Draft General Population Exposure Assessment for

1,2-Dichloroethane

Technical Support Document for the Draft Risk Evaluation

CASRN 107-06-2

November 2025

TAD			תידודו	JTC
IAD	LE OF	' CON		N I O

SUMMARY	29	ACKNOWLEDGEMENTS	5
32 2 APPROACH AND METHODOLOGY OVERVIEW 14 33 3 AMBIENT AIR INHALATION EXPOSURE ASSESSMENT 16 34 3.1 AERMOD Modeling Approach 16 35 3.2 HEM Modeling Approach 17 36 3.2 HEM Modeling Approach 17 37 3.2.1 HEM Settings 18 38 3.2.2 Aggregate and Demographic Model Outputs 21 30 3.2.3 Inhalation Exposure Estimates for Fenceline Communities 21 40 3.3 Summary of Ambient Air Exposure 21 3.3.2 HEM Modeling Results by U.S. Census Block 27 43 3.4 Evidence Integration 27 44 4 ORAL EXPOSURE ASSESSMENT 31 4.1 Drinking Water Exposure 31 4.1.1 Modeling Approach 31 4.1.2 Monitoring Information 33 4.3 Incidental Ingestion from Swimming 34 4.4 Fish Ingestion Exposure 36 4.4 Fish Ingestion Exposure Soil (Biosolids and Air Deposition) 35 52 Evidence Integration 36 4.5 Evidence Integration 37 <	30	SUMMARY	6
33 3 AMBIENT AIR INHALATION EXPOSURE ASSESSMENT 16 34 3.1 AERMOD Modeling Approach 16 35 3.2 HEM Modeling Approach 17 36 3.2 HEM Settings 18 38 3.2.1 HEM Settings 18 38 3.2.2 Aggregate and Demographic Model Outputs 21 39 3.2.3 Inhalation Exposure Estimates for Fenceline Communities 21 40 3.3 Summary of Ambient Air Exposure 21 33.1 Ambient Air Exposure using AERMOD Modeled Concentrations 22 42 3.3.1 EMM Modeling Results by U.S. Census Block 27 43 3.4 Evidence Integration 27 44 ORAL EXPOSURE ASSESSMENT 31 4.1 Drinking Water Exposure 31 4.1.1 Modeling Approach 31 4.2 Incidental Ingestion from Swimming 34 4.3 Incidental Ingestion from Soil (Biosolids and Air Deposition) 35 5.1 Modeling Approach 36 5.2 Evidence Integration 37 5.5 Evidence Integration 37 5.1 Modeling Approach 36	31	1 INTRODUCTION	7
33 3 AMBIENT AIR INHALATION EXPOSURE ASSESSMENT 16 34 3.1 AERMOD Modeling Approach 16 35 3.2 HEM Modeling Approach 17 36 3.2 HEM Settings 18 38 3.2.1 HEM Settings 18 38 3.2.2 Aggregate and Demographic Model Outputs 21 39 3.2.3 Inhalation Exposure Estimates for Fenceline Communities 21 40 3.3 Summary of Ambient Air Exposure 21 33.1 Ambient Air Exposure using AERMOD Modeled Concentrations 22 42 3.3.1 EMM Modeling Results by U.S. Census Block 27 43 3.4 Evidence Integration 27 44 ORAL EXPOSURE ASSESSMENT 31 4.1 Drinking Water Exposure 31 4.1.1 Modeling Approach 31 4.2 Incidental Ingestion from Swimming 34 4.3 Incidental Ingestion from Soil (Biosolids and Air Deposition) 35 5.1 Modeling Approach 36 5.2 Evidence Integration 37 5.5 Evidence Integration 37 5.1 Modeling Approach 36	32	2 APPROACH AND METHODOLOGY OVERVIEW	14
3.1 AERMOD Modeling Approach	33		
35 3.1.1 Exposure Estimates			
36 3.2 HEM Modeling Approach 17 377 3.2.1 HEM Settings 18 38 3.2.2 Aggregate and Demographic Model Outputs 21 39 3.2.3 Inhalation Exposure Estimates for Fenceline Communities 21 340 3.3 Summary of Ambient Air Exposure 21 3.3.1 Ambient Air Exposure using AERMOD Modeled Concentrations 22 42 3.3.2 HEM Modeling Results by U.S. Census Block 27 43 3.4 Evidence Integration 27 44 4 ORAL EXPOSURE ASSESSMENT 31 4.1 Drinking Water Exposure 31 4.1.1 Modeling Approach 31 4.1.2 Monitoring Information 33 4.3 Incidental Ingestion from Swimming 34 4.4 Incidental Ingestion from Swimming 34 4.5 Evidence Integration 36 50 4.4 Indedling Approach 36 51 4.4.1 Modeling Approach 36 52 4.5 Evidence Integration 37 53 5 DERMAL EXPOSURE ASSESSMENT 39 54 5.1 Modeling Approach 39 55 5.2 Evidence Integration 40		3.1.1 Exposure Estimates	17
37 3.2.1 HEM Settings		<u>*</u>	
38 3.2.2 Aggregate and Demographic Model Outputs 21 39 3.2.3 Inhalation Exposure Estimates for Fenceline Communities. 21 40 3.3 Summary of Ambient Air Exposure. 21 41 3.3.1 Ambient Air Exposure using AERMOD Modeled Concentrations. 22 42 3.3.2 HEM Modeling Results by U.S. Census Block. 27 43 3.4 Evidence Integration. 27 44 4 ORAL EXPOSURE ASSESSMENT. 31 45 4.1 Drinking Water Exposure. 31 46 4.1.1 Modeling Approach. 31 47 4.1.2 Monitoring Information. 33 48 4.2 Incidental Ingestion from Soil (Biosolids and Air Deposition). 35 54 4.5 Fish Ingestion Exposure. 36 51 4.4.1 Modeling Approach. 36 52 4.5 Evidence Integration. 37 53 5 DERMAL EXPOSURE ASSESSMENT 39 54 5.1 Modeling Approach. 39 55 5.2 Evidence Integration. 40 60 6 WEIGHT OF SCIENTIFIC EVIDENCE CONCLUSIONS FOR GENERAL POPULATION EXPOSURE ASSESSMENT CONCLUSIONS 43 61 7 GENERAL POPULA		6 11	
39 3.2.3 Inhalation Exposure Estimates for Fenceline Communities. 21 40 3.3 Summary of Ambient Air Exposure 21 41 3.3.1 Ambient Air Exposure using AERMOD Modeled Concentrations 22 42 3.3.2 HEM Modeling Results by U.S. Census Block 27 43 4 Evidence Integration 27 44 4 ORAL EXPOSURE ASSESSMENT 31 45 4.1 Drinking Water Exposure 31 46 4.1.1 Modeling Approach 31 47 4.1.2 Monitoring Information 33 48 4.2 Incidental Ingestion from Swimming 34 4.3 Incidental Ingestion from Soil (Biosolids and Air Deposition) 35 50 4.4 Fish Ingestion Exposure 36 4.4.1 Modeling Approach 36 4.5 Evidence Integration 37 5 DERMAL EXPOSURE ASSESSMENT 39 5.1 Modeling Approach 39 5.2 Evidence Integration 40 6 WEIGHT OF SCIENTIFIC EVIDENCE CONCLUSIONS FOR GENERAL POPULATION EXPOSURE ASSESSMENT 41 6 WEIGHT OF SCIENTIFIC EVIDENCE CONCLUSIONS FOR GENERAL POPULATION EXPOSURE ASSESSMENT CONCLUSIONS 43 6 Table 1-1. C		ĕ	
40 3.3 Summary of Ambient Air Exposure 21 41 3.3.1 Ambient Air Exposure using AERMOD Modeled Concentrations 22 42 3.3.2 HEM Modeling Results by U.S. Census Block 27 43 3.4 Evidence Integration 27 44 ORAL EXPOSURE ASSESSMENT 31 45 4.1 Drinking Water Exposure 31 46 4.1.1 Modeling Approach 31 47 4.1.2 Monitoring Information 33 48 4.2 Incidental Ingestion from Swimming 34 4.3 Incidental Ingestion Exposure 36 50 4.4 Fish Ingestion Exposure 36 51 4.4.1 Modeling Approach 36 52 4.5 Evidence Integration 37 53 5 DERMAL EXPOSURE ASSESSMENT 39 54 5.1 Modeling Approach 39 55 5.2 Evidence Integration 40 66 WEIGHT OF SCIENTIFIC EVIDENCE CONCLUSIONS FOR GENERAL 40 7 GENERAL POPULATION EXPOSURE ASSESSMENT CONC	39		
42 3.3.2 HEM Modeling Results by U.S. Census Block 27 43 3.4 Evidence Integration 27 44 4 ORAL EXPOSURE ASSESSMENT 31 45 4.1 Drinking Water Exposure 31 46 4.1.1 Modeling Approach 31 44 1.2 Monitoring Information 33 48 4.2 Incidental Ingestion from Swimming 34 4.3 Incidental Ingestion from Soil (Biosolids and Air Deposition) 35 50 4.4 Fish Ingestion Exposure 36 51 4.4.1 Modeling Approach 36 52 4.5 Evidence Integration 37 53 5 DERMAL EXPOSURE ASSESSMENT 39 54 5.1 Modeling Approach 39 55 5.2 Evidence Integration 40 66 WEIGHT OF SCIENTIFIC EVIDENCE CONCLUSIONS FOR GENERAL POPULATION EXPOSURE ASSESSMENT 41 61 7 GENERAL POPULATION EXPOSURE ASSESSMENT CONCLUSIONS 43 61 7 GENERAL POPULATION EXPOSURE ASSESSMENT CONCLUSIONS 43 62 44 63 44 64 7 GENERAL POPULATION EXPOSURE ASSESSMENT CONCLUSIONS 43	40	3.3 Summary of Ambient Air Exposure	21
43 3.4 Evidence Integration 27 44 4 ORAL EXPOSURE ASSESSMENT 31 45 4.1 Drinking Water Exposure 31 46 4.1.1 Modeling Approach 31 47 4.1.2 Monitoring Information 33 48 4.2 Incidental Ingestion from Swimming 34 49 4.3 Incidental Ingestion from Soil (Biosolids and Air Deposition) 35 50 4.4 Fish Ingestion Exposure 36 4.5 Evidence Integration 36 4.5 Evidence Integration 37 5 DERMAL EXPOSURE ASSESSMENT 39 5.1 Modeling Approach 39 5.2 Evidence Integration 40 6 WEIGHT OF SCIENTIFIC EVIDENCE CONCLUSIONS FOR GENERAL POPULATION EXPOSURE ASSESSMENT 41 6.1 Strengths, Limitations, Assumptions, and Key Sources of Uncertainty for the General Population Exposure Assessment 41 6.1 Table 1-1. Crosswalk of COUs to Assessed OESs 8 Table 2-1. Exposure Scenarios Assessed 15 Table 2-1. Exposure Scenarios Assessed 15	41	3.3.1 Ambient Air Exposure using AERMOD Modeled Concentrations	22
44 4 ORAL EXPOSURE ASSESSMENT 31 45 4.1 Drinking Water Exposure 31 46 4.1.1 Modeling Approach 31 47 4.1.2 Monitoring Information 33 48 4.2 Incidental Ingestion from Swimming 34 49 4.3 Incidental Ingestion From Soil (Biosolids and Air Deposition) 35 50 4.4 Fish Ingestion Exposure 36 51 4.4.1 Modeling Approach 36 52 4.5 Evidence Integration 37 53 5 DERMAL EXPOSURE ASSESSMENT 39 54 5.1 Modeling Approach 39 55 5.2 Evidence Integration 40 66 WEIGHT OF SCIENTIFIC EVIDENCE CONCLUSIONS FOR GENERAL POPULATION EXPOSURE ASSESSMENT 41 6.1 Strengths, Limitations, Assumptions, and Key Sources of Uncertainty for the General Population Exposure Assessment 41 60 7 GENERAL POPULATION EXPOSURE ASSESSMENT CONCLUSIONS 43 8 Table 1-1. Crosswalk of COUs to Assessed OESs 44 64 Table 1-2. Summary of Environmental Releases by Occupational Exposure Scenarios 10 66 Table 2-1. Exposure Scenarios Assessed 15 <	42		
45 4.1 Drinking Water Exposure 31 46 4.1.1 Modeling Approach 31 47 4.1.2 Monitoring Information 33 48 4.2 Incidental Ingestion from Swimming 34 49 4.3 Incidental Ingestion From Soil (Biosolids and Air Deposition) 35 50 4.4 Fish Ingestion Exposure 36 51 4.4.1 Modeling Approach 36 52 4.5 Evidence Integration 37 53 5 DERMAL EXPOSURE ASSESSMENT 39 54 5.1 Modeling Approach 39 55 5.2 Evidence Integration 40 66 WEIGHT OF SCIENTIFIC EVIDENCE CONCLUSIONS FOR GENERAL POPULATION EXPOSURE ASSESSMENT 41 6.1 Strengths, Limitations, Assumptions, and Key Sources of Uncertainty for the General Population Exposure Assessment 41 6.1 GENERAL POPULATION EXPOSURE ASSESSMENT CONCLUSIONS 43 REFERENCES 44 62 LIST OF TABLES 63 Table 1-1. Crosswalk of COUs to Assessed OESs 8 64 Table 2-1. Exposure Scenarios Assessed 15 65 Table 2-1. Exposure Scenarios Assessed 15 67	43	3.4 Evidence Integration	27
46 4.1.1 Modeling Approach 31 47 4.1.2 Monitoring Information 33 48 4.2 Incidental Ingestion from Swimming 34 49 4.3 Incidental Ingestion From Soil (Biosolids and Air Deposition) 35 50 4.4 Fish Ingestion Exposure 36 51 4.4.1 Modeling Approach 36 52 4.5 Evidence Integration 37 53 5 DERMAL EXPOSURE ASSESSMENT 39 54 5.1 Modeling Approach 39 55 5.2 Evidence Integration 40 66 WEIGHT OF SCIENTIFIC EVIDENCE CONCLUSIONS FOR GENERAL POPULATION EXPOSURE ASSESSMENT 41 6.1 Strengths, Limitations, Assumptions, and Key Sources of Uncertainty for the General Population Exposure Assessment 41 60 7 GENERAL POPULATION EXPOSURE ASSESSMENT CONCLUSIONS 43 61 REFERENCES 44 62 LIST OF TABLES 63 Table 1-1. Crosswalk of COUs to Assessed OESs 8 64 Table 2-1. Exposure Scenarios Assessed 15 65 Table 2-1. Exposure Scenarios Assessed 15 66 Table 3-1. Settings for "Facility List" Input File in HE	44	4 ORAL EXPOSURE ASSESSMENT	31
46 4.1.1 Modeling Approach 31 47 4.1.2 Monitoring Information 33 48 4.2 Incidental Ingestion from Swimming 34 49 4.3 Incidental Ingestion From Soil (Biosolids and Air Deposition) 35 50 4.4 Fish Ingestion Exposure 36 51 4.4.1 Modeling Approach 36 52 4.5 Evidence Integration 37 53 5 DERMAL EXPOSURE ASSESSMENT 39 54 5.1 Modeling Approach 39 55 5.2 Evidence Integration 40 66 WEIGHT OF SCIENTIFIC EVIDENCE CONCLUSIONS FOR GENERAL POPULATION EXPOSURE ASSESSMENT 41 6.1 Strengths, Limitations, Assumptions, and Key Sources of Uncertainty for the General Population Exposure Assessment 41 60 7 GENERAL POPULATION EXPOSURE ASSESSMENT CONCLUSIONS 43 61 REFERENCES 44 62 LIST OF TABLES 63 Table 1-1. Crosswalk of COUs to Assessed OESs 8 64 Table 2-1. Exposure Scenarios Assessed 15 65 Table 2-1. Exposure Scenarios Assessed 15 66 Table 3-1. Settings for "Facility List" Input File in HE	45	4.1 Drinking Water Exposure	31
47 4.1.2 Monitoring Information 33 48 4.2 Incidental Ingestion from Swimming 34 49 4.3 Incidental Ingestion From Soil (Biosolids and Air Deposition) 35 50 4.4 Fish Ingestion Exposure 36 51 4.4.1 Modeling Approach 36 52 4.5 Evidence Integration 37 53 5 DERMAL EXPOSURE ASSESSMENT 39 54 5.1 Modeling Approach 39 55 5.2 Evidence Integration 40 66 WEIGHT OF SCIENTIFIC EVIDENCE CONCLUSIONS FOR GENERAL POPULATION EXPOSURE ASSESSMENT 41 6.1 Strengths, Limitations, Assumptions, and Key Sources of Uncertainty for the General Population Exposure Assessment 41 60 7 GENERAL POPULATION EXPOSURE ASSESSMENT CONCLUSIONS 43 61 REFERENCES 44 62 LIST OF TABLES 44 63 Table 1-1. Crosswalk of COUs to Assessed OESs 8 64 Table 2-1. Exposure Scenarios Assessed 15 65 Table 2-1. Exposure Scenarios Assessed 15 66 Table 3-1. Settings for "Facility List" Input File in HEM 19			
48 4.2 Incidental Ingestion from Swimming 34 49 4.3 Incidental Ingestion from Soil (Biosolids and Air Deposition) 35 50 4.4 Fish Ingestion Exposure 36 51 4.4.1 Modeling Approach 36 52 4.5 Evidence Integration 37 53 5 DERMAL EXPOSURE ASSESSMENT 39 54 5.1 Modeling Approach 39 55 5.2 Evidence Integration 40 66 WEIGHT OF SCIENTIFIC EVIDENCE CONCLUSIONS FOR GENERAL POPULATION EXPOSURE ASSESSMENT 41 6.1 Strengths, Limitations, Assumptions, and Key Sources of Uncertainty for the General Population Exposure Assessment 41 60 7 GENERAL POPULATION EXPOSURE ASSESSMENT CONCLUSIONS 43 61 REFERENCES 44 62 LIST OF TABLES 44 63 Table 1-1. Crosswalk of COUs to Assessed OESs 8 64 Table 2-1. Exposure Scenarios Assessed 15 65 Table 2-1. Exposure Scenarios Assessed 15 66 Table 3-1. Settings for "Facility List" Input File in HEM 19			
49 4.3 Incidental Ingestion from Soil (Biosolids and Air Deposition) 35 50 4.4 Fish Ingestion Exposure 36 51 4.4.1 Modeling Approach 36 52 4.5 Evidence Integration 37 53 5 DERMAL EXPOSURE ASSESSMENT 39 54 5.1 Modeling Approach 39 55 5.2 Evidence Integration 40 66 WEIGHT OF SCIENTIFIC EVIDENCE CONCLUSIONS FOR GENERAL POPULATION EXPOSURE ASSESSMENT 41 6.1 Strengths, Limitations, Assumptions, and Key Sources of Uncertainty for the General Population Exposure Assessment 41 60 7 GENERAL POPULATION EXPOSURE ASSESSMENT CONCLUSIONS 43 8 REFERENCES 44 62 LIST OF TABLES 63 Table 1-1. Crosswalk of COUs to Assessed OESs 8 64 Table 2-1. Exposure Scenarios Assessed 15 65 Table 2-1. Exposure Scenarios Assessed 15 66 Table 3-1. Settings for "Facility List" Input File in HEM 19			
50 4.4 Fish Ingestion Exposure 36 51 4.4.1 Modeling Approach 36 52 4.5 Evidence Integration 37 53 5 DERMAL EXPOSURE ASSESSMENT 39 54 5.1 Modeling Approach 39 5.2 Evidence Integration 40 6 WEIGHT OF SCIENTIFIC EVIDENCE CONCLUSIONS FOR GENERAL POPULATION EXPOSURE ASSESSMENT 41 6.1 Strengths, Limitations, Assumptions, and Key Sources of Uncertainty for the General Population Exposure Assessment 41 60 7 GENERAL POPULATION EXPOSURE ASSESSMENT CONCLUSIONS 43 8 REFERENCES 44 62 LIST OF TABLES 64 Table 1-1. Crosswalk of COUs to Assessed OESs 8 7 Table 2-1. Exposure Scenarios Assessed 15 7 Table 2-1. Exposure Scenarios Assessed 15 7 Table 3-1. Settings for "Facility List" Input File in HEM 19			
51 4.4.1 Modeling Approach 36 52 4.5 Evidence Integration 37 53 5 DERMAL EXPOSURE ASSESSMENT 39 54 5.1 Modeling Approach 39 55 5.2 Evidence Integration 40 66 WEIGHT OF SCIENTIFIC EVIDENCE CONCLUSIONS FOR GENERAL POPULATION EXPOSURE ASSESSMENT 41 6.1 Strengths, Limitations, Assumptions, and Key Sources of Uncertainty for the General Population Exposure Assessment 41 60 7 GENERAL POPULATION EXPOSURE ASSESSMENT CONCLUSIONS 43 81 REFERENCES 44 62 LIST OF TABLES 44 62 Table 1-1. Crosswalk of COUs to Assessed OESs 8 65 Table 1-2. Summary of Environmental Releases by Occupational Exposure Scenarios 10 66 Table 2-1. Exposure Scenarios Assessed 15 67 Table 3-1. Settings for "Facility List" Input File in HEM 19	50		
53 5 DERMAL EXPOSURE ASSESSMENT 39 54 5.1 Modeling Approach 39 55 5.2 Evidence Integration 40 66 WEIGHT OF SCIENTIFIC EVIDENCE CONCLUSIONS FOR GENERAL POPULATION EXPOSURE ASSESSMENT 41 6.1 Strengths, Limitations, Assumptions, and Key Sources of Uncertainty for the General Population Exposure Assessment 41 60 7 GENERAL POPULATION EXPOSURE ASSESSMENT CONCLUSIONS 43 61 REFERENCES 44 62 LIST OF TABLES 44 63 Table 1-1. Crosswalk of COUs to Assessed OESs 8 64 Table 2-1. Exposure Scenarios Assessed 15 65 Table 3-1. Settings for "Facility List" Input File in HEM 19	51		
54 5.1 Modeling Approach 39 55 5.2 Evidence Integration 40 6 WEIGHT OF SCIENTIFIC EVIDENCE CONCLUSIONS FOR GENERAL 40 57 POPULATION EXPOSURE ASSESSMENT 41 6.1 Strengths, Limitations, Assumptions, and Key Sources of Uncertainty for the General Population Exposure Assessment 41 60 7 GENERAL POPULATION EXPOSURE ASSESSMENT CONCLUSIONS 43 61 REFERENCES 44 62 LIST OF TABLES 44 64 Table 1-1. Crosswalk of COUs to Assessed OESs 8 65 Table 1-2. Summary of Environmental Releases by Occupational Exposure Scenarios 10 66 Table 2-1. Exposure Scenarios Assessed 15 7 Table 3-1. Settings for "Facility List" Input File in HEM 19	52	4.5 Evidence Integration	37
55. 5.2 Evidence Integration	53	5 DERMAL EXPOSURE ASSESSMENT	39
55. 5.2 Evidence Integration	5/1	5.1 Modeling Approach	30
6 WEIGHT OF SCIENTIFIC EVIDENCE CONCLUSIONS FOR GENERAL POPULATION EXPOSURE ASSESSMENT			
POPULATION EXPOSURE ASSESSMENT			+0
58 6.1 Strengths, Limitations, Assumptions, and Key Sources of Uncertainty for the General Population Exposure Assessment			41
Population Exposure Assessment			
7 GENERAL POPULATION EXPOSURE ASSESSMENT CONCLUSIONS 43 REFERENCES 44 LIST OF TABLES Table 1-1. Crosswalk of COUs to Assessed OESs 8 Table 1-2. Summary of Environmental Releases by Occupational Exposure Scenarios 10 Table 2-1. Exposure Scenarios Assessed 15 Table 3-1. Settings for "Facility List" Input File in HEM 19			41
REFERENCES			
LIST OF TABLES Table 1-1. Crosswalk of COUs to Assessed OESs			
LIST OF TABLES Table 1-1. Crosswalk of COUs to Assessed OESs		REFERENCES	44
Table 1-1. Crosswalk of COUs to Assessed OESs			
Table 1-2. Summary of Environmental Releases by Occupational Exposure Scenarios	63	LIST OF TABLES	
Table 2-1. Exposure Scenarios Assessed			
67 Table 3-1. Settings for "Facility List" Input File in HEM			

