.4.3 A.4.c. Bias

Assessments of the analytical biases present in analysis are the responsibility of the contacted laboratories based on acceptable operating procedures. It is assumed there are no measurement biases for direct temperature, pressure, or logging measurements.

#### 3.4.4 A.4.d. Representativeness

For groundwater sampling, data representativeness expresses the degree to which data accurately and precisely represents a characteristic of a sample population, parameter variations at a specific sampling point, a process condition, or an environmental condition. The sampling network laid out in the monitoring program is designed to provide data that is representative of site conditions.

For analytical results of individual groundwater samples, representativeness will be estimated by ion and mass balance determination. Ion balance determinations with  $\pm 10$  percent error, or less, will be considered valid. Mass balance determinations will be used in cases where the ion balance is greater than the  $\pm 10$  percent threshold to attempt to determine the source of the measurement error.

For samples (and their duplicates) in which the relative percent difference varies by more than 10%, the sample may be considered not representative.

#### 3.4.5 A.4.e. Completeness

Data completeness is a measure of the amount of valid data obtained from a measurement point compared to the amount of data that was expected to be obtained from the data point under normal conditions. The permitee must follow the schedule outlined in the Testing and Monitoring Plan unless in the case of extenuating circumstances approved by the Director.

#### 3.4.6 A.4.f. Comparability

Data comparability expresses the confidence with which one data set can be compared to others. The data sets generated by this project are anticipated to be comparable to future data sets because of the use of standard methods of measurement and the high levels of QA/QC of data.

Historical groundwater quality data will be assessed for their level of quality, and assuming they are of high enough quality, will be used for comparative purposes. Direct pressure, temperature and logging measurements will be directly comparable to previously collected data.

#### 3.4.7 A.4.g. Method Sensitivity

Table 12 through Table 24 provide additional information on gauge and sensor sensitivities as well as logging and downhole tool specifications.

Attachment K

Table 12. Pressure and Temperature (OBS1/CCS1) – Downhole Gauge Specifications. (1)

| Parameter                            | Value                         |
|--------------------------------------|-------------------------------|
| Calibrated working pressure range    | 14.7 to 10,000 psi            |
| Initial pressure accuracy            | $\pm 0.015\%$ over full scale |
| Pressure resolution                  | 0.006 psi/second              |
| Pressure drift stability             | 0.01% Full Scale/Year         |
| Calibrated working temperature range | to 150°C                      |
| Initial temperature accuracy         | ±0.1 °C                       |
| Temperature resolution               | 0.005 °C/second               |
| Temperature drift stability          | 0.1% °C/year                  |
| Max temperature                      | 150 °C                        |
| Instrument calibration frequency     | From manufacturer             |

Note 1: An equivalent method may be employed with the prior approval of the UIC Program Director.

Table 13. Representative Logging Tool Specifications.<sup>(1)</sup>

| Parameter          | PNL              | CBL                                    | USIT                                   | Temperature Log  |
|--------------------|------------------|----------------------------------------|----------------------------------------|------------------|
| Logging speed      | 1,000 ft/hr      | 1,800 ft/hr                            | 2,700 ft/hr                            | 900 ft/hr        |
| Investigation      | Formation        | Formation, casing, cement bond quality | Formation, casing, cement bond quality | Formation        |
| Temperature rating | Up to 350°F      | Up to 302 °F                           | Up to 350°F                            | Up to 150°C      |
| Pressure rating    | Up to 15,000 psi | Up to 14,000 psi                       | Up to 20,000 psi                       | Up to 14,500 psi |

Note 1: A suitable replacement tool could be used pending tool availability, updated specifications will be provided should such a change occur.

Table 14. Temperature Field Probe – Post Compressor. (1)

| Parameter                            | Value    |
|--------------------------------------|----------|
| Calibrated working temperature range | 0-500 °F |
| Initial temperature accuracy         | <0.0055% |
| Temperature resolution               | 0.001 °F |

Note 1: An equivalent method may be employed with the prior approval of the UIC Program Director.

Attachment K

Table 15. Pressure Field Probe – Post Compressor. (1)

| Parameter                         | Value       |
|-----------------------------------|-------------|
| Calibrated working pressure range | 0-3,000 psi |
| Initial pressure accuracy         | 0.025%      |
| Pressure resolution               | 0.001 psi   |

Note 1: An equivalent method may be employed with the prior approval of the UIC Program Director.

Table 16. Flow Rate Field Flowmeter – Post Compressor. (1)

| Parameter                          | Value                |
|------------------------------------|----------------------|
| Calibrated working flow rate range | 50,000-303,000 lb/hr |
| Initial mass flow rate accuracy    | <0.18%               |
| Mass flow rate resolution          | 0.0001lb/hr          |

Note 1: An equivalent method may be employed with the prior approval of the UIC Program Director.

Table 17. Temperature Field Probe – Injection Tubing. (1)

| Parameter                            | Value    |
|--------------------------------------|----------|
| Calibrated working temperature range | 0-500 °F |
| Initial temperature accuracy         | <0.0055% |
| Temperature resolution               | 0.001 °F |

Note 1: An equivalent method may be employed with the prior approval of the UIC Program Director.

Table 18. Pressure Field Probe – Injection Tubing. (1)

| Parameter                         | Value       |
|-----------------------------------|-------------|
| Calibrated working pressure range | 0-3,000 psi |
| Initial pressure accuracy         | 0.025%      |
| Pressure resolution               | 0.001 psi   |

Note 1: An equivalent method may be employed with the prior approval of the UIC Program Director.

Attachment K

Table 19. Flow Rate Field Flowmeter – Injection Tubing. (1)

| Parameter                          | Value                |
|------------------------------------|----------------------|
| Calibrated working flow rate range | 50,000-303,000 lb/hr |
| Initial mass flow rate accuracy    | <0.18%               |
| Mass flow rate resolution          | 0.0001lb/hr          |

Note 1: An equivalent method may be employed with the prior approval of the UIC Program Director.

