
CASRN 107-06-2

Technical Support Document for the Draft Risk Evaluation

Draft Byproducts Assessment for 1,2-Dichloroethane

November 2025

TABLE OF CONTENTS

25

26	ACKNOWLEDGEMENTS	7
27	SUMMARY	8
28	1 INTRODUCTION	
29	1.1 Overview	10
30	1.2 Byproducts Assessment Scope	10
31	1.2.1 1,2-Dichloroethane Manufacturing COU Process Description	11
32 33	1.2.2 Estimated Byproducts Production Volumes Resulting from Manufacturing of 1,2-Dichloroethane	13
34 35	2 RELEASES AND CONCENTRATIONS OF THE BYPRODUCTS IN THE ENVIRONMENT	15
36	2.1 Environmental Releases	15
37	2.1.1 Number of Facilities	15
38	2.1.2 Environmental Release Assessment	16
39	2.1.2.1 Environmental Release Assessment Methodology	
40	2.1.2.2 Sources of Environmental Releases	
41	2.1.2.3 Environmental Release Assessment Results	
42	2.1.3 Release Comparison	
43	2.1.4 Weight of Scientific Evidence for Environmental Releases	
44 4.5	2.2 Concentrations of Byproducts in the Environment	
45	2.2.1 Ambient Air Pathway	
46 47	2.2.1.1 Comparison of Ambient Air Releases in Fenceline Analyses to Releases Calculated this TSD	
47 48	2.2.1.2 Ambient Air Concentrations Modeled by HEM	
+6 49	2.2.1.2 Ambient Air Concentrations Wodeled by The Vi	
50	2.2.3 Weight of Scientific Evidence for Byproduct Environmental Concentrations	
51	3 ENVIRONMENTAL RISK ASSESSMENT	
52	3.1 Environmental Exposure	
53	3.2 Environmental Hazards	
54 55	3.2.1 Environmental Hazard Thresholds	
55 56	3.3.1 Risk Conclusion for Aquatic Species	
50 57	3.3.2 Risk Conclusion for Terrestrial Species	
58	4 HUMAN HEALTH EXPOSURES ASSESSMENT	
59	4.1.1 Occupational Exposure Assessment	
60	4.1.1.1 Worker Activities	
61	4.1.1.2 Uncertainties with the PPE Use and Protection Factors	
62 63	4.1.1.3 Number of Workers	
63 64	4.1.1.4 Occupational Exposure Methodology	
65	4.1.1.4.1 Innatation 4.1.1.4.2 Dermal	
66	4.1.1.4.2 Definition 4.1.1.5 Estimating Acute, Intermediate, and Chronic (Non-Cancer and Cancer) Exposures	
67	4.1.1.6 Occupational Inhalation Exposure Results	
68	11.17 Occupational Exposure Dermal Results	50

69	4.1.1.8 Weight of Scientific Evidence for Occupational Exposure	55
70	4.1.2 General Population Exposure Assessment	57
71	4.1.2.1 Inhalation Exposure Assessment	57
72	4.1.2.2 Oral Exposure Assessment	
73	4.1.2.3 Weight of Scientific Evidence for General Population Exposure	59
74	5 HUMAN HEALTH HAZARD	61
75	6 HUMAN HEALTH RISK ESTIMATES	64
76	6.1 Risk Estimates for Workers	64
77	6.1.1 Acute Risk	65
78	6.1.2 Intermediate Risk	66
79	6.1.3 Chronic Non-Cancer Risk	67
80	6.1.4 Cancer Risk	
81	6.1.5 Occupational Risk Summary	
82	6.2 Risk Estimates for General Population	78
83	6.2.1 General Population Risk Summary	81
84	7 CONCLUSIONS	82
85	REFERENCES	84
86	APPENDICES	87
87	Appendix A ADDITIONAL SOURCES OF INFORMATION ON PPE	87
88		
89	LIST OF TABLES	
90	Table 1-1. Maximum Weight Percent of Byproducts in Product Streams During the Manufacture o	f 1,2-
91	Dichloroethane	13
92	Table 1-2. Estimated Annual Production Volume Range of Each Byproduct	14
93	Table 2-1. Facilities with 1,2-Dichloroethane Manufacturing Releases Reported in 2020 CDR	15
94	Table 2-2. Summary of Reported Environmental Releases From 1,2-Dichloroethane Manufacturing	3
95	Facilities	17
96	Table 2-3. Summary of Estimated Environmental Releases of Byproducts from 1,2-Dichloroethane	
97	Manufacturing Facilities	
98	Table 2-4. Annual Release of Chemicals From Their Manufacturing COU	
99	Table 2-5. Range of Releases Used for Modeling of Ambient Air Concentrations in Fenceline Ana	
100	for the Manufacturing COU and the Byproducts Assessment	22
101	Table 2-6. Highest Modeled Chronic Ambient Air Concentrations for Each Byproduct Using 1,2-	
102	Dichloroethane 2018 TRI Data at Each 1,2-Dichloroethane Manufacturing Facility	Using
103	HEM at Any Distance	24
104	Table 2-7. Highest Modeled Acute Ambient Air Concentrations for Each Byproduct Using 1,2-	
105	Dichloroethane 2018 TRI Data at Each 1,2-Dichloroethane Manufacturing Facility	_
106	HEM at Any Distance	
107	Table 2-8. Chemical Physical and Chemical Properties	27
108	Table 2-9. Estimated 1,2-Dichloroethane and Byproduct Surface Water Releases from Eagle US 2	
109	Manufacturing Facility Releases Adjusted for Chemical-Specific Wastewater Treats	
110	Removal	
111	Table 2-10. Eagle US 2 Manufacturing Facility Releases – Comparison to Estimated Byproduct Su	
112	Water Releases	29

113	Table 3-1. Aquatic Ecological Species Exposures to Estimated Byproduct Concentrations in Receiving
114	Water Body
115	Table 3-2. EPA Risk Evaluations for Chemicals Relevant to the Draft 1,2-Dichloroethane Byproducts
116	Assessment
117	Table 3-3. Environmental Hazard Thresholds for Aquatic Environmental Toxicity
118	Table 3-4. Environmental Hazard Thresholds for Terrestrial Environmental Toxicity
119	Table 3-5. Aquatic Ecological Species Risk Screen for Estimated Byproduct Concentrations in
120	Receiving Water Body
121	Table 4-1. Description of SEGs in Vinyl Institute 1,2-Dichloroethane Test Order Report
122	Table 4-2. Description of SEGs in Vinyl Institute 1,1-Dichloroethane Test Order Report
123	Table 4-3. Assigned Protection Factors for Respirators in OSHA Standard 29 CFR 1910.134
124	Table 4-4. Estimated Number of Workers Potentially Exposed During 1,2-Dichloroethane
125	Manufacturing44
126	Table 4-5. Summary of Inhalation Exposure Estimates to 1,1-Dichloroethane During the Manufacturing
127	of 1,2-Dichloroethane Based on Vinyl Institute Test Order Data
128	Table 4-6. 8-Hour Duration of Inhalation Exposures to 1,2-Dichloroethane During Manufacturing of
129	1,2-Dichloroethane Based on Vinyl Institute Test Order Data
130	Table 4-7. Byproduct Concentrations in Unpurified 1,2-Dichloroethane Product Streams Provided by the
131	Vinyl Institute
132	Table 4-8. Byproduct Concentration in Light- and Heavy-Ends Liquid Provided by the Vinyl Institute ^a
133	47
134	Table 4-9. Low- and High-End Byproduct Concentrations for Inhalation Exposure Estimates
135	Table 4-10. Vapor Pressures of 1,2-Dichloroethane and Byproducts
136	Table 4-11. Low- and High-End Byproduct Concentrations for Dermal Exposure Estimates
137	Table 4-12. Byproduct Fractional Absorption Values
138	Table 4-13. Summary of Inhalation Exposures to Byproducts During the Manufacturing of 1,2-
139	Dichloroethane51
140	Table 4-14. Summary of Dermal Exposure Doses to Byproducts for an Average Adult Worker During
141	the Manufacturing of 1,2-Dichloroethane53
142	Table 4-15. Comparison of Inhalation Exposures Estimated in the Byproduct Assessment for the Light
143	or Heavy End Streams and in the Corresponding Final Risk Evaluations
144	Table 4-16. Comparison of Dermal Dose Rate Estimated in the Byproduct Assessment and in the
145	Corresponding Final Risk Evaluations56
146	Table 4-17. Oral Exposures From Byproducts Released to Bayou d'Inde From Eagle US 2
147	Manufacturing COU59
148	Table 5-1. Inhalation Unit Risk and Cancer Slope Factor Values Used to Calculate Risk
149	Table 5-2. Acute Non-Cancer PODs Used to Calculate Risk for Each Byproduct
150	Table 5-3. Chronic Non-Cancer PODs Used To Calculate Risk for Each Byproduct
151	Table 6-1. Parameter Values for Calculating Exposure Estimates
152	Table 6-2. Occupational Risk Summary Table High-End Exposures (Light-/Heavy-End Streams) and
153	PPE Level Needed To Exceed Benchmark in Cases of Risk for 1,1-Dichloroethane,
154	Perchloroethylene, and Methylene Chloride71
155	Table 6-3. Occupational Risk Summary Table Low-End Exposures (Unpurified 1,2-Dichloroethane
156	Stream) and PPE Level Needed To Exceed Benchmark in Cases of Risk for 1,1-
157	Dichloroethane, Perchloroethylene, and Methylene Chloride
158	Table 6-4. Occupational Risk Summary Table and PPE Level Needed To Exceed Benchmark in Cases
159	of Risk for Trichloroethylene and Carbon Tetrachloride Using Monte Carlo Simulation 75
160	Table 6-5. Estimated Acute, Chronic Non-Cancer, and Cancer Risk Values for Each Byproduct 78

	ct Estimated Acute, Chronic Non-Cancer, and Cancer Risk Values for Each Byproduct from the Eagle US 2 Surface Water Exposure Screening Analysis
LIST OF F	TIGURES
	Dichloroethane Combined Vinyl Chloride Process Diagram
LIST OF A	APPENDIX TABLES
_	. Glove Protection Factors for Different Dermal Protection Strategies from ECETOC ΓRA v3
KEY ABB	REVIATIONS AND ACRONYMS
7Q10	Lowest 7-day average flow that occurs (on average) once every 10 years
30Q5	Lowest 30-day average flow that occurs (on average) once every 5 years
AC	Acute concentration
ADAF	Age dependent adjustment factor
ADC	Average daily concentration
ADCintermediate	Intermediate average daily concentration
ADD	Average daily dose
ADR	Acute dose rate
AERMOD	American Meteorological Society/Environmental Protection Agency Regulatory
	Model
APDR	Acute potential dose rate
APF	Assigned protection factor
ARD	Acute retained dose
CASRN	Chemical Abstracts Service Registry Number
CDR	Chemical Data Reporting
CFR	Code of Federal Regulations
ChV	Chronic value
CI	Confidence interval
COC	Concentration of concern
COU	Condition of use
CRD	Chronic retained dose
CSF	Cancer slope factor
DEVL	Dermal Exposure to Volatile Liquids Model
DMR	Discharge Monitoring Report
ECETOC TRA	Ecotoxicology and Toxicology of Chemicals Targeted Risk Assessment
ECx	Effect concentration at which x percent of test organisms exhibit an effect
EHS	Environment, health, and safety
EPA	Environmental Protection Agency (U.S.)
HC05	Hazardous concentration for 5 percent of species
HEC	Human equivalent concentration
HED	Human equivalent dose
HEM	Human Exposure Model
IIOAC	Integrated Indoor-Outdoor Air Calculator
IRD	Intermediate retained dose
ISO	International Standard Organization
IUR	Inhalation Unit Risk

208	LADC	Lifetime average daily concentration
209	LCRD	Lifetime chronic retained dose
210	LCx	Lethal concentration at which x percent of test organisms die
211	LDAR	Leak Detection and Repair
212	LOEL	Lowest-observed-effect level
213	NAICS	North American Industry Classification System
214	MLD	Million liters per day
215	MOE	Margin of exposure
216	NAICS	North American Industry Classification System
217	NEI	National Emissions Inventory
218	NIOSH	National Institute for Occupational Safety and Health
219	NPDES	National Pollutant Discharge Elimination System
220	OCSPP	Office of Chemical Safety and Pollution Prevention (EPA)
221	OEL	Occupational exposure limit
222	OES	Occupational exposure scenario
223	ONU	Occupational non-user
224	OPPT	Office of Pollution Prevention and Toxics (EPA)
225	OSHA	Occupational Safety and Health Administration
226	PBZ	Personal breathing zone
227	POD	Point of departure
228	POTW	Publicly owned treatment works
229	PPE	Personal protective equipment
230	PV	Production volume
231	RQ	Risk Quotient
232	SAR	Supplied-air respirator
233	SCBA	Self-contained breathing apparatus
234	SEG	Similar exposure group
235	SOP	Standard operating procedure
236	SSD	Species sensitivity distribution
237	STEL	Short-term exposure limit
238	TRI	Toxics Release Inventory
239	TRV	Toxicity Reference Value
240	TSCA	Toxic Substances Control Act
241	TSD	Technical support document
242	TWA	Time-weighted average
243	U.S.	United States
244	WWT	Wastewater treatment

ACKNOWLEDGEMENTS 245 The Assessment Team gratefully acknowledges the participation, review, and input from U.S. 246 247 Environmental Protection Agency (EPA or "the Agency") Office of Pollution Prevention and Toxics (OPPT) and Office of Chemical Safety and Pollution Prevention (OCSPP) senior managers and science 248 249 advisors. The Agency is also grateful for assistance from the following EPA contractors for the 250 preparation of this draft technical support document (TSD): ERG (Contract Nos. 68HERD20A0002; 68HERC23D0006); and ICF (Contract No. 68HERC23D0007). 251 252 253 **Docket** 254 Supporting information can be found in the public docket, Docket ID EPA-HQ-OPPT-2018-0427. 255 256 **Disclaimer** 257 Reference herein to any specific commercial products, process, or service by trade name, trademark, 258 manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring 259 by the United States Government. 260 261 Authors: Albana Bega (Assessment Lead), Seema Schappelle (Branch Supervisor), Aderonke 262 Adegbule, Lauren Housley, William Irwin, Greg Macek, Andrew Middleton, Nerija Orentas, Simon 263 Regenold, Christina Robichaud, Ali Shohatee, Kelley Stanfield, and Catherine Taylor 264 265 Contributors: Whitney Hollinshead, Matthew Lloyd, Bethany Masten, Abigail McEwen, Jason Todd,

Kevin Vuilleumier, and Susanna Wegner

266

267

SUMMARY

This draft technical support document (TSD) provides details on releases, exposure, and associated risks of the five assessed byproducts produced during the manufacture of 1,2-dichloroethane and supports the *Draft Risk Evaluation for 1,2-Dichloroethane* (also called the "1,2-dichloroethane draft risk evaluation" or "draft risk evaluation") (U.S. EPA, 20251). The production of 1,1-dichloroethane (CASRN 75-34-3), trichloroethylene (CASRN 79-01-6), perchloroethylene (CASRN 127-18-4), methylene chloride (CASRN 75-09-2), and carbon tetrachloride (CASRN 56-23-5) as byproducts during the manufacture of 1,2-dichloroethane are included in the draft risk evaluation. It does not include the manufacture of 1,1,2-trichloroethane (CASRN 79-00-5) and *trans*-1,2-dichloroethylene (CASRN 156-60-5) as byproducts because those exposures will be assessed in their respective TSCA risk evaluations. In this TSD and the draft 1,2-dichloroethane risk evaluation, the five byproducts EPA is evaluating are collectively referred to as "the byproducts." This draft TSD utilizes existing and previously peer-reviewed information when assessing these byproducts. Although the risk estimates of the assessed byproducts are provided in this draft TSD, environmental and human health risk characterizations are detailed in Sections 4.3 and 5.3 of the 1,2-dichloroethane draft risk evaluation.

Approach

EPA used existing and previously peer-reviewed methodologies and assumptions to estimate inhalation and dermal occupational exposures associated with each byproduct (Section 4.1.1). For acute, intermediate, and chronic inhalation exposures, personal breathing zone (PBZ) inhalation monitoring data obtained through test orders were used. Specifically for 1,1-dichloroethane, the Agency used inhalation monitoring data submitted in response to a test order that measured 1,1-dichloroethane inhalation exposures during 1,2-dichloroethane manufacturing. For the other assessed byproducts trichloroethylene, perchloroethylene, methylene chloride, and carbon tetrachloride—the Agency applied surrogate inhalation monitoring data from the 1,2-dichloroethane test order. This approach follows the methodology outlined in the *Draft Risk Evaluation for 1,2-Dichloroethane* (U.S. EPA, 2025). Dermal exposures were modeled using the Dermal Exposure to Volatile Liquids Model, consistent with the Risk Evaluation for 1,1-Dichloroethane (U.S. EPA, 2025, 11151777) and based on values and assumptions from previously published chemical-specific risk evaluations (listed in Section 1.2). EPA assessed dermal exposures to unpurified 1,2-dichloroethane (considered a low-end exposure estimate due to lower concentrations of the byproducts in the process stream) as well as light- and heavy-end liquid streams (considered a high-end exposure estimate due to higher concentrations of the byproducts in the process stream). These concentration estimates were provided by the Vinyl Institute (Table 4-11). The exposure estimates were then used to assess occupational risk for each of the assessed byproducts (see Section 6.1).

EPA used 1,2-dichloroethane reported release data obtained from the Toxic Release Inventory (TRI), National Emissions Inventory (NEI), and Discharge Monitoring Report (DMR) databases, in conjunction with concentrations of byproducts in the 1,2-dichloroethane product streams provided by industry in several public comments to quantitatively estimate the environmental releases for each assessed byproduct for the 1,2-dichloroethane Manufacturing condition of use (COU) (Section 2.1.2). To determine expected exposures and associated risks from byproducts to the general population, estimated environmental releases for each assessed byproduct were compared to reported releases for

¹ TSCA section 4(a)(2)(A)(i) allows the EPA to impose testing requirements via "rule, order, or consent agreement" whenever new information "is necessary" in order to perform a risk evaluation (15 U.S.C. 2603(a)(2)(A)(i)). The Agency issued a test order for 1,2-dichloroethane on January 14, 2021; see https://www.epa.gov/sites/default/files/2021-01/documents/tsca_section_4a2_order_for_12-dichloroethane_on_ecotoxicity_and_occupational_exposure_0.pdf (accessed October 21, 2025). EPA also received inhalation monitoring data from the test order submission for 1,1-dichloroethane manufactured as a byproduct in the manufacture of 1,2-dichloroethane (Stantec ChemRisk, 2023).

- the Manufacturing COU in the previously published chemical-specific risk evaluations and the *Draft*
- 313 TSCA Screening Level Approach for Assessing Ambient Air and Water Exposures to Fenceline
- 314 Communities and fenceline technical support document for each chemical (also called the "fenceline
- analyses"; see Section 1.2 for the list of the support documents). The Agency also used these estimated
- environmental releases of byproducts (Section 2.1.2) to model inhalation exposures to the general
- 317 population residing in the vicinity of 1,2-dichloroethane manufacturing facilities using the Human
- Exposure Model (HEM), to further refine this assessment (Section 4.1.2).

319 320

321

322

323 324

325

326

327

328 329

330

Through the National Pollutant Discharge Elimination System (NPDES), EPA identified one facility that manufactures and releases 1,2-dichloroethane and assessed byproducts as evidence of possible concurrent byproduct formation and release. The Agency assessed each of the estimated byproduct chemical releases assuming the same percentages within the purified process stream also occur in the facility's wastewater prior to treatment. Wastewater treatment efficiency for each byproduct was applied before estimating the amount of byproducts discharge to the receiving water body. The estimated byproduct concentrations in the receiving water body were used to assess aquatic species exposures. In addition, byproduct concentrations in the receiving water body were used to estimate general population exposures through ingestion of fish caught in the receiving water body and incidental oral and dermal exposures through swimming in the same water body. EPA conducted a screening assessment for drinking water exposures and confirmed that exposures to infants drinking water in formula did not result in risks below the benchmark range of 1×10^{-6} to 1×10^{-4} .

331332333

Risk to terrestrial species was assessed based on the prior risk evaluations for the byproducts and the physical and chemical and fate properties of each chemical.

334335336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351 352

353

Conclusions

Estimated releases of each of the assessed byproducts are significantly lower when compared to their reported releases for the Manufacturing COU in the corresponding final risk evaluations and fenceline analyses. Trichloroethylene presents a chronic non-cancer inhalation margin of exposure (MOE) below the benchmark for operators and laboratory technicians at high-end exposures (see Table 6-4). Carbon tetrachloride presents a chronic non-cancer MOE below the benchmark and cancer MOE above the benchmark for operators, maintenance technicians, laboratory technicians, and occupational non-users (ONUs) at high-end inhalation exposures. Additionally, a cancer MOE above the benchmark for logistics technicians at high-end inhalation exposures and dermal exposures at central tendency for workers was identified (see Table 6-4). The high-end monitoring data is a more representative and appropriate exposure estimate for a frequent, repeated inhalation exposure (i.e., chronic) for the workers and ONU exposure groups. As described in Section 4.1.1.1, because ONUs do not directly handle the chemical they are expected to have lower dermal exposures through contact with liquids or solids. No risks were identified for other byproduct chemicals (Section 6.1.5). No non-cancer MOE estimates below benchmark and no cancer estimates above benchmark are expected for the general population from releases to air, water, and land from the assessed byproducts as discussed in Section 6.2. Exposure is not expected to exceed hazard benchmarks for aquatic or terrestrial species from releases to air, water, and land from the assessed byproducts, as discussed in Section 3.3.

1 INTRODUCTION

1.1 Overview

1,2-Dichloroethane (CASRN 107-06-2) is a high-priority chemical undergoing the Toxic Substances Control Act (TSCA) risk evaluation process for existing chemicals as amended by the 2016 Frank R. Lautenberg Chemical Safety for the 21st Century Act. Also known as ethylene dichloride, 1,2-dichloroethane is a colorless, oily liquid with a chloroform-like odor. It is soluble in water and is miscible in most organic solvents. 1,2-Dichloroethane is a volatile, synthetic chemical that is used primarily in the synthesis of vinyl chloride. It is included in the TSCA Inventory reported under the Chemical Data Reporting (CDR) rule and has a total, non-confidential production volume (PV) in the United States between 30 to 40 billion pounds (lb) annually per the 2020 CDR reporting period (U.S. EPA, 20251).

364 365 366

367368

369

370

371

372

373

374

375

376

377

378

379

380

381 382

383

354

355

356 357

358

359

360

361 362

363

For the 1,2-dichloroethane draft risk evaluation, the Domestic manufacture COU addresses manufacturing or production of 1,2-dichloroethane within the United States, including the manufacturing of 1,2-dichloroethane as a byproduct. The Domestic manufacture COU covers both intentional manufacturing of 1,2-dichloroethane and unintentional manufacturing where 1,2dichloroethane is produced as a byproduct during another chemical process (see *Draft Release* Assessment for 1,2-Dichloroethane (U.S. EPA, 2025g)). At a typical manufacturing facility, 1,2dichloroethane can be manufactured by the vapor- or liquid-phase chlorination of ethylene. Byproducts can also be formed during the manufacture of 1,2-dichloroethane. For the purposes of the draft 1,2dichloroethane risk evaluation, these byproducts include 1,1-dichloroethane (CASRN 75-34-3), trichloroethylene (CASRN 79-01-6), perchloroethylene (CASRN 127-18-4), methylene chloride (CASRN 75-09-2), and carbon tetrachloride (CASRN 56-23-5) manufactured during the 1,2dichloroethane Manufacturing COU. Note that the risk evaluation does not include the manufacture of 1,1,2-trichloroethane (CASRN 79-00-5) and trans-1,2-dichloroethylene (CASRN 156-60-5). These chemicals are also byproducts produced during the manufacture of 1,2-dichloroethane and EPA has decided that those exposures will be assessed in the forthcoming risk evaluations for 1,1,2trichloroethane and trans-1,2-dichloroethylene, respectively.² In this TSD and the draft 1,2dichloroethane risk evaluation, the five byproducts EPA is evaluating are collectively referred to as "the byproducts." In this draft TSD, the Domestic manufacture COU is the only COU addressing production of byproducts.

384 385 386

387

388

389

390

EPA previously announced in the *Final Scope of the Risk Evaluation for 1,2-Dichloroethane; CASRN 107-06-2* (also referred to as the "final scope document" or "final scope") (<u>U.S. EPA, 2020f</u>)—and in several of the finalized risk evaluations for the byproducts—that risks from the manufacture of these other chemicals as byproducts during the manufacture of 1,2-dichlorethane will be assessed as part of the 1,2-dichloroethane risk evaluation. This TSD presents the preliminary analysis of these byproducts.

391 392

393

394

395

1.2 Byproducts Assessment Scope

This draft TSD evaluates exposures and associated risks to the assessed byproducts to (1) workers via inhalation and dermal routes; (2) the general population residing in the vicinity of 1,2-dichloroethane manufacturing facilities, via inhalation, oral, and dermal routes; and (3) aquatic and terrestrial ecological receptors. This TSD utilizes physical and chemical properties and fate data, environmental and human

² Hazards values for these chemicals are still under review and will be part of the forthcoming draft risk evaluations for each of these chemicals.

- health hazard data, as well as data such as releases from the following EPA risk evaluations and related documents:
- Draft Chemistry, Fate, and Transport Assessment for 1,2-Dichloroethane (<u>U.S. EPA, 2025e</u>)
- Draft Release Assessment for 1,2-Dichloroethane (<u>U.S. EPA, 2025g</u>)
- Risk Evaluation for 1,1-Dichloroethane (U.S. EPA, 2025n)
 - Risk Evaluation for Carbon Tetrachloride (U.S. EPA, 2020g)
 - Risk Evaluation for Methylene Chloride (U.S. EPA, 2020h)
 - Risk Evaluation for Perchloroethylene (U.S. EPA, 2020i)
 - Risk Evaluation for Trichloroethylene (U.S. EPA, 2020j)
 - Carbon Tetrachloride: Fenceline Technical Support Ambient Air Pathway (U.S. EPA, 2022a)
- Carbon Tetrachloride: Fenceline Technical Support Water Pathway (U.S. EPA, 2022b)
 - Methylene Chloride: TRI Release Data Sensitivity Analysis (U.S. EPA, 2022d)
 - Methylene Chloride: Fenceline Technical Support Water Pathway (U.S. EPA, 2022c)
 - Perchloroethylene: Fenceline Technical Support Air Pathway (U.S. EPA, 2022e)
 - Perchloroethylene: Fenceline Technical Support Water Pathway (U.S. EPA, 2022f)
 - Trichloroethylene (TCE): Fenceline Technical Support Ambient Air Pathway (<u>U.S. EPA</u>, 2022g)
 - Trichloroethylene: Fenceline Technical Support Water Pathway (U.S. EPA, 2022h).
- In this draft TSD, EPA quantitatively estimates environmental releases to air and water associated with
- 415 the assessed byproducts and compares these estimates to the reported release ranges for the
- 416 Manufacturing COU in the previously published fenceline analyses (see preceding list). The Agency
- acknowledges that releases of assessed byproducts evaluated herein were excluded from the scopes of
- 418 the final risk evaluations for these byproducts themselves and that not all 1,2-dichlorethane
- 419 manufacturing facilities were included in the fenceline modeling. Among the fenceline TSDs, only
- 420 Carbon Tetrachloride: Fenceline Technical Support Ambient Air Pathway (U.S. EPA, 2022a) reports
- ambient air releases explicitly labeled as "byproducts"; however, it is unclear whether these reported
- releases are solely from the 1,2-dichloroethane Manufacturing COU as there may be other chemical
- processes that produce carbon tetrachloride as a byproduct. In this draft TSD, EPA did a refined full
- analysis using HEM and the estimated exposure and associated risks aligned with fenceline results for
- facilities reporting releases of carbon tetrachloride as a byproduct.

1.2.1 1,2-Dichloroethane Manufacturing COU Process Description

1,2-Dichloroethane may be produced by the vapor-phase chlorination of ethylene (oxychlorination) or by the liquid-phase chlorination of ethylene (direct chlorination) (Reed, 2000; Carroll et al., 1998; NTP, 1991; UNEP, 1988; NIOSH, 1976). In practice, both methods are often applied in tandem in manufacturing facilities as part of an integrated balanced process (Stantec ChemRisk, 2024).

430 431

426

427

428

429

401

402

403

404

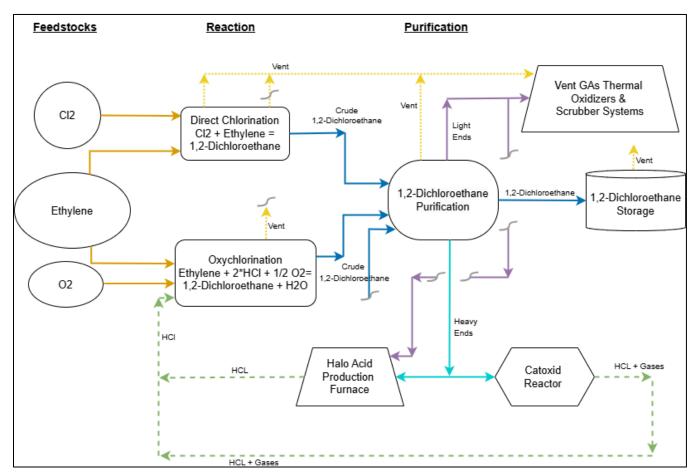
405

407

408

409

410 411


412

413

- The process begins with the reaction feedstocks, oxygen, ethylene and chlorine transferred to the reactor
- 433 (see Figure 1-1). Reaction to form 1,2-dichloroethane occurs via either the oxychlorination or direct
- chlorination processes. In addition to producing the product 1,2-dichloroethane, several chemicals are
- also formed as byproducts, primarily during the oxychlorination process (EPA-HQ-OPPT-2018-0421-
- 436 0027). The 1,2-dichloroethane reaction product is then purified by removing the byproducts from the
- finished 1,2-dichloroethane product via a separation process using different boiling points of the
- chemicals (distillation). There are three liquid product streams generated from the purification process:
- 439 (1) the purified 1,2-dichloroethane product stream, (2) the "light-ends" byproducts stream, and (3) the
- "heavy-ends" byproducts stream. The purified 1,2-dichloroethane product stream, close to 100 percent
- 441 1,2-dichloroethane, is then transferred to storage and from there distributed in commerce or processed as

a reactant most often to produce vinyl chloride. Trace amounts of the byproducts can still be present within the purified 1,2-dichloroethane product stream and final 1,2-dichloroethane products (EPA-HQ-OPPT-2018-0421-0027; EPA-HQ-OPPT-2018-0427-0026). See Table 1-1 for more details on stream concentrations. Light-ends liquid streams are the more volatile fractions in the mixture. Heavy-ends liquid streams are the less volatile, higher boiling point fractions. The percentage of byproducts found in both the light- and heavy-ends liquid streams might vary depending on the specific configuration of the oxychlorination unit, including differences in the catalyst type, operating pressures and temperatures, air or oxygen feed, and purification tower design (EPA-HQ-OPPT-2018-0421-0027).