69	Table 3-3. A	ssumptions for Interday Emission-Release Pattern Using HEM	20
70		hysical Source Specifications for HEM	
71		laximum 95th Percentile Lifetime Average Daily Ambient Air Concentrations for 1,2-	
72		Dichloroethane Releases Reported to TRI from 2015–2020 Modeled Using AERMOD	as
73		a Standalone Program	23
74	Table 3-6. M	Iaximum 95th Percentile Lifetime Average Daily Ambient Air Concentrations for 1,2-	
75		Dichloroethane Releases Reported to NEI for the Reporting Years of 2014 and 2017	
76		Modeled Using AERMOD as a Standalone Program	24
77	Table 3-7. M	Iaximum 95th Percentile Lifetime Average Daily Concentrations for 1,2-Dichloroethane	
78		Releases Reported to NEI for Municipal Solid Waste Landfills for the Reporting Years	of
79		2014 and 2017 Modeled Using AERMOD as a Standalone Program	
80	Table 3-8. M	Iaximum 95th Percentile Lifetime Average Daily Ambient Air Concentrations for 1,2-	
81	10010 0 0111	Dichloroethane Using EPA Estimated Releases for Generic Facilities/Sites Modeled	
82		Using AERMOD as a Standalone Program	26
83	Table 3-9. C	onfidence in Each Line of Evidence and Overall Confidence for Each OES	
84		rinking Water Exposures to 1,2-Dichloroethane from Highest Concentration at a Drinkin	
85		Water Intake per COU	_
86	Table 4-2. A	cute Oral (Incidental Ingestion from Swimming) Doses Across Lifestages	
87		eneral Population Fish Ingestion Doses by Surface Water Concentration and COU/OES	
88		cute Dermal (Swimming) Doses Across Lifestages	
89			
90	KEY AB	BREVIATIONS AND ACRONYMS	
91	30Q5	Lowest 30-day average flow that occurs (on average) once every 5 years	
92	7Q10	Lowest 7-day average flow that occurs (on average) once every 10 years	
93	AAMG	Ambient Air Monitoring Group	
94	AC	Acute concentration	
95	ADC	Average daily concentrations	
96	ADD	Average daily dose	
97	ADR	Acute dose rate	
98	AERMOD	American Meteorological Society/Environmental Protection Agency Regulatory Mode	1
99	AF	Assessment factor	
100	AMTIC	Ambient Monitoring Technology Information Center	
101	CASRN	Chemical Abstracts Service Registry Number	
102	COU	Condition of use	
103	DMR	Discharge Monitoring Report	
104	DRAS	Hazardous Waste Delisting Risk Assessment Software (Model)	
105	E-FAST	Exposure and Fate Assessment Screening Tool (Model)	
106	EPA	Environmental Protection Agency (U.S.)	
107	HEM	Human Exposure Model	
108	IIOAC	Integrated Indoor Outdoor Air Calculator (Model)	
109	IR	Ingestion rate	
110	IUR	Inhalation unit risk	
111	KOA	Octanol-air partition coefficient	
112	LADC	Lifetime average daily concentrations	
113	LADD	Lifetime average daily dose	
114	MCL	Maximum Contaminant Level	
115	MIR	Maximum Individual Risk	
116	NAICS	North American Industry Classification System	
117	NEI	National Emissions Inventory	

NPDES	National Pollutant Discharge Elimination System
OCSPP	Office of Chemical Safety and Pollution Prevention (U.S.)
OES	Occupational exposure scenario
OPPT	Office of Pollution Prevention and Toxics (U.S.)
PESS	Potentially exposed sensitive subpopulation
POTW	Publicly owned treatment works
SDWA	Safe Drinking Water Act
TRI	Toxics Release Inventory
TSCA	Toxic Substances Control Act
TSD	Technical support document
URE	Unit risk estimate
U.S.	United States
	OCSPP OES OPPT PESS POTW SDWA TRI TSCA TSD URE

130	ACKNOWLEDGEMENTS
131	The Assessment Team gratefully acknowledges the participation, review, and input from U.S.
132	Environmental Protection Agency (EPA or the Agency) Office of Pollution Prevention and Toxics
133	(OPPT) and Office of Chemical Safety and Pollution Prevention (OCSPP) senior managers and science
134	advisors. The Agency is also grateful for assistance from the following EPA contractor for the
135	preparation of this draft technical support document (TSD): ICF (Contract No. 68HERC23D0007).
136	
137	Docket
138	Supporting information can be found in the public docket, Docket ID <u>EPA-HQ-OPPT-2018-0427</u> .
139	
140	Disclaimer
141	Reference herein to any specific commercial products, process, or service by trade name, trademark,
142	manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring
143	by the United States Government.
144	
145	Authors: Andrew Middleton, Nerija Orentas (TSD Leads), Albana Bega (Assessment Lead), and Seema
146	Schappelle (Branch Supervisor)
147	
148	Contributors: Jason Todd, Kiet Ly, and Kevin Vuilleumier
149	
150	Technical Support: Mark Gibson, Hillary Hollinger, Lauren Housley, and Kelley Stanfield

SUMMARY

- This technical support document (TSD) accompanies the Toxic Substances Control Act (TSCA) *Draft Risk Evaluation for 1,2-Dichloroethane* (also called the "draft risk evaluation") (<u>U.S. EPA, 2025i</u>) and describes exposure to the general population from releases of 1,2-dichloroethane associated with TSCA conditions of use (COUs).
- EPA evaluated the reasonably available information for the following general population exposures to 1,2-dichloroethane, the key points of which are summarized in the bullets below:
 - Inhalation exposure is the major general population exposure pathway. EPA evaluated acute, chronic, and lifetime general population exposures to 1,2-dichloroethane in ambient air.
 - o For exposures to 1,2-dichloroethane through ambient air, EPA considered potential exposures for communities within 10 km of a release site using the American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD). AERMOD-modeled ambient air concentrations were then used to estimate acute and chronic inhalation exposures to the general population (Sections 3.1 and 3.3.1). Additionally, the Human Exposure Model (HEM) was used to estimate exposures at a U.S. census block level and identify exposed populations up to 50 km from releasing facilities (Sections 3.1.1 and 3.2.2).
 - Exposures from industrial releases of 1,2-dichloroethane that can be attributed to COUs based on the AERMOD 95th percentile modeled concentrations ranged from 0.0 to 6.4 μg/m³ at 1,000 m from facility releases, with the highest exposure being attributed the Manufacturing OES.
 - $_{\odot}$ EPA estimated inhalation exposures for estimated releases from generic facilities/sites with industrial activities mapped to standardized occupational exposure scenarios (OESs) where there were limited or no reported data on releases (Sections 3.3.1 and 3.2.3). Exposures based on the AERMOD 95th percentile modeled concentrations ranged from 0.0 to 32 μg/m³ at 1,000 m from facility releases, with the highest exposure being attributed to the Industrial application of adhesives and sealants OES.
 - EPA evaluated exposures to 1,2-dichloroethane from ingestion of drinking water (Section 4.1.1), incidental ingestion of and dermal absorption while swimming (Sections 4.2 and 5.1), and fish ingestion (Section 4.4.1).
 - o Oral exposures from ingestion of drinking water containing 1,2-dichloroethane in receiving water as source water were estimated to result in low exposures.
 - o Oral and dermal exposures from swimming in receiving water from 1,2-dichloroethane releases were estimated to result in low exposures.
 - Oral exposures from ingestion of fish containing 1,2-dichloroethane were estimated for adults, children, and subsistence and tribal fishers. Low bioaccumulation potential for 1,2-dichloroethane in fish results in low exposures.
 - o Oral exposures by children via incidental ingestion of 1,2-dichloroethane in soil that contains land-applied biosolids were expected to result in low exposures.

1 INTRODUCTION

Also known as ethylene dichloride, 1,2-dichloroethane is a volatile, synthetic hydrocarbon that is primarily used in the synthesis of vinyl chloride; over 90 percent is produced for conversion to vinyl chloride (EPA-HQ-OPPT-2018-0427-0040). EPA evaluated the presence of 1,2-dichloroethane in different media—air, water, and land—through reported concentrations in monitoring databases, peerreviewed literature, and gray literature, as detailed in the *Draft Environmental Media Concentrations Assessment for 1,2-Dichloroethane* (also called the "1,2-dichloroethane media concentrations TSD") (U.S. EPA, 2025e). The Agency evaluated the reasonably available information for releases of 1,2-dichloroethane from facilities that use, manufacture, process, or dispose of 1,2-dichloroethane under industrial and/or commercial COUs as detailed in the *Draft Environmental Release Assessment for 1,2-Dichloroethane* (U.S. EPA, 2025f). EPA estimated concentrations of 1,2-dichloroethane in different media using facility-reported releases (U.S. EPA, 2025e). Based on the chemical properties and fate parameters detailed in the *Draft Chemistry and Fate and Transport Assessment for 1,2-Dichloroethane* (U.S. EPA, 2025b), and as further supported by the monitoring data (U.S. EPA, 2025e), exposures to 1,2-dichloroethane for the general population are expected through the air, water, and land pathways.