Table 20. Pressure Field Probe – CCS1 Annulus. (1)

| Parameter                         | Value       |
|-----------------------------------|-------------|
| Calibrated working pressure range | 0-3,000 psi |
| Initial pressure accuracy         | 0.025%      |
| Pressure resolution               | 0.001 psi   |

Note 1: An equivalent method may be employed with the prior approval of the UIC Program Director.

Table 21. Pressure Field Probe – OBS1 Annulus, OBS1 Wellhead, ACZ1 Wellhead. (1)

| Parameter                         | Value       |
|-----------------------------------|-------------|
| Calibrated working pressure range | 0-3,000 psi |
| Initial pressure accuracy         | 0.025%      |
| Pressure resolution               | 0.001 psi   |

Note 1: An equivalent method may be employed with the prior approval of the UIC Program Director.

Table 22. Analog Pressure Gauge – OBS1 Annulus, INJ1 Wellhead, OBS1 Wellhead. (1)

| Parameter              | Value       |
|------------------------|-------------|
| Working pressure range | 0-3,000 psi |
| Pressure accuracy      | 0.5%        |
| Pressure minor scale   | 50 psi      |

Note 1: An equivalent method may be employed with the prior approval of the UIC Program Director.

Attachment K

Table 23. Analog Pressure Gauge – OBS1 Wellhead. (1)

| Parameter              | Value       |
|------------------------|-------------|
| Working pressure range | 0-1,500 psi |
| Pressure accuracy      | 0.5%        |
| Pressure minor scale   | 20 psi      |

Note 1: An equivalent method may be employed with the prior approval of the UIC Program Director.

Table 24. Analog Pressure Gauge – ACZ1 Wellhead. (1)

| Parameter              | Value     |
|------------------------|-----------|
| Working pressure range | 0-400 psi |
| Pressure accuracy      | 0.5%      |
| Pressure minor scale   | 5 psi     |

Note 1: An equivalent method may be employed with the prior approval of the UIC Program Director.

## 3.5 A.5. Special Training/Certifications

## 3.5.1 A.5.a. Specialized Training and Certifications

Geophysical surveying equipment and wireline logging tools will be operated by trained, qualified, and certified personnel. This will be verified by the respective contracted service company that provides the equipment and services. The data collected as a result of these activities will be analyzed according to industry standards.

There are currently no special certifications required for personnel to collect groundwater samples. Qualified personnel will still perform these activities. Groundwater sampling will be performed by personnel trained to understand and follow the specific and detailed sampling procedures.

If requested, OCP will provide the EPA with all laboratory Standard Operating Procedures (SOPs) for the specific parameters for the approved methods. Each laboratory technician conducting analysis on the samples will be trained in these SOPs for the standard method they are using. Technician certifications will be provided with the regular reports.

### 3.5.2 A.5.b/c. Training Provider and Responsibility

Training will be provided by the contracted operator or subcontractor responsible the collection of data.

#### 3.6 A.6. Documentation and Records

#### 3.6.1 A.6.a. Report Format and Package Information

A report from OCP to EPA will contain all required project data, sampling results, and analytical analysis results. The frequency of this reporting is defined the Testing and Monitoring Plan (Attachment C). Data will be provided in digital formats unless otherwise requested.

## 3.6.2 A.6.b. Other Project Documents, Records, and Electronic Files

Other files (i.e., well logs, reports, test results, etc.) will be provided as required by the UIC Program Director and Class VI Permit.

Attachment K

#### 3.6.3 A.6.c/d. Data Storage and Duration

OCP will maintain digital copies of all relevant files for the project as stipulated in the Testing and Monitoring and PISC sections of this permit (Attachment C; Attachment E).

## 3.6.4 A.6.e. QASP Distribution Responsibility

OCP will be responsible for ensuring that all people listed on the distribution list found in Section 2 *Distribution List* receive the current copy of the approved QASP.

## 4 B. Data Generation and Acquisition

## 4.1 B.1. Sampling Process Design

Discussion in this section is focused on groundwater fluid sampling and does not discuss monitoring methods associated with non-physical samples (logging, seismic, pressure/temperature monitoring, etc.).

During the pre-operational, injection, and PISC phases, groundwater sampling analysis is planned to include an extensive set of chemical analytes to aid in establishing a quality baseline data set. These analytes will include:

- i. primary and secondary EPA drinking water maximum contaminant levels,
- ii. are most responsive to CO<sub>2</sub> or brine contact,
- iii. are necessary for quality control (QC) and,
- iv. might be necessary for geochemical modeling.

The full set of monitoring parameters is provided in Table 4 through Table 7. After a sufficient baseline dataset is established, the scope of the monitored analyte may shift to a more detailed subset of parameters that are:

- i. the most responsive to interaction with CO<sub>2</sub> or brine contact, and
- ii. are necessary for QC.

The scope of monitored parameters will not be reduced without prior approval from the UIC Program Director.

Isotopic analyses will be performed on baseline samples to assist with verification of initial conditions, or to help with understanding non-project related variations. For-non baseline samples, isotopic analysis may be reduced in monitoring wells if review of historical analytical results or other data determines that is no longer needed. Isotopic analyses will be conducted using established and accepted methods.

During a period where a reduced set of analytes is used, should statistically significant trends develop that are presumed to be a result of unintended CO<sub>2</sub> or brine migration, the analytical list will be expanded to the initial, full set of analytical parameters.

ACZ groundwater samples will be analyzed using a laboratory that meets the requirements laid out in the EPA Environmental Laboratory Accreditation Program. All other samples will be analyzed by the operator or a contracted third party lab. Dissolved CO<sub>2</sub> will be analyzed by methods consistent with *Test Method B of ASTM D 513-06*, "Standard Test Methods for Total and Dissolved Carbon Dioxide in Water" or equivalent.

#### 4.1.1 B.1.a. Design Strategy

#### 4.1.1.1 CO<sub>2</sub> Stream Monitoring Strategy

The primary purpose of analyzing the CO<sub>2</sub> stream is to evaluate the potential interactions of CO<sub>2</sub> and other potential constituents of the injected with formation solids. The analysis performed can also identify

Attachment K

or potentially rule out interactions with well materials of construction. Establishing chemical composition of the injectate also will help to support the determination of whether this injectate meets the definition of hazardous waste laid out under the Resource Conservation and Recovery Act of 1976 (RCRA). In addition to the requirements of RCRA, this determination will also be made with respect to the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA act) from 1980.