Once separated from purified 1,2-dichloroethane, most facilities process the light- and heavy-ends liquid byproduct streams as a reactant to produce hydrochloric acid (HCl) in HCl furnaces or dispose of the byproduct streams, including in an incinerator or thermal oxidizer. The byproduct streams may also be processed as reactants in co-located perchloroethylene units, disposed of by thermal oxidation, or processed as reactants in the Catoxid process to manufacture anhydrous HCl, which is processed as a feedstock for the oxychlorination process. If co-located with another organochloride production unit, heavy-ends may be processed as a feedstock in units designed to produce commercial 1,1,2-trichloroethane. 1,2-Dichloroethane and vinyl chloride manufacturing processes often occur in integrated facilities designed with balanced processes that allow for efficient recovery and further processing of byproducts.

Figure 1-1. 1,2-Dichloroethane Combined Vinyl Chloride Process Diagram Source: Adapted from data provided by the Vinyl Institute (EPA-HQ-OPPT-2018-0427-0024).

The reaction process produces water which is separated from the product stream. Water may also be used in scrubbers for treatment of stack air releases. During the direct chlorination process, unpurified 1,2-dichloroethane from the reactor is washed with water and caustic soda (sodium hydroxide; NaOH) to remove dissolved HCl and chlorine gas (Cl₂) before being transferred to in-process storage. This waste wash water can be then sent to a wastewater stripper. Wastewater is sent to wastewater treatment before discharge. Air streams vented from various process equipment are connected through piping to thermal oxidizers for combustion which can be a source of stack air emissions. Fugitive emissions are monitored and controlled through a facility's LDAR (Leak Detection and Repair) program. If leaks are detected, steps are initiated to isolate the source of the leak and make repairs.

The 1,2-dichloroethane manufacturing process, including the five assessed byproducts, is a continuous process, operating 24 hours a day, 7 days per week. The plants operate in 12-hour work shifts. Exposure groups identified in the 1,1-dichloroethane and 1,2-dichloroethane Test Order Summary Reports (Stantec ChemRisk, 2024, 2023) include operators/process technicians, maintenance technicians, logistic/distribution technicians and laboratory technicians. Although task frequency may vary, tasks performed daily include collecting samples, routine maintenance, container transfers, railcar loading and offloading, and sample analysis.

1.2.2 Estimated Byproducts Production Volumes Resulting from Manufacturing of 1,2-Dichloroethane

The production volume for each of the assessed byproducts resulting from 1,2-dichloroethane manufacturing is estimated based on the reported production volume of 1,2-dichloroethane and the weight percent of the byproduct in the non-purified 1,2-dichloroethane product stream provided by industry.

1,2-Dichloroethane had a reported CDR, non-confidential, total PV in 2019 between 30 and 40 billion pounds (lb). Vinyl Institute reported that approximately 1.25 lb of mixed chlorinated organic liquid byproducts are unintentionally produced per 100 lb of 1,2-dichloroethane manufactured. Roughly one-fourth are produced as light-ends and three-fourths as heavy-ends, in addition to a small amount of some non-condensable gases (EPA-HQ-OPPT-2018-0421-0027). As noted above, actual composition (weight %) of byproducts in product streams for a given 1,2-dichloroethane manufacturing process will vary by facility. EPA used information provided from the Vinyl Institute in several public comments (EPA-HQ-OPPT-2018-0421-0027; EPA-HQ-OPPT-2016-0732-0013; EPA-HQ-OPPT-2019-0500-0101) to estimate the maximum weight percent of each byproduct in various product streams to use in the draft risk evaluation (Table 1-1). The information in Table 1-1 was used to evaluate exposures to byproducts for the Manufacturing COU and represents maximum concentrations of byproducts that would be found in any 1,2-dichloroethane manufacturing facility. 1,1,2-Trichloroethane and *trans*-1,2-dichloroethylene are not assessed in the draft risk evaluation but are included in Table 1-1 for context; that is, to show 100 percent total of all chemicals within a product stream.

Table 1-1. Maximum Weight Percent of Byproducts in Product Streams During the Manufacture of 1,2-Dichloroethane

Chemical	Percent Non-Purified Product Stream	Percent Purified Product Stream	Percent Heavy- Ends Liquid ^c	Percent Light- Ends Liquid ^c
1,2-Dichloroethane	98.94	100	27.7	30.7
1,1-Dichloroethane	0.291	0.1	21	30
1,1,2-Trichloroethane ^a	0.472	0.02	50	0.1
<i>trans</i> -1,2-Dichloroethylene ^a	0.028	0.1	0	9

Chemical	Percent Non-Purified Product Stream	Percent Purified Product Stream	Percent Heavy- Ends Liquid ^c	Percent Light- Ends Liquid ^c
Trichloroethylene	0.0035	0 b	0.23	0.0999 ^d
Perchloroethylene	0.015	0 b	1.1	0
Methylene chloride	0.0999 ^e	0 b	0	0 d
Carbon tetrachloride	0.15	0 b	0	30

^a 1,1,2-Trichloroethane and *trans*-1,2-dichloroethylene are not assessed in this TSD or the draft risk evaluation but are included in the table to show 100 percent total of all chemicals within a product stream.

EPA assumed approximately 1.25 lb of byproducts are produced per 100 lb of 1,2-dichloroethane (data provided by the Vinyl Institute) (EPA-HQ-OPPT-2018-0421-0027). Using this information, and the 1,2-dichloroethane PV reported as 30 to 40 billion lb, the Agency estimated that 375 to 500 million lb of byproducts are produced each year. Using percent weights of byproducts for the non-purified product stream shown in Table 1-1, as well as the annual byproducts PV range of 375 to 500 million lb, EPA estimated the annual PV range for each evaluated byproduct shown in Table 1-2.

Table 1-2. Estimated Annual Production Volume Range of Each Byproduct^a

Tubic I 20 Libermatea	TIMILUMI I TOMMCHOM	voiding range of Each By product			
Chemical	Percent Non- Purified Product Stream	Lower-End Production Volume ^b (Million lb/yr)	Higher-End Production Volume ^b (Million lb/yr)		
1,1-Dichloroethane	0.291	88.2	118		
Trichloroethylene	0.0035	1.06	1.41		
Perchloroethylene	0.015	4.55	6.06		
Methylene chloride	0.0999 ^c	30.3	40.4		
Carbon tetrachloride	0.15	45.5	60.6		

^a Annual production volumes estimated using percent weights of byproducts for the non-purified product stream provided by the industry (also shown in Table 1-1) and the annual 1,2-dichloroethane PV range of 30 to 40 billion lb. ^b Lower- and higher-end PVs assume 1,2-dichloroethane PV of 30 and 40 billion lb per year, respectively. ^c 0.0999% assumed when "ppm levels"/"quantities" reported.

516 517 518

519

520521

522

523

524

507508

509

510511

512513

514515

The Vinyl Institute stated that not all facilities manufacturing 1,2-dichloroethane produce all these byproducts and that some facilities are more efficient than others due to different methods of handling byproducts production (*e.g.*, some may dispose of or break down all the byproducts while others have them distilled; EPA-HQ-OPPT-2018-0427-0068). Some facilities may not normally produce byproducts at all due to the sole use of the direct chlorination process during 1,2-dichloroethane manufacture. However, because the information provided by the Vinyl Institute did not identify individual facilities where byproduct production differs or how it differs, in this draft TSD, EPA assumes that all of the 1,2-dichloroethane production volume contributes to the production of byproducts.

^b No information provided; assumed 0.

^c For heavy- and light-liquid ends, the highest concentration of byproduct reported was applied with the remaining percent assumed to be 1,2-dichloroethane. Light-ends liquid streams are the more volatile fractions in the mixture, typically derived from the initial stages of refining process and known for their lower boiling points. Heavy-ends liquid streams are the less volatile, higher boiling point fractions obtained towards the later stages of the refining process.

^d 0.0999% assumed when "ppm levels"/"quantities" was reported.

525 **2 RELEASES AND CONCENTRATIONS OF THE BYPRODUCTS IN**526 THE ENVIRONMENT

2.1 Environmental Releases

2.1.1 Number of Facilities

As mentioned above, for this assessment, EPA assumes all facilities that manufacture 1,2-dichloroethane are producing the assessed byproducts. In the 2020 CDR (*i.e.*, 2016–2019 reporting period), 17 sites reported the manufacture of 1,2-dichloroethane (Table 2-1). Facilities reported annual production volumes ranging from approximately 53,000 (*e.g.*, when manufactured as a byproduct) to 6 billion lb (*e.g.*, when manufactured as a product) with a total production volume of 30 billion to less than 40 billion lb nationwide (U.S. EPA, 2020a).

Table 2-1. Facilities with 1,2-Dichloroethane Manufacturing Releases Reported in 2020 CDR

Name	Location
Westlake Vinyls, Inc.	Calvert City, KY
Axiall, LLC	Westlake, LA
Axiall, LLC	Plaquemine, LA
Blue Cube Operations, LLC	Plaquemine, LA
Buckman Laboratories, Inc.	Cadet, MO
Eagle US 2, LLC	Westlake, LA
Formosa Plastics Corporation	Baton Rouge, LA
Formosa Plastics Corporation	Point Comfort, TX
Geon Oxy Vinyl	Laporte, TX
Lanxess Corporation	North Charleston, SC
Occidental Chemical Corporation	Convent, LA
Occidental Chemical Corporation	Geismar, LA
Olin Blue Cube	Freeport, TX
Oxy Vinyls LP	Deer Park, TX
OxyChem Ingleside Plant	Gregory, TX
Shintech	Plaquemine, LA
Westlake Vinyls Company, LP	Geismar, LA
Source: (<u>U.S. EPA, 2020a</u>)	

538539

540

541

527

528

529

530

531

532533

534

535

536

537

EPA identified release data for all 17 sites reporting to 2020 CDR (Table 2-1) in TRI (2015–2020),

DMR (2015–2020), and NEI (2014 and 2017), and also identified 25 additional manufacturing sites

from these databases. These additional facilities were not present in the CDR database. Their absence

from the CDR was likely due to the facility production volumes of 1,2-dichloroethane being below the

- 543 CDR reporting threshold of 25,000 lb. In total, EPA identified 42 manufacturing sites. See *Draft*
- Number of Sites for 1,2-Dichloroethane (U.S. EPA, 2025j) for a list of all facilities mapped to
- manufacturing that reported to CDR, TRI, DMR, and/or NEI, from 2015 to 2020. Since 1,2-
- dichloroethane is a large-PV commodity chemical, the Agency assumes 350 days per year of operation
- as discussed in Section 2.3.2 of the *Draft Environmental Release Assessment for 1,2-Dichloroethane*
- 548 (U.S. EPA, 2025g). This assumes that (1) the plant runs 7 days per week and 50 weeks per year (with 2
- weeks down for facility planned period of non-production to perform maintenance, inspection, repair,
- and upgrade activities); and (2) the plant is always producing the chemical. This assumption is
- consistent with information provided by the Vinyl Institute and in NEI. In the Test Order Summary
- Report, manufacturers of 1,2-dichloroethane reported operating between 360 and 365 days per year, and
- sites identified as manufacturers in NEI reported 364 to 365 days per year of operation (Stantec
- 554 ChemRisk, 2024).

2.1.2 Environmental Release Assessment

2.1.2.1 Environmental Release Assessment Methodology

EPA obtained reported releases of 1,2-dichloroethane from manufacturing facilities from the 2015 to 2020 DMR and TRI as well as the 2014 and 2017 NEI. The 50th and 95th percentiles of reported releases were calculated to obtain the central tendency and high-end, respectively. Table 2-2 provides a summary of reported releases of 1,2-dichloroethane to surface water and ambient air (fugitive and stack releases). EPA also conducted a preliminary review of 2021 to 2025 DMR, 2021 to 2023 TRI, and 2020 NEI data, which indicated that releases are generally consistent with those from previous years, with the exemption of land releases, which are higher and largely driven by one facility that did not report in prior years. For more information about the methodology of estimating these releases, see Section 2.3 of the *Draft Environmental Release Assessment for 1,2-Dichloroethane* (U.S. EPA, 2025g).

565 566 567

568

569

570571

572

573

555

556

557

558

559

560

561562

563

564

Next, EPA assumed that the concentrations of the byproduct chemicals in the releases were equal to their concentrations in the non-purified 1,2-dichloroethane product stream (these concentrations are presented in Table 1-1. With this assumption in mind, the Agency estimated the releases of each byproduct chemical from each 1,2-dichloroethane manufacturing facility by multiplying the 1,2-dichloroethane releases summarized in Table 2-2 with the "Percent Non-Purified Product Stream" concentrations presented in Table 1-1. For the water pathway, EPA refined this assumption using chemical-specific wastewater treatment efficiency (see *Draft Byproducts Releases for 1,2-Dichloroethane* (U.S. EPA, 2025c) for all calculations).

574575576

577578

579

580

581 582

583

Although release databases such as TRI, NEI, and DMR may report releases of the byproduct chemicals from 1,2-dichloroethane manufacturing facilities, these reported releases could not be used for this assessment. At many of these facilities, multiple processes are occurring unrelated to the manufacture of 1,2-dichloroethane that might result in the production of the byproduct chemicals. Even in cases when it can be determined that the chemical is present on-site as a byproduct, it could not be confirmed whether the reported releases are solely from the 1,2-dichloroethane manufacturing portion of the facility. This is why the Agency chose to estimate releases using the 1,2-dichloroethane releases and concentration data as described at the beginning of this section.

Table 2-2. Summary of Reported Environmental Releases From 1,2-Dichloroethane

Manufacturing Facilities^a

Environmental	Number of	Yearly Release (kg/yr)		Number	Daily Release (kg/site-day)		C(-)
Media	Facilities ^b	Central Tendency	High-End	of Release Days	Central Tendency	High-End	Source(s)
Surface water	34	0.8	51		2.4E-03	0.15	TRI/DMR
Landfill	14	2.3	247		6.5E-03	0.71	TRI
Fugitive air	22	3,528	1.6E04	350	10	46	TRI
Stack air	23	1,249	1.2E04	330	3.6	35	TRI
Fugitive air	20	2,970	1.0E04		8.5	29	NEI
Stack air	22	903	6,303		2.6	18	NEI

NEI = National Emissions Inventory; TRI = Toxic Release Inventory

2.1.2.2 Sources of Environmental Releases

EPA collected 1,2-dichloroethane facility reported release data from TRI, NEI, and DMR databases. As discussed in Section 1.2.1, potential sources of water releases from 1,2-dichloroethane manufacturing include equipment and transport container cleaning, aqueous wastes from scrubbers and decanters, reaction water, process water from washing intermediate products, and trace water accumulated in storage tanks. Wastewater is generated during the direct chlorination process, where unpurified 1,2-dichloroethane from the reactor is washed with water and caustic soda NaOH to remove dissolved HCl and chlorine (Cl₂) before being transferred to in-process storage. Additional wastewater is produced during the oxychlorination process for manufacturing 1,2-dichloroethane, where it is separated from the product stream during distillation. Potential sources of air emissions include both stack and fugitive releases from process vents during operations; vapor displacement during transfer operations, emissions from storage vessels, piping, and equipment leaks (*e.g.*, from pumps, valves, connectors, sampling ports, compressors, and pressure relief devices); as well as from wastewater handling (EPA-HQ-OPPT-2018-0427).

2.1.2.3 Environmental Release Assessment Results

Central tendency and high-end releases for each assessed byproduct were estimated using the method summarized in Section 2.1.2.1 and are provided in Table 2-3. The central tendency and high-end values were obtained by calculating the 50th and 95th percentiles, respectively, of the resulting releases for each byproduct across the 1,2-dichloroethane manufacturing facilities. For more information on release estimates see *Draft Byproducts Releases for 1,2-Dichloroethane* (U.S. EPA, 2025c).

^a EPA used 2015–2020 DMR and TRI reported releases as well as 2014 and 2017 NEI manufacturing reported releases for 1,2-dichloroethane to calculate the 50th and 95th percentiles of releases to obtain the central tendency and high-end, respectively. The full inputs and results are presented in the *Draft Environmental Release Assessment for 1,2-Dichloroethane* (U.S. EPA, 2025g).

^b A single facility may release to multiple environmental media and/or may be listed in both NEI and TRI air releases.

Table 2-3. Summary of Estimated Environmental Releases of Byproducts from 1,2-Dichloroethane $\underline{\text{Manufacturing Facilities}^a}$

607 608

Chemical/	No.	Annual Release (kg/site-yr)		Type of Discharge, Air Emission, or Transfer for	Daily Release (kg/site-day)	
Byproduct	Facilities ^b	Central Tendency	High- End	Disposal ^e	Central Tendency	High- End
	34	1.4E-02	1.3	Surface water (TRI/DMR)	4.1E-05	3.8E-03
	2	1.2E-02	2.0E-02	POTW (TRI)	3.4E-05	5.7E-05
	3	0.68	1.3	WWT (TRI)	2.0E-03	3.7E-03
1,1-Dichloroethane	13	9.3E-03	0.96	Landfill (TRI)	2.8E-05	2.8E-03
1,1-Dicilioroculane	23	4.3	36	Stack air (TRI)	1.2E-02	0.10
	22	11	48	Fugitive air (TRI)	3.1E-02	0.14
	22	2.6	18	Stack air (NEI)	7.5E-03	5.2E-02
	20	9.1	30	Fugitive air (NEI)	2.6E-02	8.6E-02
	34	1.7E-04	1.6E-02	Surface Water (TRI/DMR)	5.0E-07	4.5E-05
	2	1.4E-04	2.4E-04	POTW (TRI)	4.1E-07	6.8E-07
	3	8.2E-03	1.6E-02	WWT (TRI)	2.4E-05	4.5E-05
Trichloroethylene	13	1.2E-04	1.2E-02	Landfill (TRI)	3.3E-07	3.3E-05
Tricinoroemyiene	23	5.2E-02	0.43	Stack air (TRI)	1.5E-04	1.2E-03
	22	0.13	0.64	Fugitive air (TRI)	3.7E-04	1.8E-03
	22	3.2E-02	0.22	Stack air (NEI)	9.0E-05	6.3E-04
	20	0.11	0.36	Fugitive air (NEI)	3.1E-04	1.0E-03
	34	7.4E-04	6.8E-02	Surface water (TRI/DMR)	2.1E-06	1.9E-04
	2	6.1E-04	1.0E-03	POTW (TRI)	1.7E-06	2.9E-06
	3	3.5E-02	6.8E-02	WWT (TRI)	1.0E-04	1.9E-04
Perchloroethylene	13	5.0E-04	5.0E-02	Landfill (TRI)	1.4E-06	1.4E-04
reicinoroeuryiene	23	0.22	1.9	Stack air (TRI)	6.3E-04	5.3E-03
	22	0.55	2.7	Fugitive air (TRI)	1.6E-03	7.8E-03
	22	0.14	0.95	Stack air (NEI)	3.9E-04	2.7E-03
	20	0.47	1.6	Fugitive air (NEI)	1.3E-03	4.4E-03
	34	5.0E-03	0.45	Surface Water (TRI/DMR)	1.4E-05	1.3E-03
	2	4.1E-03	6.8E-03	POTW (TRI)	1.2E-05	1.9E-05
	3	0.24	0.45	WWT (TRI)	6.7E-04	1.3E-03
Methylene chloride	13	3.3E-03	0.33	Landfill (TRI)	9.5E-06	9.4E-04
	23	1.5	12	Stack air (TRI)	4.2E-03	3.5E-02
	22	3.7	18	Fugitive air (TRI)	1.0E-02	5.2E-02
	22	0.90	6.3	Stack air (NEI)	2.6E-03	1.8E-02
	20	3.1	10	Fugitive air (NEI)	8.9E-03	3.0E-02

Chemical/	No. Facilities b	Annual Release (kg/site-yr)		Type of Discharge, ^c Air Emission, ^d or Transfer for	Daily Release (kg/site-day)	
Byproduct		Central Tendency	High- End	Disposal ^e	Central Tendency	High- End
	34	7.4E-03	0.68	Surface water (TRI/DMR)	2.1E-05	1.9E-03
	2	6.1E-03	1.0E-02	POTW (TRI)	1.7E-05	2.9E-05
	3	0.35	0.68	WWT (TRI)	1.0E-03	1.9E-03
Carbon	13	5.0E-03	0.50	Landfill (TRI)	1.4E-05	1.4E-03
tetrachloride	23	2.2	19	Stack air (TRI)	6.3E-03	5.3E-02
	22	5.5	27	Fugitive air (TRI)	1.6E-02	7.8E-02
	22	1.4	9.5	Stack air (NEI)	3.9E-03	2.7E-02
	20	4.7	16	Fugitive air (NEI)	1.3E-02	4.4E-02

 $DMR = Discharge\ Monitoring\ Report;\ NEI = National\ Emissions\ Inventrory;\ POTW = publicly\ owned\ treatment$ works; $TRI = Toxic\ Release\ Inventory;\ WWT = wastewater\ treatment$

2.1.3 Release Comparison

Table 2-4 shows reported releases for the Manufacturing COU in the final risk evaluations and fenceline analyses for each byproduct chemical. EPA acknowledges that releases of assessed byproducts due to the manufacture of 1,2-dichloroethane were excluded from the scopes of their respective final risk evaluations, and that not all 1,2-dichlorethane manufacturing facilities were included in the fenceline modeling, since the fenceline modeling only would have included those facilities that report the respective chemical. Among the fenceline TSDs, only *Carbon Tetrachloride: Fenceline Technical Support – Ambient Air Pathway* (U.S. EPA, 2022a) reports air releases explicitly labeled as "byproducts"; however, it is unclear whether these reported air releases are solely from the 1,2-dichloroethane manufacturing process (other co-located manufacturing processes at a given site may also result in carbon tetrachloride air releases, as observed from EPA's review of facilities' operating permits).

As expected, releases presented in individual chemical risk evaluations for the Manufacturing COU (Table 2-4) are higher when compared to estimated releases of the chemical produced as a byproduct (Table 2-3). For example, central tendency surface water releases are between two and five orders of magnitude greater when the chemical is manufactured intentionally as opposed to when manufactured as a byproduct of 1,2-dichloroethane manufacturing. For central tendency fugitive air releases from TRI, the range of release discrepancies varied, with byproducts releases and manufacturing releases ranging from being similar to differing by three orders of magnitude. Across all but one of the assessed byproducts (1,1-dichloroethane), the estimated releases for these chemicals when produced as a byproduct were lower.

^a Daily and annual releases were estimated using facility-reported releases of 1,2- dichloroethane Manufacturing COU (Table 2-2) and concentrations of byproducts provided by industry (Table 1-1) (see Section 2.1.2.1). EPA used 2015–2020 DMR and TRI reported releases as well as 2014 and 2017 NEI manufacturing reported releases for 1,2-dichloroethane to estimate the releases per facility of each byproduct. The 50th and 95th percentiles of byproduct releases were then calculated to obtain the central tendency and high-end, respectively. The full inputs and results are presented in the *Draft Byproducts Releases for 1,2-Dichloroethane* (U.S. EPA, 2025c).

 $[\]bar{b}$ Not all facilities reported releases for all 6 years.

^c Includes water discharges to surface water, indirect discharge to POTWs, or non-POTW WWT.

^d Includes air emissions via fugitive air or stack air.

^e Includes transfer to surface impoundment, land application, or landfills.

Table 2-4. Annual Release of Chemicals From Their Manufacturing COU

631

632

633

634

635

636

637

638 639

640

Chemical	Estimated Release for Manufacturing (kg/site-yr) ^a		Estimated Fenceline Release for Manufacturing (kg/site-yr) ^a		Type of Discharge or Air Emission	Reference
	Central Tendency	High- End	Central Tendency	High-End	Emission	
	1.6	1,299	N/A^b	N/A ^b	Surface water	
1.1.0'.11	8.4	2,184	N/A ^b	N/A^b	Fugitive air (TRI)	
1,1-Dichloroethane	34	74	N/A ^b	N/A^b	Fugitive air (NEI)	<u>U.S. EPA (2025n)</u>
	45	499	N/A ^b	N/A^b	Stack air (TRI)	
	33	}	N/	\mathbf{A}^b	Stack air (NEI)	
	15	345	15	345	Surface water or POTW	<u>U.S. EPA (2022h)</u>
Trichloroethylene	_		448	7,070	Fugitive air (TRI)	U.S. EPA (2022g)
	_		9	966	Stack air (TRI)	U.S. EPA (2022g)
Perchloroethylene	5.1	17	5.1	17	Surface water or POTW	<u>U.S. EPA (2022f)</u>
	_		45	7,184	Fugitive air (TRI)	H.G. EDA (2022.)
	_		14	3,677	Stack air (TRI)	<u>U.S. EPA (2022e)</u>
	1.0	59	1.0	59	Surface water or POTW	<u>U.S. EPA (2022c)</u>
Methylene chloride	_	•	244	2,268	Fugitive air (TRI)	U.S. EPA (2022d)
	_		1,671	5,044	Stack air (TRI)	0.5. El A (2022u)
Carbon		115 ^c		115 ^c	Surface water or POTW	U.S. EPA (2022b)
tetrachloride	_	•	116	1,944	Fugitive air (TRI)	H.C. EDA (2022-)
	_		143	11,793	Stack air (TRI)	<u>U.S. EPA (2022a)</u>

NEI = National Emissions Inventrory; POTW = publicly owned treatment works; TRI = Toxic Release Inventory ^a The 50th and 95th percentiles of releases were calculated to obtain the central tendency and high-end, respectively. ^b N/A = Not applicable. A separate fenceline analysis was conducted only for the first 10 risk evaluations, addressing a prior decision to not assess certain exposure pathways (including, but not limited to, ambient air and ambient surface water) in the risk evaluation. For 1,1-dichloroethane, this TSD utilizes release data from the *Risk Evaluation* for 1,1-Dichloroethane (U.S. EPA, 2025n).

^c There are only two releases identified for the Manufacturing COU (0.23 and 115 kg/site-yr) for carbon tetrachloride. The 115 kg/site-yr release is presented here as the high-end value.

2.1.4 Weight of Scientific Evidence for Environmental Releases

EPA develops a conclusion on the weight of scientific evidence supporting the environmental release estimates based on the strengths, limitations, and uncertainties associated with the environmental release estimates. The conclusion is summarized using the following confidence descriptors: robust, moderate, slight, or indeterminate. EPA considers factors that increase or decrease the strength of the evidence supporting the release estimate—including quality of the data/information, applicability of the release data to the COU (including considerations of temporal relevance, locational relevance), and the representativeness of the estimate for the whole industry.

To assess the environmental releases of the byproducts from the manufacturing of 1,2-dichloroethane, EPA started by considering the releases of 1,2-dichloroethane from the Manufacturing COU. For the 1,2-dichloroethane Manufacturing COU, EPA relied on facility-specific release information to water and air as reported in TRI, NPDES permitted water releases as reported in DMR, and ambient air releases as reported in NEI.

 Water releases for 1,2-dichloroethane are assessed using reported releases from the 2015 to 2020 TRI and DMR. The primary strength of TRI data is that TRI compiles the best readily available facility-specific reported release data. DMR data are facility-specific reported monitoring and release data per NPDES permit requirements. The primary limitation is uncertainty in the accuracy of reported releases. Based on other reporting databases (CDR, NEI, etc.), there are six additional manufacturing sites that report releases to other media but do not report releases to water.

Air releases for 1,2-dichloroethane are assessed using reported releases from 2015 to 2020 TRI and 2014 and 2017 NEI. A strength of NEI data is that NEI captures additional sources that are not included in TRI due to reporting thresholds. Factors that decrease the overall confidence for these releases include the uncertainty in the accuracy of reported releases, and the limitations in representativeness to all sites because TRI and NEI might not capture all relevant sites. Based on other reporting databases (CDR, DMR, etc.), there are 17 additional manufacturing sites that report releases to other media but do not report releases to air. Additionally, EPA made assumptions on the number of operating days to estimate daily releases.

 In conclusion, although there is uncertainty of whether the databases capture all sites releasing to each medium, the 1,2-dichloroethane Manufacturing COU release data are rated high in systematic review and provide releases directly from a wide number of manufacturing facilities. Based on this information, EPA has concluded that the weight of scientific evidence for the 1,2-dichloroethane Manufacturing COU release data is moderate to robust and provides a plausible estimate of releases in consideration of the strengths and limitations of reasonably available data (see the *Draft Environmental Release Assessment for 1,2-Dichloroethane* (U.S. EPA, 2025g)).

 There is uncertainty in estimating releases of the assessed byproducts using the releases of 1,2-dichloroethane. Although each 1,2-dichloroethane manufacturing facility typically produces these byproducts, the quantities generated can vary due to differences in the manufacturing process. This assessment assumes that the byproducts are produced at each facility in the concentrations outlined in Table 1-1. The strength of this method is that these concentrations are provided by industry and represent actual concentrations that are known to occur within 1,2-dichloroethane manufacturing facilities and that estimated releases of each of the assessed byproducts are significantly lower when compared to their reported releases for the Manufacturing COU in the corresponding final risk evaluations and fenceline analyses.

Based on this information, EPA has concluded that the weight of scientific evidence for the release estimates of the byproducts produced during the 1,2-dichloroethane manufacturing process is moderate and provides a plausible estimate of releases in consideration of the strengths and limitations of reasonably available data.