Due to its volatility (vapor pressure of 78.9 mmHg at 25 °C), 1,2-dichloroethane will primarily remain in air when released to air, which accounts for 91 percent of the releases reported to the Toxics Release Inventory (TRI). 1,2-Dichloroethane has a half-life in ambient air of 42 to 51 days, and is primarily transformed by indirect photolysis through reaction with hydroxyl radicals (·OH). 1,2-Dichloroethane will also be subject to long-range transport and potentially undergo both wet and dry deposition. When released into surface waters, 1,2-dichloroethane will remain in water due to its water solubility (8,600 mg/L). 1,2-Dichloroethane released to wastewater treatment facilities is removed primarily through air stripping. When released to land via landfill disposal or biosolids application, 1,2-dichloroethane is expected to either volatilize or be mobile in the subsurface and migrate to groundwater due to its low affinity for soil organic matter. Industrial releases via air and wastewater are the major sources of 1,2-dichloroethane in the environment.

Facilities report 1,2-dichloroethane releases to ambient air, surface water, and landfills (<u>U.S. EPA</u>, <u>2025f</u>). The Agency used these facility-specific reported releases (*i.e.*, data from TRI, National Emissions Inventory [NEI], and Discharge Monitoring Reports [DMR]) to evaluate exposures of 1,2-dichloroethane to the general population. For COUs where there is limited or no reported release data, EPA estimates releases (<u>U.S. EPA</u>, 2025f).

Table 1-1 provides a crosswalk between COUs and occupational exposure scenarios (OESs) by lifecycle stage. Table 1-2 presents the exposures assessed per OES based on the corresponding media to which 1,2-dichloroethane is released.

Table 1-1. Crosswalk of COUs to Assessed OESs

Life Cycle Stage ^a	Category ^b	Subcategory ^c	OES	
Manufacturing	Domestic manufacture	Domestic manufacture	Manufacturing ^d	
	Import	Import	Repackaging	
	Processing – as a reactant	Intermediate in: petrochemical manufacturing; plastic material and resin manufacturing; all other basic organic chemical manufacturing; all other basic inorganic chemical manufacturing	Processing as a reactant	
		Fuels and fuel additives: all other petroleum and coal products manufacturing	Processing into formulation, mixture, or reaction product	
Processing	Processing – incorporated into formulation, mixture,	Processing aids: specific to petroleum production	Processing into formulation, mixture, or reaction product	
	or reaction product	Adhesives and sealants; lubricants and greases; process regulators; degreasing and cleaning solvents; pesticide, fertilizer, and other agricultural chemical manufacturing	Processing into formulation, mixture, or reaction product	
	Repackaging	Repackaging	Repackaging	
	Recycling	Recycling	Processing as a reactant	
Distribution in Commerce	Distribution in commerce	Distribution in commerce	Distribution in commerce ^e	
	Adhesives and sealants	Adhesives and sealants	Industrial application of adhesives and sealants	
	Functional fluids (closed systems)	Heat transferring agent	Heat transferring agent ^f	
	Lubricants and greases	Solid film lubricants and greases	Industrial application of lubricants and greases	
Industrial Use	Process regulator	e.g., Catalyst moderator; oxidation inhibitor	Processing as a reactant	
	Solvents (for		Commercial aerosol products	
	cleaning and degreasing)	Degreasing and cleaning solvents	Non-aerosol cleaning and degreasing	
	Other use	Process solvent	Processing into formulation, mixture, or reaction product	
Commercial	Plastic and rubber products	Products such as: plastic and rubber products	Plastic and rubber products ^f	
Use	Fuels and related products	Fuels and related products	Fuels and related products ^f	
	Other use	Laboratory chemical	Laboratory use	
Consumer Use	Plastic and rubber products	Plastic and rubber products	N/A ^g	

Life Cycle Stage ^a	Category ^b	Subcategory ^c	OES	
Disposal	Disposal	Disposal	Waste handling, treatment, and disposal (landfill)	
			Waste handling, treatment, and disposal (POTW, non- POTW WWT)	
			Waste handling, treatment, and disposal (remediation)	

COU = condition of use; OES = occupational exposure scenario; POTW = publicly owned treatment works; WWT = wastewater treatment

- ^a Life Cycle Stage use definitions (40 CFR 711.3)
- "Industrial use" means use at a site at which one or more chemicals or mixtures are manufactured (including imported) or processed.
- "Commercial use" means the use of a chemical or a mixture containing a chemical (including as part of an article) in a commercial enterprise providing saleable goods or services.
- "Consumer use" means the use of a chemical or a mixture containing a chemical (including as part of an article, such as furniture or clothing) when sold to or made available to consumers for their use.
- Although EPA has identified both industrial and commercial uses here for purposes of distinguishing scenarios in this document, the Agency interprets the authority over "any manner or method of commercial use" under TSCA section 6(a)(5) to reach both.
- ^b These categories of COUs reflect CDR codes and broadly represent conditions of use for 1,2-dichloroethane in industrial and/or commercial settings.
- ^c These subcategories reflect more specific uses of 1,2-dichloroethane.
- ^d During the manufacture of 1,2-dichloroethane, the byproducts 1,1-dichloroethane (75-34-3), 1,1,2-trichloroethane (79-00-5), *trans*-1,2-dichloroethylene (156-60-5), trichloroethylene (79-01-6), perchloroethylene (127-18-4), methylene chloride (75-09-2), and carbon tetrachloride (56-23-5) are formed, and are assessed in this risk evaluation or subsequent risk evaluations. See *Draft Byproducts Assessment for 1,2-Dichloroethane* (U.S. EPA, 2025a).
- ^e EPA considers the activities of loading and unloading of chemical product part of distribution in commerce, however these activities were assessed as part of each use's OES. EPA's current approach for quantitively assessing releases and exposures for the remaining aspects of distribution in commerce consists of searching Department of Transportation (DOT) and National Response Center (NRC) data for incident reports pertaining to 1,2-dichloroethane distribution.
- ^f Though these uses were identified during scoping, upon further investigation EPA made the decision to not quantitatively assess the releases and exposures due to these uses of 1,2-dichloroethane. The rationale for not performing a quantitative assessment is described in Section 1.2 of both the *Draft Environmental Release Assessment for 1,2-Dichloroethane* (U.S. EPA, 2025f) and *Draft Occupational Exposure Assessment for 1,2-Dichloroethane* (U.S. EPA, 2025h).
- ^g Consumer uses are not assigned to OESs but are assessed elsewhere in this draft TSD or draft risk evaluation. See the *Draft Consumer Exposure Assessment for 1,2-Dichloroethane* (U.S. EPA, 2025c).

Table 1-2. Summary of Environmental Releases by Occupational Exposure Scenarios

OES	Type of Discharge, ^a Air Emission, ^b or Transfer for	Estimated Annual Release (kg/site-yr) ^d		Estimated Daily Release (kg/site-day) ^e		Number of	g ()
OES	Disposal ^c	Central Tendency ^g	High-End	Central Tendency	High-End	Facilities ^f	Source(s)
	Surface water	1.0	56	2.8E-03	0.16	33	TRI/DMR
	Fugitive air	3,125	1.6E04	8.9	46	23	TRI
	Stack air	1,466	1.2E04	4.2	35	22	TRI
Manufacturing	Fugitive air	2,360	6,578	6.7	19	10	NEI
	Stack air	241	6,779	0.69	19	12	NEI
	Land	2.3	247	6.5E-03	0.71	14	TRI
	Surface water	1.3E-02	103	5.1E-05	0.41	19	TRI/DMR
	Fugitive air	170	227	0.68	0.91	4	TRI
Repackaging	Stack air	170	227	0.68	0.91	4	TRI
	Fugitive air	1.4E-02	105	5.7E-05	0.42	28	NEI
	Stack air	4.2	588	1.7E-02	2.4	11	NEI
	Surface water	0.24	103	6.8E-04	0.29	22	TRI/DMR
	Fugitive air	45	370	0.13	1.1	10	TRI
Processing as a	Stack air	6.8	252	1.9E-02	0.72	11	TRI
reactant	Fugitive air	88	9,697	0.25	28	17	NEI
	Stack air	24	3,439	6.8E-02	9.8	17	NEI
	Land	3.6	29	1.0E-02	8.2E-02	1	TRI
	Surface water	0.27	11	9.1E-04	3.7E-02	20	TRI/DMR
Processing into	Fugitive air	113	2,232	0.38	7.4	9	TRI
formulation, mixture,	Stack air	68	976	0.23	3.3	11	TRI
or reaction product	Fugitive air	74	4,795	0.25	16	6	NEI
	Stack air	1,269	4,288	4.2	14	4	NEI

OES	Type of Discharge, ^a Air Emission, ^b or Transfer for	Estimated Annual Release (kg/site-yr) ^d		Estimated Daily Release (kg/site-day) ^e		Number of	Samuel (a)	
OES	Disposal ^c	Central Tendency ^g	High-End	Central Tendency	High-End	Facilities ^f	Source(s)	
	Fugitive air	2.4	338	9.0E-03	1.3	38	NEI	
	Stack air	4.5	282	1.7E-02	1.1	65	NEI	
Industrial application	Fugitive or stack air	1.3E05 ^h	1.3E05 ^h	1,674	4,647	N/A	Environmental release modeling	
of adhesives and sealants	Hazardous landfill or incineration	4,406	4,953	59	165	N/A	Environmental release modeling – Modeled releases to incineration are further assessed by applying a DRE to estimate the resulting stack air release	
Industrial application	Fugitive air	7.3E-02	82	2.9E-04	0.33	2	NEI	
of lubricants and greases	Stack air	8.8E	E-03	3.5E	-05	1	NEI	
	Surface water	0.13	0.26	5.2E-04	1.0E-03	3	TRI/DMR	
	Fugitive air	1.5	41	6.0E-03	0.17	12	NEI	
	Stack air	3.5	455	1.4E-02	1.8	15	NEI	
	Fugitive or stack air	1.3E04	4.2E04	42	141	N/A	Environmental release modeling	
Industrial and commercial non-aerosol cleaning/degreasing	Wastewater treatment	662	2,606	2.2	8.8	N/A	Environmental release modeling – Modeled releases to wastewater treatment are further assessed by applying a removal efficiency to estimate the resulting surface water discharge	
	Hazardous waste incineration	7,152	3.1E04	24	103	N/A	Environmental release modeling – Modeled releases to incineration are further assessed by applying a DRE to estimate the resulting stack air release	
	Hazardous waste landfill	64	255	0.24	0.86	N/A	Environmental release modeling	

OES	Type of Discharge, ^a Air Emission, ^b or Transfer for	Estimated Annual Release (kg/site-yr) ^d		Estimated Daily Release (kg/site-day) ^e		Number of	G()
OES	Disposal ^c			Central Tendency High-End		Facilities ^f	Source(s)
Commercial aerosol products	Fugitive air	379	382	1.5	1.5	N/A	Environmental release modeling
	Surface water	6.7E-03	6.9E-02	2.6E-05	2.6E-04	4	TRI/DMR
	Fugitive air	1.3	10	5.2E-03	3.8E-02	6	NEI
	Stack air	126	233	0.48	0.90	2	NEI
	Fugitive or stack air	1.7	11	7.3E-03	4.5E-02	N/A	Environmental release modeling
Laboratory use	Hazardous landfill or incineration	15	812	6.5E-02	3.5	N/A	Environmental release modeling – Modeled releases to incineration are further assessed by applying a DRE to estimate the resulting stack air release
Waste handling,	Surface water	0.03	28	1.0E-04	0.11	17	TRI/DMR
treatment and	Fugitive air	2.2	181	9.0E-03	0.73	17	TRI
disposal (non-POTW WWT)	Stack air	1.0	112	4.0E-03	0.45	17	TRI
W W 1)	Fugitive air	4.8	44	1.9E-02	0.18	725	NEI
	Stack air	0.25	35	9.9E-04	0.14	199	NEI
Waste handling, disposal and treatment (POTW)	Surface water	0.63	30	1.7E-03	8.3E-02	141	TRI/DMR
Waste handling, disposal and	Surface water	1.5E-02	0.18	4.2E-05	4.9E-04	19	TRI/DMR
treatment	Fugitive air	5.2		1.4E-0)2	1	NEI
(remediation)	Stack air	816	1,438	2.2	3.9	3	NEI

DMR = Discharge Monitoring Report; DRE = destruction removal efficiency; NEI = National Emissions Inventory; POTW = publicly owned treatment works; TRI = Toxic Release Inventory; WWT = wastewater treatment; DRE = destruction or removal efficiency

^a Direct discharge to surface water; indirect discharge to non-POTW WWT; indirect discharge to POTW

^b Emissions via fugitive air, stack air, or treatment via incineration

^c Transfer to surface impoundment, land application, or landfills

^d For modeled results, the presented central tendency and high-end are the 50th and 95th percentile values of the modeled distribution. For programmatic data, the presented central tendency is calculated from the median reported release amounts and high-end from the reported maximum release amounts. The specific central tendency and high-end values presented depends on the number of sites with programmatic data. For databases with 6 or more reporting facilities, EPA estimated

OES	Type of Discharge, ^a Air Emission, ^b or Transfer for Disposal ^c	Estimated Annual Release (kg/site-yr) ^d		Estimated Daily Release (kg/site-day) ^e		Number of	Samma (a)
		Central Tendency ^g	High-End	Central Tendency	High-End	Facilities ^f	Source(s)

central tendency and high-end releases using the 50th and 95th percentile values, respectively. For 3–5 facilities, EPA estimated the central tendency and high-end releases using the 50th percentile and maximum values, respectively. For 2 sites, EPA presented the midpoint and the maximum value. Finally, EPA presented sites with only 1 data point as-is from the programmatic database.

^e Where available, EPA used peer reviewed literature (*e.g.*, GSs or ESDs) to provide a basis to estimate the number of release days of 1,2-dichloroethane within a COU. ^f Where available, EPA used the 2020 CDR (<u>U.S. EPA, 2020a</u>), NEI (<u>U.S. EPA, 2023a</u>), DMR (<u>U.S. EPA, 2022a</u>), and TRI databases (<u>U.S. EPA, 2022b</u>), 2020 U.S. County Business Practices (<u>U.S. Census Bureau, 2022</u>), and Monte Carlo models to estimate the number of sites that use 1,2-dichloroethane for each COU. Some modeled OES calculated the number of facilities/sites, presented as 50th and 95th percentiles. Other modeled OESs set the number of facilities deterministically, presented as one value. There were 186 facilities not mapped to an OES (45 in NEI, 1 in TRI, and 140 in DMR) with 1,2-dichloroethane releases that EPA was unable to map due to the lack of information regarding the activity of 1,2-dichloroethane at the site.

g The central tendency values for NEI air were calculated using the median of the reported releases at each site.

^h These central tendency and high-end releases appear equivalent in the table due to rounding.

2 APPROACH AND METHODOLOGY OVERVIEW

General population exposures occur when 1,2-dichloroethane is released into the environment and contaminated media become pathways for exposure. EPA has evidence that 1,2-dichloroethane is present in ambient air, surface waters, and soil (U.S. EPA, 2025e), and that it is a source of potential exposure to the general population. Therefore, the Agency is quantitatively assessing exposures to the general population via the air, water, and land pathways. As described below, EPA modeled exposures for all facilities releasing to ambient air, including releases that are not mapped to an OES ("Unknown" OES). For surface water, EPA estimated surface water concentrations from all facilities and then conducted an initial screening assessment of the exposures associated with the highest surface water concentration for each COU/OES. Table 2-1 lists for each COU/OES the evaluated environmental media pathways and the corresponding sections where the general population exposure analyses for each pathway are described.

Ambient air concentrations were modeled based on either facility-specific or estimated releases using AERMOD, as detailed in the 1,2-dichloroethane media concentrations assessment TSD (<u>U.S. EPA</u>, <u>2025e</u>). AERMOD-modeled ambient air concentrations were then used to estimate inhalation exposures to the general population at distances up to 10 km from releasing facilities. Additionally, HEM (see also Sections 3.2.1 and 3.3.2) was used to estimate exposures at a U.S. census block level and identify exposed populations up to 50 km from releasing facilities. HEM also provides data that characterizes the exposed population. Modeled exposures from AERMOD and HEM were then used to calculate acute, chronic non-cancer, and cancer risks via the ambient air pathway, as outlined in the 1,2-dichloroethane draft risk evaluation (<u>U.S. EPA</u>, 2025i).