Additional monitoring of chemical and physical characteristics of the CO<sub>2</sub> may help distinguish the injectate from native brine and gases if potential unintended leakage from the reservoir occurs. Injectate monitoring will occur at such frequency to detect potential changes to any physical or chemical properties that may result in deviation from the permit specifications and baseline data.

Yearly calibration of temperature, pressure, and flowrate probes and transponder meant to monitor the response of the injection of CO<sub>2</sub> into CCS1, will also be conducted annually at OBS1 and ACZ1. Calibration reports will contain information on the test equipment used to calibrate the probes, including: equipment manufacturer information, serial numbers, calibration dates, and expiration dates of equipment and calibration. These calibration activities will be performed throughout the injection and PISC phases of the project.

## 4.1.1.2 Corrosion Monitoring Strategy

Corrosion coupon analysis will be conducted regularly to aid in ensuring the mechanical integrity of all equipment that comes in contact with the CO<sub>2</sub> stream. Coupons will be sent regularly to a third party company for analysis. This analysis will be conducted in accordance with NACE Standard RP-0775, or equivalent, to determine and document any potential corrosion or wear rates based on mass loss.

#### 4.1.1.3 Shallow Groundwater Monitoring Strategy

Twelve dedicated monitoring wells have been selected for the shallow groundwater monitoring program. Note that these wells primarily consist of existing private use water wells in the area. If necessary, wells will be drilled and installed to varying depths, from just below surface to above the lowermost USDW. These wells are intended to monitor and cover all currently used aquifers in the area. Further details on the existing wells are provided in the AoR and Corrective Action Plan (Attachment B). These wells will be sampled routinely as is detailed in the Pre-operational Testing Plan, the Testing and Monitoring Program, and the PISC Plan (Attachment G; Attachment C; Attachment E). The names of these wells are as follows:

- GW1
- GW2
- GW3
- GW4
- GW5
- GW6
- GW7
- GW8
- GW9
- GW10
- GW11
- GW12

Should alteration to these well names occur, proper updating of all relevant documentation and reports will be provided following these changes. These wells will be selected from existing, privately owned wells that are spatially distributed throughout the AoR.

### 4.1.1.4 Deep Groundwater Monitoring Strategy

#### USDW1

One dedicated deep groundwater monitoring well will be installed in close proximity to the injection well (CCS1). This well will be installed and screened within the identified lowermost USDW. This well will serve as an early leakage detection point at or near the injection well. This interval is assumed to have sufficient permeability and porosity such that suitable fluid samples may be taken.

With the planned sampling methods and outlined frequency, it is expected that baseline conditions can be documented, and any natural variability in conditions can be characterized, and that unintended brine or CO<sub>2</sub> leakage will be detected quickly if it occurs.

#### ACZ1

One dedicated above confining zone monitoring well (ACZ1) will also be installed in close proximity to the injection well. This well will be installed and completed within the first permeable layer above the confining zone. This well will also serve as an early leakage detection point at or near the injection well. This well will be completed in a zone with sufficient permeability and porosity such that suitable fluid samples may be taken. This well will also be assumed to have sufficient permeability and porosity such that valid pressure monitoring may occur.

With the planned sampling methods and outlined frequency, it is expected that baseline conditions can be documented, and any natural variability in the conditions can be characterized, and that unintended brine or CO<sub>2</sub> leakage will be detected quickly if it occurs. Sufficient data will be collected from this well to demonstrate that the effects of CO<sub>2</sub> injection are limited to the intended reservoir.

#### CCS1 and OBS1

Baseline fluid samples will be collected from the injection or deep observation well for analysis as part of the pre-operational testing program (Attachment G). Once injection begins, fluid samples will not be collected from OBS1.

#### 4.1.2 B.1.b. Type and Number of Samples/Test Runs

Table 1 contains a listing of type of samples that will be run and collected from each of the wells mentioned above.

#### 4.1.3 B.1.c. Site/Sampling Locations

Groundwater sampling locations are provided in Table 1. Specific analytes for groundwater sampling are provided in Table 4 through Table 7.

### 4.1.4 B.1.d. Sampling Site Contingency

Locations of off-site sampling and monitoring points have not been finalized. It is currently anticipated, however, that no site access issues will occur. All other wells will be located on the facility. If weather makes well access difficult, sampling schedules will be adjusted as necessary to ensure access and proper sampling may occur. Any changes to sampling schedule will be discussed with the EPA prior to them occurring.

CO<sub>2</sub> gas stream and corrosion coupon sampling points will also be located at the facility. If weather makes access to these sampling points difficult, sampling schedules will be adjusted as necessary to ensure access and proper sampling may occur. Any changes to sampling schedule will be discussed with the EPA prior to them occurring.

Attachment K

### 4.1.5 B.1.e. Activity Schedule

Sampling frequencies and occurrences are detailed in the pre operational testing plan, the testing and monitoring plan, and the PISC plan sections of the permit (Attachment G Attachment C Attachment E)

#### 4.1.6 B.1.f. Critical/Informational Data

Detailed documentation from field and laboratory activities will be taken during groundwater sampling and analytical work. Important documentation to be collected during these times are as follows:

- time and date of activity,
- person(s) performing activity,
- location of activity,
- equipment calibration data, and
- field parameter values.

During laboratory analysis much of the above listed critical data are generated during the analysis, and provided as part of the typical output reports from analysis. Additional noncritical data may be collected. This data may include appearance and odor of sample, problems with well or any sampling equipment, and any weather conditions which may impact sampling.