2.2.1 Ambient Air Pathway

2.2.1.1 Comparison of Ambient Air Releases in Fenceline Analyses to Releases Calculated in this TSD

In this TSD, EPA compares the range of releases used in the fenceline analyses to byproduct releases calculated by multiplying the 1,2-dichloroethane releases from Manufacturing COU (Table 2-2) by the respective weight fraction in the non-purified product stream (Table 1-1). Table 2-5 shows the range of modeled releases in this TSD and the fenceline analysis for each byproduct (note that 1,1-dichloroethane was not assessed in a fenceline analysis). The maximum fenceline releases were higher than estimated maximum byproduct releases; however, the releases from the fenceline analyses for the Manufacturing COU are not necessarily directly comparable to those used in this draft TSD because not every facility manufacturing the assessed byproducts was modeled in the fenceline analyses. Therefore, the Agency also used estimated environmental releases of byproducts (Section 2.1.2) to model inhalation exposures to the general population residing in the vicinity of 1,2-dichloroethane manufacturing facilities to further refine this assessment.

For 1,1-dichloroethane, EPA compared releases calculated in this draft TSD to those used in the *Risk Evaluation for 1,1-Dichloroethane* (U.S. EPA, 2025n). The median facility releases for manufacturing facilities from the years analyzed in the 1,1-dichloroethane risk evaluation, 2015 to 2020, ranged from 1.96 to 4,550 lb/year. The range of releases calculated in this TSD range from 1.6×10^{-6} to 283 lb/year. The wide range in releases is due to each facility within the Manufacturing COU reporting its releases, which can vary due of differences in manufacturing processes and air emission controls.

Table 2-5. Range of Releases Used for Modeling of Ambient Air Concentrations in Fenceline Analyses for the Manufacturing COU and the Byproducts Assessment

Chemical/ Byproduct ^a	Range of Facility Releases Reported in Fenceline Analyses ^b (lb/year)	Range of Facility Releases of Byproducts Estimated in this TSD ^c (lb/year)
Trichloroethylene	0.25 to 24,500	9.2E-08 to 3.4
Perchloroethylene	0.79 to 66,000	3.9E-07 to 14
Methylene chloride	2.0E-02 to 37,100	2.6E-06 to 97
Carbon tetrachloride	2 to 44,733	3.94E-06 to 146

^a 1,1-Dichloroethane was not assessed in the Fenceline Analysis.

2.2.1.2 Ambient Air Concentrations Modeled by HEM

As stated previously, since the facilities covered by the Manufacturing COU in the fenceline analyses do not align with all of the 1,2-dichloroethane manufacturing facilities that release the assessed byproducts, EPA conducted additional modeling using HEM. EPA estimated ambient air concentrations of each byproduct based on the 2018 TRI reported releases of 1,2-dichloroethane for the Manufacturing COU using HEM. HEM also provides a more refined population analysis than the previous Integrated Indoor-

^b Minimum and maximum releases as reported by facilities to TRI for the years 2015–2020.

^c Releases were calculated by multiplying the 2018 TRI reported releases of 1,2-dichloroethane from Manufacturing COU, where available, by the associated percentage in Table 1-1. Where facilities did not report 1,2-dichloroethane releases in 2018, EPA used the highest reported releases from 2015–2020. The TRI reporting year of 2018 was used as it was the highest overall release year for the 2015–2020 reporting period used in this draft TSD and fenceline analyses. A preliminary review of 2021–2023 TRI data indicated that releases are generally consistent with those from previous years (2015–2020).

- Outdoor Air Calculator (<u>IIOAC</u>; accessed October 22, 2025) and American Meteorological
 Society/Environmental Protection Agency Regulatory Model (AERMOD) modeling used for fenceline
 analyses and uses facility-specific input data (*i.e.*, land use and meteorological data). Additionally, the
 comparison of releases performed in Section 2.2.1.1 provides a line of evidence that the releases used as
 inputs to HEM in this analysis are not a gross overestimation relative to the previously modeled
- Manufacturing COU releases. For more information on the HEM method, see the *Draft Environmental Media Assessment for 1,2-Dichloroethane* (U.S. EPA, 2025f) and *Draft General Population Exposure Assessment for 1,2-Dichloroethane* (U.S. EPA, 2025h).
 - As shown in Table 2-6 and

724725

726

733734

735

Table 2-7, the highest chronic (hourly concentrations averaged over a year) and acute (hourly concentrations averaged over a day) modeled concentrations for each facility occurred at the same distance for each byproduct – either 30 or 100 m from the facility. Concentrations were modeled up to 50,000 m from the releasing facility. Across all facilities and byproducts, 1,1-dichloroethane had the highest chronic and acute modeled concentrations of 4.1 and 13.3 μg/m³, which occurred 30 m from a facility in Kentucky (TRI ID 42029WSTLK2468I).

The concentrations presented in Table 2-6 and

Table 2-7 present the highest modeled concentrations without regard for whether populations live at the
 modeled locations. Therefore, to estimate exposures and risks more representative of human
 populations, EPA used ambient air concentrations modeled at census block centroids.

739 Table 2-6. Highest Modeled Chronic Ambient Air Concentrations for Each Byproduct Using 1,2-Dichloroethane^a 2018 TRI^b Data at Each 1,2-Dichloroethane Manufacturing Facility Using HEM at Any Distance

,	Distance	Chronic Ambient Air Concentration (µg/m³) c						
TRI Facility ID	(m)	1,1-Dichloroethane	Trichloroethylene	Perchloroethylene	Methylene Chloride	Carbon Tetrachloride		
29415LBRGH2151K	100	7.28E-03	8.75E-05	3.75E-04	2.50E-03	3.75E-03		
41129CLGNCUSROU	100	9.89E-05	1.19E-06	5.10E-06	3.40E-05	5.10E-05		
42029PNNWLALTON	100	2.43E-07	2.92E-09	1.25E-08	8.33E-08	1.25E-07		
42029WSTLK2468I	30	4.1	4.97E-02	0.21	1.4	2.1		
52761MNSNTWIGGI	30	2.08E-02	2.50E-04	1.07E-03	7.14E-03	1.07E-02		
63630BCKMNHIGHW	30	2.83E-03	3.40E-05	1.46E-04	9.71E-04	1.46E-03		
70669GRGGL1600V	30	8.97E-02	1.08E-03	4.62E-03	3.08E-02	4.62E-02		
70669PPGNDCOLUM	30	0.59	7.08E-03	3.03E-02	0.20	0.30		
70723CCDNTHIGHW	30	0.11	1.33E-03	5.69E-03	3.79E-02	5.69E-02		
70734BRDNCLOUIS	30	0.78	9.39E-03	4.02E-02	0.27	0.40		
70734VLCNMASHLA	30	9.99E-02	1.20E-03	5.15E-03	3.43E-02	5.15E-02		
70764LLMNXHWY40	30	0.62	7.47E-03	3.20E-02	0.21	0.32		
70765GRGGLHIGHW	30	0.30	3.65E-03	1.56E-02	0.10	0.16		
70765THDWCHIGHW	100	1.03E-04	1.23E-06	5.29E-06	3.52E-05	5.29E-05		
7076WBLCBP21255	30	0.21	2.53E-03	1.08E-02	7.22E-02	0.11		
70805FRMSPGULFS	30	1.3	1.59E-02	6.81E-02	0.45	0.68		
70805LLDSGCORNE	30	7.03E-04	8.45E-06	3.62E-05	2.41E-04	3.62E-04		
77501THYLC1000N	30	4.05E-04	4.87E-06	2.09E-05	1.39E-04	2.09E-04		
77536CCDNTTIDAL	30	0.33	3.94E-03	1.69E-02	0.11	0.17		
77541THDWCBUILD	30	2.87E-03	3.45E-05	1.48E-04	9.84E-04	1.48E-03		
7754WBLCBP231NB	30	0.43	5.16E-03	2.21E-02	0.15	0.22		
77571LPRTC2400M	30	0.54	6.48E-03	2.78E-02	0.19	0.28		
77978FRMSPPOBOX	30	0.19	2.26E-03	9.69E-03	6.45E-02	9.69E-02		
78359CCDNTHWY36	30	0.33	3.97E-03	1.70E-02	0.11	0.17		

HEM = Human Exposure Model; TRI = Toxics Release Inventory

^a Release amounts of each byproduct were calculated by multiplying the 1,2-dichloroethane release by the respective fraction in the non-purified product stream (Table 1-1). Releases were modeled using HEM to estimate the ambient air concentrations shown in this table.

TRI Facility ID	Distance		Chronic Ambient Air Concentration (μg/m³) ^c				
	(m)	1,1-Dichloroethane	Trichloroethylene	Perchloroethylene	Methylene Chloride	Carbon Tetrachloride	

^b Release data from 2018 were used for HEM modeling because 2018 was the highest overall release year for the years assessed. A preliminary review of 2021–2023 TRI data indicated that releases are generally consistent with those from previous years (2015–2020).

741742743

744

Table 2-7. Highest Modeled Acute Ambient Air Concentrations for Each Byproduct Using 1,2-Dichloroethane^a 2018 TRI^b Data at Each 1,2-Dichloroethane Manufacturing Facility Using HEM at Any Distance

TDI Es silite. ID	Distance	Acute Ambient Air Concentration (μg/m³) ^c					
TRI Facility ID	(m)	1,1-Dichloroethane	Trichloroethylene	Perchloroethylene	Methylene Chloride	Carbon Tetrachloride	
29415LBRGH2151K	100	3.72E-02	4.48E-04	1.92E-03	1.28E-02	1.92E-02	
41129CLGNCUSROU	100	3.72E-04	4.48E-06	1.92E-05	1.28E-04	1.92E-04	
42029PNNWLALTON	100	1.18E-06	1.42E-08	6.10E-08	4.06E-07	6.10E-07	
42029WSTLK2468I	30	13.3	0.16	0.69	4.6	6.9	
52761MNSNTWIGGI	30	7.59E-02	9.13E-04	3.91E-03	2.61E-02	3.91E-02	
63630BCKMNHIGHW	30	8.30E-03	9.98E-05	4.28E-04	2.85E-03	4.28E-03	
70669GRGGL1600V	30	0.30	3.62E-03	1.55E-02	0.10	0.16	
70669PPGNDCOLUM	30	1.97	2.37E-02	0.10	0.68	1.0	
70723CCDNTHIGHW	30	0.37	4.45E-03	1.91E-02	0.13	0.19	
70734BRDNCLOUIS	30	2.4	2.83E-02	0.12	0.81	1.2	
70734VLCNMASHLA	30	0.30	3.62E-03	1.55E-02	0.10	0.16	
70764LLMNXHWY40	30	1.87	2.25E-02	9.65E-02	0.64	0.97	
70765GRGGLHIGHW	30	0.92	1.10E-02	4.72E-02	0.31	0.47	
70765THDWCHIGHW	100	5.32E-04	6.39E-06	2.74E-05	1.83E-04	2.74E-04	
7076WBLCBP21255	30	0.63	7.63E-03	3.27E-02	0.22	0.33	
70805FRMSPGULFS	30	4.0	4.79E-02	0.21	1.4	2.1	
70805LLDSGCORNE	30	2.12E-03	2.55E-05	1.09E-04	7.28E-04	1.09E-03	
77501THYLC1000N	30	1.26E-03	1.51E-05	6.49E-05	4.32E-04	6.49E-04	
77536CCDNTTIDAL	30	1.0	1.23E-02	5.26E-02	0.35	0.53	
77541THDWCBUILD	30	9.59E-03	1.15E-04	4.94E-04	3.29E-03	4.94E-03	

^c Reported concentrations are the sum of the concentrations resulting from stack and fugitive emissions.

TDI Facility ID Distance		Acute Ambient Air Concentration (μg/m³) ^c						
TRI Facility ID	(m)	1,1-Dichloroethane	Trichloroethylene	Perchloroethylene	Methylene Chloride	Carbon Tetrachloride		
7754WBLCBP231NB	30	1.4	1.73E-02	7.39E-02	0.49	0.74		
77571LPRTC2400M	30	1.7	2.01E-02	8.64E-02	0.58	0.86		
77978FRMSPPOBOX	30	0.57	6.87E-03	2.95E-02	0.20	0.30		
78359CCDNTHWY36	30	0.83	9.97E-03	4.27E-02	0.29	0.43		

HEM = Human Exposure Model; TRI = Toxics Release Inventory

745

^a Release amounts of each byproduct were calculated by multiplying the 1,2-dichloroethane release by the respective fraction in the non-purified product stream (Table 1-1). Releases were modeled using HEM to estimate the ambient air concentrations shown in this table.

^b Release data from 2018 were used for HEM modeling because 2018 was the highest overall release year for the years assessed. A preliminary review of 2021–2023 TRI data indicated that releases are generally consistent with those from previous years (2015–2020).

^c Reported concentrations are the sum of the concentrations resulting from stack and fugitive emissions.

2.2.2 Surface Water Pathway

 Byproducts are anticipated to be released to surface waters together with 1,2-dichloroethane via presence in effluent from the Manufacturing COU (see Section 2.1.2.3). EPA assessed each of the estimated byproduct chemical releases assuming the same percentages within the non-purified process stream (Table 1-1) also occur and are applied relative to 1,2-dichloroethane releases accounting also for wastewater treatment efficiency. The Agency also compared these estimated releases to the releases in each byproduct's corresponding risk evaluation. In the risk evaluations, EPA relied on facility-reported releases of each byproduct chemical as required under the NPDES permits. For purposes of the comparison in this draft TSD, EPA could only compare these releases per facility since the receiving water body flows are unique to each facility location and result in site-specific surface water concentrations.

EPA reviewed all facilities manufacturing and releasing 1,2-dichloroethane and identified only one facility, the Eagle US 2 LLC - Lake Charles Complex facility (Eagle US 2), that under the Manufacturing COU released 1,2-dichloroethane and reported releases of each of the assessed byproducts via DMR. In addition, the assessed byproducts' published risk evaluations considered releases from this same facility, allowing for a direct comparison between the calculated byproducts releases in this TSD and those reported in DMR for 2016 in the risk evaluations. Lastly, the Eagle US 2 facility releases to Bayou D'Inde resulted in the highest 1,2-dichloroethane surface water concentrations within the Manufacturing COU. Therefore, the Eagle US 2 surface water concentrations represent the high-end of possible environmental and general population exposures for 1,2-dichloroethane from the Manufacturing COU as well as possible high-end exposures associated with the assessed byproducts.

Using the EPA Pollutant Loading Tool, carbon tetrachloride was inconsistently released year to year from the Eagle US 2 facility and in the years investigated in the carbon tetrachloride risk evaluation (years 2014–2018), no releases of carbon tetrachloride were detected. EPA, however, did confirm that the Eagle US 2 facility has an NPDES permit that requires carbon tetrachloride monitoring in effluent and has reported levels of carbon tetrachloride releases in 2021 and 2023 through the permitting system.

For the Eagle US 2 facility, the amounts released as byproducts were compared with those reported releases in the corresponding chemical final risk evaluations. EPA first adjusted the estimated byproduct released to consider differences in physical and chemical properties affecting wastewater treatment and removal. In adjusting the amounts removed in the influent based on each chemical's removal, a more representative amount is estimated in the effluent. Table 2-8 presents each chemical's physical and chemical properties as well as the estimated wastewater removal rates using EPI SuiteTM (U.S. EPA, 2012).

Table 2-8. Chemical Physical and Chemical Properties^a

Chemical/ Byproduct	Solubility (mg/L)	Vapor Pressure (mmHg at 25 °C)	Log K _{OC}	WWT Removal (%)
1,2-Dichloroethane	8,600	78.9	1.3–1.77	39.6
1,1-Dichloroethane	5,040	228	1.48	50
Trichloroethylene	1,280	73.72	1.8-2.1	81
Perchloroethylene	13	435	1.4	57
Methylene chloride	206	18.5	2.95	88

Chemical/ Byproduct	Solubility (mg/L)	Vapor Pressure (mmHg at 25 °C)	Log K _{OC}	WWT Removal (%)
Carbon tetrachloride	793	115	1.69-2.16	92

K_{OC} = organic carbon: water partition coefficient; WWT = wastewater treatment ^a All listed parameter values except for 1,2-dichloroethane are from published chemical risk evaluations (Section 1.2).

EPA calculated the amount of 1,2-dichloroethane in influent based on the removal rate of 1,2-dichloroethane from the wastewater stream. The 1,2-dichloroethane DMR reported annual releases of 4,876.95 kg from the Eagle US 2 facility were divided by the 1,2-dichloroethane-specific removal rate of 0.396 which equals 12,315.53 kg/yr of 1,2-dichloroethane in influent. The amount of byproduct chemicals in the influent resulting from the manufacture of 1,2-dichloroethane were assumed to be in the same proportion as in the non-purified process stream and thus, estimated based on the purified process stream percentages (see Table 1-1 and Table 2-9). For example, given that the byproduct constitutes 0.291 percent of the process stream (Table 2-9), the estimated amount of 1,1-dichloroethane in the influent is calculated in Equation 2-1.

Equation 2-1.

$$12,315 \, kg/yr * 0.291\% = 36.0 \, kg$$

The byproduct chemicals then undergo wastewater treatment and the amount of each chemical's removal from the influent is dependent on the corresponding wastewater removal rate (see Table 2-9). For 1,1-dichloroethane, the 50 percent removal from wastewater treatment results in 18.0 kg/yr released. The same calculations were applied to the remaining four byproducts.

EPA reviewed the corresponding published chemical risk evaluation for each of the assessed byproduct and found that the Eagle US 2 facility had reported releases for each of the evaluated byproducts in their individual chemical EPA was not able to discern at the point of discharge if the total amount released of the individual chemicals is from its manufacture or as a byproduct from 1,2-dichloroethane manufacture or the combination of the two processes. The latter was assumed likely so that EPA could compare the calculated amount of byproduct chemicals released per day (based on 350 days of release per year) based on the percentages as the process stream (see Table 1-1 and Table 2-9) to the amount of chemical released (per day) reported in the corresponding risk evaluations from the Eagle US 2 facility (see Table 2-10). The estimated releases of byproducts are less than the amount released of each individual chemical as reported in the corresponding risk evaluations.

Table 2-9. Estimated 1,2-Dichloroethane and Byproduct Surface Water Releases from Eagle US 2 Manufacturing Facility Releases Adjusted for Chemical-Specific Wastewater Treatment Removal

Chemical/ Byproduct	Percent Byproduct in Process Stream	Estimated Amount of Byproduct Chemical in Influent ^a (kg/yr)	Chemical- Specific WWT Removal ^b (%)	Effluent Releases of Byproduct Chemicals Based on Chemical-Specific Removal Rates ^c (kg/yr)
1,2-Dichloroethane	98.94	12,315	39.6	4,850
1,1-Dichloroethane	0.291	36.0	50	18
Trichloroethylene	0.0035	0.429	81	8.2E-02
Perchloroethylene	0.015	12.4	88	1.48

Chemical/ Byproduct	Percent Byproduct in Process Stream	Estimated Amount of Byproduct Chemical in Influent ^a (kg/yr)	Chemical- Specific WWT Removal ^b (%)	Effluent Releases of Byproduct Chemicals Based on Chemical-Specific Removal Rates ^c (kg/yr)
Methylene chloride	0.0999^{c}	1.84	57	0.79
Carbon tetrachloride	0.15	18.6	92	1.48

WWT = wastewater treatment

816 817 818

819

820 821

822

823 824

825

Byproduct chemical amounts in influent prior to wastewater treatment were estimated based on percent of chemical in the process stream as provided by Vinyl Institute. For example, to calculate 1,1-dichloroethane in influent: 12,315 kg/yr \times 0.291% = 36.0 kg. To calculate the other byproduct chemical amounts in influent the following values were used: 0.0035% for trichloroethylene, 0.015% for perchloroethylene, 0.0999% for methylene chloride, and 0.15% for carbon tetrachloride (Percent byproduct in non-purified product stream submitted by the Vinyl Institute public comments (EPA-HQ-OPPT-2018-0421-0027); see Table 1-1).

Table 2-10. Eagle US 2 Manufacturing Facility Releases – Comparison to Estimated Byproduct Surface Water Releases^a

Chemical/ Byproduct	Reported Daily Releases from Chemical Risk Evaluations ^b (kg/day)	Estimated Daily Byproduct Release (kg/day)	Estimated Byproduct Instream Concentrations (µg/L) ^c
1,1-Dichloroethane	0.30	5.1E-02	12.71
Trichloroethylene	0.14–1.27	2.3E-04	0.06
Perchloroethylene	0.1	4.2E-03	1.04
Methylene chloride	1.0E-03	2.3E-03	0.56
Carbon tetrachloride	Not reported	4.2E-03	1.04^{d}

^a Concentrations of byproducts in receiving water were estimated based on relative percent of byproduct to 1,2-dichloroethane (based on 350 days of releases)

Because the Eagle US 2 facility releases of 1,2-dichloroethane result in the highest 1,2-dichloroethane receiving water body concentrations, EPA considered this facility to be appropriate of representing highend byproduct surface water exposures. Therefore, the Agency used the estimated byproduct surface water concentrations presented in Table 2-10 to assess both aquatic and general population exposures and any associated risks.

^a Annual release for 1,2-dichloroethane from the Eagle US 2 facility was reported in DMR per NPDES permit requirements. The amount of 1,2-dichloroethane prior to treatment (influent) was estimated by: (1,2-dichloroethane annual release)/(1,2-dichloroethane WWT Removal). For example, (4,876 kg/yr)/0.396 = 12,315.53 kg/yr amount 1,2-dichloroethane in influent.

^b The wastewater treatment removal efficiency is specific per chemical and based on each chemical's physical and chemical properties (see Table 2-8).

^c Effluent releases = (Estimated amount of chemical in influent) \times (1 – chemical-specific WWT Removal). For example, $36 \text{ kg/yr} \times (1 - 0.5) = 18 \text{ kg/yr}$ of 1,1-dichloroethane released in effluent.

^b Surface water releases from Eagle US 2 facility are presented in each of the corresponding chemical risk evaluations

^c General population risks were evaluated in the Supplemental Fenceline analysis and presented in the Fenceline memorandum. The Eagle US 2 facility daily estimated byproduct release (kg/day) is similar or significantly lower than that in the fenceline analyses.

^d The carbon tetrachloride risk evaluation did not include discharges from Eagle US 2 facility.

2.2.3 Weight of Scientific Evidence for Byproduct Environmental Concentrations

Releases from industrial facilities, either to surface waters or to ambient air, contribute to concentrations of the byproducts in the environment. The ability to locate releases by location reduces uncertainty in assumptions when selecting model input parameters that are typically informed by location (*e.g.*, meteorological data, land cover parameters for air modeling, flow data for water modeling).

Ambient Air

The largest source of uncertainty in the estimation of ambient air concentrations was in the releases used. Although the fenceline analyses reported releases of some of the chemicals at facilities that are also 1,2-dichloroethane manufacturing facilities, not every 1,2-dichloroethane manufacturing facility reported releases of every byproduct. The releases in the fenceline analyses also total releases of each chemical assessed and not just the releases associated with the chemical produced as a byproduct. Due to the uncertainties associated with the releases modeled in the fenceline analyses, EPA estimated releases of individual byproducts by multiplying TRI-reported releases of 1,2-dichloroethane by the associated byproduct chemical concentrations in the non-purified product stream presented in Table 1-1, which has high-end estimates of the byproduct concentrations. Additionally, EPA did a comparison of the estimated releases in this TSD to the release amounts published in the fenceline analyses as a line of evidence to demonstrate that the releases in this TSD are not an overestimation relative to the releases coming from the overall Manufacturing COU previously modeled (Table 2-5).

Additionally, EPA modeled ambient air concentrations for each byproduct using 2018 TRI release data since it was the highest overall release year for the 2015 to 2020 reporting period used in this assessment. The Agency conducted HEM modeling in the analysis as opposed to the IIOAC modeling used in the fenceline analyses because HEM provides more a refined population analysis than the previous modeling and uses facility-specific release data (*i.e.*, land use and meteorological data). The use of HEM to estimate ambient air concentrations is well supported as it uses AERMOD, which is EPA's primary regulatory model for ambient air modeling and is peer reviewed as part of the regulatory model process described in Appendix W to 40 CFR part 51, as a compiled executable program. Based on the overall uncertainties described in this paragraph, EPA has moderate confidence in accuracy of the ambient air concentrations of the byproducts but has robust confidence that the concentrations represent high-end estimates.

Surface Water

EPA estimated surface water releases of 1,2-dichlorethane and the associated byproducts in effluent resulting from 1,2-dichloroethane manufacturing. The Agency has high confidence in the facility reported NPDES permit discharge monitoring data presented in the individual byproduct chemical risk evaluations and in this TSD. However, EPA relied on the assumption that the percentages of byproducts in the non-purified process stream of 1,2-dichloroethane manufacturing, as provided by Vinyl Institute, are the same as in the effluent, accounting also for the chemical specific wastewater treatment efficiency. The Agency does not have reasonably available data to verify this assumption through empirical monitoring. The comparison between current estimates and previously published data presented in Section 2.2 do not contradict the assumption that byproducts are found in lower or similar quantities as when manufactured intentionally.

EPA was unable to identify other facilities that reported manufacturing 1,2-dichloroethane releases as well as all of the assessed byproducts and is thus relying on the Eagle2 facility as representative of possible byproduct formation and releases. The Eagle US 2 facility releases of 1,2-dichloroethane from the Manufacturing COU also resulted in the highest 1,2-dichloroethane surface water concentrations across all 1,2-dichlorethane manufacturing facilities. Therefore, because the amounts of byproducts

formed are a percentage of manufacturing releases of 1,2-dichloroethane, this facility also represents a plausible upper bound for potential byproduct stream concentrations.

3 ENVIRONMENTAL RISK ASSESSMENT

3.1 Environmental Exposure

EPA used 7Q10 (lowest 7-day average flow that occurs once every 10 years) flows to calculate 1,2-dichloroethane concentrations in surface water and to assess the aquatic concentrations resulting from the Manufacturing COU release estimates (Section 2.2.2). The highest 1,2-dichloroethane concentration for the Manufacturing COU associated with a 7Q10 flow and a 350-day facility operating days release was multiplied by the weight percent of each byproduct in the non-purified product stream to estimate the resulting surface water concentration for each byproduct. The resulting concentrations were compared to the most sensitive aquatic concentration of concern (COC) for each byproduct to derive a screening Risk Quotient (RQ) value.

Table 3-1. Aquatic Ecological Species Exposures to Estimated Byproduct Concentrations in Receiving Water Body

Chemical/ Byproduct	Daily release (kg/day)	Days of Release	Receiving Water Body (Bayou D'Inde) 7Q10 Flow (mld) ^a	Chemical Concentration in Receiving Water ^b (µg/L)
1,1-Dichloroethane	5.1E-02	350	4.04	13
Trichloroethylene	2.3E-04	350	4.04	6.0E-02
Perchloroethylene	4.2E-03	350	4.04	1.0
Methylene chloride	2.3E-03	350	4.04	0.56
Carbon tetrachloride	4.2E-03	350	4.04	1.0

^a Eagle US 2 Manufacturing facility receiving water body (Bayou d'Inde) 7Q10 flow (7 consecutive days of lowest flow over a 10-year period which represents the lowest flows across other flow metrics (*e.g.*, 30Q5 and harmonic mean) and is commonly used when evaluating aquatic environments); mld = millions of liters per day ^b Estimated concentration in receiving water body (Bayou d'Inde).

Exposure to terrestrial species via soil is not expected based on the physical and chemical and fate properties of the byproducts. The byproducts are not expected to partition to or accumulate in soil and are not anticipated to be retained in biosolids (log K_{OC} : 1.4 to 2.83; Henry's Law constant: 3.3×10^{-3} atm-m³/mole to 2.8×10^{-2} atm-m³/mole; vapor pressure: 19 mmHg at 25 °C to 435 mmHg at 25 °C). The byproducts are not expected to bioaccumulate in tissues (bioconcentration factor [BCF]: 2.6–312). Inhalation and dermal exposures are expected to be secondary to oral ingestion based on the Guidance for Ecological Soil Screening Levels (U.S. EPA, 2005, 2003).

3.2 Environmental Hazards

The environmental hazards and associated weight of scientific evidence for each byproduct are described in full in each respective final risk evaluation (Table 3-2).

Page 32 of 87

 Table 3-2. EPA Risk Evaluations for Chemicals Relevant to the Draft 1,2-Dichloroethane Byproducts Assessment

Chemical	U.S. EPA Risk Evaluation Reference
1,1-Dichloroethane	<u>U.S. EPA (2025n)</u>
Trichloroethylene	<u>U.S. EPA (2020j)</u>
Perchloroethylene	<u>U.S. EPA (2020i)</u>
Methylene chloride	<u>U.S. EPA (2020h)</u>
Carbon tetrachloride	<u>U.S. EPA (2020g)</u>

3.2.1 Environmental Hazard Thresholds

The aquatic COCs for each byproduct assessed in this draft TSD are presented in Table 3-3. The terrestrial hazard thresholds for 1,1-dichloroethane, which is the only byproduct that presented terrestrial hazard thresholds and quantitatively assessed risk to terrestrial species in its risk evaluation, are presented in Table 3-4. If more than one COC was available for a given exposure duration, media, and chemical (*e.g.*, acute aquatic exposure to methylene chloride), then only the lowest COC was selected for use in the initial screening byproducts assessment. There were alternative COCs available from the final risk evaluations for methylene chloride, perchloroethylene, and trichloroethylene. Refinement in COC selection was not necessary, as the byproducts did not proceed beyond initial screening.