The Agency used facility-reported and EPA-estimated releases of 1,2-dichloroethane to surface water together with flow metrics of the receiving waterbody to estimate the concentration water body at the point of release. For facility-specific surface water estimates, the flow metrics were based on the facility's National Pollutant Discharge Elimination System (NPDES) permit-defined receiving waterbodies and the corresponding stream flow metrics from the NHDPlus2 (U.S. EPA, 2016) suite of geospatial data sets. EPA's low flow calculations were based on the NHDPlus2 stream flow metrics as opposed to the database within the Exposure and Fate Assessment Screening Tool (E-FAST) Model (U.S. EPA, 2014). The 1,2-dichloroethane media concentrations TSD details the 1,2-dichloroethane surface water calculations for each of the low flow metrics (U.S. EPA, 2025e). This draft General Population Exposure TSD used a screening approach for general population exposures from 1,2-dichloroethane in surface water. Accordingly, EPA used the highest surface water concentration per COU from the corresponding facility releases to represent the (1) high-end 1,2-dichloroethane oral drinking water exposures (Section 4.1), (2) oral fish ingestion exposures (Section 4.4), and (3) incidental oral (Section 4.2) and dermal exposures from swimming (Section 5) for the general population.

EPA's Hazardous Waste Delisting Risk Assessment Software (DRAS) Model (<u>U.S. EPA, 2020b</u>) was used to estimate groundwater concentrations (Section 4.3) resulting from 1,2-dichloroethane land disposal and to screen for levels in drinking water that could be a human health hazard concern. Soil concentrations were calculated using modeled air deposition rates from AERMOD to estimate oral exposures to children who play in dirt/mud and engage in other activities with soil (Section 4.3).

276 Table 2-1. Exposure Scenarios Assessed

COU/ OES	Exposure Route	Media/ Exposure Pathway	Exposure Scenario	Populations/ Lifestage (Age) ^a	Analysis (Quantitative or Qualitative) and TSD Section
All	Inhalation	Ambient air	Inhalation exposure to 1,2- dichloroethane in ambient air from all reported and modeled releases	All	Quantitative, Section 3
All	Oral	Drinking water	Ingestion of 1,2-dichloroethane in drinking water from releases to surface receiving waters	All	Quantitative, Section 4.1
A 11	Oral	Surface	Dermal exposure to 1,2- dichloroethane in surface water during swimming from facility- specific releases	Adults and children (6+ years)	Quantitative, Section 4.2
All	Dermal	water	Incidental ingestion of 1,2- dichloroethane in surface water during swimming from facility- specific releases	Adults and children (6+ years)	Quantitative, Section 5
	Oral		Ingestion of fish exposed to 1,2-dichloroethane in receiving water for general population	Adults and young toddlers (1–2 years old)	Quantitative, Section 4.4
All	Oral	Fish ingestion	Ingestion of fish for subsistence fishers	Adults (16 to <70 years)	Quantitative, Section 4.4
	Oral		Ingestion of fish for Tribal populations	Adults (16 to <70 years)	Quantitative, Section 4.4
All	Oral	Biosolids	Ingestion of 1,2-dichloroethane via soils amended with land applied biosolids	Children (3–6 years)	Qualitative, Section 4.3
All	Oral	Air deposition	Ingestion of 1,2-dichloroethane via soils	Children (3–6 years)	Qualitative, Section 4.3

COU = condition of use; OES = occupational exposure scenario; TSD = technical support document ^a Inhalation exposures are based on 1,2-dichloroethane ambient air concentrations at radial distances from the point of release. EPA compares to the hazard value that is also expressed as chemical concentration in air but does not estimate inhalation by dose or by life stage.

3 AMBIENT AIR INHALATION EXPOSURE ASSESSMENT

For the ambient air inhalation exposure assessment, EPA first modeled 1,2-dichloroethane concentrations at various distances from releasing facilities (<u>U.S. EPA, 2025e</u>). For modeling of ambient air concentrations, OESs fell into one of the following three categories:

- 1. OESs for which there were only facility-reported releases (Manufacturing; Processing as a reactant; Processing into formulation, mixture, or reaction product; Industrial application of lubricants and greases; and Waste handling, disposal, and treatment (Incinerator); Waste handling, disposal, and treatment (Landfill); Waste handling, disposal, and treatment (non-POTW WWT); Waste handling, treatment, and disposal (POTW); Waste handling, treatment, and disposal (Remediation); and Facilities not mapped to an OES);
- 2. OES for which there were only modeled releases from generic facilities/sites (Commercial aerosol products); and
- 3. OESs for which there were both modeled releases from generic facilities/sites and reported releases (Industrial application of adhesives and sealants; Non-aerosol cleaning and degreasing; and Laboratory use).

Based on the ambient air exposure analysis performed for the *Risk Evaluation for 1,1-Dichloroethane* (U.S. EPA, 2025m), EPA did not perform a tiering analysis for 1,2-dichloroethane. For 1,1-dichloroethane, the tiering analysis performed resulted in EPA using the most refined approach available at the time because cancer risk estimates above 1×10^{-6} were found in the lower-tier analyses. Because 1,1- and 1,2-dichloroethane use the same IUR and reported releases of 1,2-dichloroethane to ambient air are higher than those of 1,1-dichloroethane, EPA only performed the highest-tier of exposure analysis available. For this analysis, EPA estimated ambient air concentrations of 1,2-dichloroethane to calculate the resulting exposures and risks to the general population using two models: (1) AERMOD as a standalone model; and (2) HEM, which conducts dispersion modeling using AERMOD as a compiled executable program. AERMOD was used to estimate exposures using a multi-year analysis (2015–2021) for releases from TRI reporting facilities, NEI reporting facilities, and generic facilities/sites (Section 3.1). HEM was run as a supplement to AERMOD because it provides data on exposed populations that is essential when considering risks (Section 3.2). The method for calculating exposures using exclusively AERMOD-modeled ambient air concentrations is slightly different from the method used within HEM; both methods are described in this section.

3.1 AERMOD Modeling Approach

1,2-Dichloroethane (U.S. EPA, 2025k).

AERMOD was used to model ambient air concentrations at eight discrete distances and two area distances (see *Draft Environmental Media Assessment for 1,2-Dichloroethane* (U.S. EPA, 2025e) for a description of area distances) ranging from 10 m to 10 km from facilities reporting releases to TRI for the 2015 to 2021 reporting years for 5 OESs, and to NEI for the 2014 and 2017 reporting years for 10 OESs. AERMOD was also used to model ambient air concentrations for five OESs with estimated releases (U.S. EPA, 2025h). For all AERMOD modeling, 10th, 50th, and 95th percentile daily and annual average ambient air concentrations were calculated for each facility. This section presents the maximum exposures within each OES based on the 95th percentile ambient air concentrations. For more information on AERMOD methods and exposure calculations, see *Draft Environmental Media Assessment for 1,2-Dichloroethane* (U.S. EPA, 2025e), *Draft Supplemental Information on AERMOD TRI Exposure and Risk Analysis for 1,2-Dichloroethane* (U.S. EPA, 2025l), *Draft Supplemental Information on AERMOD Generic Releases Exposure and Risk Analysis for 1,2-Dichloroethane* (U.S. EPA, 2025j), and *Draft Supplemental Information on AERMOD NEI Exposure and Risk Analysis for*

3.1.1 Exposure Estimates

Acute and chronic inhalation exposures were estimated based on AERMOD-modeled ambient air concentrations detailed in the 1,2-dichloroethane media concentrations TSD (U.S. EPA, 2025e). Acute and chronic inhalation exposures used to evaluate non-cancer risks are estimated as an acute concentration (AC) or average daily concentration (ADC), respectively. Lifetime exposures used to evaluate cancer risks are estimated as a lifetime average daily concentration (LADC). Equations used to calculate each of the exposure values are provided below.

329 330 331

323

324

325

326

327

328

Equation 3-1.

$$AC = \frac{DAC \times ET}{AT}$$

333

334 Equation 3-2.

$$ADC = \frac{AAC \times ET \times EF \times ED}{AT}$$

336

337 Equation 3-3.

$$LADC = \frac{AAC \times ET \times EF \times ED}{AT}$$

339

343

344

346

347

349

350

351

340 Where:

Acute concentration ($\mu g/m^3$) 341 AC342

LADC =Lifetime average daily concentration (µg/m³)

DAC =Daily average air concentration, model output reflecting average concentrations

over a 24-hour period ($\mu g/m^3$)

Exposure time (24 hours/day) 345 ET

> Annual average air concentration, model output reflecting average concentrations AAC

> > over a year ($\mu g/m^3$)

348 EFExposure frequency (365 days/year)

> ED= Exposure duration (1 year for non-cancer ADC; 78 years for cancer LADC)

> ATAveraging time (24 hours for AC; 24 hours/day \times 365 days/year \times 1 year for

> > ADC 24 hours/day \times 365 days/year \times 78 years for LADC)

352 353 354

355

356

357

358

359

361 362

363

364

For the AERMOD modeling, all exposure assumes continuous exposure (24 hours/day) throughout the duration of exposure. The exposure duration used to calculate the LADC is based on the 95th percentile of the expected duration at a single residence, 78 years, and the averaging time is based on a 78-year lifetime. The 78-year lifespan is the average life expectancy of the general population (U.S. EPA, 2011). An exposure duration of 78 years was assumed to be protective of potentially exposed or susceptible subpopulation (PESS) groups and communities that are located near releasing facilities. It is also consistent with previous recommendations from the Science Advisory Committee on Chemicals (SACC;

360 accessed August 13, 2025) (U.S. EPA, 2023b).

3.2 HEM Modeling Approach

HEM version 4.2 was used to model exposures and risks using TRI Form R¹ reporting releases for the 2018 reporting year and 2020 U.S. Census data. The 2018 reporting year was chosen for HEM modeling because it had the highest overall releases from 2015 to 2021; therefore, the exposures calculated from

¹ Facilities do not need to report release quantities or uses/sub-uses on Form A. See TRI Program Guidance on EPA's GuideME website (accessed July 1, 2025) under Reporting Forms and Instructions.

HEM represent higher-end exposure scenarios. For TRI Form R reporting facilities that did not report in 2018, the highest release from 2015 to 2021 was used. NEI-reported releases were not modeled because the largest releasing facilities were included in the TRI dataset. Estimated releases for generic facilities/sites were also not modeled using HEM as generic facilities/sites do not have specific locations that can be used for population analyses. Because HEM estimates exposure and risk as part of its algorithm and was used primarily for population analysis, EPA is not showing the inhalation exposures modeled by HEM in this TSD.

HEM has two components: (1) an atmospheric dispersion model, AERMOD², which includes meteorological data; and (2) U.S. Census Bureau population data at the block level. HEM version 4.2 uses 2020 Census data—including all 50 states, the District of Columbia, Puerto Rico, and the U.S. Virgin Islands.³ AERMOD estimates the magnitude and distribution of chemical concentrations in ambient air in the vicinity of each releasing facility within a user-defined radial distance out to 50 km. HEM also provides chemical concentrations in ambient air at the centroid of over 8 million census blocks across the United States. HEM automatically uses local meteorological data within AERMOD's "AERMET-sub-module" and topographic information for each release point to inform the release dispersion model. A full description of the HEM method is described in Section 3.2.1. See the HEM 4.2 User Guide⁴ for more details (SC&A, 2023).

3.2.1 HEM Settings

As mentioned above, EPA used release data reported to TRI and release location data reported to NEI (U.S. EPA, 2025f) to estimate exposures and risks using HEM. For facilities reporting to both NEI and TRI, the Agency defaulted to using the highest reported release location from NEI as the modeled release location. EPA used release location data from NEI because several facility locations reported to TRI appeared to be street addresses that were not representative of the actual release location. EPA used release location data reported to NEI as a systematic way to refine release locations to more accurately represent releases as NEI data provide process-specific release locations. If a facility did not report to NEI, the Agency used the release location reported to TRI; however, for EPA did verify that the location of these releases appeared to be on the facility property. For HEM analysis, EPA only modeled the five OESs (Manufacturing; Processing as a reactant; Processing into formulation, mixture, or reaction product; Repackaging; and Waste handling, disposal, and treatment) for which there were reported TRI releases. The model was run using fugitive and stack emissions. For facilities reporting both types of emissions, modeled concentrations from both types were added together to determine a total exposure. Additionally, one facility (TRI ID 77541THDBUILD) had two separate data entries in the TRI database for different NAICS codes. The two entries were modeled separately; however, because the facility was assigned one OES, the resulting concentrations and exposures were added for use in this analysis.

Table 3-1 presents the values and settings used in the HEM "facility list" input file. Table 3-2 and Table 3-3 provide additional information on those values and settings. As shown in Table 3-1, the model automatically matches a meteorology station to each facility by proximity. The meteorological dataset contains over 800 stations nationwide, most of which reflect 2019 meteorological conditions. HEM automatically determines if the facility is in an urban location using 2020 census data. EPA assumed that all facilities release emissions 24-hours a day. HEM calculated risks using a cancer unit risk estimate, equivalent to the inhalation unit risk (IUR) used in this evaluation, of 7.1×10^{-6} risk per m³/µg.

² See website for AERMOD (accessed July 1, 2025).

³ Note that the HEM census file for the U.S. Virgin Islands has 0 people in each location. Block-level population data may not be currently available from the 2020 census.

⁴ See the <u>HEM 4.2 User Guide</u> (accessed July 1, 2025).

Table 3-1. Settings for "Facility List" Input File in HEM

Parameter Group	Parameter	Value or Setting	Interpretation
	met_station	[blank]	Model chose the meteorology station closest to each facility
Dispersion Environment	rural_urban	[blank]	Model found the nearest census block to the facility center and determined whether that block was located in an urbanized area as designated by the 2020 Census
	urban_pop	[blank]	Model used a default of 50,000 people for the urban population
	max_dist	50,001	Model used a default of 50,000 m to define the modeling domain around each facility (entering 50,001 forces a default of 50,000)
	model_dist	50,001	Model used a default of 3,000 m to define the cutoff distance around each facility for explicitly modeling census block receptors; modeling results for block receptors beyond 3,000 meters were interpolated from polar receptors (entering 50,001 forces a default of 3,000) ^a
	radials	16	Model used polar receptors at the default of 16 radials
M - 4-1:	Circles	8	Model used polar receptors at 8 concentric rings
Modeling Domain Defined	overlap_dist	30	Model used a default 30 m to define the facility fenceline, inside which receptors were not considered as a point of maximum exposure/risk
2 0111100	ring1	10	Model used 10 m for the distance of the first ring of polar receptors
Ī	fac_center	L, [custom for each facility: latitude, longitude]	Model used the facility latitude and longitude from TRI
	ring_dists	10, 30, 60, 100, 1,000, 2,500, 5,000, 10,000 m	Model used concentric rings of polar receptors at these distances
	Acute	Y	Model calculated short-term concentrations
	hours	24	Model defined "short-term" as 24 hours (i.e., daily)
Acute Options	multiplier	1	Model used the hourly emissions as-is, without multiplying them by a factor that would approximate short-term emission rates above baseline
	high_value	18	Model reports the 18th-highest acute concentration at each receptor (this approximates the 95th-percentile daily concentration)
	dep	[blank]	Model did not estimate deposition ^b
Deposition	depl	[blank]	
and	pdep	[blank]	
Depletion	pdepl	[blank]	
Parameters	vdep	[blank]	
	vdepl	[blank]	
	elev	Y	Model included the elevation of receptors in the concentration estimates
Additional Options	user_rcpt	N	Model did not use additional receptors beyond polar rings and census blocks
-	bldg_dw	N	Model did not estimate building downwash, which is the default choice
	fastall	Y	Model used AERMOD's FASTALL option to conserve model run time by simplifying the dispersion algorithms, which is not the default choice

Parameter Group	Parameter	Value or Setting	Interpretation
Additional	emiss_var	Y	Model used time-varying emissions, specified in a separate file ^c
Options	annual	Y	
	period_start	[blank]	Model used the default setting to calculate an annual average as a long-term concentration, which is the default choice
	period_end	[blank]	iong-term concentration, which is the default enoice

^a For a small number of facilities, because there were no populated block centroids within 3,000 m of the facility, this distance was set to a value needed to capture populated blocks (Table 3-2).