## 4.1.7 B.1.g. Sources of Variability

Potential sources of variability related to the aforementioned monitoring activities include:

- natural variation in fluid quality, formation pressure and temperature, and seismic activity,
- variation in fluid quality, formation pressure and temperature, and seismic activity due to injection operations,
- changes in aquifer recharge due to rainfall, drought, or snowfall,
- changes in instrument calibration during sampling or analytical activities,
- changes in collection staff or analytical staff,
- differences in environmental conditions during field sampling activities,
- changes in analytical data quality during the life of the project, and
- data entry errors related to maintaining a project database.

Activities that may serve to limit, reduce, or reconcile some of these sources of variability related to monitoring activities include:

- collecting long-term baseline data to observe and document natural variation in monitoring parameters,
- evaluating data in a timely manner after collection such that anomalies in the data can be observed and addressed and re sampling or reanalysis may occur,
- conducting statistical analysis of the collected data to determine whether variability in the data set is a result of project activities or natural variation (i.e., determining if variation is biased or statistically significant),
- maintaining a database of weather related data using on site and regional weather monitoring data or data collected from other near location sources.
- checking instrument calibration before during and after sampling or analysis,
- Thoroughly training all staff to the standards that were detailed in Sections 3.5.1 *Specialized Training and Certifications* and 3.5.2 *Training Provider and Responsibility*,
- conducting routine quality assurance checks using third party reference materials and or blind and

Attachment K

- or duplicate sample checks, and
- developing a systematic review process of data that can include site and sample specific data quality checks.

## 4.2 B.2. Sampling Methods

Logging, geophysical monitoring, and pressure and temperature monitoring does not apply to this section and is, therefore, omitted.

### 4.2.1 B.2.a/b. Sampling SOPs

All groundwater wells are initially purged to ensure samples are representative of aquifer water quality. Groundwater samples will be collected primarily using a low-flow sampling method that is consistent with ASTM D6452-99 (2005) or Puls and Barcelona (1996). The low-flow sampling method uses a flow through cell to ensure stable measurements of parameters such as pH, dissolved O<sub>2</sub>, conductivity and temperature. Cleaned and prepared laboratory bottles are then filled with collected water for further analysis.

Static water levels in each well will be determined using an electronic water level indicator before any purging or sampling activities occur. Dedicated pumps will be installed in each of the monitoring wells should one not already be present to minimize potential cross contamination between wells.

Groundwater pH temperature, specific conductance, and dissolved oxygen will be monitored in the field using portable probes and a flow through cell consistent with standard methods. Given sufficient flow rates and volumes. Field chemistry probes will be calibrated at the beginning of each sampling day according to the given equipment manufacturer procedures and using standard reference solutions.

When a flow through cell is used, field parameters will be continuously monitored and will be considered stable when three successive measurements made three minutes apart meet the criteria listed in Table 25.

Table 25. Stabilization Criteria of Water Quality Parameters During Shallow Well Purging.

| Field Parameter      | Stabilization Criteria                                 |
|----------------------|--------------------------------------------------------|
| pH                   | ± 0.2 units                                            |
| Temperature          | ±1°C                                                   |
| Specific conductance | $\pm$ 3% of reading in $\mu$ S/cm                      |
| Dissolved oxygen     | $\pm$ 10% of reading or 0.3 mg/L, whichever is greater |

Any newly installed groundwater monitoring wells will be developed extensively at the time of completion. Methods for development include, but are not limited to, air lifting, submersible pumps, or swabbing.

For deep groundwater sampling (defined as the ACZ or deeper), a wireline conveyed system with a sampling device capable of collecting downhole samples from discrete intervals will be utilized. Prior to sampling, any zones from these wells will be purged and ensure that stabilization criteria are met before taking representative samples. Standard methods, such as down hole submersible pumps or swabbing, will be used to develop these wells. The representative sample taken after the stabilization criteria have been met may be small relative to the total amount of fluid purged from the wells.

Attachment 1K

For shallower groundwater monitoring wells, methods such as air lift or submersible pumps may be used to help with sampling fluid from the wells.

Prior to sample collection, filters will be purged with a minimum of 100 milliliters (mL) of well water or more if required by the filter manufacturer. Methods such as air lifts or submersible pumps may be used to help purge fluid from the wells. For alkalinity and total CO<sub>2</sub> sampling, reasonable effort will be made to minimize exposure to atmospheric conditions during filtration, collection in sample containers, and analysis.

#### 4.2.2 B.2.c. In-situ Monitoring

Fluid samples for monitoring shallow aquifer groundwater chemistry and analytes including USDW1 will be collected at the surface using low-flow procedures. Fluid monitoring samples of the ACZ interval will be collected in-situ, at formation conditions, using downhole sampling tools. In-situ fluid monitoring of the injection zone will not be performed, but a sample will be collected at in-situ reservoir conditions from CCS1 using a downhole sampling tool for baseline determination. Fluid samples will be sent to a laboratory for geochemical analysis.

### 4.2.3 B.2.d. Continuous Monitoring

No continuous pressure monitoring is anticipated or planned at any of the groundwater monitoring wells.

### 4.2.4 B.2.e. Sample Homogenization, Composition, Filtration

Information on the sampling, homogenization, composition and filtration it provided in Section 4.2.1 *Sampling SOPs*.

#### 4.2.5 B.2.f. Sample Containers and Volumes

For CO<sub>2</sub> stream monitoring, samples will be collected and clean sample containers rated appropriately for sample collection pressure. To ensure a clean sample is taken the collection cylinder(s) will be purged at least five times (with the sample gas) prior to sample collection.

Information for the regular CO<sub>2</sub> gas analysis is provided in Table 8.

For shallow and deep groundwater samples, all sample bottles will be new sample bottles and bags for analytes will be used as received from the vendor or contract analytical laboratory. A summary of sample containers used as presented in Table 27.

#### 4.2.6 B.2.g. Sample Preservation

For aqueous and groundwater samples, the preservation methods listed in Table 27 will be used.

At this time, preservation of CO<sub>2</sub> gas stream samples is not currently anticipated. Additional details of the sampling requirements are shown below in Table 26.

Corrosion coupon sampling only requires that the coupons be physically separated during transportation to prevent physical abrasion.