Table 3-3. Environmental Hazard Thresholds for Aquatic Environmental Toxicity

Table 3-3. Environmental Hazard Inresno	lus for Aqua			ii Toxicity			
Environmental Aquatic Toxicity	Assessment Factor	Acute to Chronic Ratio	COC (ppb) a	Assessment Medium	Hazard Confidence		
1,1-Dichloroethane							
Acute aquatic exposure: lower 95% CI of HC05 from SSD^b	N/A	N/A	8,931	Water column	Robust		
Chronic aquatic exposure: based on aquatic invertebrate ChV	10	N/A	93	Water column	Robust		
Aquatic plant exposure: based on algae ChV ^c	10	N/A	1,000	Water column	Moderate		
Acute benthic exposure: lower 95% CI of HC05 from SSD ^b	N/A	N/A	8,931	Benthic pore water	Moderate		
Chronic benthic exposure: based on benthic invertebrate EC10 ^d	10	N/A	6,800	Benthic pore water	Moderate		
Chronic benthic exposure: based on benthic invertebrate ChV ^d	10	N/A	2,900	Sediment	Moderate		
Trichloroethylene							
Acute aquatic exposure: based on HC05 from SSD	5	N/A	2,000	Water column	High		
Chronic aquatic exposure: based on fish EC20	10	N/A	788	Water column	High		
Aquatic plant exposure: based on algae ChV	10	N/A	3	Water column	High		
Acute benthic exposure: based on HC05 from SSD	5	N/A	2,000	Benthic pore water	High		
Chronic benthic exposure: based on invertebrate ChV	10	N/A	920	Benthic pore water	High		
Perchloroethylene							

Environmental Aquatic Toxicity	Assessment Factor	Acute to Chronic Ratio	COC (ppb) a	Assessment Medium	Hazard Confidence	
Acute aquatic exposure: based on aquatic invertebrate EC50	5	N/A	1,400	Water column	High	
Chronic aquatic: based on aquatic invertebrate ChV	10	N/A	50	Water column	High	
Aquatic plant exposure: based on algae EC50	10	N/A	360	Water column	Medium	
Methylene chloride ^e						
Acute aquatic exposure: based on amphibian LC50 geometric mean	10	N/A	2,630	Water column	_	
Chronic aquatic exposure: based on amphibian LC10 geometric mean	10	N/A	90	Water column	_	
Aquatic plant exposure: based on algae EC50	10	N/A	3,310	Water column	_	
Acute benthic exposure: based on aquatic invertebrate EC50 and LC50 geometric mean	5	N/A	36,000	Benthic pore water	_	
Chronic benthic exposure: based on aquatic invertebrate ChV	10	10	1,800	Benthic pore water	_	
Ca	rbon tetrachlo	ride			<u>'</u>	
Acute aquatic exposure: based on amphibian LC50	10	N/A	90	Water column	High	
Chronic aquatic exposure: based on amphibian LC10	10	N/A	3	Water column	High	
Aquatic plant exposure: based on algae EC10	10	N/A	7	Water column	High	
Acute benthic exposure: based on benthic invertebrate LOEL	5	N/A	400	Benthic pore water	High	
Chronic benthic exposure: based on benthic invertebrate LOEL	N/A	10	40	Benthic pore water	High	

CI = confidence interval; ChV = chronic value; COC = concentration of concern; EC10/20/50 = effect concentration at which 10, 20, or 50% of test organisms exhibit an effect; HC05 = hazardous concentration for 5% of species; LC10/50 = lethal concentration at which 10 or 50% of test organisms die; LOEL = lowest-observed-effect level; SSD = species sensitivity distribution

^a COCs are described in more detail in each chemical's respective risk evaluation.

^b Includes both 1,1-dichloroethane and analog 1,2-dichloropropane data.

^c Based on analog 1,2-dichloropropane data.

^d Based on analog 1,1,2-trichloroethane data.

^e Confidence in hazard thresholds was not characterized as high, medium, or low for methylene chloride. Refer to section 3.1.3 of the *Risk Evaluation for Methylene Chloride* (<u>U.S. EPA, 2020h</u>) for information regarding the hazard weight of scientific evidence.

Table 3-4. Environmental Hazard Thresholds for Terrestrial Environmental Toxicity

Environmental Terrestrial Toxicity	Hazard Value or Toxicity Reference Value (TRV) ^a	Assessment Medium	Hazard Confidence			
1,1-Dichloroethane						
Mammal: TRV	1,189 mg/kg-bw/day	Dietary (trophic transfer)	Moderate			
Terrestrial plant: based on <i>Populus x canadensis</i> EC50	802 mg/L	Soil pore water	Slight			
^a Hazard thresholds are described in more detail in the <i>Risk Evaluation for 1,1-Dichloroethane</i> (U.S. EPA, 2025n)						

3.3 Environmental Risk Conclusions

3.3.1 Risk Conclusion for Aquatic Species

Surface water concentrations were calculated as described in Sections 2.2.2 and 3.1 and compared to the most sensitive aquatic COC for each byproduct. The resulting RQ values are less than 1 for all byproducts. Thus, no risk is expected from exposure of the byproducts to aquatic species.

Table 3-5. Aquatic Ecological Species Risk Screen for Estimated Byproduct Concentrations in Receiving Water Body

Chemical/ Byproduct	Daily Release (kg/day)	Days of Release	Receiving Water Body (Bayou D'Inde) 7Q10 Flow (mld ^a)	Chemical Concentration in Receiving Water ^b (µg/L)	Ecological Chronic Concentration of Concern (µg/L) ^c	Risk Screen (RQ > 1)
1,1-Dichloroethane	5.1E-02	350	4.04	13	93	0.14
Trichloroethylene	2.3E-04	350	4.04	6.0E-02	3	2.0E-02
Perchloroethylene	4.2E-03	350	4.04	1.0	50	2.1E-02
Methylene chloride	2.3E-03	350	4.04	0.56	90	6.2E-03
Carbon tetrachloride	4.2E-03	350	4.04	1.0	3	0.35

RO = Risk Quotient

916

917

918

919 920

921

922 923

924

925

926

927

928 929

930 931

932

933

934

3.3.2 Risk Conclusion for Terrestrial Species

No risk is expected from byproduct exposure to terrestrial species based on the previous risk evaluations. No risk was observed for terrestrial species in the 1,1-dichloroethane risk evaluation, which is the only risk evaluation of the byproduct chemicals that quantitatively assessed risk to terrestrial species. Trichloroethylene, perchloroethylene, methylene chloride, and carbon tetrachloride determined in their respective risk evaluations that there was no terrestrial exposure pathway based on the physical and chemical and fate properties of each chemical. Additionally, no risk is expected from the assessed byproducts as these chemicals possess similar physical chemical and fate properties to 1,1-dichloroethane and are volatile chemicals that are not expected to be bioaccumulative.

^a Eagle US 2 Manufacturing facility receiving water body (Bayou d'Inde) 7Q10 flow (7 consecutive days of lowest flow over a 10-year period); mld = million liters per day

^b Estimated concentration in receiving water body (Bayou d'Inde).

^c Chemical-specific aquatic concentration of concern (COC; see also Table 3-3).

4 HUMAN HEALTH EXPOSURES ASSESSMENT

4.1.1 Occupational Exposure Assessment

The following subsections describe EPA's approach to assessing the occupational exposures to the byproducts produced during the manufacture of 1,2-dichloroethane and provide the results of the occupational exposure assessment. The Agency assessed exposures to workers via inhalation and dermal routes. EPA's objective is to assess central tendency and high-end exposures. For estimates based on inhalation monitoring data, the 50th percentile of the exposure data is used for the central tendency and the 95th percentile is used for the high-end estimate. For deterministic modeling, EPA selects values for the model input parameters for the central tendency and high-end exposure estimates. The full inputs and results are presented in the *Draft Byproducts Risk Calculator for 1,2-Dichloroethane* (U.S. EPA, 2025d).

4.1.1.1 Worker Activities

Workers are potentially exposed to the byproducts in similar ways to how they may be exposed to 1,2-dichloroethane during its manufacture. A final study report submitted to EPA by the Vinyl Institute (Stantec ChemRisk, 2024) described worker activities per similar exposure group (SEG) that occurred at 1,2-dichloroethane manufacturing sites during sampling that provided inhalation test order monitoring data. EPA assumes that the activities described by Vinyl Institute are applicable to 1,2-dichloroethane manufacturing facilities throughout the country, and workers may experience inhalation and dermal exposure to 1,2-dichloroethane during these tasks. The four SEGs included operators, logistics technicians, laboratory technicians, and maintenance technicians.

Operators at facilities that manufacture 1,2-dichloroethane were reported to conduct process sample collection for quality assurance and control purposes, open process lines and equipment in preparation for maintenance activities, conduct process area walk-throughs, and monitor process equipment for leaks or abnormal activities. Standard operating procedures (SOPs) are in place on how to perform specific tasks such as purging process lines. The Vinyl Institute noted employee versatility among the operator SEG, where a single worker may conduct tasks relevant to several different SEGs. In some circumstances, particularly at smaller facilities, operators often assisted with loading and unloading tasks on a routine or as-needed basis.

Logistics technicians at facilities that manufacture 1,2-dichloroethane loaded products into the process from rail cars and barges and unloaded 1,2-dichloroethane onto rail carts or totes in an "on-demand" basis (which may be weekly, monthly, or less frequently). In addition to connecting and disconnecting lines from loading railcars, logistics technicians also facilitated the unloading of containers that comply with the International Standard Organization (ISO) standards.

Laboratory technicians at facilities that manufacture 1,2-dichloroethane handled samples and processed them for analysis under a fume hood. Typical tasks included processing samples collected from the field by other workers, and routine laboratory duties such as housekeeping, paperwork, and routine laboratory equipment maintenance.

Maintenance technicians at facilities that manufacture 1,2-dichloroethane perform a wide variety of tasks. Because equipment is typically purged prior to maintenance activities, working with open equipment does not present as high of an exposure potential as may occur with other SEGs interacting with open process lines and equipment. Additionally, maintenance technicians may be assigned to multiple process areas, some of which are not associated with 1,2-dichloroethane manufacturing. Routine duties performed by maintenance technicians include rounds, permitting, air monitoring, and

preparation for maintenance tasks that may include preparing and setting up equipment and PPE. They also conduct instrumentation checks as well as line breaks and equipment opening.

 ONUs include employees that work at the sites where 1,2-dichloroethane is manufactured, but they do not directly handle the chemical and are therefore expected to have lower inhalation exposures and are not expected to have dermal exposures through contact with liquids or solids. ONUs for this scenario include supervisors, managers, and other employees that may be in the production area but do not perform tasks that result in the same level of exposure as those workers that engage in tasks related to the manufacture of 1,2-dichloroethane. ONUs at facilities that manufacture 1,2-dichloroethane were maintenance supervisors, engineers, control board operators, project engineers and managers, senior process and technical advisors, maintenance coordinations, and environment, health, and safety (EHS) technicians. Routine tasks performed during sampling varied and included process area walk-throughs, equipment inspections, maintenance activity observations, logistics and maintenance trouble shooting, and indoor administrative and control room tasks. At sites that manufacture 1,2-dichloroethane as a byproduct, ONUs conducted computer work and monitored controls in control rooms and administrative spaces.

According to the final study report published by the Vinyl Institute (Stantec ChemRisk, 2024), workers in production areas are required to wear the following standard PPE: fire-resistant clothing, coveralls, hard hats, hearing protection, neoprene gloves, leather gloves, safety glasses, and steel toed boots. The report also mentioned use of task-specific PPE by workers, such as chemical suits worn during process opening, chemical splash goggles, face shields, and full-face respirators. Additionally, engineering controls are present at all representative facilities but differ by process area. In production areas, facilities typically use a closed-loop sampling system so that workers can collect process samples with minimal exposure to 1,2-dichloroethane. Logistic areas, where transport and storage activities occur, may employ a vapor recovery system which removes vapors from storage vessels and implement a nitrogen purge practice that utilizes nitrogen gas to displace unwanted impurities from the system to minimize exposures during loading and unloading activities. The report also discusses use of a solution spray to monitor for leaks during loading setup, alongside isolation of devices and physical barriers in loading and unloading areas (Stantec ChemRisk, 2024).

Summaries of tasks, frequencies, durations, and PPE for each SEG are provided in Table 4-1 and

Table 4-2 for the 1,2-dichloroethane, and 1,1-dichloroethane test orders, respectively.

Table 4-1. Description of SEGs in Vinyl Institute 1,2-Dichloroethane Test Order Report

SEG General Category	SEG Specific Category	Full Shift/ Task		Daily Frequency Range	Average Task Duration (hour)	PPE
	Operator – Routine (Daily)	Full Shift	Daily	1 time/shift	12 (Range: 8- to 12- hour shifts)	Standard PPE • Fire-resistant clothing • Coveralls, Tyvek suits, or Nomex
Operator/ Process Technician	Operator – Closed Loop Sample Collection, High Concentration	Task	Daily	1–2 times/shift	0.5	shirts • Long-sleeved attire • High visibility vests • Hard hat
	Operator – Closed Loop Sample Collection, Low to	Task	Daily	1–3 times/shift	0.25	 Hearing protection Neoprene gloves Leather or cut-resistant gloves

SEG General Category	SEG Specific Category	Full Shift/ Task	Weekly Task Frequency	Daily Frequency Range	Average Task Duration (hour)	PPE		
	Moderate Concentration					Safety glasses Safety toed boots		
Onember	Operator – Open Loop Sample Collection, Low to Moderate Concentration	Task	Daily	1–2 times/shift	0.25	Task-Specific PPE • Chemical suit (Tychem) worn during process opening • Chemical-resistant apron or jacket		
Operator/ Process Technician	Operator – Maintenance Preparation	Task	"As needed" to Daily	1 time/shift to "As needed"	0.25	 (polyvinyl chloride) Chemical boots Chemical splash goggles Face shield Nitrile gloves 		
	Operator – Other Tasks with Exposure Potential	Task	"As needed" to Daily	1–2 times/shift to "As needed"	0.75	 Viton/butyl gloves Full-face, supplied air respirator (Scott AV3000 with organic vapor cartridges) worn during process and line breaks and 		
	Maintenance – Routine (daily)	Full Shift	Daily	1 time/shift	10 (Range: 8- to 12- hour shifts)	openings • Full-face, negative pressure respirator with organic vapor cartridges (MSA		
Maintenance Technician	Maintenance – Line Breaks and Equipment Opening ^a	Task	"As needed" to 1–4 times/month to Daily	"As needed" to 5 times/shift	1.0	Ultra Elite with GME Cartridges) worn during product sample collection • Half- and full-face air purifying respirator (3M 7800 series with organic vapor cartridges; Scott multi-gas		
	Maintenance – Other Tasks with Exposure Potential	Task	"Random"	"Random"	4.0	cartridges) worn during sample collection and railcar loading/offloading		
	Logistics Technician – Routine (daily)	Full Shift	Daily	1 time/ shift	11 (Range: 8- to 12- hour shifts)	Standard PPE • Fire-resistant clothing • Hard hat		
	Logistics Technician – Barge Loading/Offloading	Task	Daily	1 time/ shift	0.25	Hearing protection Neoprene gloves Safety glasses (nonline/equipment		
	Logistics Technician – Railcar Loading/Offloading	Task	"As needed" to Daily	"As needed" to 1 time/ shift	0.75	opening tasks)Safety-toed bootsHigh visibility vestsLong-sleeved attire		
Logistics/ Distribution	Logistics Technician – Truck Loading/Offloading	Task	Daily	1–2 times/shift	1.0	Task-Specific PPE • Chemical boots • Personal fall arrest systems harness		
Technician	Logistics Technician – Other Tasks with Exposure Potential	Task	Weekly to Daily	1–2 times/shift	0.75	worn while mounting platforms • Life preserver worn during barge Loading • Full-face, negative pressure respirator with organic vapor cartridges (MSA Ultra Elite with GME Cartridges) worn during product sample collection • Half- and full-face air purifying respirator (3M 7800 series with organic vapor cartridges) worn during ISO or railcar loading/offloading		

SEG General Category	SEG Specific Category	Full Shift/ Task	Weekly Task Frequency	Daily Frequency Range	Average Task Duration (hour)	PPE
						Full-face respirator (Honeywell 7600 series or MSA 4000 or 4100 with P100 filters) worn during truck hose connection /disconnection Chemical splash goggles (monogoggle) (V70/V80 series) Heavy duty nitrile gloves (Ansell AlphaTec 37-185 Solvex) Full-face, air-purifying respirator (3M Scott 742 Series cartridges and filters)
	Lab Technician – Routine (daily)	Full Shift	Daily	1 time/ shift	11 (Range: 8- to 12- hour shifts)	Standard PPE • Fire-resistant clothing • Lab coat
	Lab Technician – Sample Processing	Task	Weekly to Daily to Monthly	1–5 times/ shift	0.75	Safety glassesSafety glasses with side shieldsChemical splash goggles
Laboratory Technician	Lab Technician – Other Tasks with Exposure Potential	Task	Twice weekly to Daily	1–4 times/ shift	0.25	(monogoggle – 3M) • Nitrile gloves • Closed-toe shoes/steel toed Boots
						Task-Specific PPE • Full-face respirator with organic vapor/acid gas cartridges (Scott AV 3000) (worn while disposing of hazardous waste from fume hoods)
ONU	ONU – Routine (daily)	Full Shift	Daily	1 time/ shift	10 (Range: 5- to 12- hour shifts)	None listed

ONU = occupational non-user; PPE = personal protective equipment; SEG = similar exposure group Source: (<u>Stantec ChemRisk</u>, 2024)

1018 1019

1020

Table 4-2. Description of SEGs in Vinyl Institute 1,1-Dichloroethane Test Order Report

	SEG General Category	SEG Specific Category	Full Shift/ Task	Weekly Task Frequency	Daily Frequency Range	Average Task Duration (hour)	PPE
		Operator – Routine (daily)	Daily	Full Shift	1 time/shift	12 (Range: 9- to 12- hour shifts)	Standard PPE • Fire-resistant clothing
]	Operator/ Process Fechnician	Operator – Container Transfer; Present as Impurity and Isolate	Daily	Task	4–5 times/ shift	0.25	Coveralls or Nomex shirtsHard hatHearing protectionNeoprene gloves

^a Maintenance tasks do not require differentiation by process stream concentration because, in accordance with SOPs, all equipment and process lines are drained or purged prior to routine maintenance tasks. Despite low anticipated concentrations following equipment purging, maintenance workers wear full respiratory protection (*e.g.*, supplied air or self-contained breathing apparatuses) in the event the residual concentration of EDC (*i.e.*, ethylene dichloride another name for 1,2-dichloroethane) in the process lines cannot be verified.

SEG General Category	SEG Specific Category	Full Shift/ Task	Weekly Task Frequency	Daily Frequency Range	Average Task Duration (hour)	PPE
	Operator – Closed Loop Sample Collection, Present as Impurity and Isolate	Daily	Task	1–3 times/ shift	0.50	 Leather gloves Safety glasses Steel-toed boots <u>Task-Specific PPE</u>
Operator/ Process	Operator – Open Loop Sample Collection, Present as an Isolate	Daily	Task	2–3 times/ shift	0.50	Chemical suit (Tychem) worn during process opening Chemical-resistant apron Chemical boots Chemical splesh appeals
Technician	Operator – Maintenance Preparation	"As needed"	Task	"As needed"	0.25	Chemical splash gogglesFace shieldNitrile glovesViton/butyl gloves
	Other Tasks with Exposure Potential	"As needed" to Daily	Task	1–2 times/ shift to "As needed"	0.75	 Full-face, supplied air respirator worn during process opening Full-face, negative pressure respirator with organic vapor
	Maintenance – Routine (daily)	Daily	Full Shift	1 time/shift	9.5 (Range: 8- to 10.5-hour shifts)	cartridges (MSA Ultra Elite with GME Cartridges) worn during product sample collection
Maintenance Technician	Maintenance – Line Breaks and Equipment Opening; Present as Impurity and Isolate	"As needed"	Task	"As needed"	1.5	
	Other Tasks with Exposure Potential	Daily to Monthly to twice Annually	Task	2–16 times/shift to 2–12 times/year	1.0	
	Logistics Technician – Routine (daily)	Daily	Full Shift	1 time/shift	10	Standard PPE • Fire-resistant clothing • Hard hat
Logistics/ Distribution Technician	Routine (daily) Logistics Technician – Railcar Loading/ Offloading; Present as Impurity and Isolate		Task	1 time/shift	1.0	 Hearing protection Heavy duty nitrile gloves (Ansell AlphaTec 37-185 Solvex) Neoprene gloves Safety Glasses (nonline / equipment opening tasks) Steel toed boots Full-face, air-purifying respirator (3M Scott 742 Series cartridges and fillers)
						Task-Specific PPE • Chemical boots • Full-face, negative pressure respirator with organic vapor cartridges (MSA Ultra Elite with GME Cartridges) worn during product sample collection • Chemical splash goggles (monogoggle) (V70/V80 series)

SEG General Category	SEG Specific Category	Full Shift/ Task	Weekly Task Frequency	Daily Frequency Range	Average Task Duration (hour)	PPE
Laboratory Technician	Lab Technician – Routine (daily)	Daily	Full Shift	1 time/shift	11 (Range: 8- to 12- hour shifts)	Standard PPE • Fire-resistant clothing • Lab coat
	Lab Technician – Sample Processing	Daily	Task	1–4 times/ shift	1.0	• Safety glasses • Chemical splash goggles
Laboratory Technician	Other Tasks with Exposure Potential	Daily	Task	1 time/shift	1.5	(monogoggle) • Nitrile gloves • Closed-toe shoes/Steel-toed Boots Task-Specific PPE Half-face dust respirator (when adding dry standards) • Half-face respirator with organic vapor cartridges (when standards are weighed on benchtop) • Chemical splash goggles • Face shield • Nitrile gloves
ONU	ONU – Routine (daily)	Daily	Full Shift	1 time/shift	10 (Range: 8- to 12- hour shifts)	Not listed

ONU = occupational non-user; PPE = personal protective equipment; SEG = similar exposure group Source: Stantec ChemRisk, 2023

Respiratory APF Associated with PPE Use During the Test Order Sampling Study

The Vinyl Institute's test order provided description of various PPE worn during the inhalation sampling study (<u>Stantec ChemRisk</u>, <u>2024</u>). A summary of task-based PPE is provided below.

Operators were described as wearing half- or full-face, air-purifying respirators during sample collection tasks (open or closed loop). This corresponds to an assigned protection factor [APF] 10 or 50, when the employer implements a continuing, effective respiratory protection program under the OSHA Respiratory Protection Standard.³ Additionally, operators were described as wearing full-face respirators of varying types (APF 50–1,000) during other tasks with exposure potential such as process leak response, maintenance preparation activities, and filling totes.

Logistics technicians were described as wearing half-face or full-face respirators (APF 10 or 50) during loading or offloading tasks, which required connecting and disconnecting process lines to railcars, barges, and trucks. Maintenance technicians were described as wearing full-face airline respirators (APF 1,000) during major maintenance tasks (*e.g.*, line breaks and other equipment openings).

Laboratory technicians were described as wearing half-face respirator (APF 10) with organic vapor cartridges (when standards are weighed on benchtop). Certain lab personnel were described as wearing full-face air-purifying respirators (APF 1,000) during disposal of hazardous wastes from fume hoods.

1040 ONUS were "primarily" not reported to wear respiratory protection during any routine daily tasks,

although one supervisor was described as wearing a full-face respirator (APF 50) while observing

loading activities from 20 feet away.

1021 1022

1023

1024

1025 1026

1027

1028

1029 1030

1031

1032 1033

1034

1035

1036

[.]

³ https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.134 (accessed October 21, 2025)

Dermal Protection Associated with Glove Use Reported in the Test Orders

Information on PPE, including gloves, used at monitored facilities for the test order is detailed in Table 4-1 and Table 4-2. According to the test order report, generally, within the production process areas, standard dermal PPE worn included neoprene, leather, or cut-resistant gloves whereas task-specific PPE included nitrile or viton/butyl gloves. Similarly, in logistics work areas, standard dermal PPE included neoprene gloves and task-specific PPE included heavy-duty nitrile gloves and eye protection. In the laboratory areas, standard PPE included nitrile gloves. There was no documentation on glove changeout, efficacy, or what was worn relative to each specific task. OSHA has not established protection factors for gloves. Information on an approach for assigning protection factors based on dermal protection characteristics is provided in Appendix A.

Information on PPE from Other Sources

OSHA's Respiratory Protection Standard (29 CFR 1910.134) requires employers in certain industries to address workplace hazards by implementing engineering control measures and, if these are not feasible, provide respirators that are applicable and suitable for the purpose intended. Respirator selection provisions are provided in CFR 1910.134(d) and require that appropriate respirators are selected based on the respiratory hazard(s) to which the worker will be exposed and workplace and user factors that affect respirator performance and reliability. APFs are provided in Table 1 under CFR 1910.134(d)(3)(i)(A) (see below in Table 4-3) and refer to the level of respiratory protection that a respirator or class of respirators is expected to provide to employees when the employer implements a continuing, effective respiratory protection program according to the requirements of OSHA's Respiratory Protection Standard. OSHA has not established protection factors for gloves.

Table 4-3. Assigned Protection Factors for Respirators in OSHA Standard 29 CFR 1910.134

Quarter Mask	Half Mask	Full Facepiece	Helmet	Type of Respirator
5	10	50		
	50	1,000	25/1,000	25
e Respirato	r	•		
	10	50		
	50	1,000	25/1,000	25
	50	1,000		
CBA)				
	10	50	50	
		10,000	10,000	
	Mask 5	Mask Mask 5 10 50 50 e Respirator 10 50 50 CBA) 50	Mask Mask Facepiece 5 10 50 50 1,000 e Respirator 10 50 50 1,000 50 1,000 CBA) 10 50	Mask Mask Facepiece Helmet 5 10 50 25/1,000 e Respirator 10 50 25/1,000 50 1,000 25/1,000 50 1,000 25/1,000 CBA) 10 50 50

4.1.1.2 Uncertainties with the PPE Use and Protection Factors

Respirator APFs have technical significance but are generic values based on assumed workplace conditions, and usage of a specific respirator type does not guarantee achieving the generic APF during all use scenarios. Nevertheless, respirator APFs are based on specific conditions and approved by NIOSH in conjunction with OSHA regulations. Glove protection factors are more subjective than APFs

applied to respirators due to the lack of regulatory standards aligning them with actual work practices.

OSHA does not have a comparable protection factor designation for dermal exposures.

The test order summary report describes dermal and respiratory PPE used in the facility. EPA's practice is to consider if the PPE used at the facility as described in the test order summary report provides protection consistent with the Agency's assessment of the PPE protection factor needed for acceptable MOEs. Based on the available information in the test order report, workers do not wear respiratory protection as standard PPE for full or near full shift durations; however, respirators are used during specific tasks. As previously described, varying levels of respirator protection are associated with tasks described in the test order, and use of PPE varied across workers and 1,2-dichloroethane manufacturing facilities. For example, some operators at Site A who collected samples and connected/disconnected hoses were noted as not wearing respiratory protection, while some operators at Site D were described as wearing full-face respirators during sample collection tasks. Given the variation in tasks and reported respirator use associated with specific tasks, it is difficult to assume a consistent level of respiratory protection across a job group. However, it should be noted that the proper use of respiratory protection during high-exposure tasks will reduce the overall full shift exposure. If these high-exposure tasks contribute a large percentage of potential exposure during a shift, then the proper use of PPE may significantly reduce full shift exposures.

During EPA's review and approval of the test order sampling plan, the inclusion of information on respiratory protection programs and engineering controls was a key consideration. The Vinyl Institute consortium indicated limitations in the level of detail they could provide due to confidentiality concerns. A summary of the PPE and engineering controls information collected during the inhalation monitoring is provided above. More detailed information on each facility monitored is provided in Appendix I of the test order report. The Vinyl Institute's proposal included monitoring at least one facility from each company. Although the EPA-approved test order sampling plan is representative of the COU for the inhalation monitoring data, the Agency has less certainty in the representativeness of PPE use and engineering controls in 1,2-dichloroethane manufacturing facilities. EPA welcomes additional information to inform the use of PPE and will consider all information received during the public comment period.

4.1.1.3 Number of Workers

Because the production of byproducts occurs during the process that manufactures 1,2-dichloroethane, the number of workers who may be exposed to the byproducts is expected to be the same as the number of workers who may be exposed to 1,2-dichloroethane (Table 4-4). See the *Draft Occupational Exposure Assessment for 1,2-Dichloroethane* (U.S. EPA, 2025k) for more details on these estimates.

Table 4-4. Estimated Number of Workers Potentially Exposed During 1,2-Dichloroethane

Manufacturing

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119 1120

1121

1122

1123

1124

1125 1126

1127

1128

1129

1130

Estimated Number of Sites	NAICS Code	Exposed Workers per Site ^a	Exposed Occupational Non-Users per Site ^a
	325199 – All Other Basic Organic Chemical Manufacturing		
41	325180 – Other Basic Inorganic Chemical Manufacturing	33	16
	325110 – Petrochemical Manufacturing		

NAICS = North American Industry Classification System

4.1.1.4 Occupational Exposure Methodology

4.1.1.4.1 Inhalation

Based on the data available, EPA assessed inhalation exposure for byproducts using two approaches as previously used in the Risk Evaluation for 1,1-Dichloroethane and the current draft risk evaluation for 1,2-dichloroethane (U.S. EPA, 2025l, n).

- Approach 1: When inhalation monitoring data were available for a byproduct produced during the 1,2-dichloroethane manufacturing process, the data were used directly. Only one byproduct, 1,1-dichloroethane, had such data from the 1,1-dichloroethane test order (Stantec ChemRisk, 2023), which measured 1,1-dichloroethane manufactured during 1,2-dichloroethane.
- Approach 2: When inhalation monitoring data were not available for a byproduct produced during the 1,2-dichloroethane manufacturing process either from systematic review or from test orders (as was the case for trichloroethylene, perchloroethylene, methylene chloride, and carbon tetrachloride), EPA used surrogate data from 1,2-dichloroethane manufacturing. Inhalation exposures were estimated by adjusting for vapor pressure and mole fractions to estimate individual byproduct exposures. Specifically, inhalation monitoring data for 1,2-dichloroethane for Manufacturing, submitted by the Vinyl Institute (Stantec ChemRisk, 2024), were used as surrogate data for trichloroethylene, perchloroethylene, methylene chloride, and carbon tetrachloride, along with the following equation to estimate concentrations for these remaining byproducts:

 $VP_{bvproduct}X_{bvproduct}$

Equation 4-1.