Table 3-2. Substitutions Made for the Facility List File's "Model_Distmodel_dist" Parameter in HEM

Facility ID	Model_Distance (m)
97812CHMCL17629	4,145
84029SFTYK11600	21,021
77536SFTYK2027B	4,514
79086DMNDSSTARR	4,666
77571LPRTC2400M	4,522
77541TXSBR4115E	6,150
77536DSPSL2525B	4,157
77643WSTMNHWY73	4,595

Table 3-3. Assumptions for Interday Emission-Release Pattern Using HEM

Table 3-3. Assump	Table 5-5. Assumptions for interday Emission-Release 1 attern Using HEM							
Days per Year of Emissions	Implemented Release Pattern: Days When Emissions Are on							
250	Monday–Friday, except no Fridays in October–December = 248 days/year as implemented Emission factor when emissions on = 1.474.							
300	Monday–Saturday, except no Saturdays in October–December = 300 days/year as implemented Emission factor when emissions on = 1.219.							
350	All days, except no Sundays in September–December = 347 days/year as implemented Emission factor when emissions on = 1.05.							
365	All days. Emission factor when emissions on = 1.							

418 419

420

410 411 412

413

414

415 416

417

Each census block receptor within 3,000 m of each facility was discretely modeled, with some exceptions noted in the tables below, while block receptors out to 50,000 m were interpolated using

^b Air deposition was estimated using AERMOD as a standalone program (see media concentrations TSD (<u>U.S. EPA</u>, 2025e))

^c Separate file used AERMOD's MHRDOW7 format allowing emission rates to vary by month, hour of day, and 7 days of the week (see Table 3-3).

dispersion modeling results from the polar receptor network. All modeling scenarios also used several concentric rings of non-census polar receptors.

Table 3-4 shows the physical source specifications used in the HEM "emission location" input file for point (stack) and area (fugitive) sources; these are the same default physical parameters as in EPA's Integrated Indoor-Outdoor Air Calculator (IIOAC).⁵ The IIOAC User's Guide describes how these default values were selected.

Table 3-4. Physical Source Specifications for HEM

Source Type	Parameter	Value
	Stack height (m)	10
Doint (stools)	Inside stack diameter (m)	2
Point (stack)	Exit gas velocity (m/s)	5
	Exit gas temperature (Kelvin)	300
	Release height (m)	3.05
A man (for aiting)	Length (m)	10
Area (fugitive)	Width (m)	10
	Angle (degrees)	0

3.2.2 Aggregate and Demographic Model Outputs

Risk summary reports in HEM were run to produce outputs that account for impacts on the same receptor from multiple neighboring facilities. The general population characterization, which summarizes modeled impacts by various socioeconomic factors, was also run.

3.2.3 Inhalation Exposure Estimates for Fenceline Communities

Exposures are calculated as part of the HEM output; therefore, EPA did not need to calculate exposures externally to HEM, as was needed for concentrations modeled using AERMOD as a stand-alone program. The overall method used in HEM for calculating exposures is similar to the method described above but is slightly more comprehensive as HEM aggregates exposures across all releasing facilities. Additionally, when modeling exposures using HEM, EPA used the default chronic exposure scenario, which assumes that an individual breathes the ambient air at a given receptor site 24 hours per day over a 70-year lifetime (SC&A, 2023).

3.3 Summary of Ambient Air Exposure

EPA evaluated acute, chronic, and lifetime inhalation exposures of 1,2-dichloroethane in ambient air from industrial and commercial fugitive and stack emissions to the general population. For the ambient air exposure, the analysis focuses on general population exposures that might occur within 10 km of releasing facilities for releases modeled using AERMOD and 50 km for releases modeled using HEM. EPA calculated 10th, 50th, 95th percentile ACs, ADCs, and LADCs at each radial distance for each facility, up to 10 km from releasing facilities, based on AERMOD modeled air concentrations. Presented in this section are the maximum LADCs for each OES based on the 95th percentile AERMOD modeled ambient air concentration. For more information on exposure calculations see the *Draft Supplemental Information on AERMOD TRI Exposure and Risk Analysis for 1,2-Dichloroethane* (U.S. EPA, 20251), *Draft Supplemental Information on AERMOD Generic Releases Exposure and Risk Analysis for 1,2-Dichloroethane* (U.S. EPA, 2025j), and *Draft Supplemental Information on AERMOD NEI Exposure*

•

⁵ See IIOAC website (accessed August 13, 2025).

454 and Risk Analysis (U.S. EPA, 2025k).

3.3.1 Ambient Air Exposure using AERMOD Modeled Concentrations

For each facility reporting to TRI and NEI, a 95th percentile LADC was estimated at each modeled distance. The highest LADCs at each distance for each OES based on TRI and NEI reported releases are presented in Table 3-5 and Table 3-6, respectively. The LADCs presented in Table 3-6 for NEI reporting facilities exclude facilities identified as municipal solid waste landfills.

Overall, for TRI reporting facilities, the Manufacturing OES had the highest estimated exposures with a maximum 95th modeled exposure of 3,680 µg/m³ occurring at 10 m from the modeled facility release location; however, a distance of 10 m is likely not representative of a general population exposure and an exposure 6.4 µg/m³ at a distance of 1,000 m is more representative of general population exposure. Across all OES higher exposures occur at distances nearer to the release location and decrease as the

distance increases.

Overall, for NEI reporting facilities, the Manufacturing OES had the highest estimated exposures 10 m from the modeled facility release location, but an exposure of $4.6 \,\mu g/m^3$ at a distance of 1,000 m is more representative of general population exposure, which is similar to what was estimated when using the TRI releases.

NEI reported emissions from municipal solid waste landfills were considered separately in this assessment because the emissions from this category of facilities could not be directly attributed to a TSCA COU (U.S. EPA, 2025e, h). The LADCs presented in Table 3-7 are for emissions from municipal solid waste landfills and are based on the maximum 95th percentile annual average air concentrations estimated across all facilities reporting to NEI within each OES identified as solid waste landfills. Estimated lifetime exposures across all distances evaluated range from 1.93×10^{-4} to $26 \,\mu\text{g/m}^3$.

Table 3-8 provides a summary of the LADCs for the OESs where EPA estimated releases were used as inputs to AERMOD. The lifetime exposure estimates presented in this section are based on high-end meteorology (Lake Charles, Louisiana) and both rural and urban topography. Across all OESs and at distances greater than or equal to 1,000 m, estimated lifetime exposures range from 1.6×10^{-4} to 36 $\mu g/m^3$.

The complete set of inhalation exposure estimates is presented in the *Draft Supplemental Information on AERMOD TRI Exposure and Risk Analysis for 1,2-Dichloroethane* (U.S. EPA, 20251), *Draft*

Supplemental Information on AERMOD NEI Exposure and Risk Analysis (U.S. EPA, 2025j), and Draft

489 Supplemental Information on AERMOD Generic Releases Exposure and Risk Analysis (U.S. EPA,

490 <u>2025j</u>).

Table 3-5. Maximum 95th Percentile Lifetime Average Daily Ambient Air Concentrations for 1,2-Dichloroethane Releases Reported to TRI from 2015–2020 Modeled Using AERMOD as a Standalone Program^{a b}

0 4 15	Number of Facilities Evaluated in OES		95th Percentile Lifetime Average Daily Ambient Air Concentration ($\mu g/m^3$) Estimated at Distances from 10–10,000 m from Releasing Facilities									
Occupational Exposure Scenario (OES)		Statistic	10 m	30 m	30–60 m	60 m	100 m	100–1,000 m	1,000 m	2,500 m	5,000 m	10,000 m
Manufacturing	24	max	3,680	1,510	1,030	606	282	39	6.4	1.5	0.48	0.16
Repackaging	12	max	22	10	7.0	4.4	2.2	0.22	5.26E-02	1.12E-02	3.50E-03	1.09E-03
Processing as a reactant	12	max	37	14	9.3	5.5	2.6	0.33	6.64E-02	1.71E-02	6.31E-03	2.36E-03
Processing into formulation, mixture, or reaction product	12	max	456	173	130	68	30	4.5	0.61	0.13	4.35E-02	1.45E-02
Non-aerosol cleaning and degreasing	1	max	0.20	0.12	7.37E-02	4.90E-02	2.28E-02	3.73E-03	8.40E-04	2.22E-04	7.89E-05	2.75E-05
Waste handling, disposal, and treatment (Incinerator)	18	max	15	7.1	4.8	3.0	1.5	0.18	4.17E-02	1.10E-02	4.15E-03	1.53E-03

AERMOD = American Meteorological Society/Environmental Protection Agency Regulatory (Model); TRI = Toxics Release Inventory

^a The full inputs and results are presented in the *Draft Supplemental Information on AERMOD TRI Exposure and Risk Analysis for 1,2-Dichloroethane* (U.S. EPA, 2025)).

^b For each OES, EPA modeled all TRI-reporting releases considering source attribution (fugitive and stack releases) for each facility from 2015 to 2020. Not all facilities reported for all 6 years.

Table 3-6. Maximum 95th Percentile Lifetime Average Daily Ambient Air Concentrations for 1,2-Dichloroethane Releases Reported to NEI for the Reporting Years of 2014 and 2017 Modeled Using AERMOD as a Standalone Program^{a b c}

Occupational Exposure	Number of Releases	Statistic	95th Percentile Lifetime Average Daily Concentrations (µg/m³) Estimated at Distances from 10–10,000 m from Releasing Facilities										
Scenario (OES)	Evaluated in OES		10 m	30 m	30–60 m	60 m	100 m	100–1,000 m	1,000 m	2,500 m	5,000 m	10,000 m	
Manufacturing	439	max	5,120	1,660	1,110	562	234	32	4.6	1.0	0.32	0.10	
Repackaging	1,093	max	22	11	6.0	3.9	1.7	0.88	0.11	2.22E-02	7.32E-03	2.39E-03	
Processing as a reactant	127	max	158	60	41	34	33	3.8	0.56	0.12	3.78E-02	1.29E-02	
Processing into formulation, mixture, or reaction product	76	max	238	247	193	122	62	6.3	1.6	0.33	0.10	3.09E-02	
Industrial application adhesives and sealants	419	max	1.2	17	13	6.2	2.7	0.34	5.47E-02	1.20E-02	3.73E-03	1.23E-03	
Industrial application of lubricants and greases	6	max	3.66E-03	1.24E-03	7.76E-04	4.70E-04	2.07E-04	1.88E-05	4.01E-06	8.38E-07	2.59E-07	8.22E-08	
Non-aerosol cleaning and degreasing	53	max	22	7.0	4.6	2.6	1.2	0.10	2.63E-02	7.49E-03	2.64E-03	8.81E-04	
Laboratory use	9	max	1.1	0.83	1.1	1.0	0.71	0.11	2.47E-02	5.50E-03	1.76E-03	5.65E-04	
Waste handling, disposal, and treatment (incinerator)	103	max	41	8.5	5.4	2.9	1.2	0.14	2.25E-02	4.62E-03	1.43E-03	4.63E-04	
Waste handling, disposal, and treatment (landfill)	147	max	8.2	2.4	1.9	0.89	0.37	5.28E-02	1.02E-02	2.61E-03	8.70E-04	2.83E-04	
Waste handling, disposal, and treatment (non-POTW WWT)	68	max	6.2	6.4	4.7	2.3	0.98	0.12	2.15E-02	5.00E-03	1.68E-03	5.51E-04	
Waste handling, disposal, and treatment (POTW)	68	max	19	7.4	5.1	3.0	1.5	0.19	3.71E-02	8.22E-03	2.66E-03	8.61E-04	
Waste handling disposal, and treatment (remediation)	45	max	3.0	0.94	0.65	0.34	0.18	0.14	9.47E-02	3.44E-02	1.33E-02	4.69E-03	
Facilities not mapped to and OES ^d	115	max	9.9	3.8	2.6	1.5	0.69	8.53E-02	1.46E-02	3.72E-03	1.82E-03	8.23E-04	

AERMOD = American Meteorological Society/Environmental Protection Agency Regulatory (Model); NEI = National Emissions Inventory; POTW = publicly owned treatment works; WWT = wastewater treatment

^a The full inputs and results are presented in the *Draft Supplemental Information on AERMOD NEI Exposure and Risk Analysis* (U.S. EPA, 2025k)

^b For each OES, EPA modeled all NEI-reporting releases considering source attribution (fugitive and stack releases) for each facility for the 2014 and 2017 reporting years. Not all facilities reported in both years.

^c Facilities reporting to NEI with the NAICS code of 562212, which is for solid waste landfills, were not included in this analysis (see Table 3-7 for data for landfills) because the releases were assumed to be due to biodegradation of other chlorinated solvents.

^d Facilities were not mapped to an OES in cases where information on the 1,2-dichloroethane use at the site was not available.

Table 3-7. Maximum 95th Percentile Lifetime Average Daily Concentrations for 1,2-Dichloroethane Releases Reported to NEI for Municipal Solid Waste Landfills for the Reporting Years of 2014 and 2017 Modeled Using AERMOD as a Standalone Program^{a b c}

Occupational Exposure	Number of Releases Evaluated in OES ^b	Statistic	95th Percentile Lifetime Average Daily Concentrations (µg/m³) Estimated at Distances from 10 to 10,000 m from Releasing Facilities ^b									
Scenario (OES)			10 m	30 m	30–60 m	60 m	100 m	100–1,000 m	1,000 m	2,500 m	5,000 m	10,000 m
Application of lubricants and greases ^d	1	max	4.6	2.9	1.9	1.0	0.43	5.8E-02	8.5E-03	1.9E-03	5.9E-04	1.9E-04
Waste handling, disposal, and treatment (incinerator) ^d	2	max	1.6	0.72	0.52	0.29	0.14	2.00E-02	3.15E-03	6.86E-04	2.17E-04	6.91E-05
Waste handling, disposal, and treatment (landfill)	751	max	26	11	6.8	4.4	2.1	0.20	4.9E-02	1.1E-02	3.4E-03	1.1E-03
Waste handling, disposal, and treatment (non-POTW WWT) ^d	20	max	0.12	0.12	0.12	0.10	2.19E-0 2	3.33E-03	8.55E-04	1.96E-04	6.25E-05	2.02E-05
Waste handling, disposal, and treatment (remediation) ^d	12	max	2.3	0.73	0.52	0.29	0.14	1.86E-02	3.32E-03	7.13E-04	2.32E-04	7.66E-05

AERMOD = American Meteorological Society/Environmental Protection Agency Regulatory (Model); NEI = National Emissions Inventory; POWT = publicly owned treatment works; WWT = wastewater treatment

498

496

^a The full inputs and results are presented in the *Draft Supplemental Information on AERMOD NEI Exposure and Risk Analysis* (U.S. EPA, 2025k).

^b For each OES, EPA modeled all NEI-reporting releases considering source attribution (fugitive and stack releases) for each facility for the 2014 and 2017 reporting years. Not all facilities reported in both years.

^c Only facilities reporting to NEI with the NAICS code of 562212, which is for solid waste landfills, were included in this analysis. Results for solid waste landfills are being showing separately because the releases were assumed to be due to biodegradation of other chlorinated solvents (<u>U.S. EPA, 2025f</u>).

^d Facilities mapped to these OESs reported a NAICS code of 562212 and were treated as landfill for the ambient air analysis, despite not being assigned to the OES of Waste handling, disposal, and treatment (landfill).

Table 3-8. Maximum 95th Percentile Lifetime Average Daily Ambient Air Concentrations for 1,2-Dichloroethane Using EPA Estimated Releases for Generic Facilities/Sites Modeled Using AERMOD as a Standalone Program ^{a b}

Occupational Exposure	Meteorology ^c		95th Percentile Lifetime Average Daily Concentrations (µg/m³) Estimated at Distances from 10–10,000 m from Releasing Facilities										
Scenario (OES)		Land	10 m	30 m	30–60 m	60 m	100 m	100–1,000 m	1,000 m	2,500 m	5,000 m	10,000 m	
Industrial application of	High	Rural	5,789	3,003	2,430	1,496	812	165	36	9.0	3.1	1.0	
adhesives and sealants	High	Urban	9,140	2,721	2,146	997	433	56	8.5	1.9	0.60	0.20	
Commercial aerosol	High	Rural	21	7.3	4.6	2.7	1.2	0.11	2.3E-02	4.8E-03	1.5E-03	5.1E-04	
products	High	Urban	23	6.7	4.3	2.3	0.92	7.3E-02	1.2E-02	2.3E-03	7.0E-04	2.4E-04	
Non-aerosol cleaning and	High	Rural	1,931	535	362	173	65	5.4	0.48	7.9E-02	2.7E-02	1.3E-02	
degreasing	High	Urban	1,941	592	355	169	63	5.2	0.46	6.6E-02	2.4E-02	1.1E-02	
Laboratory use	High	Rural	0.56	0.17	10.0E-02	5.0E-02	1.9E-02	1.6E-03	1.7E-04	2.9E-05	9.9E-06	4.7E-06	
	High	Urban	0.56	0.15	10.0E-02	5.0E-02	1.9E-02	1.6E-03	1.6E-04	2.6E-05	8.4E-06	3.5E-06	

AERMOD = American Meteorological Society/Environmental Protection Agency Regulatory (Model)

^a The full inputs and results are presented in the Draft Supplemental Information on AERMOD Generic Releases Exposure and Risk Analysis (U.S. EPA, 2025j)

^b See *Draft Environmental Release Assessment for 1,2-Dichloroethane* (<u>U.S. EPA, 2025f</u>) for the methods used for to estimate releases for OESs where there were either no or limited site-specific data.