Table 26. Summary of Sample Containers, Preservation Treatments, and Holding Times for CO<sub>2</sub> Gas Stream Analysis.

| Sample                     | Volume/Container Material                                                     | Preservation Technique  | Sample Holding time (max) |
|----------------------------|-------------------------------------------------------------------------------|-------------------------|---------------------------|
| CO <sub>2</sub> gas stream | <ul> <li>(1) 75 cm³ mini gas cylinder</li> <li>(2) 2L MLB polybags</li> </ul> | Sample storage cabinets | 5 business days           |

Attachment K

## 4.2.7 B.2.h. Cleaning/Decontamination of Sampling Equipment

As detailed in Section 4.2.1 Sampling SOPs, dedicated pumps will be installed in each of the groundwater monitoring wells to minimize potential cross contamination between wells. These pumps will remain in each well throughout the project, except for routine maintenance, for the duration of the pre-operational testing, injection, and PISC phases of the project. Prior to pump installation, the pumps will be cleaned on the outside, with a non-phosphate detergent. Pumps will be rinsed the minimum of three times with the ionized water. A minimum of 1 L of deionized water will then be pumped through the pump and sample tubing.

Once all pumps in their associated tubing are clean, they will be placed in plastic storage bags and transported for installation. All glassware to be used in the field will be cleaned first with tap water to remove any loose dirt, then washed in a diluted nitric acid solution, and finally rinsed with deionized water before use.

Gas stream sampling containers will be disposed of or decontaminated by the analytical lab. No sampling equipment will be utilized with the corrosion coupons or annual field calibrations.

### 4.2.8 B.2.i. Support Facilities

In order for proper groundwater sampling to occur, the following equipment are required:

- Air compressor
- Vacuum pump
- Generator
- Multi-electrode water quality measurement tool
- Analytical meters

It is assumed that the proper sampling tubes, connections, and valves required to sample the gas stream will be supplied by the analytical lab providing the sampling containers. Sampling will occur within the compression building.

Corrosion coupons will also be evaluated from sampling points within the injection line within the compression building.

Field gauges will be utilized for bottom hole pressure measurements in the wells. The deployment and retrieval of downhole well gauges will be done using procedures and equipment recommended by the vendor contract or per industry standard practice. It is currently anticipated that the primary way of deploying or retrieving these gauges is via wireline. These gauges will remain in place for the entirety of the pre-operational, operational, and PISC monitoring periods.

#### 4.2.9 B.2.j. Corrective Action, Personnel, and Documentation

Field staff are responsible for ensuring that all equipment is properly functioning. Corrective action will be performed on broken or malfunctioning equipment in the field as necessary. If corrective action cannot be taken in the field, the equipment will be uninstalled and returned to the manufacturer for repair or replacement. Any significant corrective actions that are required will be documented.

#### 4.3 B.3. Sample Handling and Custody

Logging, geophysical monitoring, and pressure and temperature monitoring does not apply to this section and is, therefore, omitted.

Sample holding times provided in Table 27 will be consistent with those described by EPA guidelines from 1974, American Public Health Association in 2005, Wood in 1976, and ASTM Method D6517-00 from 2005.

Attachment K

After collection, all samples will be placed in an ice chest in the field, which will be maintained thereafter to approximately 4 °C until analysis can be performed. These samples will be maintained at this preservation temperature and sent to their designated laboratory within 24 hours of collection and storage.

Analysis of the samples will be completed within the holding time listed in Table 27. As appropriate, alternative sample containers and preservation techniques approved by the UIC program director may be used to meet analytical requirements.

#### 4.3.1 B.3.a. Maximum Hold Time/Time Before Retrieval

See Table 27 for maximum hold times for different samples.

### 4.3.2 B.3.b. Sample Transportation

See beginning of Section 4.3 *Sample Handling and Custody* for sample transportation details and standards.

#### 4.3.3 B.3.c. Sampling Documentation

Prior to field sampling, sample IDs will be recorded on sample bottles and bottles separated into filtered versus non-filtered groups. Each group of sample bottles will be placed into separate plastic bags to allow for field organization. Field notes will be recorded on all groundwater samples collected. These forms and notes will be retained and archived. This reference sample documentation is the responsibility of the groundwater sampling personnel.

### 4.3.4 B.3.d. Sample Identification

All sample bottles will be pre-labeled by the lab with the specific analysis and indicate any preservative pre-filled within the bottle. Groundwater sampling personnel will apply waterproof labels to record the following information:

- Project name,
- Sampling date and time,
- Sampling location,
- Sample identification number, and
- Any filtration used.

Attachment K

Table 27. Summary of Anticipated Sample Containers, Preservation Treatments, and Holding Times for Groundwater Samples.

| for Groundwater Samples.                                                                                              |                             |                        |                     |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|---------------------|--|--|--|
| Target Parameters                                                                                                     | Volume (Container Material) | Preservation Technique | Sample Holding Time |  |  |  |
| Cations:                                                                                                              | 250 ml (HDPE)               | Filtered, nitric acid, | 60 days             |  |  |  |
| Ca, Fe, K, Mg, Na, Si,<br>Al, Ba, Mn, As, Cd, Cr,<br>Cu, Pb, Sb, Se, Tl                                               |                             | cool 4 °C              |                     |  |  |  |
| Dissolved CO <sub>2</sub>                                                                                             | 2 – 60 ml (HDPE)            | Filtered, cool 4 °C    | 14 days             |  |  |  |
|                                                                                                                       | 60 ml (HDPE)                | Filtered, cool 4 °C    | 14 days             |  |  |  |
| Isotopes:<br><sup>3</sup> H, $\delta$ D, $\delta$ <sup>18</sup> O, $\delta$ <sup>34</sup> S, $\delta$ <sup>13</sup> C | 2 – 60 ml (HDPE)            | Filtered, cool 4 °C    | 4 weeks             |  |  |  |
| <u>Isotopes:</u> δ <sup>34</sup> S                                                                                    | 250ml (HDPE)                | Filtered, cool 4 °C    | 4 weeks             |  |  |  |
| Isotopes: $\delta D$ , $\delta^{18}O$ , $\delta^{13}C$                                                                | 60 ml (HDPE)                | Filtered, cool 4 °C    | 4 weeks             |  |  |  |
| Alkalinity (anions):<br>Br, Cl, F, NO <sub>3</sub> , SO <sub>4</sub>                                                  | 500 ml (HDPE)               | Filtered, cool 4 °C    | 45 days             |  |  |  |
| Field Confirmation: Temperature Dissolved Oxygen Specific Conductance pH                                              | 200 ml (glass jar)          | None                   | <1 hour             |  |  |  |
| Field Confirmation: Density                                                                                           | 60 ml (HDPE)                | Filtered               | <1 hour             |  |  |  |

## 4.3.5 B.3.e. Sample Chain-of-Custody

For gas stream analysis, an analysis authorization form will accompany the sample to the lab, at which point this chain of custody form accompanies the sample throughout the analytical process.