1131			$C_{byproduct} = C_{known} \frac{VP_{known}X_{byproduct}}{VP_{known}X_{known}}$
1132			
1133	Where:		
1134	$C_{byproduct}$	=	Estimated airborne concentration of the byproduct (ppm)
1135	C_{known}	=	Airborne concentration of known chemical (ppm)

1136 Vapor pressure of the byproduct (torr) $VP_{byproduct}$ 1137

Mole fraction of the byproduct $X_{byproduct}$ =

1138 VP_{known} Vapor pressure of known chemical (torr) =

Mole fraction of known chemical 1139 X_{known}

^a Number of workers and occupational non-users (ONUs) per site calculated by dividing the exposed number of workers (1,353) or ONUs (656) by the number of establishments.

For 1,1-dichloroethane, *Approach 1* was utilized because occupational inhalation data were provided via a test order submission from the Vinyl Institute (Stantec ChemRisk, 2023). EPA identified 72 worker and 26 ONU full shift personal breathing zone samples from the test order data to estimate inhalation exposures to the 1,1-dichloroethane byproduct manufactured during the manufacturing of 1,2-dichloroethane. Note that in general, samples for employees that directly handled the chemical are categorized as "worker" and samples for employees that did not directly handle the chemical but are present at the facility are categorized as "occupational non-user". In addition to the full shift samples, the test order provided 23 task-length and 22 STEL (short-term exposure limit) PBZ samples. The data included samples from three representative facilities: Olin Corporation in Freeport, Texas, Oxy Vinyls LP in La Porte, Texas, and Westlake Chemical – Plaquemine in Plaquemine, Louisiana.

Table 4-5. Summary of Inhalation Exposure Estimates to 1,1-Dichloroethane During the Manufacturing of 1,2-Dichloroethane Based on Vinyl Institute Test Order Data^a

Exposure	Worker Description	No. of	Number of	Sample Duration		Estimates om)
Туре	Worker Description	Samples	Non- Detects ^b	(minutes)	Central Tendency ^c	High-End ^c
	Operator/Process Technician	31	7		1.6E-03	9.0E-03
F 11 1 1 6	Maintenance Technician	17	6		2.3E-04	2.7E-03
Full-shift exposure concentrations	Logistics/Distribution Technician	7	4	480	6.7E-05	1.6E-03
Concentrations	Laboratory Technician	17	8		1.6E-04	3.3E-03
	ONU	26	14		6.9E-05	4.6E-03
	Operator/Process Technician	9	5	17–115	2.2E-03	5.7E-02
Task-length	Maintenance Technician	4	2	17–92	3.0E-03	1.9E-02
exposure concentrations	Logistics/Distribution Technician	2	1	145–146	3.8E-03	6.9E-03
	Laboratory Technician	8	4	31–174	2.1E-03	5.9E-03

ONU = occupational non-user

^a TSCA section 4(a)(2)(A)(i) allows the EPA to impose testing requirements via "rule, order, or consent agreement" whenever new information "is necessary" to perform a risk evaluation (15 U.S.C. 2603(a)(2)(A)(i)). EPA issued a test order for 1,1-dichloroethane manufactured as a byproduct in the manufacture of 1,2-dichloroethane (Stantec ChemRisk, 2023). ^b For the non-detects, all datasets for had a geometric standard deviation >3, so the limit of detection was divided by 2. EPA utilizes a refined analysis method using maximum likelihood estimation (MLE) for cases with a high percentage of non-detects. However, this method was not applied here as Table 6-3 shows no MOE estimates for 1,1-dichloroethane below the chronic non-cancer (or acute non-cancer) benchmark and above the cancer benchmark. Thus, refinement was not necessary. ^c The high-end estimate is based on the 95th percentile of the monitoring dataset collected for each similar exposure group (SEG). The central tendency estimate is based on the 50th percentile of the monitoring dataset collected for each SEG. Sample durations were often longer than 8 hours; 8-hour TWAs were calculated from the full shift results by multiplying the full shift exposure (ppm) × (sample duration [hours]/8-hour)

 For the remaining byproducts, EPA used *Approach* 2. The Agency assessed inhalation exposures using surrogate monitoring data from 1,2-dichloroethane (Stantec ChemRisk, 2024) and concentrations of the byproducts in the 1,2-dichloroethane stream and waste streams (VI, 2020, 2017). The inhalation monitoring data and concentration data were both provided by Vinyl Institute. EPA estimated inhalation exposures assuming both potential worker inhalation exposure to the unpurified 1,2-dichloroethane stream and the light- and heavy-end streams. Table 4-6 summarizes the inhalation exposure data for 1,2-dichloroethane, which were used as surrogate data in this assessment. The concentrations from this table were used in the C_{known} variable in the *Approach* 2 Equation 4-1 above.

Table 4-6. 8-Hour Duration of Inhalation Exposures to 1,2-Dichloroethane During Manufacturing of 1,2-Dichloroethane Based on Vinyl Institute Test Order Data^a

		8-Hour TWA Exposure Concentration			
Worker Description	No. of Samples ^b	Central Tendency (ppm) ^c	High-End (ppm) ^c		
Operators	53	0.48	7.3		
Logistics Technicians	9	1.7E-02	0.24		
Maintenance Technicians	32	4.9E-02	1.6		
Laboratory Technicians	29	4.7E-02	1.3		
ONU	39	1.4E-02	1.6		

ONU = occupational non-user; TWA = time-weighted average

https://www.epa.gov/sites/default/files/2021-01/documents/tsca_section_4a2_order_for_12-dichloroethane_on_ecotoxicity_and_occupational_exposure_0.pdf (Stantec ChemRisk, 2024).

releases, and workers activities and potential exposures).

Table 4-7 summarizes the byproduct concentrations estimated by the Vinyl Institute for the unpurified 1,2-dichloroethane waste stream. Because this is the product stream directly from the manufacturing process, the byproducts have not yet been separated from the 1,2-dichloroethane product. These concentrations, once converted into mole fractions (See Table 4-9), are used for the X_{byproduct} variable of the *Approach 2* Equation 4-1 above to estimate occupational exposure to the given byproduct from the unpurified 1,2-dichloroethane stream.

Table 4-7. Byproduct Concentrations in Unpurified 1,2-Dichloroethane Product Streams Provided by the Vinyl Institute

Byproduct	Estimated Byproduct Concentration in Unpurified 1,2-Dichloroethane (Weight %)	Source
1,1-Dichloroethane	0.03 to 0.29%	<u>VI (2020)</u>
Trichloroethylene	<0.0035%	
Perchloroethylene	<0.015%	VI (2017)
Methylene chloride	ppm quantities (assumed 0.0999%) ^a	<u>VI (2017)</u>
Carbon tetrachloride	<0.15%	
^a 0.0999% assumed wh	en "ppm levels"/"quantities" was reported.	

Table 4-8 summarizes the byproduct concentrations provided by the Vinyl Institute for the light- and heavy-ends waste streams after 1,2-dichloroethane purification. These are the streams of more concentrated byproducts that have been separated from the now-purified 1,2-dichloroethane product. These concentrations, once converted into mole fractions (see Table 4-9), are used for the $X_{byproduct}$ variable of the Approach 2 equation above (Equation 4-1) to estimate occupational exposure to the given byproduct from the light and heavy ends streams (see Sections 2.1.2.2 and 4.1.1.1 for details on process

^a TSCA section 4(a)(2)(A)(i) allows the EPA to impose testing requirements via "rule, order, or consent agreement" whenever new information "is necessary" to perform a risk evaluation (15 U.S.C. 2603(a)(2)(A)(i)). EPA issued a test order for 1,2-dichloroethane on January 14, 2021; see

^b There were no samples below the limit of detection.

^c The high-end is the 95th percentile and the central tendency is the 50th percentile (median) of occupational exposures among all workers within a similar exposure group (SEG); source: (<u>Stantec ChemRisk</u>, 2024).

Table 4-8. Byproduct Concentration in Light- and Heavy-Ends Liquid Provided by the Vinyl Institute^a

Byproduct	Typical Composition in Light Liquid Ends (Weight %)	Typical Composition in Heavy Liquid Ends (Weight %)	Source	
1,1-Dichloroethane	1–30%	0–21%	<u>VI (2020)</u>	
Trichloroethylene	Trace quantities (assumed 0.0999%)	0.23%		
Perchloroethylene	None	1.1%	VI (2017)	
Methylene chloride ppm quantities (assumed 0.0999%)		None	<u>VI (2017)</u>	
Carbon tetrachloride	30%	None		

^a EPA assumed that "trace" and "ppm" quantities mean the same thing and come directly from the public comment. Light-ends liquid streams are the more volatile fractions in the mixture, typically derived from the initial stages of refining process, known for their lower boiling points. Heavy-ends liquid streams are the less volatile, higher boiling point fractions obtained towards the later stages of the refining process.

The weight concentrations in the two tables above were then converted to mole fractions (Table 4-9) and used for the $X_{byproduct}$ variable in the *Approach 2* Equation 4-1. In cases where a byproduct had a different concentration in the light liquid ends and heavy liquid ends, the greater concentration was used in the below table and subsequent calculations. X_{known} were estimated with the assumption that the remaining non-byproduct concentrations in the streams is 1,2-dichloroethane.

Table 4-9. Low- and High-End Byproduct Concentrations for Inhalation Exposure Estimates

Byproduct	Concentration in Unpurified 1,2- Dichloroethane (mol %), Assumed Low-End	Composition in Light/Heavy Liquid Ends (mol %) ^a , Assumed High-End
1,1-Dichloroethane	0.29%	34%
Trichloroethylene	0.0026%	0.20%
Perchloroethylene	0.0090%	0.76%
Methylene chloride	0.12% ^a	0.13%
Carbon tetrachloride	0.10%	22%

^a Values represent the highest concentration in the light or heavy liquid ends.

The last piece of the equation required to calculate the airborne concentration of each byproduct according to $Approach\ 2$, is the vapor pressure for each chemical, which are provided in Table 4-10. The vapor pressure of 1,2-dichloroethane was VP_{known} , and the vapor pressure of each byproduct was $BP_{byproduct}$. These values were obtained from the chemicals' respective final risk evaluations.

Light-ends liquid streams are the more volatile fractions in the mixture, typically derived from the initial stages of refining process, known for their lower boiling points. Heavy-ends liquid streams are the less volatile, higher boiling point fractions obtained towards the later stages of the refining process.

Table 4-10. Vapor Pressures of 1,2-Dichloroethane and Byproducts

Chemical	Vapor Pressure (torr)	Reference
1,2-Dichloroethane	78.9 mmHg at 25 °C	Table 2-1 <u>U.S. EPA (20251)</u>
1,1-Dichloroethane	228 mmHg at 25 °C	Table 2-1 <u>U.S. EPA (2025n)</u>
Trichloroethylene	73.72 mmHg at 25°C	Table 1-1 <u>U.S. EPA (2020j)</u>
Perchloroethylene	18.5 mmHg at 25°C	Table 1-1 <u>U.S. EPA (2020i)</u>
Methylene chloride	435 mmHg at 25°C	Table 1-1 <u>U.S. EPA (2020h)</u>
Carbon tetrachloride	115 mmHg at 25°C	Table 1-1 <u>U.S. EPA (2020g)</u>

The results for these calculations for each byproduct can be found in Section 4.1.1.6.

4.1.1.4.2 Dermal

Dermal exposure monitoring data were not reasonably available for the byproducts generated during the Manufacturing COU, including in the corresponding final risk evaluation. EPA used the Dermal Exposure to Volatile Liquids Model to estimate dermal exposure. This model calculates the acute potential dose rate (APDR) by considering the assumed amount of liquid on skin during one contact event per day and the theoretical steady-state fractional absorption, which estimates the absorbed portion of the applied dose. The following equation is used in this assessment to calculate APDR.

 $APDR = S \times Q_u \times f_{abs} \times Y_{derm} \times FT$

Equation 4-2.

1215 Where:

1213	WHOIC.		
1216	APDR	=	Acute potential dose rate
1217	S	=	Surface area of skin
1218	Q_u	=	Dermal load
1219	f_{abs}	=	Fractional absorption values

 Y_{derm} = Weight fraction of the chemical of interest in the liquid

FT = Number of dermal exposure events per day

EPA assessed dermal occupational exposures to both unpurified 1,2-dichloroethane (considered a lowend exposure estimates), and light- and heavy-end liquid streams (considered a high-end exposure estimates). Low-end concentrations were estimated for each of the byproducts based on the weight percent of the byproduct in the unpurified 1,2-dichloroethane stream. High-end concentrations were estimated for each of the byproducts based on the maximum weight percent of the byproduct in light-and heavy-end liquid streams. These concentration estimates were provided by Vinyl Institute and are presented in Table 4-7 and Table 4-8, respectively. Table 4-11 provides a summary of the values that were used in this dermal assessment; the value for $Y_{\rm derm}$ from Equation 4-2 above.

 $\begin{array}{c} 1230 \\ 1231 \end{array}$

Table 4-11. Low- and High-End Byproduct Concentrations for Dermal Exposure Estimates

Byproduct	Low-End Concentration (Unpurified 1,2-Dichloroethane) (weight %)	High-End Concentration (Maximum Concentrations in Light- and Heavy-Ends Liquid) (weight %) ^a
1,1-Dichloroethane	0.29%	30%
Trichloroethylene	0.0035%	0.23%
Perchloroethylene	0.015%	1.1%
Methylene chloride	0.0999% ^b	0.0999% ^b
Carbon tetrachloride	0.15%	30%

^a Values represent the highest concentration in the light- or heavy-ends liquid streams.

The fractional absorption values for each byproduct, f_{abs}, are summarized in Table 4-12. These values were obtained from the chemicals' respective final risk evaluations. For 1,1-dichloroethane, the fraction absorbed value was based on test order data included in its risk evaluation (<u>U.S. EPA, 2025n</u>). For the other four byproducts, fractional absorption values were obtained from their respective final risk evaluations.

Table 4-12. Byproduct Fractional Absorption Values

D 1 4											
Byproduct	Fractional Absorption (fabs)	EPA Risk Evaluation Reference Table									
1,1-Dichloroethane	0.003	Table_Apx D-1 <u>U.S. EPA (2025o)</u>									
Trichloroethylene	0.08	Section 2.19 <u>U.S. EPA (2020e)</u>									
Perchloroethylene	0.13	Table_Apx K-1 <u>U.S. EPA (2020d)</u>									
Methylene chloride	0.08	Section 3.2 <u>U.S. EPA (2020c)</u>									
Carbon tetrachloride	0.04	Table_Apx E-1 <u>U.S. EPA (2020b)</u>									

The dermal load, Qu, is the quantity of the chemical formulation on the skin after the dermal contact event, and is a constant expressed as 1.4 or 2.1 mg/cm² per event for central tendency or high-end exposures, respectively. The surface area of skin in contact with the chemical formulation, S, is assumed to be 535 or 1,070 cm² for central tendency or high-end exposures, respectively. It should be noted that while the surface area of exposed skin is derived from data for hand surface area, EPA did not assume that only the workers' hands may be exposed to the chemical. Nor did EPA assume that the entirety of the hands are exposed for all activities. In applying the DEVL Model to estimate dermal exposures, EPA uses skin surface area values from the *Exposure Factors Handbook* ranging from the surface area of one hand (535 cm²) to two hands (1,070 cm²) for the central tendency and high-end exposure scenario, respectively.

The last variable, FT, represents the number of dermal exposure events per day. EPA does not have information on how many contact events may occur and the time between contact events; therefore, the Agency assumes that the task that may lead to dermal exposure to the amount specified in the Qu variable could occur once per day, and thus a single contact event per day is assumed for estimating dermal exposures. EPA considers this assumption appropriate for OESs that are closed system processes.

^b The Vinyl Institute indicated "ppm quantities of methylene chloride"; EPA assumed a high-end concentration of 999 ppm.

Light-ends liquid streams are the more volatile fractions in the mixture, typically derived from the initial stages of refining process, known for their lower boiling points. Heavy-ends liquid streams are the less volatile, higher boiling point fractions obtained towards the later stages of the refining process.

- Dose estimates are summarized in Section 4.1.1.7. Equations for estimating dermal exposures can be found in Appendix D of *Draft Occupational Exposure Assessment for 1,2-Dichloroethane* (U.S. EPA, 2025k).
 - 4.1.1.5 Estimating Acute, Intermediate, and Chronic (Non-Cancer and Cancer) Exposures
- For each byproduct, the estimated exposures were used to calculate acute, intermediate, and chronic (non-cancer and cancer) inhalation exposures and dermal doses. Equations for estimating these exposure metrics can also be found in Appendix B of *Draft Occupational Exposure Assessment for 1,2-*
- 1268 Dichloroethane (<u>U.S. EPA, 2025k</u>).

4.1.1.6 Occupational Inhalation Exposure Results

Table 4-13 presents the results of the inhalation exposure assessment for each byproduct. Information on respiratory protection used by the exposure groups at the facilities for 1,2-dichloroethane and byproducts is provided in Table 4-1 and Table 4-2. For more information on inhalation exposure estimates see *Draft Byproducts Occupational Exposures for 1,2-Dichloroethane* (U.S. EPA, 2025b) supplemental file.

4.1.1.7 Occupational Exposure Dermal Results

Table 4-14 summarizes the acute potential dose rate (APDR), acute retained dose (ARD), intermediate retained dose (IRD), chronic retained dose (CRD) for non-cancer, and lifetime chronic retained dose (LCRD) for cancer for each of the byproducts. The high-ends are based on a higher loading rate of byproduct (2.1 mg per cm² per event) and a skin surface area equivalent to the area of two-hands (1,070 cm²), and the central tendencies are based on a lower loading rate of 1,2-dichloroethane (1.4 mg per cm² per event) and a skin surface area equivalent to the area of one-hand (535 cm²). Information on protective gloves used by the exposure groups at the facilities for 1,2-dichloroethane and byproducts is provided in Table 4-1 and Table 4-2. The central tendency from the closed system monitoring data is a more representative and appropriate exposure estimate for a frequent, repeated dermal exposure (*i.e.*, chronic) and is health protective for risk estimation for closed system processes, as high-end exposures from daily connecting/disconnecting of transfer lines and sampling is not realistic and was not estimated (see Table 4-14). See *Draft Byproducts Occupational Exposures for 1,2-Dichloroethane* (U.S. EPA, 2025b) supplemental file for the calculations that lead to these results.

Table 4-13. Summary of Inhalation Exposures to Byproducts During the Manufacturing of 1,2-Dichloroethane

Process Stream (wt % Fraction of Byproducts		Similar Exposure	8-Hour Expos	8-Hour TWA Exposure Concentrations		Acute Exposure Concentrations (AC)		Intermediate Average Daily Concentration (ADCintermediate)		Average Daily Concentration (ADC)		Lifetime Average Daily Concentration (LADC)	
	in the Process Stream)	Group	Central Tendency (ppm) ^a	High- End (ppm) ^b	Central Tendency (ppm)	High-End (ppm)	Central Tendency (ppm)	High-End (ppm)	Central Tendency (ppm)	High-End (ppm)	Central Tendency (ppm)	High-End (ppm)	
		Operator/Process Technician	1.6E-03	9.0E-03	1.1E-03	6.1E-03	7.8E-04	4.5E-03	7.3E-04	4.2E-03	2.9E-04	2.2E-03	
		Maintenance Technician	2.3E-04	2.7E-03	1.6E-04	1.8E-03	1.1E-04	1.3E-03	1.1E-04	1.3E-03	4.3E-05	6.5E-04	
1,1-Dichloroethane	N/A ^c	Logistics/ Distribution	6.7E-05	1.6E-03	4.6E-05	1.1E-03	3.3E-05	8.0E-04	3.1E-05	7.5E-04	1.2E-05	3.8E-04	
		Laboratory Technician	1.6E-04	3.3E-03	1.1E-04	2.2E-03	8.0E-05	1.6E-03	7.5E-05	1.5E-03	3.0E-05	7.9E-05	
		ONU ^d	6.9E-05	4.6E-03	4.7E-05	3.1E-03	3.5E-05	2.3E-03	3.2E-05	2.1E-03	1.3E-05	1.1E-03	
		Operator/ Process Technician	1.9E-03	8.3E-03	1.3E-03	5.6E-03	9.7E-04	4.1E-03	9.0E-04	3.9E-03	1.8E-04	9.7E-04	
	Unpurified 1,2-Dichloroethane	Laboratory Technician	5.4E-04	2.4E-03	3.6E-04	1.6E-03	2.7E-04	1.2E-03	2.5E-04	1.1E-03	4.9E-05	2.8E-04	
Trichloroethylene ^e	(0.0035%) to Light/Heavy Ends (0.23%) ^f	Logistics/ Distribution	6.0E-05	2.5E-04	4.1E-05	1.7E-04	3.0E-05	1.3E-04	2.8E-05	1.2E-04	5.4E-06	2.9E-05	
	Liids (0.2570)*	Maintenance Technician	5.2E-04	2.3E-03	3.5E-04	1.6E-03	2.6E-04	1.2E-03	2.4E-04	1.1E-03	4.7E-05	2.7E-04	
		ONU ^d	3.6E-04	1.6E-03	2.4E-04	1.1E-03	1.8E-04	8.1E-04	1.7E-04	7.6E-04	3.2E-05	1.9E-04	
	Unpurified 1,2-	Worker	1.0E-05	1.5E-04	6.9E-06	1.1E-04	5.1E-06	7.7E-05	4.7E-06	7.2E-05	1.9E-06	3.7E-05	
Perchloroethylene	Dichloroethane (0.01%)	ONU ^d	3.0E-07	3.4E-05	2.0E-07	2.3E-05	1.5E-07	1.7E-05	1.4E-07	7.7E-06	5.5E-08	8.1E-06	
•	Light/Heavy	Worker	9.5E-03	1.4E-02	6.5E-04	9.8E-03	4.7E-04	7.2E-03	4.4E-04	6.7E-03	1.8E-04	3.5E-03	
	Ends (0.8%) ^f	ONU ^d	2.8E-05	3.2E-03	1.9E-05	2.2E-03	1.4E-05	1.6E-03	1.3E-05	7.2E-04	5.1E-06	7.6E-04	
	Unpurified 1,2-	Worker	3.1E-03	4.7E-02	2.1E-03	3.2E-02	1.6E-03	2.4E-02	1.5E-03	2.2E-02	5.8E-04	1.1E-02	
Methylene chloride	Dichloroethane (0.12%)	ONU ^d	9.1E-05	1.0E-03	6.2E-05	7.1E-03	4.5E-05	5.2E-03	4.2E-05	4.8E-03	1.7E-05	2.5E-03	
-	Light/Heavy	Worker	7.7E-03	0.12	5.3E-03	8.0E-02	3.9E-03	5.9E-02	3.6E-03	5.5E-02	1.4E-03	2.8E-02	
	Ends $(0.1\%)^f$	ONU ^d	2.3E-04	2.6E-02	1.5E-04	1.8E-02	1.1E-04	1.3E-02	1.1E-04	1.2E-02	4.2E-05	6.3E-03	

Byproduct	Process Stream (wt % Fraction of Byproducts Exposure		8-Hour TWA Exposure Concentrations		Acute Exposure Concentrations (AC)		Intermediate Average Daily Concentration (ADC _{intermediate})		Average Daily Concentration (ADC)		Lifetime Average Daily Concentration (LADC)	
	in the Process Stream)	Group	Central Tendency (ppm) ^a	High- End (ppm) ^b	Central Tendency (ppm)	High-End (ppm)	Central Tendency (ppm)	High-End (ppm)	Central Tendency (ppm)	High-End (ppm)	Central Tendency (ppm)	High-End (ppm)
		Operator / Process Technician	0.33	1.4	0.23	0.98	0.17	0.72	0.15	0.67	6.1E-02	0.34
Carbon	Unpurified 1,2-Dichloroethane	Laboratory Technician	9.1E-02	0.42	6.2E-02	0.28	4.5E-02	0.21	4.2E-02	0.19	1.7E-02	0.10
tetrachloride ^e	(0.10%) to Light/Heavy Ends (21.6%) ^f	Logistics/ Distribution	1.0E-02	4.4E-02	7.0E-03	3.0E-02	5.1E-03	2.2E-02	4.8E-03	2.0E-02	1.9E-03	1.0E-02
	Liids (21.070)	Maintenance Technician	8.9E-02	0.40	6.1E-02	0.27	4.4E-02	0.20	4.2E-02	0.19	1.7E-03	9.6E-02
		ONU ^d	6.1E-02	0.28	4.2E-02	0.19	3.1E-02	0.14	2.9E-02	0.13	1.1E-02	6.7E-02

ONU = occupational non-user

- ^c The unpurified 1,2-dichloroethane and light/heavy-ends exposure concentrations were not used for 1,1-dichloroethane because inhalation exposure estimates are based on 1,1-dichloroethane test order monitoring data collected at 1,2-dichloroethane manufacturing facilities (Stantec ChemRisk, 2023).
- ^d The central tendency from the closed system monitoring data is a more representative and appropriate exposure estimate for a frequent, repeated inhalation exposure (*i.e.*, chronic) for the ONU exposure group. As described in Section 4.1.1.1, ONUs do not directly handle the chemical and are therefore expected to have lower inhalation exposures and are not expected to have dermal exposures through contact with liquids or solids.
- ^e High-end screening level exposures for trichloroethylene and carbon tetrachloride showed risk to workers; therefore, EPA further refined the analysis by performing Monte Carlo analysis to vary the concentration from the low-end to high-end exposures (equal distribution) as well as separating the exposures by SEG.
- ^f Light-ends liquid streams are the more volatile fractions in the mixture, typically derived from the initial stages of refining process, known for their lower boiling points. Heavy-ends liquid streams are the less volatile, higher boiling point fractions obtained towards the later stages of the refining process.

 Information on respiratory protection used by the exposure groups at the facilities for 1.2 dischlorosthane and byproducts is provided in Table 4.1 and Table 4.2.

Information on respiratory protection used by the exposure groups at the facilities for 1,2-dischloroethane and byproducts is provided in Table 4-1 and Table 4-2.

[&]quot;For 1,1-dichloroethane, the central tendency is the 50th percentile (median) of occupational exposures among all workers within a given similar exposure group (SEG), based on Vinyl Institute inhalation test order monitoring data (<u>Stantec ChemRisk</u>, 2023). For all other byproducts, the central tendency estimate is based on the 50th percentile exposure for 1,2-dichloroethane from the Vinyl Institute inhalation test order monitoring dataset (<u>Stantec ChemRisk</u>, 2024) adjusted for vapor pressure and model fraction for the byproduct chemical using Equation 4-1.

^b For 1,1-dichloroethane, the high-end is the 95th percentile of occupational exposures among all workers within a given SEG, based on Vinyl Institute inhalation test order monitoring data (<u>Stantec ChemRisk</u>, 2023). For all other byproducts, the high-end estimate is based on the 95th percentile exposure for 1,2-dichloroethane from the Vinyl Institute inhalation test order monitoring dataset (<u>Stantec ChemRisk</u>, 2024) adjusted for vapor pressure and mole fraction for the byproduct chemical using Equation 4-1.

Table 4-14. Summary of Dermal Exposure Doses to Byproducts for an Average Adult Worker During the Manufacturing of 1,2-Dichloroethane^a

1289

Byproduct	Process Stream (% Fraction of Byproducts in the	Acute Potential Dose Rate (APDR) (mg/day)		Acute Retained Dose (ARD) (mg/kg-day)		Intermediate Retained Dose (IRD), Non-Cancer		Chronic Retained Dose (CRD), Non- Cancer (mg/kg-day)		Lifetime Chronic Retained Dose (LCRD), Cancer (mg/kg-day)	
	Process Stream)	Central Tendency ^b	High-End ^c	Central Tendency	High-End	Central Tendency	High-End	Central Tendency	High-End ^d	Central Tendency	High-End ^d
1.1 Diablementhan	Unpurified 1,2- Dichloroethane (0.29%)	6.5E-03	2.0E-02	8.2E-05	2.5E-04	6.0E-05	1.8E-04	5.6E-05	NE	2.2E-05	NE
1,1-Dichloroethane	Light/Heavy Ends ^e (30%)	0.67	2.0	8.4E-03	2.5E-02	6.2E-03	1.9E-02	5.8E-03	NE	2.3E-03	NE
Trichloroethylene ^f	Unpurified 1,2- Dichloroethane (0.0035%) to Light/Heavy Ends ^e (0.23%)	9.0E-02	0.24	1.2E-03	3.1E-03	8.5E-04	2.2E-03	7.9E-04	NE	2.9E-04	NE
Perchloroethylene	Unpurified 1,2- Dichloroethane (0.015%)	1.5E-02	4.4E-02	1.8E-04	5.5E-04	1.3E-04	4.0E-04	1.3E-04	NE	5.0E-05	NE
	Light/Heavy Ends ^e (1.1%)	1.1	3.2	1.3E-02	4.0E-02	9.8E-03	2.9E-02	9.2E-02	NE	3.6E-03	NE
Methylene chloride	Unpurified 1,2- Dichloroethane; Light/Heavy Ends (0.0999%) ^g	6.0E-02	0.18	7.5E-04	2.2E-03	5.5E-04	1.6E-03	5.1E-04	NE	2.0E-04	NE
Carbon tetrachloride ^f	Unpurified 1,2- Dichloroethane (0.15%) to Light/Heavy Ends (30%) ^e	6.0	16	7.0E-02	0.20	0.05	0.15	5.0E-02	NE	0.02	NE

Byproduct	Process Stream (% Fraction of Byproducts in the	Acute Potential Dose Rate (APDR) (mg/day		Dose	Retained (ARD) (g-day)	Intermediate Retained Dose (IRD), Non-Cancer		Chronic Retained Dose (CRD), Non- Cancer (mg/kg-day)		Lifetime Chronic Retained Dose (LCRD), Cancer (mg/kg-day)	
	Process Stream)	Central Tendency ^b	High-End ^c	Central Tendency	High-End	Central Tendency	High-End	Central Tendency	High-End ^d	Central Tendency	High-End ^d

^a The test order provided information on PPE used at the facilities monitored which has been presented in Table 4-1 and Table 4-2 and the estimates in this table do not apply quantitative protection factors associated with gloves.

^b Central tendency is based on a lower loading rate of 1,2-dichloroethane (1.4 mg per cm² per event) and one-hand contact.

^c High-end is based on a higher loading rate of byproduct (2.1 mg per cm² per event) and two-hand contact.