^c High refers to the meteorological conditions for Lake Charles, LA. Because the data in this table are for generic facilities/sites, the releases were modeled using a meteorological station that tends to provide high-end concentration estimates relative to other station in IIOAC.

3.3.2 HEM Modeling Results by U.S. Census Block

As described in Section 3.2.1, HEM provides cancer risk estimates at the census block level. HEM calculates an aggregated cancer risk value, or maximum individual risk (MIR), for each census block within 50 km of facility releases. The risk value is calculated by multiplying the aggregate census block ambient air concentration by the IUR. For specific HEM cancer risk estimates at the census block level, see 1,2-dichloroethane draft risk evaluation (U.S. EPA, 2025i).

3.4 Evidence Integration

The weight of scientific evidence for inhalation exposure estimates is determined by several different evidence streams, including evidence supporting the exposure scenarios (Section 3.2.3), release data by OES used as model input data (<u>U.S. EPA, 2025e</u>, <u>f</u>), and agreement between modeled and monitored ambient air concentrations (U.S. EPA, 2025e).

Releases

EPA identified five OESs with only facility-reported releases of 1,2-dichloroethane to the ambient air (Manufacturing; Repackaging; Processing as a reactant; Processing into formulation, mixture, or reaction product; and Waste handling disposal and treatment). EPA identified one OES with no reported releases (Commercial aerosol products); therefore, the Agency relied on estimated releases from generic facilities/sites for modeling this OES. The remaining three OESs evaluated had both facility-reported and modeled releases (Industrial application of lubricants and greases; Industrial application of adhesives and sealants; Non-aerosol cleaning and degreasing; and Laboratory use) (Table 3-9) (U.S. EPA, 2025f).

EPA has robust confidence in the representativeness of facility-reported releases reported to TRI and NEI for all but one OES. The exception is a subset of facility-reported releases to NEI in the Waste handling, treatment, and disposal OES. These facilities are non-hazardous landfills and are considered separately, see Section 3.3.1, *Draft Environmental Release Assessment for 1,2-Dichloroethane* (U.S. EPA, 2025f), and *Draft Environmental Media Assessment for 1,2-Dichloroethane* (U.S. EPA, 2025e) for additional discussion. EPA has slight confidence in this subset of reported releases because the source of 1,2-dichloroethane in landfills could not be attributed to a TSCA COU. The Agency has slight to moderate confidence that the EPA estimated releases from generic facilities/sites are representative of actual releases (U.S. EPA, 2025f). Overall, the confidence in the release data is dependent on the OES and ranges from slight to robust (Table 3-9). Refer to the *Draft Environmental Release Assessment for 1,2-Dichloroethane* (U.S. EPA, 2025f) for more information on the uncertainties related to releases.

Modeling Methodologies

EPA used two modeling approaches to estimate ambient air concentrations: (1) using both AERMOD and HEM to model concentrations at user-defined distances (discrete and area distances) from releasing facilities, and (2) using HEM to model concentrations at the centroid of each census block across the nation. Although HEM was used to model ambient air concentrations at user-defined distances, the results are not presented in this evaluation due to the limited release years that were modeled, and because the results would duplicate the comprehensive modeling done using AERMOD as a standalone model (for both facility-reported releases and releases estimated for generic facilities/sites for all reporting years evaluated in this assessment). AERMOD has been peer reviewed as part of the regulatory model process described in Appendix W to 40 CFR part 51. HEM is a model developed by EPA's Office of Air and Radiation (OAR) that runs AERMOD as a compiled executable program to model ambient air concentrations. Both HEM and AERMOD are used in a fit for purpose manner for this 1,2-dichloroethane draft risk evaluation, and their use is supported by robust confidence.

549 Release Site Physical Characteristics Input Data

550 For 10 of the OESs/COUs evaluated in this draft assessment, EPA had site-specific, facility-reported 551 releases available for use as direct inputs to AERMOD and HEM. Availability of facility-reported data 552 allows for use of site-specific information—such as facility location, stack height, meteorological data, 553 and land cover—as model inputs. However, some model inputs, such as release days and stack 554 parameters, are not consistently available with a high degree of certainty for all facilities. Therefore, due 555 to the uncertainty in some of the model input parameters, EPA has moderate confidence in the model 556 input data used for AERMOD and HEM for OESs/COUs with facility-reported releases.

558 For four OESs/COUs, EPA used estimated releases from generic facilities/sites, either as the only source 559 560 561 562

557

563

564

565

566 567

568

569 570

571 572

573

574

575

576 577

578

579 580

581

582

583 584

585

586 587

588

589 590

591

592

593

594

of release data or in addition to facility-reported releases, to estimate exposures from ambient air. Modeling of EPA-estimated releases requires assumptions concerning release location, meteorological location, land cover parameters, and stack parameters. Each of these assumptions introduces uncertainties that lower the overall confidence relative to releases with site-specific data. Additional uncertainties that lower the confidence and that are associated with the development of estimated releases from generic facilities/sites are discussed in the Draft Environmental Release Assessment for 1,2-Dichloroethane (U.S. EPA, 2025f). Therefore, EPA has slight confidence in the input parameters used to estimate exposures when using EPA estimated releases from generic facilities/sites. Overall, EPA's confidence in model input data can vary from slight to robust depending on the OES and other factors which are supported by slight to moderate evidence (Table 3-9).

Comparison of Modeled and Monitored Data

EPA performed a detailed comparison of modeled and monitored data for a facility in Calvert City, Kentucky. The comparison showed that the modeled 95th percentile average daily concentrations and the maximum 1-day monitored 1,2-dichloroethane concentrations from the AMTIC archive were within an order of magnitude of each other when the monitoring location was within 300 m of the modeled distance. The comparison of estimated and measured exposures shows that the two were similar, which strengthens the confidence that the modeled concentrations are representative of actual concentrations near releasing facilities. See Draft Environmental Media Assessment for 1,2-Dichloroethane (U.S. EPA, 2025e) for more details.

Exposure Scenarios and Exposure Factors

For this analysis, EPA assumed a 78-year lifespan and a constant exposure over an entire lifetime. The 78-year lifespan is the average life expectancy of the general population (U.S. EPA, 2011). An exposure duration of 78 years was assumed to be protective of potentially exposed or susceptible subpopulation (PESS) groups and communities that are located near releasing facilities. It is also consistent with previous recommendations from the Science Advisory Committee on Chemicals (SACC; accessed August 13, 2025) (U.S. EPA, 2023b). Because these exposure factors are based on peer-reviewed literature, EPA has robust confidence that they are representative of realistic, high-end exposures assuming, that the individual lives near the facility their entire life.

Overall Confidence in Exposure Estimates

Overall confidences in air inhalation exposure estimates are dependent on the OES and range from slight to robust (Table 3-9). The overall confidence represents specific considerations within each OES and is not necessarily based on an additive approach considering each individual contributing category.

Table 3-9. Confidence in Each Line of Evidence and Overall Confidence for Each OES

595

Occupational Exposure Scenario (OES)	Release Data Type	Releases (Data Source) ^a	Modeling Methodology	Release Site Physical Characteristics Modeling Input	Modeling/ Monitoring Comparison	Exposure Factors/	Overall Confidence ^c
Manufaatumina	TRI	Robust	Robust b	Moderate	Robust	Robust	Robust
Manufacturing	NEI	Robust	Robust	Moderate	Robust	Robust	Robust
Repackaging	TRI	Robust	Robust b	Moderate	Robust	Robust	Robust
Repackaging	NEI	Robust	Robust	Moderate	Robust	Robust	Robust
Processing as a reactant	TRI	Robust	Robust b	Moderate	Robust	Robust	Robust
riocessing as a reactain	NEI	Robust	Robust	Moderate	Robust	Robust	Robust
Processing into	TRI	Robust	Robust b	Moderate	Robust	Robust	Robust
formulation, mixture, or reaction product	NEI	Robust	Robust	Moderate	Robust	Robust	Robust
Industrial application of	NEI	Robust	Robust	Moderate	Robust	Robust	Robust
adhesives and sealants	EPA- estimated	Slight	Robust	Slight	Robust	Robust	Slight
Amplication of	NEI	Robust	Robust	Moderate	Robust	Robust	Robust
Application of lubricants and greases ^d	EPA- estimated	Slight	Robust	Slight	Robust	Robust	Slight
Commercial aerosol products	EPA- estimated	Slight	Robust	Slight	Robust	Robust	Slight
Non assess cleaning	NEI	Robust	Robust	Moderate	Robust	Robust	Robust
Non-aerosol cleaning and degreasing	EPA- estimated	Slight	Robust	Slight	Robust	Robust	Slight
	NEI	Robust	Robust	Moderate	Robust	Robust	Robust
Laboratory use	EPA- estimated	Moderate	Robust	Slight	Robust	Robust	Moderate
Waste handling,	TRI	Robust	Robust b	Moderate	Robust	Robust	Robust
treatment, and disposal (Incinerator) ^d	NEI	Robust	Robust	Moderate	Robust	Robust	Robust
Waste handling, treatment, and disposal (Landfill) ^d	NEI	Slight	Robust	Moderate	Robust	Robust	Slight
Waste handling, treatment, and disposal (non-POTW WWT) ^d	NEI	Slight	Robust	Moderate	Robust	Robust	Slight
Waste handling, treatment, and disposal (POTW)	NEI	Slight	Robust	Moderate	Robust	Robust	Slight
Waste handling, treatment, disposal (Remediation) ^d	NEI	Slight	Robust	Moderate	Robust	Robust	Slight
Unknown e	NEI	Robust	Robust	Moderate	Robust	Robust	Robust

AERMOD = American Meteorological Society/Environmental Protection Agency Regulatory (Model); HEM = Human Exposure Model; NEI = National Emissions Inventory; OES = occupational exposure scenario; TRI = Toxics Release Inventory

^a Confidences ascribed to the release data type are supported by the *Draft Environmental Release Assessment for 1,2-Dichloroethane* (<u>U.S. EPA, 2025f</u>), which provides a full description of the methods used to estimate modeled releases and the associated strengths and weaknesses that are influencing the ascribed confidences in this table.

^b Releases modeled using both AERMOD as standalone model and HEM. The HEM results are presented in the draft risk evaluation (<u>U.S. EPA, 2025i</u>).

Occupational Exposure Scenario (OES)	Release Data Type	Releases (Data Source) ^a	Modeling Methodology	Release Site Physical Characteristics Modeling Input	Modeling/ Monitoring Comparison		Overall
--	-------------------------	---	-------------------------	---	---------------------------------------	--	---------

 $^{^{}c}$ The overall confidence represents specific considerations within each OES and is not necessarily based on an additive approach considering each individual contributing category.

^d The overall confidences in this table are only representative of the facilities that were not identified as municipal non-hazardous landfills in Table 3-7. EPA has an overall confidence of slight for the exposures estimated for facilities identified as municipal non-hazardous landfills.

^e Facilities were not mapped to an OES in cases where information on the 1,2-dichloroethane use at the site was not available.

4 ORAL EXPOSURE ASSESSMENT

Facilities reported 1,2-dichloroethane releases to surface waters from process wastewater discharges and to soil from biosolids application. 1,2-Dichloroethane concentrations in surface water and soil can also be impacted by deposition from ambient air. Once in these media, the fate, physical and chemical, and transport properties (<u>U.S. EPA, 2025b</u>) indicate 1,2-dichloroethane can partition to each media, which in turn can lead to general population exposure to 1,2-dichloroethane via drinking water, incidental ingestion from swimming in receiving water bodies, and soil ingestion. However, exposure levels via the oral route are anticipated to be less than that via inhalation; thus, EPA conducted a screening analysis of the highest exposures resulting from facility-reported releases. The *Draft Environmental Media Assessment for 1,2-Dichloroethane* (<u>U.S. EPA, 2025e</u>) describes the methodology and results of estimation of surface water concentration from facility-specific releases.

As described in the *Draft Environmental Media Assessment for 1,2-Dichloroethane* (U.S. EPA, 2025e), 1,2-dichloroethane facility-specific releases are monitored and regulated via NPDES permits; therefore, EPA can estimate concentrations in the receiving water bodies at the point of discharge of facilities reporting releases of 1,2-dichloroethane. EPA uses the NHDPlus flow data of the receiving water body together with the amount of 1,2-dichloroethane reported in the effluent to estimate concentrations. Since flow metrics vary, the Agency uses a low flow 7Q10 metric (*i.e.*, lowest consecutive 7-day average flow that occurs [on average] during any 10-year period) as a conservative metric for aquatic species assessment. For general population exposures from drinking water or incidental ingestion via swimming in the receiving water body, as described in Sections 4.1 and 4.2 below, EPA uses the less conservative metric of 30Q5 (*i.e.*, lowest consecutive 30-day that occurs [on average] over a 5-year period).

4.1 Drinking Water Exposure

In 1974, Congress passed the Safe Drinking Water Act, which has subsequently been amended. This law requires EPA to determine safe levels of chemicals in drinking water to protect public health. EPA has set an enforceable standard—called a Maximum Contaminant Level or MCL—for 1,2-dichloroethane at 5 parts per billion (ppb) because EPA has determined, given present technology and resources, this is the lowest level to which water systems can reasonably be required to remove this contaminant should it occur in sources of drinking water. These drinking water standards, and the regulations for ensuring these standards are met, are called National Primary Drinking Water Regulations (NPDWRs). Public water systems must abide by these regulations.

As noted above, 1,2-dichloroethane is reported by facilities as released to surface waters from TSCA COUs. EPA refined the drinking water estimates for those facilities that discharge to surface waters that are potential sources of drinking water. That is, the TSCA reported releases are upstream of a drinking water intake location estimated the possible exposures resulting from these specific releases at the point of discharge. If EPA identified a downstream drinking water intake location from the release site, the Agency refined the exposure estimates by considering the amount of dilution occurring from the releasing facility discharge point to the drinking water intake location. Receiving water bodies with no downstream drinking water intakes were assumed not to be sources of drinking water and the corresponding facility releases were not included in the drinking water analysis.

4.1.1 Modeling Approach

To model drinking water concentrations at the point of drinking water treatment facility intake locations, EPA started with the upstream TSCA facility surface water concentrations estimated at the facility's point of release. Modeled surface water concentrations methodology and results are presented in the *Draft Environmental Media Assessment for 1,2-Dichloroethane* (U.S. EPA, 2025e). As an initial tiering

analysis, the highest receiving water body concentrations across all COUs/OESs was determined as the Manufacturing COU (see *Draft Environmental Media Assessment for 1,2-Dichloroethane* (U.S. EPA, 2025e) and was included first in the drinking water exposure analysis. Of these high releases, the receiving water bodies were reviewed if they were potential sources of drinking water through a downstream drinking water intake analysis. EPA searched for drinking water treatment facility intake locations within 250 km downstream of releasing facilities and calculated the 1,2-dichloroethane diluted surface water concentration based on distance from release to the drinking water intake and the streamflow (see *Draft Environmental Media Assessment for 1,2-Dichloroethane* (U.S. EPA, 2025e) for details). If there were no downstream drinking water intake locations within the 250 km distance, EPA considered there were no drinking water exposures resulting from the facility releases. Therefore, the Agency focused the analysis on those facilities and corresponding COUs with potential drinking water exposures.

655 656

643

644

645

646 647

648

649

650

651

652 653

654

EPA used the following equations to estimate acute and chronic exposures for adults and bottle-fed infants. In including infant exposure estimates, the Agency is considering PESS and protecting this sensitive subpopulation.