For groundwater samples, chain of custody will be documented using a standard form. This form is similar to that which will be used for all groundwater samples. Copies of the form will be provided to the person or lab receiving the samples, as well as the person or lab transferring the samples. These forms will be retained and archived to allow simplified tracking of sample status. The chain of custody form and record keeping is the responsibility of the groundwater sampling personnel and all lab personnel involved in analysis.

## 4.4 B.4. Analytical Methods

Logging, geophysical monitoring, and pressure and temperature monitoring does not apply to this section and is, therefore, omitted.

#### 4.4.1 B.4.a. Analytical SOPs

Analytical SOPs and their critical parameters are referenced in Table 4 through Table 7. Other laboratory specific SOPs utilized by the contracted laboratories will be determined after such laboratory has been selected.

Upon request, OCP will provide the agency with all laboratory SOPs developed for the specific parameters, using the appropriate standardized method. Each laboratory technician conducting the analysis on these samples will be trained on the SOPs developed for each standardized method. OCP will include the technicians training certification(s) with the regular reports.

### 4.4.2 B.4.b. Equipment/Instrumentation Needed

Any equipment and instrumentation that is needed is specified in the individual analytical methods which are referenced in Table 4 through Table 7.

#### 4.4.3 B.4.c. Method Performance Criteria

It is not anticipated that any nonstandard method of performance criteria will be necessary for this project.

#### 4.4.4 B.4.d. Analytical Failure

Each contracted laboratory conducting the analysis laid out in Table 4 through Table 7 will be responsible for appropriately addressing any analytical failures according to their individual SOPs.

#### 4.4.5 B.4.e. Sample Disposal

Each contracted laboratory conducting the analysis laid out in Table 4 through Table 7 will be responsible for appropriate sample disposal according to their individual SOPs.

#### 4.4.6 B.4.f. Laboratory Turnaround

Turnaround time will vary by laboratory. It is generally anticipated that the turnaround time of verified analytical results will be received within one month for project needs.

#### 4.4.7 B.4.g. Method Validation for Nonstandard Methods

It is not anticipated that any nonstandard methods of validation will be necessary for this project. Should this change in the future, the EPA will be consulted on additional appropriate actions to be taken.

## 4.5 B.5. QC

Logging, geophysical monitoring, and pressure and temperature monitoring do not apply to this section and is, therefore, omitted.

#### 4.5.1 B.5.a. QC activities

#### 4.5.1.1 Blanks

For shallow groundwater sampling, a field blank will be collected and analyzed for the inorganic analytes detailed in Table 4 through Table 7 at a frequency of 10% or greater. It is noted that field blanks will be exposed to the same field and transportation conditions as the groundwater samples described in Section 4.4 *Analytical Methods*.

Blanks will also be utilized for deep groundwater sampling and analyzed for the same inorganic analytes detailed in Table 4 through Table 7 at a frequency of 10% or greater.

Attachment K

Field blanks will be used to detect contamination, resulting from the collection and transportation processes.

## 4.5.1.2 Duplicates

For shallow groundwater sampling, a duplicate groundwater sample will be collected from a well on a rotating schedule. Duplicate samples are collected from the same source immediately after the original sample is taken. These samples will be kept in different storage containers and processed the same as other samples. Duplicate samples are used to assess sample heterogeneity and analytical precision.

#### 4.5.2 B.5.b. Exceeding Control Limits

If the analytical results exceed control limits, further examination of the analytical results will be done by evaluating the ratio of the measured TDS count to the calculated TDS count per the APHA method.

This method indicates which ion analysis should be considered suspect based on the mass balance ratio. Suspect ion analyses are then reviewed in the context of historical data and inter laboratory results if available. Suspect ion analyses are then brought to the attention of the analytical laboratory for confirmation and/or reanalysis.

The ion balance is then recalculated and if the error is still not resolved, suspect data are identified and may be given less importance and data interpretation.

### 4.5.3 B.5.c. Calculating Applicable QC Statistics

### 4.5.3.1 Charge Balance

The analytical results are evaluated to determine the correctness of the applied analysis based on anion-cation charge balance calculation. Due to the fact that potable waters are electrically neutral, the chemical analysis should yield equally negative and positive ionic activity. The anion-cation charge balance is calculated using the following formula:

% difference = 
$$100 \frac{\sum cations - \sum anions}{\sum cations + \sum anions}$$

Wherein the sums of the ions are represented in milliequivalents (meq) per L and the criteria for acceptable charge balance is  $\pm$  10%.

#### 4.5.3.2 Mass Balance

The ratio of the measured TDS to the calculated TDS will be calculated in instances where the charge balance acceptance criteria are exceeded using the following formula:

$$1.0 < \frac{measured\ TDS}{calculated\ TDS} < 1.2$$

Wherein the anticipated values are between 1.0 and 1.2.

#### 4.5.3.3 *Outliers*

It is essential to determine the presence of any statistical outliers when performing evaluation and analytical analysis of groundwater. This project will utilize EPA's Unified guidance, published in March of 2009, as the basis for selection of recommended statistical methods to identify outliers and groundwater chemistry datasets as appropriate.