^d The central tendency from the closed system monitoring data is a more representative and appropriate exposure estimate for a frequent, repeated dermal exposure (*i.e.*, chronic) and is health protective for risk estimation for closed system processes, as high-end exposures from daily connecting/disconnecting of transfer lines and sampling is not realistic. NE – not estimated.

^e Light-ends liquid streams are the more volatile fractions in the mixture, typically derived from the initial stages of refining process, known for their lower boiling points. Heavy-ends liquid streams are the less volatile, higher boiling point fractions obtained towards the later stages of the refining process.

High-end screening level exposures for trichloroethylene and carbon tetrachloride showed risk to workers; therefore, EPA further refined the analysis by performing Monte Carlo analysis to vary the concentration from the low-end to high-end exposures (equal distribution).

^g Note that methylene chloride had the same concentration in the unpurified 1,2-dichloroethane stream and then light/heavy ends, and thus only has one row of results. Information on protective gloves used by the exposure groups at the facilities for 1,2-dichloroethane and byproducts is provided in Table 4-1 and Table 4-2.

4.1.1.8 Weight of Scientific Evidence for Occupational Exposure

The primary strength of this occupational assessment is the use of PBZ and directly applicable monitoring data, which are preferrable to other assessment approaches such as modeling or the use of occupational exposure limit (OELs). As stated in Section 4.1.1.4.1, EPA had full shift worker inhalation monitoring data for both 1,2-dichloroethane, and 1,1-dichloroethane produced as a byproduct from the manufacture of 1,2-dichloroethane, provided via test order submissions from the Vinyl Institute. For 1,1-dichloroethane, chemical-specific inhalation test order monitoring data were available from three sites that produce 1,1-dichloroethane as a byproduct during the manufacture of 1,2-dichloroethane (Stantec ChemRisk, 2023). This data was used to estimate 8-hour TWA exposure levels for 1,1- dichloroethane byproduct. For the other byproducts, the Agency used the 1,2-dichloroethane inhalation test order monitoring data (Stantec ChemRisk, 2024) as surrogate data to estimate inhalation exposure to the other byproduct chemicals. The number of samples available to assess inhalation exposures was a strength both for the 1,1-dichloroethane dataset, and the 1,2-dichloroethane dataset that was used as surrogate for the remaining four byproducts. The PBZ air concentration data used to assess inhalation exposures for the byproducts (both the 1,1-dichloroethane and 1,2-dichloroethane datasets) had a high data quality rating from the systematic review process.

EPA assumed 250 exposure days per year based on 1,2-dichloroethane exposure, each working day, for a typical worker schedule. There was data in the test order summary report that indicated that certain tasks are done daily while others are done less frequently. The exposure of an individual worker will vary, and while it may not be appropriate to assume the reported high-end exposure would occur regularly to every employee, there may be some workers who are exposed to higher concentrations more regularly than others. Also, for the byproducts where 1,2-dichloroethane exposure is used as a surrogate, it was assumed that the concentration in the air of 1,2-dichloroethane can be adjusted to the concentration in the air of a given byproduct using only the byproduct's concentration in the liquid stream and the vapor pressure. This method introduces uncertainty as other factors this adjustment did not consider may impact a byproduct's concentration in the air.

EPA also compared both the occupational eight-hour TWA inhalation exposure estimates and the dermal acute potential dose rates for each byproduct chemical produced during the manufacture of 1,2-dichloroethane to these same exposures estimated for the Manufacturing COU in previously published chemical-specific risk evaluations. This comparison is presented in Table 4-15 for the inhalation exposure and Table 4-16 for the dermal dose. These comparisons show that the estimates obtained in this assessment are reasonable. For carbon tetrachloride, the smaller difference reflects its high concentrations in the light and heavy end streams (Table 4-8).

Table 4-15. Comparison of Inhalation Exposures Estimated in the Byproduct Assessment for the Light or Heavy End Streams and in the Corresponding Final Risk Evaluations

Chemical	Exposure as	our TWA s Byproduct om)	8-Hour TWA Exposure from Manufacturing COU of Final Risk Evaluation (ppm)					
	Central Tendency	High-End	Central Tendency	High-End	Reference			
1,1-Dichloroethane	1.6E-03	9.0E-03	4.7E-03	1.1	Table 5-18 <u>U.S. EPA (2025n)</u>			
Trichloroethylene (Operator) ^a	1.9E-03	8.9E-03	0.12	2.5	Table 2-13 <u>U.S. EPA (2020j)</u>			

Chemical	Exposure a	our TWA s Byproduct pm)	8-Hour TWA		om Manufacturing COU of Final aluation (ppm)			
	Central Tendency	High-End	Central Tendency	High-End	Reference			
Trichloroethylene (Laboratory Technician) ^a	5.4E-04	2.4E-03						
Trichloroethylene (Logistics Technician) ^a	6.0E-05	2.5E-04						
Trichloroethylene (Maintenance Technician) ^a	5.2E-04	2.3E-03						
Perchloroethylene	9.5E-04	1.4E-02	3.3E-02	2.7	Table 2-61 <u>U.S. EPA (2020i)</u>			
Methylene chloride	7.7E-03	0.12	0.36	4.6	Table 2-84 <u>U.S. EPA (2020h)</u>			
Carbon tetrachloride (Operator) ^a	0.33	1.4	0.76	4.0	Table 2-8 <u>U.S. EPA (2020g)</u>			
Carbon tetrachloride (Laboratory Technician) ^a	0.09	0.42						
Carbon tetrachloride (Logistics Technician) ^a	0.01	0.04						
Carbon tetrachloride (Maintenance Technician) ^a	0.09	0.40						

^a High-end screening level exposures for trichloroethylene and carbon tetrachloride showed risk to workers; therefore, EPA further refined the analysis by performing Monte Carlo analysis to vary the concentration from the low-end to high-end exposures (equal distribution) and separated exposures by SEG.

Table 4-16. Comparison of Dermal Dose Rate Estimated in the Byproduct Assessment and in the Corresponding Final Risk Evaluations

1331 1332 1333

Chemical	Acute Pote Rate as By (mg/c	yproduct	Acute Potential Dose Rate from Manufacturing COU of Final Risk Evaluation (mg/day)					
	Central Tendency	High-End	Central Tendency	High-End	Reference			
1,1-Dichloroethane	0.67	2.0	2.3	6.7	Table 5-15 <u>U.S. EPA (2025n)</u>			
Trichloroethylene ^a	0.09	0.24	61	180	Table 2-15 <u>U.S. EPA (2020j)</u>			
Perchloroethylene	1.1	3.2	96	280	Table 2-63 <u>U.S. EPA (2020i)</u>			
Methylene chloride	6.0E-02	0.18	60	180	Table 2-85 <u>U.S. EPA (2020h)</u>			
Carbon tetrachloride ^a	6.0	16	30	90	Table 2-24 <u>U.S. EPA (2020g)</u>			

Chemical	Acute Potential Dose Rate as Byproduct (mg/day)		Acute Potential Dose Rate from Manufacturing COU of Final Risk Evaluation (mg/day)				
	Central Tendency	High-End	Central Tendency	High-End	Reference		

^a High-end, screening level exposures for trichloroethylene and carbon tetrachloride showed risk to workers; therefore, EPA further refined the analysis by performing Monte Carlo analysis to vary the concentration from the low-end to high-end exposures (equal distribution).

Based on these strengths and limitations, EPA has concluded that the confidence for this occupational exposure assessment is (1) robust in the case of 1,1-dichloroethane that utilized directly applicable inhalation test order monitoring data, and (2) moderate in the case of the remaining byproducts that used 1,2-dichloroethane inhalation test order data as surrogate.

In the case of the dermal occupational exposure assessment, EPA estimated exposures using modeling methodologies that are supported by moderate evidence. Specifically, the Agency used the *Dermal Exposure to Volatile Liquids Model* to calculate the dermal retained dose. This model modifies the EPA/OPPT 2-Hand Dermal Exposure to Liquids Model by incorporating a "fraction absorbed (fabs)" parameter to account for the evaporation of volatile chemicals. These modifications improve the modeling methodology; however, the modeling approach is still limited by the low variability for different worker activities and exposure scenarios. Therefore, the weight of scientific evidence for the dermal exposure estimates is moderate.

4.1.2 General Population Exposure Assessment

The following subsections describe EPA's approach to assessing the general population exposures to the byproducts produced during the manufacture of 1,2-dichloroethane and provide the results of the general population exposure assessment. The Agency assessed exposures to general population via inhalation, oral, and dermal routes. The full inputs and results for modeling of oral, dermal, and inhalation exposures are presented in the *Draft Byproducts General Population Exposure* (U.S. EPA, 2025a) and *Draft HEM Input and Output Files for 1,2-Dichloroethane-Byproducts* (U.S. EPA, 2025i). EPA assumed that byproduct exposures could be estimated as a fraction of 1,2-dichloroethane releases from 1,2-dichloroethane manufacturing facilities. EPA estimated inhalation exposures from the byproducts to populations living within 50 km of facilities within the Manufacturing COU of 1,2-dichloroethane using HEM. The Agency also estimated byproduct exposures to the general population from the facility releasing the highest concentration of 1,2-dichloroethane within the Manufacturing COU to surface waters (Section 2.2.2).

4.1.2.1 Inhalation Exposure Assessment

EPA used HEM to estimate chronic and acute inhalation exposures to each byproduct for populations living within 50 km of 1,2-dichloroethane releasing facilities. HEM calculates exposures at the centroid of census blocks within 50 km of each modeled facility and at designated polar grid receptors at distances of 10 to 10,000 m from each facility (see *Draft Environmental Media Concentrations for 1,2-Dichloroethane* (U.S. EPA, 2025f) and *Draft General Population Exposure Assessment for 1,2-Dichloroethane* (U.S. EPA, 2025h)). Ambient air concentrations and the resulting exposures were estimated using releases that were calculated by multiplying the 1,2-dichloroethane releases by the respective fraction of individual byproducts in the non-purified product stream (Table 1-1). To estimate high-end exposures, TRI releases of 1,2-dichloroethane from 2018 were used since they represented the highest total reported TRI air emissions of 1,2-dichoroethane from all 1,2-dichloroethane manufacturing facilities for the reporting period considered in this draft risk evaluation (2015-2020). Releases from all

facilities reporting to TRI in 2018 were modeled in HEM. For more information on HEM, see the *Draft Environmental Media Concentrations for1,2-Dichloroethane* (U.S. EPA, 2025f) and *Draft General Population Exposure Assessment for 1,2-Dichloroethane* (U.S. EPA, 2025h). HEM's lifetime chronic exposure scenario assumes an individual breathing the ambient air at a given receptor 24 hours per day over a 70-year lifetime. The assumption of a continuous exposure over an entire lifetime represents a conservative exposure scenario. Lifetime average daily concentrations (LADC), average daily concentrations (ADC), and acute concentrations (AC) can be calculated using the following equations:

Equation 4-3.

$AC = \frac{DAC \times ET}{AT}$ 1384 1385 $ADC = \frac{AAC \times ET \times EF \times ED}{AT}$ 1386 1387 $LADC = \frac{AAC \times ET \times EF \times ED}{AT}$

1388 Where:

 $AC = \text{Acute concentration } (\mu g/m^3)$ 1390 DAC = Daily Average Air Concentration, model output reflecting average concentrations1391 over a 24-hour period $(\mu g/m^3)$

ET = Exposure time (24 hours/day)

AAC = Annual Average Air Concentration, model output reflecting average

concentrations over a year $(\mu g/m^3)$

EF = Exposure frequency (365 days/year)

ED = Exposure duration (1 year for non-cancer ADC; 70 years for cancer LADC)

AT = Averaging time; averaging time for AC = 24 hours; averaging time for ADC = 24 hours/day × 365 days/year × 1 year; averaging time for LADC = 24 hours/day ×

 $365 \text{ days/year} \times 70 \text{ years}$

Because the averaging times and exposure durations are the same, LADC and ADC values are equal to the concentrations shown in Table 2-6 and AC values are equal to the concentrations shown in

1404 Table 2-7.

4.1.2.2 Oral Exposure Assessment

EPA estimated the 1,2-dichloroethane exposures via the oral route for the Manufacturing COU/OES as presented in the *Draft General Population Exposure Assessment for 1,2-Dichloroethane* (U.S. EPA, 2025h) from fish ingestion and incidental oral exposures from swimming. Since the byproducts are a fraction of the 1,2-dichloroethane oral exposures, EPA estimated the relative oral exposures for each of the byproducts based on the relative amount weight percent of each byproduct in the byproduct manufactured 1,2-dichloroethane effluent stream as released into surface waters at the point discharge. As described in Section 2.2.2, EPA was able to characterize the 2016 releases from the Eagle US 2 facility to Bayou d'Inde for a number of the byproduct chemicals. In addition, EPA considered the Eagle 2 surface water concentrations as representative of the possible high-end exposures across the 2015 to 2020 years of releases considered in the 1,2-dichloroethane risk assessment.

1416
1417 Table 4-17 below presents the estimated acute (ADR) and chronic (ADD) oral exposures based on the
1418 proportion of byproduct exposure relative to 1,2-dichloroethane. A high-end level of fish ingestion is

presented: 142.4g/day for 90th percentile general population and is the same as subsistence level of fish ingestion. Tribal levels of fish ingestion were not included in this estimate as the Eagle US 2 and other 1,2-dichloroethane manufacturing sites are not in or adjacent to designated Tribal land and therefore, Tribal levels of exposure are not expected.

In addition, two levels of exposures were presented for the incidental ingestion route: for adults and for youth aged 11 to 15 years, the latter considering the higher exposures for youth relative to adults.

EPA conducted a screening analysis to estimate oral exposures from byproducts through drinking water using the byproduct concentrations in the Bayou d'Inde. Possible infant exposures to the byproducts via drinking water used in formula are presented in Table 4-17. EPA acknowledges that this is a theoretical upper-bound estimate since the Eagle US 2 releases to a receiving water body are not a source of downstream drinking water. However, the screening analysis provides evidence that other facilities discharging byproducts under the 1,2-dichloroethane Manufacturing COU would be lower concentrations than presented in Section 2.2.2 and would result in even lower exposures if other facilities' releases were to drinking water source waters. Therefore, byproduct releases are anticipated to result in low drinking water exposures.

Table 4-17. Oral Exposures From Byproducts Released to Bayou d'Inde From Eagle US 2 Manufacturing COU

Manufacturing C									
Chemical	(Ger	gestion neral ation)	Inge	tal Oral stion wimming)	Incidental Oral Ingestion (11–15 years Swimming)	Drinking Water (Infants)			
	ADR (mg/kg- day)	ADD (mg/kg- day)	ADR (mg/kg- day)	ADD (mg/kg- day)	ADR (mg/kg-day)	ADD (mg/kg- day)	ADR (mg/kg- day)	ADD (mg/kg- day)	
1,2- Dichloroethane	1.36E-03	3.08E-04	6.70E-03	1.00E-05	1.04E-02	1.60E-05	0.27	8.5E-05	
1,1- Dichloroethane	4.00E-06	9.06E-07	1.97E-05	2.94E-08	3.06E-05	4.71E-08	7.9E-04	2.5E-07	
Trichloroethylene	4.81E-08	1.09E-08	2.37E-07	3.54E-10	3.68E-07	5.66E-10	9.5E-06	3.0E-09	
Perchloroethylene	2.06E-07	4.67E-08	1.02E-06	1.52E-09	1.58E-06	2.43E-09	4.1E-05	1.3E-08	
Methylene chloride	1.37E-06	3.11E-07	6.77E-06	1.01E-08	1.05E-05	1.62E-08	1.62E-08 2.7E-04		
Carbon tetrachloride	2.06E-06	4.67E-07	1.02E-05	1.52E-08	1.58E-05	2.43E-08	4.1E-04	1.3E-07	

4.1.2.3 Weight of Scientific Evidence for General Population Exposure

Ambient Air

EPA used ambient air concentrations as modeled by HEM to estimate exposures to the general population. Additional information on HEM modeling, including uncertainties, is provided in Section 2.2.1.2 and the *Draft Risk Evaluation for 1,2-Dichloroethane* (U.S. EPA, 20251). The exposure scenarios considered are most relevant to long-term residents in fenceline communities. Acute daily and chronic annual exposure estimates also use a conservative assumption of a continuous 24-hour exposure to the general population. EPA has robust confidence that these exposure scenarios used in this analysis are representative of high-end exposure and are human health protective.

1449	
1450	Surface Water
1451	EPA conducted a screening assessment to evaluate general population exposures to byproducts released
1452	to surface waters. Given the strong evidence of one facility, the Eagle US 2 facility in Westlake,
1453	Louisiana, representing the high-end exposure scenario of 1,2-dichloroethane and each of the
1454	byproducts, EPA used this facility's releases and surface water concentrations to assess exposures to
1455	byproducts. The Agency is confident that the permit reporting releases of 1,2-dichloroethane provide
1456	relevant data to conduct a general population exposure estimates from surface water exposures. EPA
1457	confirmed that potential exposures from byproduct releases were anticipated to be lower than those
1458	predicted in previous chemical fenceline technical reports (Section 1.2).

5 HUMAN HEALTH HAZARD

The human health hazards and associated weight of scientific evidence for each byproduct are described in full in each respective risk evaluation. EPA is not re-opening or revising those risk evaluations at this time. This section, Table 5-1 through Table 5-3, briefly summarizes the human health hazards of byproducts used in this draft TSD.

Table 5-1. Inhalation Unit Risk and Cancer Slope Factor Values Used to Calculate Risk

Chemical/Byproduct	IUR (per mg/m³)	CSF (per mg/kg-day)	Reference(s)
Carbon tetrachloride	6.00E-03 ^a	5.00E-02	U.S. EPA (2024);U.S. EPA (2022a);U.S. EPA (2022b)
1,1-Dichloroethane	7.10E-03 ^b	3.90E-02	Table 5-52 <u>U.S. EPA (2025n)</u>
Methylene chloride	5.80E-06 ^c	3.20E-05	U.S. EPA (2020h); U.S. EPA (2022d); U.S. EPA (2022c)
Perchloroethylene	$3.00E-04^d$	2.00E-03	U.S. EPA (2020i); U.S. EPA (2022e); U.S. EPA (2022f)
Trichloroethylene	$4.09E-03^{e}$	4.64E-02	<u>U.S. EPA (2020j)</u> ; <u>U.S. EPA (2022g)</u> ; <u>U.S. EPA (2022h)</u>

IUR = Inhalation Unit Risk; CSF = cancer slope factor

1466

1459

1460

1461

1462 1463

1464

^a Based on adrenal pheochromocytoma in male mice.

^b Based on combined mammary gland adenomas, fibroadenomas, and adenocarcinomas and subcutaneous fibromas in female rats.

^c Based on liver and lung tumors in mice. An age dependent adjustment factor (ADAF) of 1.59 was applied to the IUR of 5.8E–06 mg/m³ to calculate risk estimates for the general population (9.22E–06 per mg/m³).

^d Based on hepatocellular tumors in male mice.

^e Based on kidney cancer in humans. An ADAF of 1.59 was applied to the IUR of 4.09E–03 mg/m³ to calculate risk estimates for the general population (6.51E–03 mg/m³).

Table 5-2. Acute Non-Cancer PODs Used to Calculate Risk for Each Byproduct

Chemical/ Byproduct	HEC ^a (mg/m ³) [ppm]	Health Effect	MOE	HED ^a (mg/kg-day)	Health Effect	MOE	Reference(s)
Carbon tetrachloride	234 [37.2]	CNS (temporarily disabling effects)	$UF_H = 10$ Total $UF = 10$	17	Fatty changes in the liver	$UF_{H} = 10$ $UF_{L} = 3$ $Total\ UF = 30$	<u>U.S. EPA (2024);U.S. EPA (2022a);U.S. EPA (2022b)</u>
1,1-Dichloroethane	9.78 [2.42]	Degeneration with necrosis of the olfactory mucosa	$UF_A = 3$ $UF_H = 10$ $Total\ UF = 30$	19.9	Increased relative kidney weight	$UF_A = 3$ $UF_H = 10$ $Total = 30$	Table 5-35 <u>U.S. EPA</u> (2025n)
Methylene chloride	174 [50]	Impairment of CNS 7% ↓ visual peripheral performance at 1.5 hours	UFH = 10 UFL = 3 Total UF = 30	32	Impairment of CNS 7% ↓ visual peripheral performance at 1.5 hours	$UF_{H} = 10$ $UF_{L}=3$ $Total\ UF = 30$	U.S. EPA (2020h);U.S. EPA (2022d);U.S. EPA (2022c)
Perchloroethylene	11.5 [1.7]	Neurotoxicity increased latencies for pattern reversal visual-evoked potentials	$UF_H = 10$ Total $UF = 10$	2.1	Increased latencies for pattern reversal visual-evoked potentials (CNS effect)	UF _H = 10 Total UF = 10	U.S. EPA (2020i);U.S. EPA (2022e);U.S. EPA (2022f)
Trichloroethylene	5.2 [0.973]	Mortality due to immuno- suppression	$UF_A = 3 \ UF_H = 3$ Total $UF = 10$	1.34	Mortality due to immuno- suppression	$UF_A = 3$ $UF_H = 3$ $Total\ UF = 10$	<u>U.S. EPA (2020j);U.S. EPA</u> (2022g);U.S. EPA (2022h)

CNS – central nervous system; MOE = margin of exposure; UF = uncertainty factor

The human equivalent concentration (HEC) and human equivalent dose (HED) values were converted to a 24-hour duration.

1468

Table 5-3. Chronic Non-Cancer PODs Used To Calculate Risk for Each Byproduct

Chemical/ Byproduct	HEC ^a (mg/m ³) [ppm]	Health Effect	МОЕ	HED ^a (mg/kg-day)	Health Effect	МОЕ	Reference(s)
Carbon tetrachloride	14.3 [2.27]	Fatty changes in the liver	$UF_{H} = 10$ $UF_{A} = 3$ $Total\ UF = 30$	1.7	Fatty changes in the liver	$UF_{H} = 10$ $UF_{A} = 3$ $Total \ UF = 30$	U.S. EPA (2024); U.S. EPA (2022a); U.S. EPA (2022b)
1,1- Dichloroethane	21.2 [5.2]	Decreases in sperm concentration	$UF_A = 3$ $UF_H = 10$ $UF_S = 10$ $Total = 300$	6.5	Increased relative Kidney weight	$UF_A = 3$ $UF_H = 10$ $UF_S = 10$ $Total = 300$	Table 5-37 <u>U.S. EPA (2025n)</u>
Methylene chloride	17.2 [5]	Hepatic lipid vacuolation	$UF_A = 3$ $UF_H = 3$ $Total\ UF=10$	3	Hepatic lipid vacuolation	$UF_A = 3$ $UF_H = 3$ $Total \ UF = 10$	U.S. EPA (2020h); U.S. EPA (2022d); U.S. EPA (2022c)
Perchloroethylene	35.3 [5.2]	Midpoint of the range of the 2 neurotoxicity studies (adjusted for 8-hour occupational TWA)	$UF_H=10$ $UF_L=10$ Total UF=100	6.2	Midpoint of the range of the 2 neurotoxicity endpoints Extrapolated from chronic inhalation POD	$UF_{H}=10$ $UF_{L}=10 \text{ Total}$ $= 100$	U.S. EPA (2020i);U.S. EPA (2022e);U.S. EPA (2022f)
Trichloroethylene	0.177 [0.033]	Autoimmunity (increased anti- dsDNA and ssDNA antibodies)	$UF_A = 3 UF_H = 3$ $UF_L = 3 Total$ $UF = 30$	0.048	Autoimmunity (increased anti- dsDNA and ssDNA antibodies)	$UF_A = 3 UF_H$ $= 3 UF_L = 3$ $Total UF = 30$	U.S. EPA (2020j);U.S. EPA (2022g);U.S. EPA (2022h)

MOE = margin of exposure; POD = point of departure; TWA = time-weighted average; UF = uncertainty factor

^a The human equivalent concentration (HEC) and human equivalent dose (HED) values were converted to a 24-hour duration.

6 HUMAN HEALTH RISK ESTIMATES

6.1 Risk Estimates for Workers

For each byproduct chemical, EPA assessed 1,2-dichloroethane inhalation and dermal exposures to workers and ONUs in occupational settings, presented as 8-hour (*i.e.*, full shift) TWA described in Section 4.1.1. These estimated exposures were then used to calculate the following metrics: acute, intermediate, and chronic (non-cancer and cancer) inhalation exposures and dermal doses. These calculations require parameter inputs such as years of exposure, exposure duration and frequency, and lifetime years. EPA used combinations of point estimates of each parameter to estimate a central tendency and high-end for each exposure metric result. The Agency documented the method and rationale for selecting parametric combinations to be representative of central tendency and high-end in Section 4.1.1 and in the *Draft Byproducts Risk Calculator for 1,2-Dichloroethane* (U.S. EPA, 2025d).

Dermal exposures to workers in occupational settings are presented as a dermal APDR. The APDRs are then used to calculate acute retained doses (ARD), intermediate retained dose (IRD) and chronic retained dose (CRD) for chronic non-cancer risks.

 The input parameter values in Table 6-1 are used to calculate each of the acute, intermediate, and chronic exposure estimates. For additional details on these parameters, refer to *Draft Occupational Exposure Assessment for 1,2-Dichloroethane* (<u>U.S. EPA, 2025k</u>). Only 1,1-dichloroethane has intermediate exposure estimates; which was not estimated for the other byproduct chemicals because intermediate exposure duration was not evaluated in the respective risk evaluations.

Table 6-1. Parameter Values for Calculating Exposure Estimates

Parameter Name	Symbol	Value	Unit	Source
Exposure Duration	ED	8	Hours/day	EPA generally uses an exposure duration of 8 hours per day for averaging full shift exposures.
Breathing Rate Ratio	BR	2.04 ^a	Unitless	<u>CEB (1991)</u>
Exposure Frequency	EF	250	Days/year	BLS (2016)
Exposure Frequency, Intermediate	EF _{intermediate}	22	Days	Estimated using an assumed 5 working days per week and intermediate duration of 30 days.
Days for Intermediate Duration	$D_{intermediate}$	30	Days	Based on available health data.
Working years	WY	31 (50th percentile) 40 (95th percentile)	Years	(<u>U.S. Census Bureau, 2019; BLS, 2014</u>)
Lifetime Years, Cancer	LT	78	Years	(<u>U.S. EPA, 2011</u>)
Averaging Time, Intermediate	$AT_{intermediate}$	720	Hours	Based on 30-day exposure duration.

Parameter Name	Symbol	Value	Unit	Source
Averaging Time, Non-Cancer	AT	271,560 (central tendency) ^b 350,400 (high-end) ^c	Hours	Estimated using working years, exposure duration, and exposure frequency,
Averaging Time, Cancer	AT_c	683,280	Hours	Estimated using lifetime years, exposure duration, and exposure frequency.
Body Weight	BW	80 (average adult worker) 72.4 (female of reproductive age)	Kg	(U.S. EPA, 2011)

^a EPA uses a breathing rate ratio, which is the ratio between the worker breathing rate and resting breathing rate, to account for the amount of air a worker breathes during exposure. The typical worker breathes about 10 m³ of air in 8 hours, or 1.25 m³/h (CEB, 1991) while the resting breathing rate is 0.6125 m³/h (CEB, 1991). The ratio of these two values is equivalent to 2.04.

6.1.1 Acute Risk

Acute non-cancer (AC) is used to estimate workplace inhalation exposures for acute risks (i.e., risks occurring as a result of exposure for less than one day), per Equation 6-1:

Equation 6-1.

 $AC = (C \times ED \times BR)/(AT_{acute})$

1500 Where:

1494

1495

1496 1497 1498

1499

1505

1506 1507

1508 1509 1510

1511

1512

1514 1515

1516 1517 1518

1501 AC Acute exposure concentration Contaminant concentration in air (TWA) 1502 C= EDExposure duration (hours/day) 1503 1504 BRBreathing rate ratio (unitless) =

> A sample calculation for the high-end acute inhalation exposure concentration (AC_{HE}) for the Manufacturing (Operators) OES is demonstrated in Equation 6-2 below:

Acute averaging time (hours)

Equation 6-2.

 AT_{acute}

 $AC_{HE} = (C_{HE} \times ED \times BR)/(A_{acute})$

1513 $AC_{HE} = (7.3 ppm \times 8 hr/day \times 2.04)/(24 hr/day) = 5.0 ppm$

Acute retained dose (ARD) is used to estimate workplace dermal exposures for acute risks and are calculated using Equation 6-3 below:

Equation 6-3.

1519 ARD = APDR/BW1520 Where:

1521 ARD

Acute retained dose (mg/kg-day) Acute potential dose rate (mg/day) 1522 APDR

1523 Body weight (kg) BW

^b Calculated using the 50th percentile value for working years (WY).

^c Calculated using the 95th percentile value for WY.