658 659 660

657

Equation 4-1. Acute Drinking Water Ingestion Calculation

661

662
$$ADR = \frac{\left(SWC \times \left(1 - \frac{DWT}{100}\right) \times IR_{dw} \times RD \times CF1\right)}{(BW \times AT)}$$

663 664

Where:

665 ADRPotential acute dose rate (mg/kg/day) SWC Surface water concentration (µg/L; 30Q5 concentration for ADR) 666 = DWTRemoval during drinking water treatment (0%) 667 668 IR_{dw} Drinking water intake rate (adult: 3.219 L/day; infant: 1.106 L/day) Release days (1 day for ADR) 669 RDConversion factor $(1.0 \times 10^{-3} \text{ mg/µg})$ 670 CF1 671 BW= Body weight (adult: 80 kg; infant: 7.83 kg) Exposure duration (1 day for ADR) 672 AT

673 674 675

Equation 4-2. Average Daily Drinking Water Ingestion Calculation

676 677

$$ADD = \frac{\left(SWC \times \left(1 - \frac{DWT}{100}\right) \times IR_{dw} \times ED \times RD \times CF1\right)}{\left(BW \times AT \times CF2\right)}$$

IADD —	$\frac{\left(SWC \times \left(1 - \frac{DWT}{100}\right) \times IR_{dw} \times ED \times RD \times CF1\right)}{\left(DWC \times \left(1 - \frac{DWT}{100}\right) \times IR_{dw} \times ED \times RD \times CF1\right)}$
LADD —	$(BW \times AT \times CF2)$

```
679
      Where:
680
             ADD
                                   Potential average daily dose (mg/kg/day)
681
             LADD
                                   Potential lifetime average daily dose (mg/kg/day)
                            =
                                   Surface water concentration (µg/L; harmonic mean for ADD,
682
             SWC
                            =
683
                                   LADD, LADC)
684
             DWT
                                   Removal during drinking water treatment (%)
                            =
685
                                   Drinking water intake rate (adult: 0.880 L/day; infant: 0.220 L/day)
             IR_{dw}
                                   Exposure duration (years for ADD and LADD)
686
             ED
```

687	RD	=	Release days (days/yr for ADD, LADD, and LADC)
688	CF1	=	Conversion factor $(1.0 \times 10^{-3} \text{ mg/}\mu\text{g})$
689	BW	=	Body weight (adult 80 kg; infant: 7.83 kg)
690	AT	=	Exposure duration (57 years for ADD and LADD)
691	CF2	=	Conversion factor (365 days/yr)

692 693

694

695

696 697

698 699 700

701

702

703

Of the 89 facilities reporting releases of 1,2-dichloroethane to surface waters, EPA identified 48 facility releases that were associated with possible downstream drinking water intakes. Table 4-1 summarizes the drinking water doses for adults and infants from the facility with the highest downstream drinking water intake concentration for each COU. The remaining facilities had lower downstream concentrations and doses and therefore are not summarized in Table 4-1. All exposure estimates are provided in *Draft Drinking Water Exposure Estimates for 1,2-Dichloroethane* (U.S. EPA, 2025d).

Table 4-1. Drinking Water Exposures to 1,2-Dichloroethane from Highest Concentration at a Drinking Water Intake per COU

	Diluted Harmonic	Diluted 30Q5	Adult (21+ years)			Infant (Birth to <1 year)		
Scenario	Mean Surface Water Concentrations (µg/L)	Surface Water Concentrations (µg/L)	ADR (mg/kg- day)	ADD (mg/kg- day)	LADD (mg/kg- day)	ADR (mg/kg- day)	ADD (mg/kg- day)	LADD (mg/kg- day)
Manufacturing (KY0003484)	4.6E-03	8.6E-03	3.4E-07	4.9E-08	3.6E-08	1.2E-06	1.2E-07	9.1E-08
Processing/ Processing as a reactant (WV0002496)	2.7E-04	3.7E-04	1.5E-08	2.9E-09	2.1E-09	5.2E-08	7.4E-09	5.4E-09
Processing/ Processing into formulation, mixture, or reaction product (NJ0004952)	6.2E-04	1.2E-03	4.6E-08	6.5E-09	4.7E-09	1.6E-07	1.7E-08	1.2E-08
Disposal/ Waste handling, disposal, and treatment (POTW) (CA0048127)	0.78	5.57	2.2E-04	5.7E-06	4.1E-06	7.9E-04	1.4E-05	1.1E-05
Waste handling and disposal (Incinerator) (OK0040789)	30	56	2.2E-03	3.1E-04	2.3E-04	7.9E-03	8.0E-04	5.8E-04

ADC = average daily concentrations; ADD = average daily dose; ADR = acute dose rate; LADD = lifetime average daily dose

Drinking water intake locations within 250 km of releasing facility were considered. Surface water concentrations at the intake location were calculated based on stream flow and distance from facility effluent release.

4.1.2 Monitoring Information

1,2-Dichloroethane U.S. drinking water monitoring and occurrence data are presented and described in

^a 30Q5 and harmonic mean receiving water flow values used to calculated ADR and ADD.

detail in the *Draft Environmental Media Assessment for 1,2-Dichloroethane* (U.S. EPA, 2025e).

4.2 Incidental Ingestion from Swimming

The general population may swim in surface waters (streams and lakes) that could contain 1,2-dichloroethane from facility releases under TSCA COUs. As screening, the highest modeled surface water concentrations included in *Draft Drinking Water Exposure Estimates for 1,2-Dichloroethane* (U.S. EPA, 2025d) at the point of effluent discharge were used to estimate acute doses (ADR) resulting from incidental ingestion of 1,2-dichloroethane while swimming in the receiving water body. Only acute exposures were estimated because the highest 1,2-dichloroethane releases associated with each of the OESs are in highly industrialized areas and swimming in these areas such as in the Westlake, Louisiana, discharge location is not anticipated to occur on a chronic basis given contaminated waterways and published warnings and advisories against swimming.⁶

The following equation was used to calculate acute incidental oral (swimming) doses for adults, youth, and children. The highest modeled concentrations were associated with the Waste handling, treatment, and disposal OES:

Equation 4-3. Acute Incidental Ingestion Calculation

 $ADR = \frac{(SWC \times IR \times ET \times CF1)}{BW}$

Where:

705706

707

708

709

710

711

712

713

714715716

717

718

719 720

721

722723724

725

726

727

728

729

730

735

736

ADR = Acute dose rate (mg/kg-day)

SWC = Surface water concentration ($\mu g/L$)

IR = Daily ingestion rate (adult: 0.092 l/h; youth: 0.152 l/h; child: 0.096 L/h)

ET = Exposure time (adult: 3 h/day; youth: 2 h/day; child: 1 h/day)

CF1 = Conversion factor $(1.0 \times 10^{-3} \text{ mg/}\mu\text{g})$

BW = Body weight (adult: 80 kg; youth: 56.8 kg; child: 31.8 kg)

Table 4-2 summarizes the incidental ingestion acute doses derived from the modeled concentration
 presented in the *Draft Drinking Water Exposure Estimates for 1,2-Dichloroethane* (U.S. EPA, 2025d)
 and the above equations.

Table 4-2. Acute Oral (Incidental Ingestion from Swimming) Doses Across Lifestages

	1,2-Dichloroethane Surface Water Concentrations		Adult (21+ years)	Youth (11–15 years)	Child (6–10 years)
Scenario	30Q5 Conc. (µg/L)	Harmonic Mean Conc. (μg/L)	ADR _{POT} (mg/kg-day)	ADR _{POT} (mg/kg-day)	ADR _{POT} (mg/kg-day)
Manufacturing	1.9E03	1.1E03	6.7E-03	1.4E-02	5.9E-03
Processing/ Processing as a reactant	2.1E02	1.3E02	7.5E-04	1.2E-03	6.6E-04
Processing/ Processing aid	1.2E01	1.2E01	4.2E-05	6.5E-05	3.7E-05

⁶ Louisiana swimming advisories are found at: https://deq.louisiana.gov/page/fishing-consumption-and-swimming-advisories (accessed October 16, 2025).

	1,2-Dichloroethane Surface Water Concentrations		Adult (21+ years)	Youth (11–15 years)	Child (6–10 years)
Scenario	30Q5 Conc. (µg/L)	Harmonic Mean Conc. (μg/L)	ADR _{POT} (mg/kg-day)	ADR _{POT} (mg/kg-day)	ADR _{POT} (mg/kg-day)
Waste handling and disposal/ (POTW)	1.4E03	5.3E02	4.8E-03	7.4E-03	4.2E-03
Waste handling and disposal (Incinerator)	2.6E03	1.4E03	9.0E-03	1.4E-02	7.9E-03
30Q5 = 30 consecutive days of lowest flow over a 5-year period; ADR = acute dose rate; POT = potential					

4.3 Incidental Ingestion from Soil (Biosolids and Air Deposition)

EPA considered incidental ingestion (soil pica) of soils contaminated with 1,2-dichloroethane via deposition from ambient air and land application of biosolids for children aged 3 to 6 years.

Concentrations of 1,2-dichloroethane in soils following application of biosolids on agricultural lands were estimated to be 0.63 mg/kg (<u>U.S. EPA, 2025e</u>). A full description of the methods used to estimate concentrations of 1,2-dichloroethane in soils following application of biosolids is provided in the 1,2-dichloroethane media concentrations TSD (<u>U.S. EPA, 2025e</u>).

Estimates of 1,2-dichloroethane air deposition to soil are also discussed in detail in the 1,2-dichloroethane media concentrations TSD (<u>U.S. EPA, 2025e</u>), which presents the range of calculated soil concentrations corresponding to the emission scenarios considered. The highest estimated 95th percentile soil concentration among all exposure scenarios was for the Manufacturing OES at 30 m from the releasing facility. EPA is considering the highest estimated 95th percentile soil concentrations for this analysis as a high-end screen and is not considering population data at this stage. Annual daily doses of 1,2-dichloroethane for children ingesting soil receiving biosolids were calculate using Equation 4-4.

Equation 4-4. Average Daily Dose from Soil Ingestion Calculation

 $ADD = \frac{C \times IR \times EF \times ED \times CF}{BW \times AT}$

757 Where:

 ADD = Average daily dose (mg/kg/day) C = Soil concentration (mg/kg)

IR = Intake rate of contaminated soil (mg/day)

EF = Exposure frequency (day) ED = Exposure duration (year)

CF = Conversion factor (1.0×10⁻⁶ kg/mg)

BW = Body weight (kg)

AT = Averaging time (non-cancer: $ED \times EF$)

The recommended intake rate for children aged 3 to 6 years for soil pica (soil ingestion) is 1,000 mg/day (<u>U.S. EPA, 2017</u>). The exposure frequency and exposure duration were both assumed to be one year. Mean body weight (18.6 kg) for 3- to 6-year-olds was taken from EPA's *Exposure Factors Handbook* (<u>U.S. EPA, 2011</u>).

At the estimated 1,2-dichloroethane soil concentration of 0.63 mg/kg due to land application of

biosolids, the ADD for a 3- to 6-year-old ingesting 1,000 mg/day of contaminated solids would be 3.39×10⁻⁵ mg/kg/day. Additionally, at the estimated 1,2-dichloroethane soil concentration of 2.0 mg/kg due to air deposition, the ADD for a 3- to 6-year-old ingesting 1,000 mg/day of contaminated solids would be 1.1×10⁻⁴ mg/kg/day. EPA acknowledges that although the pica scenario is not highly likely among children in agricultural settings (for biosolids application), it is protective of a condition among young children.

4.4 Fish Ingestion Exposure

779

780 781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796 797

798

799

812

813

814

815

816

817

818

General population exposures can occur from catching fish and ingesting fish tissue where 1,2-dichloroethane bioaccumulates from surface water impacted by facility releases of 1,2-dichloroethane. EPA based general population exposure estimates from this pathway of exposure on facility release data, the corresponding 1,2-dichloroethane surface water concentrations, fish tissue concentrations, and the consumption of the affected fish tissue. The Agency focused the analysis on the facility releases with the highest surface water concentrations per OES/COU as that correlates with the highest anticipated exposures.

4.4.1 Modeling Approach

EPA estimated exposure from fish consumption using age-specific ingestion rates as well as ingestion rates associated with specific lifestyles such as subsistence or Tribal fishing. Adult subsistence fish ingestion rates were used to represent a high-end acute and chronic exposures to 1,2-dichloroethane via the fish ingestion pathway whereas the 90th percentile fish ingestion rate for young toddler aged between 1 and 2 years represents the high-end acute and chronic for this life stage. Cancer exposure (LADD, lifetime average daily dose) and risks were also characterized due to the carcinogenic potential of 1,2-dichloroethane (U.S. EPA, 2025n). Exposure estimates via fish ingestion were calculated according to the following equation:

Equation 4-5. Fish Ingestion Calculation

```
ADR \ = \frac{(SWC \ \times \ BAF \ \times \ IR \ \times \ CF1 \ \times \ CF2 \ \times \ ED)}{AT}
```

```
800
801
      Where:
802
             ADR =
                                  Acute dose rate (mg/kg/day)
803
             ADD =
                                  Average daily dose (mg/kg/day)
804
             SWC =
                                  Surface water (dissolved) concentration (µg/L)
805
             BAF
                                  Bioaccumulation factor (L/kg wet weight)
806
             IR
                                  Fish ingestion rate (g/kg-day)
             CF1
                                  Conversion factor (0.001 mg/\mug)
807
808
             CF2
                                  Conversion factor for kg/g (0.001 kg/g)
                    =
809
             ED
                                  Exposure duration (year)
810
             AT
                                  Averaging time (year)
811
```

The inputs to this equation can be found in the *Draft Fish Ingestion Risk Calculator for 1,2-Dichloroethane* (U.S. EPA, 2025g). The years within an age group (*i.e.*, 62 years for adults) were used for the exposure duration and averaging time to estimate non-cancer exposure. Table 4-3 presents the exposures calculated using highest estimated 1,2-dichloroethane surface water harmonic mean concentrations per COU resulting from the corresponding facility discharges, with modeled BCF (4.4 L/kg).

EPA also identified releases of 1,2-dichloroethane to Chinle Wash from the Chinle Wastewater Treatment Facility located on Tribal lands and estimated possible doses of 1,2-dichloroethane from fish ingestion using Tribal consumption rates (2.7g/day) that are estimated as 10 times higher than the 95th percentile general population consumption rate. This subset of the general population may be considered representative of PESS.

Table 4-3. General Population Fish Ingestion Doses by Surface Water Concentration and COU/OES^a

COU/OES	1,2-Dichloroethane Surface Water Harmonic Mean Concentrations (µg/L)	Adult ADR (mg/kg-day)	Young Toddler ADR (mg/kg-day)	Adult LADD (mg/kg-day)
Manufacturing	1.1E03	8.7E-03	2.0E-03	6.9E-03
Processing/Processing as a reactant	1.3E02	1.0E-03	2.3E-04	8.0E-04
Processing/Processing aid	1.2E01	9.5E-05	2.2E-05	7.5E-05
Waste handling and disposal/POTW	5.3E02	4.1E-03	9.6E-04	3.3E-03
POTW (NN0020265 Chinle WWTF) b c	5.2	6.2E-05	N/A	4.9E-05
Waste handling and disposal/ Incinerator	1.4E03	1.1E-02	2.5E-03	8.6E-03

ADR = acute dose rate; LADD = lifetime average daily dose; POTW = publicly owned treatment works; WWTF = wastewater treatment facility

4.5 Evidence Integration

Facility-specific releases of 1,2-dichloroethane to surface waters are reported to EPA via the NPDES permit required DMR. These data and the corresponding receiving water body flow data from NHDPlus are high quality data providing robust confidence in estimating surface water concentrations of 1,2-dichloroethane in receiving water bodies. These surface receiving water concentration estimates are the basis for drinking water exposure, incidental oral exposure from swimming, and exposure via fish ingestion estimates—with higher surface water concentrations correlating to higher exposures. Although EPA estimated surface water concentrations from all facilities reporting releases of 1,2-dichloroethane (see *Draft Environmental Media Assessment for 1,2-Dichloroethane* (U.S. EPA, 2025e)), the Agency focused the analyses for each exposure scenario on the highest facility-specific surface water concentration per OES/COU to capture high-end exposures.

In order to assess the impacts of TSCA COU activities and releases on drinking water sources, EPA conducted a facility-specific analysis of drinking water estimates downstream of facility releases. These estimates are considered conservative in that only dilution was considered in calculating the surface water concentration at the point of drinking water intakes. Processes such as volatilization within the receiving water flow as well as within the drinking water treatment facility were not quantified and would further decrease the concentrations of 1,2-dichloroethane in finished drinking water. EPA

^a General population fish consumption rate: adult = 0.2775 g/kg-day; young toddler (1 to <2 years) = 0.412 g/kg-day (U.S. EPA, 2011)

^b Tribal fish consumption rate: adult only = 2.7 g/kg-day (U.S. EPA, 2011)

^c NPDES permit NN0020265 represents highest concentration of 1,2-dichloroethane from discharges to surface water in Tribal lands

concludes that for all facilities releasing 1,2-dichloroethane upstream of drinking water intakes, the downstream surface water concentration presents low exposures via drinking water.