The techniques detailed in this documentation include:

- Probability plots,
- Box plots,
- Dixon's test, and

Attachment K

#### • Rosner's test.

The EPA 1989 outlier test may also be used as an acceptable screening tool to identify any potential outliers within the data sets.

### 4.6 B.6. Instrument/Equipment Testing, Inspection, and Maintenance

Logging tool equipment will be maintained and cared for according to wireline industry best practices.

Groundwater sampling field equipment will be maintained, serviced, and calibrated per manufacturer recommendation. Spare parts that may be needed during sampling will be included and supplied during field sampling.

The contracted laboratories will be responsible to provide all testing, inspection, and maintenance of all laboratory equipment used for analytical purposes. Standard practice and method specific control should be followed during these activities.

## 4.7 B.7. Instrument/Equipment Calibration and Frequency

Geophysical monitoring does not apply to this section and is, therefore, omitted.

#### 4.7.1 B.7.a. Calibration and Frequency of Calibration

Pressure and temperature gauges as well as flowmeter information is provided in Table 12 through Table 24.

OCP will ensure all vendors follow industry standards and specific tool calibration procedures, with pre tool checks being performed at least 24 hours prior to operations. If additional tools are identified to be required, their calibration specifications will be provided prior to commencement of pre-operational testing. OCP vendors will run specified tools or equivalent during logging operations. Further calibration frequency will be determined by standard industry practices.

For groundwater sampling, the portable field meters or multiprobe sondes that will be used to determine that field parameters are calibrated according to manufacturer recommendations and equipment manuals each day before sampling begins. Recalibration will be performed if any components yield atypical values or fail to stabilize during sampling.

#### 4.7.2 B.7.b. Calibration Methodology

Wireline tool calibrations typically involve taking measurements in known conditions and applying an offset and gain to adjust measurements. Offset and gains are then compared against specified tolerances from the manufacturers to ensure that the tool is working as intended and ensure quality data will be obtained. OCP will ensure all vendors follow industry standards and specific tool calibration procedures, with pre-tool checks being performed at least 24 hours prior to operations. If additional tools are identified to be required, their calibration specifications will be provided prior to commencement of pre-operational testing. OCP vendors will run specified tools or equivalent during logging operations.

For groundwater sampling, the standards for calibration are typically as follows:

- For pH: 7 to 10
- For specific conductance: potassium chloride solution yielding a value of 1413 μS/cm at 25 °C
- For dissolved oxygen: a 100% dissolved O<sub>2</sub> solution

Attachment K

Calibration is performed for the pH meters per manufacturer specification.

Coulometry instrumentation will be routinely evaluated using sodium carbonate standards.

#### 4.7.3 B.7.c. Calibration Resolution and Documentation

Logging service provider will be required to provide proof of calibrations as per the manufacturers' instructions which will be included at the end of each individual log. Logging operations will be supervised by qualified wireline experts who will monitor log quality throughout operations and who will be responsible for ensuring all tools have up-to-date calibrations. OCP will ensure all vendors follow industry standards and specific tool calibration procedures, with pre tool checks being performed at least 24 hours prior to operations. If additional tools are identified to be required, their calibration specifications will be provided prior to commencement of pre-operational testing. OCP vendors will run specified tools or equivalent during logging operations.

For groundwater sampling tools, calibration values will be noted in daily sampling recordings, as well as errors in calibration, should there be any. For parameters where calibration is not acceptable, redundant equipment may be used to ensure that any potential loss of data is minimized.

### 4.8 B.8. Inspection/Acceptance for Supplies and Consumables

#### 4.8.1 B.8.a/b. Supplies, Consumables, and Responsibilities

As required by approved vendors, supplies and consumables for field and laboratory operations will be procured, inspected, and accepted as appropriate. Acquisition of such supplies and consumables related to groundwater analysis will be the responsibility of each laboratory per the established method or operating procedures.

## 4.9 B.9. Nondirect Measurements – Seismic Monitoring

#### 4.9.1 B.9.a. Data Sources

For time-lapse seismic surveys, repeatability is paramount for accurate differential comparison. To ensure survey quality, the locations for the surface shots and acquisition method of sequential surveys must be consistent. Once these surveys have been acquired, they'll be compared to a baseline survey to track and monitor CO<sub>2</sub> plume development.

For Mt. Simon Sandstone, downhole gauges in the OBS1 well will be used to gather pressure and temperature data.

#### 4.9.2 B.9.b. Relevance to Project

Time-lapse seismic surveys will be used to track changes in the CO<sub>2</sub> plume in the injection formation. Processing and comparing the subsequent surveys to the baseline survey taken before injection starts allows for the assessment and monitoring of CO<sub>2</sub> plume growth. It will also help to ensure that the CO<sub>2</sub> plume does not grow outside of the intended injection zone. Additional modeling will be used to predict CO<sub>2</sub> plume growth and migration overtime by combining the process seismic data and the existing geologic model.

The Mt. Simon Sandstone monitoring data will also be used in the computational modeling to predict CO<sub>2</sub> plume and pressure front behavior and to confirm the CO<sub>2</sub> plume stays within the AoR.

Attachment K

#### 4.9.3 B.9.c. Acceptance Criteria

By following standard industry practices, it will be ensured that the gathered seismic data will be able to be used for accurate modeling and monitoring. Repeatable ground conditions, shot point locations, functional geophones, and similar seismic input data will be used from survey to survey to ensure repeatability.

When processing this data, several quality assurance checks will be done in accordance with industry standards. Further detail on the industry standard methods of reformatting, structuring, and application will be provided. Detail on these methods will be provided in the final Testing and Monitoring Plan (Attachment C).

#### 4.9.4 B.9.d. Resources/Facilities Needed

OCP will provide all resources, equipment, and facilities needed for all seismic surveys. Seismic monitoring will be provided by a third party contractor. Downhole pressure monitoring will be performed in wells associated with the project. Groundwater sampling will be performed by a third party contractor.

### 4.9.5 B.9.e. Validity Limits and Operating Conditions

Trained personnel will handle the review and analysis of all collected data to be used for the seismic surveys and numerical modeling. These checks will be done according to industry standard practices.