1524 A sample calculation for the high-end acute retained dose for the Manufacturing (Operators) OES is 1525 demonstrated in Equation 6-4 below: Equation 6-4. 1526 1527 $ARD_{HE} = APDR_{HE}/BW$ 1528 1529 $ARD_{HE} = (5.5 \, mg/day)/(80 \, kg) = 0.07 \, mg / (kg - day)$ 1530 1531 **6.1.2** Intermediate Risk Intermediate non-cancer (ADC_{intermediate}) is used to estimate workplace inhalation exposures for 1532 intermediate risks and is estimated in Equation 6-5 and Equation 6-6, as follows: 1533 1534 1535 Equation 6-5. $ADC_{intermediate} = (C \times ED \times EF_{intermediate} \times BR)/AT_{intermediate}$ 1536 1537 1538 Equation 6-6. $AT_{intermediate} = D_{intermediate} \times 24 \, hr/day$ 1539 1540 1541 Where: 1542 Intermediate average daily concentration $ADC_{intermediate}$ = 1543 Intermediate exposure frequency $EF_{intermediate}$ = Averaging time (hours) for intermediate exposure 1544 AT_{intermediate} =1545 = Days for intermediate duration (day) $D_{intermediate}$ 1546 1547 A sample calculation for the intermediate exposure concentration (ADCintermediate, HE) for the 1548 Manufacturing (operators) OES is demonstrated in Equation 6-7 below: 1549 1550 Equation 6-7. 1551 $ADC_{intermediate} = (C_{HE} \times ED \times EF_{intermediate} \times BR)/AT_{intermediate}$ 1552 1553 $ADC_{intermediate,HE}$ $= (7.3 ppm \times 8 hr/day \times 22 days/year \times 2.04)/(24 hr/day \times 30 days/year)$ 1554 1555 $= 3.6 \, ppm$ 1556 Intermediate retained dose (RD_{intermediate}) is used to estimate workplace dermal exposures for 1557 1558 intermediate risks, and is estimated using Equation 6-8: 1559 Equation 6-8. 1560 1561 $RD_{intermediate} = (AD \times EF_{intermediate} \times WY)/AT_{intermediate}$ 1562 Where: 1563 Intermediate retained dose (mg/kg-day) $RD_{intermediate}$ 1564 A sample calculation for the high-end intermediate retained dose for the Manufacturing (operators) OES is demonstrated in Equation 6-9 below: 1565 1566 1567 Equation 6-9. $RD_{intermediate,HE} = (ARD_{HE} \times EF_{intermediate} \times WY_{HE})/AT_{intermediate}$ 1568

 $RD_{intermediate,HE} = (0.07 \, mg/(kg - day) \times 22 \, day/yr \times 40 \, yr)/(30 \, day) = 0.06 \, mg / kg - day$ 1570 1571 6.1.3 Chronic Non-Cancer Risk The average daily concentration (ADC) is used to estimate workplace inhalation exposures for non-1572 1573 cancer risk. This exposure is estimated as follows in Equation 6-10 and Equation 6-11: 1574 1575 Equation 6-10. 1576 $ADC = (C \times ED \times EF \times WY \times BR)/AT$ 1577 1578 Equation 6-11. $AT = WY \times 365 \text{ "}day \text{"}/\text{"}yr \text{"} \times 24 \text{ "}hr \text{"}/\text{"}day \text{"}$ 1579 1580 1581 Where: 1582 ADCAverage daily concentration used for chronic non-cancer risk calculations 1583 EDExposure duration (hours/day) = 1584 EFExposure frequency (day/year) = Working years per lifetime (yr) 1585 WYATAveraging time (hours) for chronic, non-cancer risk 1586 = 1587 1588 A sample calculation for the high-end chronic non-cancer exposure concentration (ADC_{HE}) for the Manufacturing (operators) OES is demonstrated in Equation 6-12 below: 1589 1590 1591 Equation 6-12. $ADC_{HE} = (C_{HE} \times ED \times EF \times WY \times BR)/AT$ 1592 1593 $ADC_{HE} = (7.3 \ ppm \times 8 \ hr/day \times 250 \ days/year \times 40 \ years \times 2.04)/(40 \ years \times 365 \ days/yr$ 1594 1595 \times 24 hr/day) = 3.4 ppm1596 1597 The chronic retained dose (CRD) is used to estimate workplace dermal exposures for non-cancer risk 1598 and is calculated using Equation 6-13: 1599 Equation 6-13. 1600 1601 $CRD = (ARD \times EF \times WY)/(AT_{chronic})$ 1602 1603 A sample calculation for the high-end chronic retained dose for the Manufacturing OES is demonstrated 1604 in Equation 6-14 below: 1605 1606 Equation 6-14. 1607 $CRD_{HF} = (ARD_{HF} \times EF \times WY)/(AT_{chronic})$ 1608 $CRD_{HE} = (0.08 \, mg/(kg - day) \times 250 \, day/yr \times 40 \, yr)/(14,600 \, day) = 0.06 \, (mg) \, / \, (kg-) \, day$ 1609 1610 6.1.4 Cancer Risk 1611 Lifetime average daily concentration (LADC) is used to estimate workplace inhalation exposures for cancer risk. This exposure is estimated as follows in Equation 6-15 and Equation 6-16: 1612 1613 1614 Equation 6-15.

 $LADC = (C \times ED \times EF \times WY \times BR)/AT_C$

1616 Equation 6-16. $AT_C = LT \times 365 \text{ "}day\text{"}/\text{"}yr\text{"} \times 24 \text{ "}hr\text{"}/\text{"}day\text{"}$ 1617 1618 1619 Where: 1620 LADC =Lifetime average daily concentration used for chronic cancer risk calculations 1621 ED Exposure duration (hours/day) = 1622 EF Exposure frequency (day/year) = 1623 WY Working years per lifetime (yr) = 1624 AT_{C} Averaging time (hours) for cancer risk = 1625 LT Lifetime years (yr) for cancer risk =

A sample calculation for the high-end chronic cancer exposure concentration (LADC_{HE}) for the Manufacturing (Operators) OES is demonstrated in Equation 6-17 below:

Equation 6-17.

1626

1629 1630

1631 1632

16331634

16351636

1637

16381639

1640

1641 1642

1643 1644 1645

1646

1647

1648 1649

1650

1651 1652

1653

1654 1655

1656

1657

$$LADC_{HE} = (C_{HE} \times ED \times EF \times WY \times BR)/(AT_C)$$

 $LADC_{HE} = (7.3 \ ppm \times 8 \ hr/day \times 250 \ days/year \times 40 \ years \times 2.04)/(78 \ years \times 365 \ days/year \times 24 \ hr/day) = 1.7 \ ppm$

The lifetime chronic retained dose (LCRD) is used to estimate workplace dermal exposures for cancer risk and is calculated using Equation 6-18:

Equation 6-18.

$$LCRD = (ARD \times EF \times WY)/(AT_C)$$

A sample calculation for the high-end lifetime chronic retained dose (LCRD_{HE}) for the Manufacturing OES is demonstrated in Equation 6-19 below

Equation 6-19.

$$LCRD_{HE} = (ARD_{HE} \times EF \times WY \times BR)/(AT_C)$$

$$LCRD_{HE} = (0.08 mg/(kg - day) \times 250 day/yr \times 40 yr)/(14,600 day)$$

$$= 0.06 (mg) / (kg-) day$$

6.1.5 Occupational Risk Summary

This section compares estimated MOEs to benchmark values. The occupational inhalation exposure metrics described in Section 6.1.1 through Section 6.1.4 are presented for each byproduct chemical (1,1-dichloroethane, trichloroethylene, perchloroethylene, methylene chloride, and carbon tetrachloride) in Table 4-13, and the occupational dermal exposure metrics for each byproduct chemical are presented in Table 4-14. EPA used the exposure metrics presented in those tables and the approach described in Section 6.1 and Section 6.2 to develop risk estimates for each byproduct.

Risk estimates for exposure to the light-/heavy-end streams (high-end exposures) for 1,1-dichloroethane, perchloroethylene, and methylene chloride are presented in Table 6-2. Risk estimates for exposure to the unpurified 1,2-dichloroethane stream (low-end exposures) for 1,1-dichloroethane, perchloroethylene, and methylene chloride are presented in Table 6-3. For the high-end exposure results, MOE estimates were above the chronic non-cancer (or acute non-cancer) benchmark and below the

cancer benchmark for inhalation and dermal for 1,1-dichloroethane, methylene chloride, or perchloroethylene.

High-end screening level exposures for trichloroethylene and carbon tetrachloride showed MOE estimates were below the chronic non-cancer benchmark and above the cancer benchmark for inhalation and dermal; therefore, EPA further refined the analysis by performing Monte Carlo analysis to vary the concentration from the low-end to high-end exposures (equal distribution) as well as separating the exposures by SEG. These results are presented in Table 6-4.

As shown in Table 6-4, trichloroethylene presents a chronic non-cancer inhalation MOE below the benchmark for operators and laboratory technicians at high-end exposure. Carbon tetrachloride presents a chronic non-cancer MOE below the benchmark and cancer MOE above the benchmark for operators, maintenance technicians, laboratory technicians, and ONUs at high-end inhalation exposures, a cancer MOE above the benchmark for logistics technicians at high-end inhalation exposures, and dermal cancer MOE above the benchmark at central tendency for workers. The central tendency from the closed system monitoring data is a more representative and appropriate exposure estimate for a frequent, repeated inhalation exposure (*i.e.*, chronic) for the ONU exposure group. As described in Section 4.1.1.1, ONUs do not directly handle the chemical and are therefore expected to have lower inhalation exposures and are not expected to have dermal exposures through contact with liquids or solids. For additional details on these estimates, refer to *Draft Byproducts Risk Calculator for 1,2-Dichloroethane* (U.S. EPA, 2025d).

In cases of inhalation exposure where MOE estimates are below the chronic non-cancer (or acute non-cancer) benchmark and above the cancer benchmark (Table 6-4), PPE is required to meet the indicated benchmark. This level of required PPE is indicated using an APF, the value of which indicates the level of protection provided by a respirator. Where no risk is estimated, no APF is provided (Table 6-2 and Table 6-3). There are no formal protection factors established for gloves. For details on PPE use, refer to Section 4.1.1.1.

The test order submission from the Vinyl Institute provided data on the use of respiratory protection (Stantec ChemRisk, 2024). During the inhalation sampling study, operators were described as wearing half- or full-face, air-purifying respirators during sample collection tasks (open or closed loop). This corresponds to an APF 10 or 50, when the employer implements a continuing, effective respiratory protection program under the OSHA Respiratory Protection Standard. Additionally, operators were described as wearing full-face respirators of varying types (APF 50–1,000) during other tasks with exposure potential such as process leak response, maintenance preparation activities, and filling totes. Maintenance technicians were described as wearing full-face airline respirators (APF 1,000) during major maintenance tasks (e.g., line breaks and other equipment openings). Logistics technicians were described as wearing half-face or full-face respirators (APF 10 or 50) during loading or offloading tasks, which required connecting and disconnecting process lines to railcars, barges, and trucks. Laboratory technicians were described as wearing half-face respirator (APF 10) with organic vapor cartridges (when standards are weighed on benchtop). Certain lab personnel were described as wearing full-face air purifying respirators (APF 1,000) during disposal of hazardous wastes from fume hoods. ONUs were "primarily" not reported to wear respiratory protection during any routine daily tasks, although one supervisor was described as wearing a full-face respirator (APF 50) while observing loading activities from 20 feet away.

More generally, the Vinyl Institute test order submission provided data on the use of PPE (<u>Stantec</u> ChemRisk, 2024). Each representative facility utilized similar standard process area PPE, task-specific

- 1712 PPE, and emergency use PPE (e.g., during an accidental release, spill, or leak). The type of PPE used 1713 depended on the process area and task performed. As such, individuals in each SEG required different 1714 types of PPE dependent on the process area in which they worked and the types of tasks they performed. 1715 For example, maintenance technicians were described as wearing standard process area PPE while 1716 conducting maintenance tasks in production process areas but donned additional PPE as necessary for 1717 specific maintenance tasks. Similarly, at one of the facilities, a laboratory technician was described as 1718 wearing additional PPE (a full-face air-purifying respirator) to dispose of the lab analyses generated 1719 hazardous waste, and when the laboratory technician returned to the laboratory, they donned the 1720 appropriate laboratory PPE. When conducting process walkthroughs or other tasks that required them to 1721 enter process areas, ONUs were described as wearing standard process area PPE. Routine tasks 1722 conducted by ONUs (e.g., office work) did not require access to process areas with exposure potential, 1723 and thus no PPE was required for these workers.
- Standard dermal PPE for production process areas included neoprene gloves, and leather or cut-resistant gloves, while task-specific PPE in this area may include nitrile gloves or viton/butyl gloves. For logistic work areas, neoprene gloves were standard and task-specific PPE may include heavy duty nitrile gloves. Nitrile gloves are standard PPE for laboratory work areas.

Table 6-2. Occupational Risk Summary Table High-End Exposures (Light-/Heavy-End Streams) and PPE Level Needed To Exceed Benchmark in Cases of Risk for 1,1-Dichloroethane, Perchloroethylene, and Methylene Chloride

1729

	Similar Exposure	Exposure		Acu Non-Ca		Intermediate Non- Cancer		Chronic Non-Cancer		Cancer	
Chemical	Group	Route and Duration	Exposure Level	MOE – No PPE ^a	MOE – APF ^b	MOE – No PPE ^a	MOE – APF ^b	MOE – No PPE ^a	MOE – APF ^b	MOE – No PPE ^a	MOE – APF ^b
Benchmark MOEs	for 1,1-Dichloroethan	e		30	30)	30	0	1.0E-04 (only for inhalation)	
1,1-Dichloroethane	Worker (Operators)	Inhalation 8- hour TWA	Central tendency	2,279	_	2.8E04	_	7,214	_	8.3E-06	_
1,1-Dichloroethane	Worker (Operators)	Inhalation 8- hour TWA	High-end	394	_	4,895	_	1,248	_	6.2E-05	_
1,1-Dichloroethane	Worker (Maintenance Technicians)	Inhalation 8- hour TWA	Central tendency	1.5E04	_	1.9E05	_	4.9E04	_	1.2E-06	_
1,1-Dichloroethane	Worker (Maintenance Technicians)	Inhalation 8- hour TWA	High-end	1,316	_	1.6E04	_	4,164	_	1.9E-05	_
1,1-Dichloroethane	Worker (Logistics Technicians)	Inhalation 8- hour TWA	Central tendency	5.3E04	_	6.6E05	_	1.7E05	_	3.6E-07	_
1,1-Dichloroethane	Worker (Logistics Technicians)	Inhalation 8- hour TWA	High-end	2,220	_	2.8E04	_	7,026	_	1.1E-05	_
1,1-Dichloroethane	Worker (Laboratory Technicians)	Inhalation 8- hour TWA	Central tendency	2.2E04	_	2.8E05	_	7.0E04	_	8.5E-07	_
1,1-Dichloroethane	Worker (Laboratory Technicians)	Inhalation 8- hour TWA	High-end	1,076	_	1.3E04	_	3,407	_	2.3E-05	_
1,1-Dichloroethane	ONU	Inhalation 8- hour TWA	Central tendency	5.1E04	_	6.4E05	_	1.6E05	_	3.7E-07	_
1,1-Dichloroethane	ONU ^c	Inhalation 8- hour TWA	High-end	778	_	9,658	_	2,462	_	3.1E-05	_
1,1-Dichloroethane	All Worker SEGs	Dermal	Central tendency	2,362	_	1,052	_	1,126	_	N/A	_
1,1-Dichloroethane	All Worker SEGs	Dermal	High-end	787	_	351	_	NE ^d	_	NE ^d	_
Benchmark MOEs for Perchloroethylene		10)	N/.	A	10)	1.0E-	-04		
Perchloroethylene	Worker	Inhalation 8- hour TWA	Central tendency	2,620	_	N/A	_	2.4E04	_	3.6E-07	_
Perchloroethylene	Worker	Inhalation 8- hour TWA	High-end	172	_	N/A	_	1,576	_	7.0E-06	_

	Similar Exposure	Exposure		Acu Non-C		Intermediate Non- Cancer		Chronic Non-Cancer		Cancer	
Chemical	Group	Route and Duration	Exposure Level	MOE – No PPE ^a	MOE – APF ^b	MOE – No PPE ^a	MOE – APF ^b	MOE – No PPE ^a	MOE – APF ^b	MOE – No PPE ^a	MOE – APF ^b
Perchloroethylene	ONU	Inhalation 8- hour TWA	Central tendency	9.0E04	_	N/A	_	8.2E05	_	1.0E-08	_
Perchloroethylene	ONU ^c	Inhalation 8- hour TWA	High-end	786	_	N/A	_	7,190	_	1.5E-06	_
Perchloroethylene	Worker	Dermal	Central tendency	157	_	N/A	_	676	_	7.3E-06	_
Perchloroethylene	Worker	Dermal	High-end	52	_	N/A	_	NE ^d	_	NE d	_
Benchmark MOEs	for Methylene Chlori	de	1	30		N/A		10		1.0E-04	
Methylene chloride	Worker	Inhalation 8- hour TWA	Central tendency	9,514	_	N/A	_	1,373	_	2.9E-08	_
Methylene chloride	Worker	Inhalation 8- hour TWA	High-end	626	_	N/A	_	90	_	5.7E-07	_
Methylene chloride	ONU	Inhalation 8- hour TWA	Central tendency	3.3E05	_	N/A	_	4.7E04	_	8.4E-10	_
Methylene chloride	ONU ^c	Inhalation 8- hour TWA	High-end	2,854	_	N/A	_	412	_	1.2E-07	_
Methylene chloride	Worker	Dermal	Central tendency	4.3E04	_	N/A	_	5,854	_	6.5E-09	_
Methylene chloride	Worker	Dermal	High-end	1.4E04	_	N/A	_	NE ^d	_	NE d	_

APF = assigned protection factor; MOE = margin of exposure; PPE = personal protective equipment; TWA = time-weighted average

[&]quot;-"= Inhalation APF not needed

^a Risk estimates that exceed the benchmark (*i.e.*, a non-cancer MOE less than the benchmark or a cancer MOE greater than the benchmark) are bolded and shaded.

^b APF listed in parentheses is the level of protection needed for estimated MOEs to be above benchmark.

^c The central tendency from the closed system monitoring data is a more representative and appropriate exposure estimate for a frequent, repeated inhalation exposure (*i.e.*, chronic) for the ONU exposure group. As described in Section 4.1.1.1, ONUs do not directly handle the chemical and are therefore expected to have lower inhalation exposures and are not expected to have dermal exposures through contact with liquids or solids.

^d The central tendency from the closed system monitoring data is a more representative and appropriate exposure estimate for a frequent, repeated dermal exposure (*i.e.*, chronic) and is health protective for risk estimation for closed system processes, as high-end exposures from daily connecting/disconnecting of transfer lines and sampling is not realistic. NE – not estimated.

Table 6-3. Occupational Risk Summary Table Low-End Exposures (Unpurified 1,2-Dichloroethane Stream) and PPE Level Needed
To Exceed Benchmark in Cases of Risk for 1,1-Dichloroethane, Perchloroethylene, and Methylene Chloride

	Similar Exposure	Exposure Route	Exposure	Act Non-C	ıte	Intermed	Intermediate Non- Cancer		onic Cancer	Car	ncer	
Chemical	Group	and Duration	Level	MOE – No PPE ^a	MOE – APF ^b	MOE – No PPE ^a	MOE – APF ^b	MOE – No PPE ^a	MOE – APF ^b	MOE – No PPE ^a	MOE – APF ^b	
Benchmark MOEs	for 1,1-Dichloroetha	ne		30		3	30		300		1.0E-04 (only for inhalation)	
1,1-Dichloroethane	Worker (Operators)	Inhalation 8-hour TWA	Central tendency	2,279	_	2.8E04	_	7,214	_	8.3E-06	_	
1,1-Dichloroethane	Worker (Operators)	Inhalation 8-hour TWA	High-end	394	_	4,895	_	1,248	_	6.2E-05	_	
1,1-Dichloroethane	Worker (Maintenance Technicians)	Inhalation 8-hour TWA	Central tendency	1.5E04	_	1.9E05	_	4.9E04	_	1.2E-06	_	
1,1-Dichloroethane	Worker (Maintenance Technicians)	Inhalation 8-hour TWA	High-end	1,316	_	1.6E04	_	4,164	_	1.9E-05	_	
1,1-Dichloroethane	Worker (Logistics Technicians)	Inhalation 8-hour TWA	Central tendency	5.3E04	_	6.6E05	_	1.7E05	_	3.6E-07	_	
1,1-Dichloroethane	Worker (Logistics Technicians)	Inhalation 8-hour TWA	High-end	1,076	_	2.8E04	_	7,026	_	1.1E-05	_	
1,1-Dichloroethane	Worker (Laboratory Technicians)	Inhalation 8-hour TWA	Central tendency	2.2E04	_	2.8E05	_	7.0E04	_	8.5E-07	_	
1,1-Dichloroethane	Worker (Laboratory Technicians)	Inhalation 8-hour TWA	High-end	4,523	_	1.3E04	_	3,407	_	2.3E-05	_	
1,1-Dichloroethane	ONU	Inhalation 8-hour TWA	Central tendency	5.1E04	_	6.4E05	_	1.6E05	_	3.7E-07	_	
1,1-Dichloroethane	ONU ^c	Inhalation 8-hour TWA	High-end	778	_	9,658	_	2,462	_	3.1E-05	_	
1,1-Dichloroethane	All Worker SEGs	Dermal	Central tendency	2.4E05	_	1.1E05	_	1.2E05	_	N/A	_	
1,1-Dichloroethane	All Worker SEGs	Dermal	High-end	8.1E04	_	3.6E04	_	NE ^d	_	NE ^d	_	
Benchmark MOEs	for Perchloroethylen	ie	<u> </u>	10		N/A		10		1.0E-04		
Perchloroethylene	Worker	Inhalation 8-hour TWA	Central tendency	2.4E05		N/A	_	2.2E06	_	3.8E-09	_	

	Similar Exposure		Exposure	Non-Cancer		Intermediate Non- Cancer		Chronic Non-Cancer		Cancer	
Chemical	Group	- -	Level	MOE – No PPE ^a	MOE – APF ^b	MOE – No PPE ^a	MOE – APF ^b	MOE – No PPE ^a	MOE – APF ^b	MOE – No PPE ^a	MOE – APF ^b
Perchloroethylene	Worker	Inhalation 8-hour TWA	High-end	1.6E04	_	N/A	_	1.5E05	_	7.5E-08	_
Perchloroethylene	ONU	Inhalation 8-hour TWA	Central tendency	8.4E06	_	N/A	_	7.7E07	_	1.1E-10	_
Perchloroethylene	ONU ^c	Inhalation 8-hour TWA	High-end	7.3E04	_	N/A	_	6.7E05	_	1.7E-08	_
Perchloroethylene	Worker	Dermal	Central tendency	1.2E04	_	N/A	_	5.0E04	_	9.9E-08	_
Perchloroethylene	Worker	Dermal	High-end	3,834	_	N/A	_	NE ^d	_	NE d	_
Benchmark MOEs	for Methylene Chlor	ride		30)	N/.	A	1	0	1.0E	C-04
Methylene chloride	Worker	Inhalation 8-hour TWA	Central tendency	2.4E04	_	N/A	_	3,413	_	1.2E-08	_
Methylene chloride	Worker	Inhalation 8-hour TWA	High-end	1,555	_	N/A	_	224	_	2.3E-07	_
Methylene chloride	ONU	Inhalation 8-hour TWA	Central tendency	8.1E05	_	N/A	_	1.2E05	_	3.4E-10	_
Methylene chloride	ONU ^c	Inhalation 8-hour TWA	High-end	7,095	_	N/A	_	1,024	_	5.0E-08	_
Methylene chloride	Worker	Dermal	Central tendency	4.3E04	_	N/A	_	5,854	_	6.5E-09	_
Methylene chloride	Worker	Dermal	High-end	1.4E04	_	N/A	_	NE ^d	_	NE ^d	_

 $APF = assigned \ protection \ factor; \ MOE = margin \ of \ exposure; \ PPE = personal \ protective \ equipment; \ TWA = time-weighted \ average$

[&]quot;-"= Inhalation APF not needed

^aRisk estimates that exceed the benchmark (*i.e.*, a non-cancer MOE less than the benchmark or a cancer MOE greater than the benchmark) are bolded and shaded.

^b APF listed in parentheses is the level of protection needed for estimated MOEs to be above benchmark.

^c The central tendency from the closed system monitoring data is a more representative and appropriate exposure estimate for a frequent, repeated inhalation exposure (*i.e.*, chronic) for the ONU exposure group. As described in Section 4.1.1.1, ONUs do not directly handle the chemical and are therefore expected to have lower inhalation exposures and are not expected to have dermal exposures through contact with liquids or solids.

^d The central tendency from the closed system monitoring data is a more representative and appropriate exposure estimate for a frequent, repeated dermal exposure (*i.e.*, chronic) and is health protective for risk estimation for closed system processes, as high-end exposures from daily connecting/disconnecting of transfer lines and sampling is not realistic. NE – not estimated.

Table 6-4. Occupational Risk Summary Table and PPE Level Needed To Exceed Benchmark in Cases of Risk for Trichloroethylene and Carbon Tetrachloride Using Monte Carlo Simulation

1737

	Similar Exposure	Exposure		Acu Non-C		Intermediate Non- Cancer		Chronic Non-Cancer		Cancer	
Chemical	Group	Route and Duration	Exposure Level	MOE – No PPE ^a	MOE – APF ^b	MOE – No PPE ^a	MOE – APF ^b	MOE – No PPE ^a	MOE – APF ^b	MOE – No PPE ^a	MOE – APF ^b
Benchmark MOE	s for Trichloroethylen	e		10	<u> </u>	N/A	•	30	'	1.0E-04	
Trichloroethylene	Worker (Operators)	Inhalation 8- hour TWA	Central tendency	733	_	N/A	_	36	_	3.9E-06	_
Trichloroethylene	Worker (Operators)	Inhalation 8- hour TWA	High-end	171	_	N/A	_	8.5	85 (APF 10) ^e	2.1E-05	_
Trichloroethylene	Worker (Maintenance Technicians)	Inhalation 8- hour TWA	Central tendency	2,740	_	N/A	_	136	_	1.0E-06	_
Trichloroethylene	Worker (Maintenance Technicians)	Inhalation 8- hour TWA	High-end	614	_	N/A	_	31	_	6.0E-06	_
Trichloroethylene	Worker (Logistics Technicians)	Inhalation 8- hour TWA	Central tendency	2.4E04	_	N/A	_	1,179	_	1.2E-07	_
Trichloroethylene	Worker (Logistics Technicians)	Inhalation 8- hour TWA	High-end	5,662	_	N/A	_	281	_	6.5E-07	_
Trichloroethylene	Worker (Laboratory Technicians)	Inhalation 8- hour TWA	Central tendency	2,658	_	N/A	_	132	_	1.1E-06	_
Trichloroethylene	Worker (Laboratory Technicians)	Inhalation 8- hour TWA	High-end	593	_	N/A	_	29	295 (APF 10) ^f	6.2E-06	_
Trichloroethylene	ONU	Inhalation 8- hour TWA	Central tendency	3,983	_	N/A	_	198	_	7.1E-08	_
Trichloroethylene	ONU ^c	Inhalation 8- hour TWA	High-end	877	_	N/A	_	44	_	4.2E-06	_
Trichloroethylene	Worker	Dermal	Central tendency	1,117	_	N/A	_	61	_	1.4E-05	_
Trichloroethylene	Worker	Dermal	High-end	432	_	N/A	_	NE ^d	_	NE ^d	_
Benchmark MOEs for Carbon Tetrachloride (Inhalation)		10)	N/	A	3	30	1.0	E-04		
Carbon tetrachloride	Worker (Operators)	Inhalation 8- hour TWA	Central tendency	165	_	N/A	_	15	147 (APF 10) ^e	2.3E-03	9.3E-05 (APF 25) ^e
Carbon tetrachloride	Worker (Operators)	Inhalation 8- hour TWA	High-end	38	_	N/A	_	3.4	34 (APF 10) ^e	1.3E-02	1.3E-05 (APF 1,000) ^e

	Similar Exposure	Exposure		Acu Non-C		Intermediate Non- Cancer		Chronic Non-Cancer		Cancer	
Chemical	Group	Route and Duration	Exposure Level	MOE – No PPE ^a	MOE – APF ^b	MOE – No PPE ^a	MOE – APF ^b	MOE – No PPE ^a	MOE – APF ^b	MOE – No PPE ^a	MOE – APF ^b
Carbon tetrachloride	Worker (Maintenance Technicians)	Inhalation 8- hour TWA	Central tendency	613	_	N/A	_	55	_	6.2E-04	6.2E-05 (APF 10) ^g
Carbon tetrachloride	Worker (Maintenance Technicians)	Inhalation 8- hour TWA	High-end	136	_	N/A	_	12	122 (APF 10) ^g	3.6E-03	7.2E-05 (APF 50) ^g
Carbon tetrachloride	Worker (Logistics Technicians)	Inhalation 8- hour TWA	Central tendency	5,333	_	N/A	_	476	_	7.2E-05	_
Carbon tetrachloride	Worker (Logistics Technicians)	Inhalation 8- hour TWA	High-end	1,255	_	N/A	_	112	_	3.9E-04	3.9E-05 (APF 10) ^h
Carbon tetrachloride	Worker (Laboratory Technicians)	Inhalation 8- hour TWA	Central tendency	601	_	N/A	_	54	_	6.4E-04	6.4E-05 (APF 10) ^f
Carbon tetrachloride	Worker (Laboratory Technicians)	Inhalation 8- hour TWA	High-end	131	_	N/A	_	12	117 (APF 10) ^f	3.8E-03	7.5E-05 (APF 50) ^f
Carbon tetrachloride	ONU	Inhalation 8- hour TWA	Central tendency	892	_	N/A	_	80	_	4.3E-04	4.3E-05 (APF 10) ⁱ
Carbon tetrachloride	ONU ^c	Inhalation 8- hour TWA	High-end	195	_	N/A	_	17	174 (APF 10) ⁱ	2.5E-03	5.1E-05 (APF 50) ⁱ
Carbon tetrachloride	Worker	Dermal	Central tendency	243	_	N/A	_	34	_	1.0E-03	_
Carbon tetrachloride	Worker	Dermal	High-end	85	_	N/A	_	NE ^d	_	NE ^d	_

APF = assigned protection factor; MOE = margin of exposure; PPE = personal protective equipment; TWA = time-weighted average

[&]quot;-"= Inhalation APF not needed

^a Risk estimates that exceed the benchmark (*i.e.*, a non-cancer MOE less than the benchmark or a cancer MOE greater than the benchmark) are bolded and shaded.

^b APF listed in parentheses is the level of protection needed for estimated MOEs to be above benchmark.

^c The central tendency from the closed system monitoring data is a more representative and appropriate exposure estimate for a frequent, repeated inhalation exposure (*i.e.*, chronic) for the ONU exposure group. As described in Section 4.1.1.1, ONUs do not directly handle the chemical and are therefore expected to have lower inhalation exposures and are not expected to have dermal exposures through contact with liquids or solids.

^d The central tendency from the closed system monitoring data is a more representative and appropriate exposure estimate for a frequent, repeated dermal exposure (*i.e.*, chronic) and is health protective for risk estimation for closed system processes, as high-end exposures from daily connecting/disconnecting of transfer lines and sampling is not realistic. NE – not estimated.