EPA has robust confidence in the estimate for fish tissue concentration based on the 1,2-dichloroethane surface water concentration for all facility-specific releases and the applied 1,2-dichloroethane bioaccumulation factor. The range of fish consumption rates as listed in the *Exposure Factors Handbook* (U.S. EPA, 2011) were applied to estimate general population exposures from fish ingestion. EPA identified the highest 1,2-dichloroethane surface water concentration on Tribal lands (NN0020265) and used Tribal ingestion rates to estimate the resultant Tribal exposures to 1,2-dichloroethane from fishing in Tribal surface waters.

EPA investigated two incidental soil ingestion pathways—land application of biosolids and deposition from ambient air. For the land application of biosolids scenario, the Agency modeled soil concentrations by using the SimpleTreat 4.0 wastewater treatment plant model to estimate concentrations in biosolids and assuming annual applications of biosolids. Overall, EPA has slight confidence in its exposure estimates for incidental ingestion of soils from biosolids and air deposition; however, the Agency has robust confidence that exposure scenarios modeled represent high-end scenarios that are health protective.

5 DERMAL EXPOSURE ASSESSMENT

General population dermal exposures to 1,2-dichloroethane may occur through swimming in surface water (streams and lakes) containing facility releases of 1,2-dichloroethane to surface water. Because facilities reporting surface water releases of 1,2-dichloroethane can are associated with COUs, EPA evaluates dermal exposures to 1,2-dichloroethane in this assessment.

5.1 Modeling Approach

Modeled estimates of surface water concentrations also were used to estimate acute doses (ADR) from dermal exposure while swimming. The following equations were used to calculate incidental dermal (swimming) doses for adults, youth, and children:

Equation 5-1. Acute Incidental Dermal Calculation

 $ADR = \frac{(SWC \times K_p \times SA \times ET \times CF1 \times CF2)}{BW}$

Where:

863864

865

866

867

868 869

870 871

872873

874

886 887

888

889

890 891

892

893

894 895

896

897 898

899

900 901

878 ADRAcute dose rate (mg/kg-day) SWC =Surface water concentration (ppb or µg/L) 879 880 K_{p} Permeability coefficient (cm/h) = Skin surface area exposed (cm²) SA881 = ET882 Exposure time (h/day) = 883 CF1 Conversion factor $(1.0 \times 10^{-3} \text{ mg/µg})$ Conversion factor (1.0×10⁻³ L/cm³) 884 CF2 =

BW = Body weight (kg)

The 1,2-dichloroethane skin permeability coefficient used in the equations above was the predicted K_p value presented in the EPA Risk Assessment Guidance for Superfund for organic contaminants in water $(K_p = 4.2 \times 10^{-3} \text{ cm/h})$ (U.S. EPA, 2004). EPA received 1,2-dichloroethane dermal absorption and permeability data from test order submissions; however, the test order data measured 1,2-dichloroethane permeability from a solvent-based vehicle. For the general population swimming scenario, permeability constant (Kp) from an aqueous vehicle is more appropriate and is provided in the Superfund document cited above.

Table 5-1 summarizes the derived ADRs resulting from dermal exposure while swimming for adults, youth, and children. Dermal doses were calculated with Equation 4-1 using the highest 1,2-dichloroethane surface water concentration for each OES resulting from the corresponding facility-specific discharges. The highest acute doses of 1,2-dichloroethane dermal exposures from swimming occur to adults from the Waste handling, treatment, and disposal COU.

Table 5-1. Acute Dermal (Swimming) Doses Across Lifestages

G . OFG	1,2-Dichloroethane Surface Water Concentrations		Adult (21+ years)	Youth (11–15 years)	Child (6–10 years)
Scenario/OES	30Q5 Conc. (μg/L)	Harmonic Mean Conc. (µg/L)	ADR (mg/kg-day)	ADR (mg/kg-day)	ADR (mg/kg-day)
Manufacturing	1.9E03	1.11E03	1.5E-03	1.2E-03	7.2E-04

Scenario/OES	1,2-Dichloroethane Surface Water Concentrations		Adult (21+ years)	Youth (11–15 years)	Child (6–10 years)
Scenario/OES	30Q5 Conc. (μg/L)	Harmonic Mean Conc. (µg/L)	ADR (mg/kg-day)	ADR (mg/kg-day)	ADR (mg/kg-day)
Processing/Processing as a reactant	2.1E02	1.29E02	1.7E-04	1.3E-04	8.0E-05
Processing/Processing into a formulation, mixture, or reaction product	1.2E01	1.2E01	9.7E-06	7.4E-06	4.5E-06
Waste handling, treatment, and disposal/POTW	1.4E03	5.27E02	1.1E-03	8.5E-04	5.1E-04
Waste handling, treatment, and disposal/incinerator	2.6E03	1.38E03	2.1E-03	1.6E-03	9.7E-04

³⁰Q5 = lowest 30-day average flow that occurs (on average) once every 5 years; ADD = average daily dose; ADR = acute dose rate; OES = occupational exposure scenario

5.2 Evidence Integration

902

903 904

905

906 907

908

909

910

EPA estimated general population dermal exposures to 1,2-dichloroethane for people swimming in surface water bodies where facilities associated with COUs reported releases of 1,2-dichloroethane. The facility-specific reported releases and the receiving water body flow data provide facility-specific 1,2-dichloroethane exposure estimates. EPA has robust confidence in the surface water estimates as data regarding the amount and location of releases is provided by facilities and supplemented by location-specific flow statistics. EPA also has robust confidence that the high-end dermal exposure estimates presented in this assessment are representative and health protective based on conservative assumptions included for this evaluation.

^a For each OES, dermal estimates are presented for the exposures corresponding to the highest surface water concentrations and the corresponding dermal doses.

6 WEIGHT OF SCIENTIFIC EVIDENCE CONCLUSIONS FOR GENERAL POPULATION EXPOSURE ASSESSMENT

6.1 Strengths, Limitations, Assumptions, and Key Sources of Uncertainty for the General Population Exposure Assessment

Ambient Air Inhalation Exposures

For the weight of scientific evidence for inhalation exposure estimates, EPA considered the specific evidence streams supporting the exposure scenarios (Section 3.2.3), release data used as model input data (U.S. EPA, 2025f), and agreement between modeled and monitored ambient air concentrations (U.S. EPA, 2025e). The overall confidence in air inhalation exposure estimates resulting from modeled ambient air concentrations are dependent on the OES and range from slight to robust. In general, EPA has robust confidence in reported releases and the use of AERMOD and HEM as the method to estimate ambient air concentrations. EPA had slight or moderate confidence in the use of modeled releases and assumed physical source specifications as model input parameters. The overall confidences for each OES are presented in Table 3-9, represent specific considerations within each OES, and are not necessarily based on an additive approach for considering each individual contributing category.

Surface Water Exposures

EPA considered physical and chemical properties to confirm presence in the water column, facility-specific release data and monitoring data as evidence to support the following exposure scenarios: oral and dermal exposure from drinking water, incidental oral and dermal exposure from swimming in surface water, and ingestion exposure from consumption of fish. 1,2-Dichloroethane is soluble in water and if released to water will remain in water. NPDES discharge permits, which require reporting of monitoring data via the DMRs, provide evidence for releases to receiving waterbodies. TRI also provides facility-specific water release data. The amount of 1,2-dichloroethane released and receiving water body flow (as calculated from the NHDPlus flow database at the point of release) are the main factors affecting the concentration in the receiving water body and the corresponding levels of exposure. EPA assumed that dermal and oral exposures from swimming and fish ingestion occur at the point of discharge where 1,2-dichloroethane surface water concentrations are anticipated to be highest. Assessing exposures at this location represents a high-end estimate and confidence that exposures occurring at downstream locations would be lower.

For exposures via drinking water, releases were considered where they occurred upstream of a drinking water intake location. A dilution was calculated between location of discharge and drinking water intake providing estimates of concentrations of 1,2-dichloroethane in source water prior to treatment. This is also representative of potential concentrations and exposures in drinking water as 1,2-dichloroethane removal during drinking water treatment is expected to be significantly lower than during wastewater treatment processes where agitation promotes volatilization—the primary removal process during wastewater treatment.

Land Exposures

EPA investigated the soil ingestion pathway for two scenarios: land application of biosolids and deposition from ambient air. For the land application of biosolids scenario, the Agency modeled soil concentrations using SimpleTreat 4.0 to estimate concentrations in biosolids and assumed annual applications of biosolids. For the deposition from ambient air scenario, EPA modeled deposition rates from air to land and water from each TRI and NEI releasing facility using AERMOD as a standalone program. The Agency used chemical-specific parameters as input values for AERMOD deposition modeling; however, three parameters (diffusivity in water, diffusivity in air, and cuticular resistance)

958	were obtained outside of the systematic review process used for obtaining other physical and chemical
959	properties. Therefore, EPA has moderate confidence in the deposition fluxes estimated from TRI and
960	NEI release data using AERMOD. Overall, EPA has slight confidence in the accuracy of its exposure
961	estimates for incidental ingestion of soils from biosolids and air deposition due to assumptions made for
962	the exposure scenarios (e.g., ingestion rate) and uncertainties in the media concentrations; however, the
963	Agency has robust confidence that exposure scenarios modeled represent high-end scenarios that are
964	health protective based on conservative assumptions included in this assessment for the oral pathway.

7 GENERAL POPULATION EXPOSURE ASSESSMENT CONCLUSIONS

The general population can be exposed to 1,2-dichloroethane via air, water, and land pathways, as shown in Table 1-2.

EPA estimated ambient air concentrations and deposition rates at varying distances from facilities releasing 1,2-dichloroethane to air and the corresponding exposures. EPA next evaluated inhalation exposures for all facilities reporting releases to TRI, NEI, or both across five OESs. The highest inhalation exposures associated with reported releases were from the Manufacturing OES. The Agency has robust confidence in these inhalation exposure estimates as they are produced by robust regulatory models using site-specific, facility-reported releases as direct inputs. For the four OESs with either no or limited reported data, the Agency relied on EPA-estimated releases from generic facilities/sites as direct inputs to the associated models to estimate inhalation exposures. Overall, the highest chronic inhalation exposures were from the OES of Industrial application of adhesives and sealants. EPA has slight or moderate confidence in the accuracy of the estimated inhalation exposures due the number of assumptions used; however, due to conservative nature of these assumptions, the Agency has moderate confidence that the estimated inhalation exposures are health protective. Additionally, EPA used highend facility reported releases from TRI (Section 3.2) to assess aggregate general population exposures via ambient air.

EPA estimated surface water concentrations from all facilities reporting releases of 1,2-dichloroethane (<u>U.S. EPA, 2025e</u>). The Agency used these concentrations to evaluate exposures from ingestion of drinking water, incidental ingestion of and dermal absorption from surface water while swimming, and ingestion of fish. The highest exposures resulted from releases to surface water from the Manufacturing and the Disposal COUs. EPA has robust confidence that these estimated exposures represent a high-end exposure because the Agency relied upon the highest facility-specific surface water concentration per COU and several conservative assumptions to ensure potential exposures were not missed.

EPA quantitatively assessed general population exposures from releases of 1,2-dichloroethane to land via POTW biosolids application to agricultural lands. Once biosolids have been applied, they could be a source of exposure to children via pica living in proximity to or on these same agricultural lands. EPA acknowledges that the pica scenario is not highly likely among children in agricultural settings (for biosolids application); however, it is protective of a condition that is not unusual among young children that can be reasonably anticipated. EPA has robust confidence that the modeled exposure scenarios via the land pathways are health protective and represent high-end scenarios.

REFERENCES

1000

1006 1007

1008 1009

1010 1011

1012

1013

1018 1019

1020

1021

1022

1023

1024 1025

1026

1027

1028 1029

1030

1031 1032

1033

1034

1035

1036

1037

1038

1039 1040

1041 1042

1043

1044 1045

- SC&A. (2023). The HEM4 User's Guide: Instructions for using the Human Exposure Model for Single 1001 and Multiple Facility Exposure and Risk Modeling, Open-Source Version 4.2 with Demographic 1002 Assessment Module and 2020 Census. Research Triangle Park, NC: Air Toxics Assessment 1003 1004 Group, U.S. Environmental Protection Agency. 1005
 - https://www.epa.gov/system/files/documents/2023-03/HEM4 2 Users Guide 1-2-23.pdf
 - U.S. EPA. (2004). Risk assessment guidance for Superfund. Vol. I. Human health evaluation manual (Part E, supplemental guidance for dermal risk assessment). (EPA/540/R/99/005). Washington, DC: Office of Superfund Remediation and Technology Innovation. Available online at http://www.epa.gov/oswer/riskassessment/ragse/pdf/part e final revision 10-03-07.pdf.
 - U.S. EPA. (2011). Exposure factors handbook: 2011 edition [EPA Report]. (EPA/600/R-090/052F). Washington, DC: U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100F2OS.txt
- 1014 U.S. EPA. (2017). Update for Chapter 5 of the Exposure Factors Handbook: Soil and dust ingestion [EPA Report]. (EPA/600R-17/384F). Washington, DC: National Center for Environmental 1015 1016 Assessment, Office of Research and Development. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100TTX4.txt 1017
 - U.S. EPA. (2020b). The Technical Support Document for the Hazardous Waste Delisting Risk Assessment Software (DRAS). Washington, DC: U.S. Environmental Protection Agency, Office of Solid Waste. https://www.epa.gov/hw/technical-support-document-hazardous-waste-delistingrisk-assessment-software-dras
 - U.S. EPA. (2023b). Meeting minutes and final report for the Science Advisory Committee on Chemicals public virtual meeting "2023 Draft Supplement to the 1,4-Dioxane Risk Evaluation" held on September 12-14, 2023. Washington, DC.
 - U.S. EPA. (2025a), Draft Byproducts Assessment for 1,2-Dichloroethane, Washington, DC: Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention.
 - U.S. EPA. (2025b). Draft Chemistry and Fate and Transport Assessment for 1,2-Dichloroethane. Washington, DC: Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention.
 - U.S. EPA. (2025c). Draft Consumer Exposure Assessment for 1,2-Dichloroethane. Washington, DC: Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention.
 - U.S. EPA. (2025d). Draft Drinking Water Exposure Estimates for 1,2-Dichloroethane. Washington, DC: Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention.
 - U.S. EPA. (2025e). Draft Environmental Media Assessment for 1,2-Dichloroethane. Washington, DC: Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention.
 - U.S. EPA. (2025f). Draft Environmental Release Assessment for 1,2-Dichloroethane. Washington, DC: Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention.
 - U.S. EPA. (2025g). Draft Fish Ingestion Risk Calculator for 1,2-Dichloroethane. Washington, DC: Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention.
 - U.S. EPA. (2025h). Draft Occupational Exposure Assessment for 1,2-Dichloroethane. Washington, DC: Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention.
 - U.S. EPA. (2025i). Draft Risk Evaluation for 1,2-Dichloroethane. Washington, DC: Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention.
 - U.S. EPA. (2025j). Draft Supplemental Information on AERMOD Generic Releases Exposure and Risk Analysis for 1,2-Dichloroethane. Washington, DC: Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention.
- U.S. EPA. (2025k). Draft Supplemental Information on AERMOD NEI Exposure and Risk Analysis for 1047 1,2-Dichloroethane. Washington, DC: Office of Pollution Prevention and Toxics, Office of 1048

1049	Chemical Safety and Pollution Prevention.
1050	U.S. EPA. (2025l). Draft Supplemental Information on AERMOD TRI Exposure and Risk Analysis for
1051	1,2-Dichloroethane. Washington, DC: Office of Pollution Prevention and Toxics, Office of
1052	Chemical Safety and Pollution Prevention.
1053	U.S. EPA. (2025m). Risk Evaluation for 1,1-Dichloroethane. Washington, DC: Office of Pollution
1054	Prevention and Toxics, Office of Chemical Safety and Pollution Prevention.
1055	https://www.regulations.gov/docket/EPA-HQ-OPPT-2024-0114
1056	U.S. EPA. (2025n). Summary of and Response to External Peer Review and Public Comments on the
1057	Risk Evaluation for 1,1-Dichloroethane and Human Health Hazard Technical Support Document
1058	for 1,2-Dichloroethane. Washington, DC: Office of Pollution Prevention and Toxics, Office of
1059	Chemical Safety and Pollution Prevention. https://www.regulations.gov/docket/EPA-HQ-OPPT-
1060	<u>2024-0114</u>
1061	