### 4.10 B.10. Data Management

### 4.10.1 B.10.a. Data Management Scheme

OCP or a designed third party contractor will maintain the required data as provided elsewhere in the permit application. Data will be backed up digitally, or via hard copy as necessary.

### 4.10.2 B.10.b. Recordkeeping and Tracking Practices

All records and gathered data will be held securely and organized properly.

### 4.10.3 B.10.c. Data Handling Equipment/Procedures

All equipment used to collect and store data will be properly maintained and operated according to industry standard practices. All supervisory control and data acquisition (SCADA) system(s) and other data acquisition system will interface with each other as necessary. All data will be held and stored securely.

## 4.10.4 B.10.d. Responsibility

The primary project managers, as outlined in this document and in the permit application, will be responsible for ensuring that proper data management is maintained.

#### 4.10.5 B.10.e. Data Archival and Retrieval

All data will be held by OCP. These data will be maintained and stored for review as necessary as detailed in Section 4.10.1 *Data Management Scheme*.

#### 4.10.6 B.10.f. Hardware and Software Configurations

All OCP and vendor hardware/software configurations will be interfaced appropriately.

#### 4.10.7 B.10.g. Checklists and Forms

All required checklists and forms will be generated and produced for usage, as necessary.

Attachment K

## 5 C. Assessment and Oversight

## 5.1 C.1. Assessments and Response Actions

#### 5.1.1 C.1.a. Activities to be Conducted

Please refer to the Pre-Operational Testing Plan, the Testing and Monitoring Program, and PISC sections of the permit to see the frequency of data collection for the activities listed in Table 1 of this document (Attachment G; Attachment E).

After completion of sample analysis and data collection, results will be QCed for the criteria as noted in Section 4.5 *QC* of the QASP document. If the collected data and sample analysis are found to not be consistent with these standards of QC, they will be reanalyzed as detailed in the section. All evaluations of data consistency will be performed according to industry standard methods and those described in the EPA 2009 unified guidance.

### 5.1.2 C.1.b. Responsibility for Conducting Assessments

Third party organizations gathering and analyzing data will be responsible for conducting their own internal assessments.

## 5.1.3 C.1.c. Assessment Reporting

All assessment information should be reported to the individual project managers as outlined in this document.

#### 5.1.4 C.1.d. Corrective Action

Corrective action that is taken to improve any individual organization's data collection responsibility should be addressed, verified, and documented by the project manager that the issue is reported to. After this, the individual project manager will communicate this information to the other project managers, as necessary.

Corrective actions that impact multiple organizations should be addressed by all members of the project leadership and communicated to the other members on the distribution list as outlined in Section 2 *Distribution List* for the OASP.

It is noted that the results of the corrective action may impact multiple sources of monitoring data/equipment and/or multiple organizations. It is, therefore, the responsibility of OCP to ensure the most cost-effective and efficient action is implemented across the project.

#### 5.2 C.2. Reports to Management

## 5.2.1 C.2.a/b. QA status Reports

It is currently anticipated that QA status reports will not be necessary. If any of the testing or monitoring activities detailed in the Pre-Operational Testing Plan, the Testing and Monitoring Program, and PISC sections are altered, the QASP will be reviewed and updated as necessary in consultation with the EPA. Revised QASPs will then be distributed to the full distribution list detailed at the beginning of this document.

Attachment K

## 6 D. Data Validation and Usability

### 6.1 D.1. Data Review, Verification, and Validation

## 6.1.1 D.1.a. Criteria for Accepting, Rejecting, or Qualifying Data

Groundwater quality data validation will include review of the following:

- Concentration units
- Sample holding times
- Review of duplicate Blank and other appropriate QA/QC results

All groundwater quality results will be entered into a database for periodic review and analysis.

Copies of this analysis and a laboratory analytical test results and or reports will be kept. In the regular periodic reports, data will be presented in graphical and tabular formats as appropriate to characterize general groundwater quality data and identify intrawell variability.

After sufficient data has been collected, additional methods might be used to evaluate interwell variations for groundwater constituents and to evaluate if significant changes have occurred that could result in the leakage of CO<sub>2</sub> or brine beyond the intended reservoir.

#### 6.2 D.2. Verification and Validation Methods

#### 6.2.1 D.2.a. Data Verification and Validation Processes

See Sections 6.1.1 *Criteria for Accepting, Rejecting, or Qualifying Data* and 4.5 *QC*. Appropriate statistical software will be utilized to determine data consistency.

### 6.2.2 D.2.b. Data Verification and Validation Responsibility

OCP or the designated third party contractor will verify and validate groundwater sampling data.

#### 6.2.3 D.2.c. Issue Resolution Process and Responsibility

OCP or the designated third party contractor will review the groundwater data handling management and assessment processes as necessary. Staff involved in these processes will consult with the Project Manager to determine if any actions are required to resolve issues.

### 6.2.4 D.2.d. Checklist, Forms, and Calculations

Checklists and forms will be developed specifically to meet permit requirements. These checklists or forms will be developed at a later date and provided as a part of regular reports, if necessary.

### 6.3 D.3. Reconciliation with User Requirements

### 6.3.1 D.3.a. Evaluation of Data Uncertainty

The physical software will be used to determine groundwater data consistency using methods consistent with the EPA 2009 unified guidance documents.

Page **56** 

#### 6.3.2 D.3.b. Data Limitations Reporting

Data that is collected and evaluated will be presented using appropriate data-use limitations.

Permit Number: IN-135-6A-0001

# 7 References

Atekwana, E. A., and R. V. Krishnamurthy, 1998, Seasonal variations of dissolved inorganic carbon and δ13C of surface waters: application of a modified gas evolution technique: Journal of Hydrology, v. 205, no. 3, p. 265–278, doi:10.1016/S0022-1694(98)00080-8.

Hackley, K., S. Panno, H.-H. Hwang, and W. Kelly, 2007, Groundwater Quality of Springs and Wells of the Sinkhole plain in Southwestern Illinois: Determination of Dominant Sources of Nitrate: ISGS Circular, v. 570.