^e Test order data described operators as wearing respirators with APFs ranging from 10–1,000 while performing various tasks.

^f Test order data described laboratory technicians as wearing respirators with APFs ranging from 10–1,000 while performing various tasks.

g Test order data described that maintenance technicians as wearing full-face airline respirators of APF 1,000 during major maintenance tasks.

	Similar Exposure	Exposure		Acu Non-Ca		Intermedi Can		_	onic Cancer	Car	ncer
Chemical	Group	Route and Duration	Exposure Level	MOE –	MOE – APF ^b		MOE – APF ^b	MOE – No PPE ^a	MOE – APF ^b	MOE – No PPE ^a	MOE – APF ^b

^h Test order data described that logistics technicians as wearing respirators with APFs ranging from 10–50 during loading or offloading tasks.

ⁱ Test order data described ONUs as not wearing respiratory protection during routine daily tasks, although one supervisor was described as wearing a full-face respirator (APF 50) while observing loading activities from 20 feet away.

6.2 Risk Estimates for General Population

General population exposures and associated risks were estimated from byproduct releases to ambient air and surface waters resulting from the manufacture of 1,2-dichloroethane.

Ambient Air

 For the ambient air pathway, EPA estimated acute, chronic non-cancer, and cancer risks from exposure to the byproducts for populations living in the vicinity of facilities manufacturing 1,2-dichloroethane using HEM. It provides estimates of risks and exposures at centroids of census blocks up to 50 km and discrete radial distances up to 10 km from releasing facilities. HEM calculates an aggregated exposure for each byproduct by accounting for the combined emissions across all modeled facilities in proximity to one another. Table 6-5 presents the highest estimated cancer risk value and the lowest acute and chronic non-cancer, and cancer risk values across all facilities for each byproduct at centroids of census blocks based on 2018 TRI reported releases. No cancer risks were above the benchmark range of 1×10^{-6} to 1×10^{-4} . Additionally, none of the acute or chronic non-cancer risks were below the benchmarks of 30 or 300, respectively.

EPA also compared the releases of each of the byproduct chemicals assessed in the previously published fenceline analyses to the estimated byproduct air releases in this draft TSD. This comparison showed lower exposures from the byproduct estimates vs. from the manufacture of chemical itself, which supports the reasonableness of the byproduct estimates.

Table 6-5. Estimated Acute, Chronic Non-Cancer, and Cancer Risk Values for Each Byproduct^a

Byproduct	Minimum Calculated Acute Inhalation Risk Value Across all Facilities (benchmark = 30) ^b	Minimum Calculated Chronic Non-Cancer Inhalation Risk Value Across all Facilities (benchmark = 300) ^b	Maximum Calculated Cancer Risk Value Across all Facilities (benchmark = 1×10 ⁻⁶ to 1×10 ⁻⁴) ^c		
1,1-Dichloroethane	4.7E5	4.0E6	1.59E-07		
Carbon tetrachloride	8.0E6	2.7E6	6.91E-08		
Methylene chloride	9.7E6	2.2E6	1.68E-11		
Perchloroethylene	7.6E6	8.6E7	3.45E-10		
Trichloroethylene	1.2E7	1.7E6	1.75E-09		

^a Risk values were calculated using ambient air concentrations from the 2018 TRI reporting year. Releases were calculated by multiplying the 2018 TRI reported releases of 1,2-dichloroethane from Manufacturing COU, where available, by the associated percentage in Table 1-1. Where facilities did not report 1,2-dichloroethane releases in 2018, EPA used the highest reported releases from 2015–2020. The TRI reporting year of 2018 was used as it was the highest overall release year for the 2015–2020 reporting period used in this TSD and Fenceline analyses.

Surface Water

For the surface water pathway, the Eagle US 2 facility surface water release data was used for a screening analysis of general population byproduct exposures and risks. Because the Eagle US 2 facility releases of 1,2-dichloroethane result in the highest 1,2-dichloroethane receiving water body concentrations as well as byproducts compared to other 1,2-dichloroethane Manufacturing COU

^b Non-cancer risk is indicated when value is below the benchmark.

^c Consistent with other EPA programs, for TSCA risk evaluations, EPA has generally used 1×10^{-6} to 1×10^{-4} as an acceptable cancer risk range for general population exposures. While a handful of TSCA risk evaluations relied solely on 1×10^{-6} , EPA generally believes that the use of a range is more appropriate. These values provide a range for evaluating risk but do not constitute a "bright-line."

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779 1780

1781

1782

1783

1784

1785

1786

1787

1788

facilities, EPA considered this facility to be appropriate of representing high-end byproduct surface water exposures. The Agency was able to characterize the 2016 releases from the Eagle US 2 to Bayou d'Inde for the byproduct chemicals as well as from 1,2-dichloroethane releases. EPA was not able to discern at the point of discharge if the total amount released of the individual chemicals is from its manufacture or as a byproduct from 1,2-dichloroethane manufacture or the combination of the two processes. The latter was assumed likely so that EPA could estimate the amount of byproduct chemicals released per day (350 days of release per year) based on the percentages as the process stream (see Table 1-1). Table 6-6 presents several of the risk estimates resulting from the screening analysis for the highend 1,2-dichloroethane and byproduct releasing facility, the Eagle US 2 facility in Westlake, Louisiana. Risk estimates were calculated based on the acute, chronic or lifetime doses of fish ingestion and oral/dermal exposures through swimming and drinking water ingestion. Infant drinking water ingestion from formula represents the highest exposure estimates for all the byproducts and is presented as the highest risk that would occur from reported byproduct releases under the 1,2-dichloroethane Manufacturing COU. Although estimates are presented using releases from Eagle US 2, this specific facility does not discharge to drinking water source waters. However, the Eagle US 2 receiving water body concentrations at the point of discharge present the highest exposures among discharging manufacturing facilities and provide an upper-bound risk estimate. The adult subsistence fish ingestion and infant drinking water risk estimates are the highest among the surface water exposure routes. Other exposure risk estimates from incidental oral and dermal from swimming, high-end fish ingestion and other life stages for drinking water ingestion are presented in the *Draft Byproducts General Population* Exposures for 1,2-Dichloroethane (U.S. EPA, 2025a).

Table 6-6. Select Estimated Acute, Chronic Non-Cancer, and Cancer Risk Values for Each Byproduct from the Eagle US 2 Surface Water Exposure Screening Analysis^a

Byproduct	Calculated Adult Subsistence Acute Fish Ingestion Risk Value (Highest Benchmark = 30) ^b	Calculated Adult Subsistence Chronic Non- Cancer Fish Ingestion Risk Value (Highest Benchmark = 300) ^b	Calculated Infant Acute Drinking Water Ingestion Risk Value (Highest Benchmark = 30) ^b	Calculated Infant Chronic Drinking Water Ingestion Risk Value (Highest Benchmark = 300) b	Calculated Infant Drinking Water Ingestion Cancer Risk Value (Benchmark = 10 ⁻⁶ to 10 ⁻⁴) c
1,1-Dichloroethane	7.8E05	2.5E05	2.5E04	2.6E07	2.7E-07
Trichloroethylene	4.4E06	1.6E05	1.4E05	1.6E07	9.2E-10
Perchloroethylene	1.6E06	4.7E06	5.1E04	4.8E08	7.2E-10
Methylene chloride	3.7E06	3.4E05	1.2E05	3.5E07	6.2E-12
Carbon tetrachloride	1.3E06	1.3E05	4.2E04	1.3E07	1.8E-08

^a Risk values were calculated using Eagle US 2 surface water concentrations from 2016 Discharge Monitoring Report (DMR) and the corresponding cancer, acute, and chronic non-cancer hazard values for each byproduct as presented in Table 5-1, Table 5-2, and Table 5-3.

^b Risk is indicated when value is below the benchmark.

^c Risk is indicated when value is above the benchmark.

6.2.1 General Population Risk Summary

EPA did not find MOE estimates below the chronic non-cancer (or acute non-cancer) benchmark and above the cancer risk range of 10^{-6} to 10^{-4} for any of the byproducts based on an analysis using HEM. The estimated inhalation MOEs to the general population from the assessed byproducts are expected to be high-end estimates for the following reasons: (1) EPA used TRI reported releases of 1,2-dichloroethane from the year with the highest releases, 2018, within the 2015 to 2020 evaluation period; (2) 2018 reported releases of 1,2-dichloroethane were used to calculate releases of each byproduct using percentages provided by industry presented in Table 1-1 that represent high-end estimates of the typical composition of each byproduct; and (3) the exposure scenarios assume continuous exposure (1 day for acute risk, 1 year for chronic non-cancer risks, and 70 years for cancer risks). A comparison between releases used in this assessment and those used in the fenceline analyses and *Draft Risk Evaluation for 1,1-Dichloroethane* (U.S. EPA, 2025n) indicates that the releases modeled in HEM are unlikely to be overestimated (Section 2.2.1.1). For this assessment, general population inhalation risks via ambient air for each byproduct were considered individually; however, consideration of the cumulative exposure of all byproducts would result in higher exposures and potentially higher risks than when considering each byproduct individually.

EPA did not find MOE estimates below the chronic non-cancer (or acute non-cancer) benchmark and above the cancer risk range of 10^{-6} to 10^{-4} for any of the byproducts via oral or dermal exposures. This conclusion is based primarily on a quantitative screening analysis that estimates general population exposures to receiving water concentrations from the facility representing the highest byproduct release concentrations. For this draft assessment, general population oral/dermal risks via surface water for each byproduct were considered individually; however, consideration of the cumulative exposure of all byproducts would result in higher exposures and potentially higher risks than when considering each byproduct individually.

7 CONCLUSIONS

EPA considered all reasonably available information identified through its systematic review process under TSCA (<u>U.S. EPA, 2025m</u>) to characterize exposures and associated potential risks from the assessed 1,2-dichloroethane byproducts to (1) workers via inhalation and dermal routes; (2) the general population residing in the vicinity of 1,2-dichloroethane manufacturing facilities via inhalation, oral, and dermal routes; and (3) aquatic and terrestrial ecological receptors.

1,2-Dichloroethane has a total production volume in the United States between 30 and 40 billion lb from the 2020 CDR reporting period (<u>U.S. EPA, 20251</u>), which may result in a total byproduct production volume produced from the manufacturing of 1,2-dichloroethane as high as 375 to 500 million lb. To evaluate environmental releases for each byproduct, EPA used 1,2-dichloroethane release data to air and water from the TRI, NEI, and DMR databases. These release data, as well as the 1,2-dichloroethane product stream compositions provided by industry in several public comments, were used to estimate environmental releases for each byproduct.

To evaluate occupational exposures, EPA used inhalation monitoring data—either directly applicable data or surrogate data obtained through test orders—to evaluate acute, intermediate, and chronic exposures to workers for each byproduct.⁴ For 1,1-dichloroethane, the Agency used inhalation monitoring data submitted in response to a test order that measured 1,1-dichloroethane inhalation exposures during 1,2-dichloroethane manufacturing. For the remaining assessed byproducts (trichloroethylene, perchloroethylene, methylene chloride, and carbon tetrachloride), the Agency used surrogate inhalation monitoring data submitted in response to the 1,2-dichloroethane test order, following the same methodology outlined in the *Draft Risk Evaluation for 1,2-Dichloroethane* (U.S. EPA, 20251). Dermal exposure was also modeled for each of the assessed byproduct.

High-end screening level exposures for trichloroethylene and carbon tetrachloride showed MOE estimates were below the chronic non-cancer benchmark and above the cancer benchmark for inhalation and dermal to workers; therefore, EPA further refined the analysis by performing Monte Carlo analysis to vary the concentration from the low-end to high-end exposures (equal distribution) as well as separating the exposures by SEG. Trichloroethylene presents a chronic non-cancer inhalation MOE below the benchmark for operators and laboratory technicians at only the high-end exposure. Carbon tetrachloride presents a chronic non-cancer MOE below the benchmark and cancer MOE above the benchmark for operators, maintenance technicians, laboratory technicians, and ONUs at only the high-end inhalation exposures, cancer MOE above the benchmark for logistics technicians at only high-end inhalation exposures, and dermal exposures at central tendency for workers. EPA considered the central tendency from the closed system monitoring data as a more representative and appropriate exposure estimate for a frequent, repeated dermal exposure (*i.e.*, chronic), as high-end exposures from daily connecting/disconnecting of transfer lines and sampling is not expected. As described in Section 4.1.1.1, ONUs do not directly handle the chemical and are therefore expected to have lower inhalation exposures and are not expected to have dermal exposures through contact with liquids or solids (Section 6.1.5).

The test order summary report provided information on PPE such as use of respirators and gloves by the exposure groups at the facilities that were monitored. EPA estimated risks for a "no PPE" scenario and provided information on the level of PPE protection that reduces inhalation exposure and risk to a level

⁴ As described noted in Footnote 1, and in accordance with TSCA section 4 that allows EPA to impose testing requirements when necessary to perform a risk evaluation, the Agency issued a <u>test order for 1,2-dichloroethane on January 14, 2021</u> (<u>Stantec ChemRisk, 2024</u>). EPA also received inhalation monitoring data from the test order submission for 1,1-dichloroethane manufactured as a byproduct in the manufacture of 1,2-dichloroethane (<u>Stantec ChemRisk, 2023</u>).

that would not be considered unreasonable. In the case of inhalation risks to ONUs estimated by EPA, test order data indicated that one supervisor wore a full-face respirator (APF 50) while observing loading activities from 20 feet away (see Table 6-4). The reported PPE information for dermal exposures in the test order data lacks specificity (*e.g.*, chemical-specific permeation, degradation data, and SOPs that describe use of PPE) (see Section 4.1.1.2).

The Agency has (1) robust confidence in the case of 1,1-dichloroethane that utilized directly applicable inhalation test order monitoring data, (2) moderate confidence in the case of the remaining byproducts that used 1,2-dichloroethane inhalation test order data as surrogate data, and (3) moderate confidence in the dermal assessment for all of the assessed byproducts.

 EPA conducted fenceline analyses for ambient air and water pathways to support the risk management of trichloroethylene, perchloroethylene, methylene chloride and carbon tetrachloride, under TSCA (see list of references provided in Section 1.2). The ambient air pathway was not previously evaluated in the published risk evaluations for these chemicals for exposures to the general population. The comparison of air release data in the published chemical-specific risk evaluations and fenceline analyses for the Manufacturing COU, with the estimated air releases presented herein, suggested similar exposures (Section 4.1.2.1). Additionally, EPA estimated exposures and associated potential risks to the general population via inhalation route for each byproduct using HEM. Releases modeled in HEM were calculated using the percentages in Table 1-1 provided by industry in several public comments. As shown in Section 6.2, for acute and chronic non-cancer, none of the calculated risk values were below the Agency benchmarks of 30 or 300, respectively, which indicates no potential risk to the general population. Additionally, none of the estimated cancer risks were above the benchmark range of 10⁻⁶ to 10⁻⁴. The Agency has robust confidence in the conclusion that there is no expected risk to general population from exposure to the assessed byproducts from releases to air.

EPA compared the amount of byproduct chemicals released to surface water as listed in respective final risk evaluations with the estimated releases in this TSD for the facility that has reported all assessed byproducts and 1,2-dichloroethane. This facility (the Eagle US 2 LLC - Lake Charles Complex facility) in Westlake, Louisiana, represents the high-end exposure scenario for 1,2-dichloroethane manufacturing releases. As it releases other byproduct chemicals, it also represents an appropriate comparator of releases, surface water concentration, and exposures. As listed in Table 2-10, estimated byproduct releases from Eagle US 2 are a high-end exposure scenario that provides robust confidence in the conclusion that there is no expected cancer nor non-cancer risk to the general population resulting from exposure to the assessed byproducts' releases to surface water.

EPA evaluated exposure to aquatic and terrestrial species from the byproducts and used relevant environmental hazard thresholds from each byproducts' published respective risk evaluation and considered physical and chemical and fate properties of each chemical to conduct the draft environmental risk assessment. The Agency has moderate confidence in the conclusion that exposure does not exceed hazard for aquatic organisms and robust confidence in the conclusion that exposure does not exceed hazard for terrestrial organisms.

1903 **REFERENCES**

1905

1927

1930 1931

1932

1933

- 1904 <u>BLS.</u> (2014). Employee Tenure News Release.
 - http://www.bls.gov/news.release/archives/tenure 09182014.htm
- 1906 <u>BLS.</u> (2016). May 2016 Occupational Employment and Wage Estimates: National industry-specific estimates [Website]. http://www.bls.gov/oes/tables.htm
- 1908 Carroll, WF; Berger, TC; Borrelli, FE; Garrity, PJ; Jacobs, RA; Lewis, JW; McCreedy, RL; Tuhovak,
 1909 DR; Weston, AF. (1998). Characterization of emissions of dioxins and furans from ethylene
 1910 dichloride (EDC), vinyl chloride (VCM) and polyvinylchloride (PVC) manufacturing facilities in
 1911 the United States. I. Resin, treated wastewater, and ethylene dichloride. Chemosphere 37: 19571912 1972. http://dx.doi.org/10.1016/S0045-6535(98)00261-6
- 1913 <u>CEB.</u> (1991). Chemical Engineering Branch manual for the preparation of engineering assessments:
 1914 Volume I. CEB engineering manual. Washington, DC: Office of Pollution Prevention and
 1915 Toxics, US Environmental Protection Agency.
 1916 https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P10000VS.txt
- 1917 Marquart, H; Franken, R; Goede, H; Fransman, W; Schinkel, J. (2017). Validation of the dermal
 1918 exposure model in ECETOC TRA. Ann Work Expo Health 61: 854-871.
 1919 http://dx.doi.org/10.1093/annweh/wxx059
- NIOSH. (1976). Criteria for a recommended standard: Occupational exposure to ethylene dichloride
 (1,2-dichloroethane). (DHHS (NIOSH) Publication No. 76-139). Cincinnati, OH.
 http://www.cdc.gov/niosh/76-139.html
- NTP. (1991). Toxicity studies of 1,2-dichloroethane (ethylene bichloride) (CAS No. 107-06-2) in F344/N rats, Sprague Dawley rats, Osborne-Mendel rats, and B6C3F1 mice (drinking water and gavage studies). In Toxicity Report Series, vol 4. (NTP TOX 4; NIH Publication No. 91-3123). Research Triangle Park, NC. https://ntp.niehs.nih.gov/publications/reports/tox/000s/tox004
 - Reed, DJ. (2000). Kirk-Othmer encyclopedia of chemical technology
- 1928 Chlorocarbons and chlorohydrocarbons, survey. New York, NY: John Wiley & Sons. 1929 http://dx.doi.org/10.1002/0471238961.1921182218050504.a01
 - <u>Stantec ChemRisk.</u> (2023). 1,1-Dichloroethane Test Order Final study report: Inhalation monitoring of 1,1-dichloroethane (CASRN 75-34-3). Washington, DC: Vinyl Institute Consortium.
 - <u>Stantec ChemRisk.</u> (2024). Final study report: Inhalation monitoring of 1,2-dichloroethane (CASRN 107-06-2) with cover letter. Washington, DC: Vinyl Institute Consortium.
 - <u>U.S. Census Bureau.</u> (2019). Survey of Income and Program Participation data [Website]. https://www.census.gov/programs-surveys/sipp/data/datasets/2008-panel/wave-1.html
- 1936 <u>U.S. EPA.</u> (2003). Attachment 1-3 Guidance for Developing Ecological Soil Screening Levels (Eco 1937 SSLs): Evaluation of Dermal Contact and Inhalation Exposure Pathways for the Purpose of
 1938 Setting Eco-SSLs. (OSWER9285755E). Washington, DC: .S. Environmental Protection Agency,
 1939 Office of Solid Waste and Emergency Response.
 1940 https://www.epa.gov/sites/production/files/2015-09/documents/ecossl-attachment-1-3.pdf
- 1941 <u>U.S. EPA.</u> (2005). Guidance for developing ecological soil screening levels [EPA Report]. (OSWER
 1942 Directive 92857-55). Washington, DC: U.S. Environmental Protection Agency, Office of Solid
 1943 Waste and Emergency Response. http://www.epa.gov/chemical-research/guidance-developing-ecological-soil-screening-levels
- 1945 <u>U.S. EPA.</u> (2011). Exposure factors handbook: 2011 edition [EPA Report]. (EPA/600/R-090/052F).
 1946 Washington, DC: U.S. Environmental Protection Agency, Office of Research and Development,
 1947 National Center for Environmental Assessment.
 1948 https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100F2OS.txt
- 1949 U.S. EPA. (2020b). Final Risk Evaluation for Carbon Tetrachloride: Supplemental Information on Releases and Occupational Exposure Assessment. Washington, DC.

 https://www.epa.gov/sites/default/files/2020-

- 1952 <u>10/documents/4. ccl4_supplemental_file_information_on_releases_and_occupational_exposure_</u> 1953 <u>assessment.pdf</u>
- 1954 <u>U.S. EPA.</u> (2020c). Final Risk Evaluation for Methylene Chloride Supplemental File: Supplemental
 1955 Information on Releases and Occupational Exposure Assessment. Washington, DC.
 1956 https://www.regulations.gov/document/EPA-HQ-OPPT-2019-0437-0096

1957 1958

1959

1960

1961 1962

1974 1975

1976

1977 1978

1979

1980 1981

1982 1983

1984

1985

1986

1987

1988

- <u>U.S. EPA.</u> (2020d). Final Risk Evaluation for Perchloroethylene Supplemental File: Releases and Occupational Exposure Assessment. Washington, DC. https://www.regulations.gov/document/EPA-HQ-OPPT-2020-0720-0070
- U.S. EPA. (2020e). Final Risk Evaluation for Trichloroethylene Supplemental Information File: Environmental Releases and Occupational Exposure Assessment. Washington, DC. https://www.regulations.gov/document/EPA-HQ-OPPT-2020-0465-0143
- U.S. EPA. (2020f). Final scope of the risk evaluation for trans-1,2-dichloroethylene (CAS RN 156-60-5)
 [EPA Report]. (EPA-740-R-20-007). Washington, DC: Office of Chemical Safety and Pollution
 Prevention. https://www.epa.gov/sites/default/files/2020-09/documents/casrn_156-60-5_trans-12-dichloroethylene_final_scope.pdf
- U.S. EPA. (2020g). Risk evaluation for carbon tetrachloride (methane, tetrachloro-); CASRN: 56-23-5
 [EPA Report]. (EPA-740-R1-8014). Washington, DC: U.S. Environmental Protection Agency,
 Office of Chemical Safety and Pollution Prevention.
 https://www.regulations.gov/document/EPA-HQ-OPPT-2019-0499-0061
- 1971 <u>U.S. EPA.</u> (2020h). Risk evaluation for methylene chloride (dichloromethane, DCM); CASRN: 75-09-2.
 1972 (EPA-740-R1-8010). Washington, DC: Office of Chemical Safety and Pollution Prevention.
 1973 https://www.regulations.gov/document/EPA-HQ-OPPT-2019-0437-0107
 - <u>U.S. EPA.</u> (2020i). Risk evaluation for perchloroethylene (Ethene, 1,1,2,2-Tetrachloro-); CASRN 127-18-4 [EPA Report]. (740-R1-8011). Washington, DC: Office of Chemical Safety and Pollution Prevention. https://www.regulations.gov/document/EPA-HQ-OPPT-2019-0502-0058
 - U.S. EPA. (2020j). Risk evaluation for trichloroethylene; CASRN: 79-01-6 [EPA Report].
 (#740R18008). Washington, DC: Office of Chemical Safety and Pollution Prevention.
 https://www.regulations.gov/document/EPA-HQ-OPPT-2019-0500-0113
 - <u>U.S. EPA.</u> (2022a). Carbon Tetrachloride: Fenceline Technical Support Ambient Air Pathway. Washington, DC. https://www.regulations.gov/document/EPA-HQ-OPPT-2020-0592-0169
 - <u>U.S. EPA.</u> (2022b). Carbon Tetrachloride: Fenceline Technical Support Water Pathway. Washington, DC. https://www.regulations.gov/document/EPA-HQ-OPPT-2020-0592-0047
 - <u>U.S. EPA.</u> (2022c). Methylene Chloride: Fenceline Technical Support Water Pathway. Washington, DC. https://www.regulations.gov/document/EPA-HQ-OPPT-2020-0465-0095
 - <u>U.S. EPA.</u> (2022d). Methylene Chloride: TRI Release Data Sensitivity Analysis. Washington, DC. https://www.regulations.gov/document/EPA-HQ-OPPT-2020-0465-0057
 - <u>U.S. EPA.</u> (2022e). Perchloroethylene: Fenceline Technical Support Air Pathway. Washington, DC. https://www.regulations.gov/document/EPA-HQ-OPPT-2020-0720-0092
- 1990 <u>U.S. EPA.</u> (2022f). Perchloroethylene: Fenceline Technical Support Water Pathway. Washington, DC.
 1991 https://www.regulations.gov/document/EPA-HQ-OPPT-2020-0720-0091
- 1992 <u>U.S. EPA.</u> (2022g). Trichloroethylene (TCE): Fenceline Technical Support Ambient Air Pathway.
 1993 Washington, DC. https://www.regulations.gov/document/EPA-HQ-OPPT-2020-0642-0091
- 1994 <u>U.S. EPA.</u> (2022h). Trichloroethylene: Fenceline Technical Support Water Pathway. Washington, DC. 1995 https://www.regulations.gov/document/EPA-HQ-OPPT-2020-0642-0062
- 1996 <u>U.S. EPA.</u> (2024). Final risk evaluation for carbon tetrachloride. U.S. Environnmental Protection
 1997 Agency (U.S. EPA). https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/final-risk-evaluation-carbon-tetrachloride

- 1999 <u>U.S. EPA.</u> (2025a). Draft Byproducts General Population Exposures for 1,2-Dichloroethane.
 2000 Washington, DC: Office of Pollution Prevention and Toxics, Office of Chemical Safety and
 2001 Pollution Prevention.
- 2002 <u>U.S. EPA.</u> (2025b). Draft Byproducts Occupational Exposures for 1,2-Dichloroethane. Washington, DC: Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention.
 - <u>U.S. EPA.</u> (2025c). Draft Byproducts Releases for 1,2-Dichloroethane. Washington, DC: Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention.
 - <u>U.S. EPA.</u> (2025d). Draft Byproducts Risk Calculator for Occupational Exposure for 1,2-Dichloroethane. Washington, DC: Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention.
 - <u>U.S. EPA.</u> (2025e). Draft Chemistry and Fate and Transport Assessment for 1,2-Dichloroethane. Washington, DC: Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention.
 - <u>U.S. EPA.</u> (2025f). Draft Environmental Media Assessment for 1,2-Dichloroethane. Washington, DC: Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention.
 - <u>U.S. EPA.</u> (2025g). Draft Environmental Release Assessment for 1,2-Dichloroethane. Washington, DC: Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention.
 - <u>U.S. EPA.</u> (2025h). Draft General Population Exposure Assessment for 1,2-Dichloroethane.
 Washington, DC: Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention.
 - U.S. EPA. (2025i). Draft HEM Input and Output Files for 1,2-Dichloroethane-Byproducts. Washington, DC: Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention.
 - <u>U.S. EPA.</u> (2025j). Draft Number of Sites for 1,2-Dichloroethane. Washington, DC: Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention.
 - <u>U.S. EPA.</u> (2025k). Draft Occupational Exposure Assessment for 1,2-Dichloroethane. Washington, DC: Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention.
 - <u>U.S. EPA.</u> (20251). Draft Risk Evaluation for 1,2-Dichloroethane. Washington, DC: Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention.
 - <u>U.S. EPA.</u> (2025m). Draft Systematic Review Protocol for 1,2-Dichloroethane. Washington, DC: Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention.
 - <u>U.S. EPA.</u> (2025n). Risk Evaluation for 1,1-Dichloroethane. Washington, DC: Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention. https://www.regulations.gov/docket/EPA-HQ-OPPT-2024-0114
 - U.S. EPA. (2025o). Risk Evaluation for 1,1-Dichloroethane Supplemental Information File: Environmental Release and Occupational Exposure Assessment. Washington, DC: Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention. https://www.regulations.gov/docket/EPA-HQ-OPPT-2024-0114
 - UNEP. (1988). News about chemicals. IRPTC Bulletin 9: 19.
 - VI. (2017). Comment submitted by Richard Krock, Vice President, Regulatory and Technical Affairs, The Vinyl Institute (VI) on carbon tetrachloride, methylene chloride, trichloroethylene, and tetrachloroethylene. (EPA-HQ-OPPT-2016-0732-0013). Washington, DC. https://www.regulations.gov/comment/EPA-HQ-OPPT-2016-0732-0013
- VI. (2020). Comment submitted by Richard Krock, Vice President, Regulatory and Technical Affairs,
 The Vinyl Institute (VI) on 1,1-dichloroethane, trans-1,2-dichloroethylene, and 1,1,2 trichloroethane. (EPA-HQ-OPPT-2018-0421-0027). Washington, DC.
 https://www.regulations.gov/comment/EPA-HQ-OPPT-2018-0421-0027

APPENDICES

Appendix A ADDITIONAL SOURCES OF INFORMATION ON PPE

The European Centre for Ecotoxicology and Toxicology of Chemicals Targeted Risk Assessment (ECETOC TRA) Model represents the protection factor of gloves as a fixed, assigned protection factor (PF) equal to 5, 10, or 20 (Marquart et al., 2017). It should be noted that the described PFs are not based on experimental values or field investigations of PPE effectiveness, but rather professional judgments used in the development of the ECETOC TRA Model. These protection factors are summarized below in Table_Apx A-1.

Table_Apx A-1. Glove Protection Factors for Different Dermal Protection Strategies from ECETOC TRA v3

Dermal Protection Characteristics	Setting	Protection Factor, PF
a. No gloves used, or any glove / gauntlet without permeation data and without employee training		1
b. Gloves with available permeation data indicating that the material of construction offers good protection for the substance	Industrial and Commercial Uses	5
c. Chemically resistant gloves (<i>i.e.</i> , as b above) with "basic" employee training		10
d. Chemically resistant gloves in combination with specific activity training (<i>e.g.</i> , procedure for glove removal and disposal) for tasks where dermal exposure can be expected to occur	Industrial Uses Only	20

2060

20482049

2050

20512052

2053

20542055

2056

20572058