ATTACHMENT 2 TO APPENDIX F

<u>Phosphorus and Nitrogen Reduction Credits for Selected Enhanced Non-Structural</u> <u>Best Management Practices (BMPs)</u>

The permittee shall use the following methods to calculate phosphorus and nitrogen (nutrients) load reduction credits for the following enhanced non-structural best management practices (BMPs) implemented in the Watershed:

- 1) Enhanced Sweeping Program;
- 2) Catch Basin Cleaning; and
- 3) Organic Waste and Leaf Litter Collection Program

The methods include the use of default phosphorus reduction factors that EPA has determined are acceptable for calculating nutrient load reduction credits for these practices.

The methods and annual nutrient load export rates presented in this attachment are for the purpose of counting load reductions for various BMPs treating storm water runoff from varying site conditions (i.e., impervious or pervious surfaces) and different land uses (e.g. industrial and commercial) within the impaired watershed. Tables F2-1 and F2-2 below provide annual phosphorus and nitrogen load export rates by land use category for impervious and pervious areas. The estimates of annual phosphorus load and load reductions resulting from BMP implementation are intended for use by the permittee to measure compliance with its Phosphorus Reduction Requirement under the permit. The estimates of annual nitrogen load and load reduction resulting from BMP implementation are intended for use by the permittee to track and account for nitrogen load reductions in accordance with Appendices F and H of the permit.

Examples are provided to illustrate use of the methods. In calculating phosphorus and nitrogen export rates, the permittee shall select the land use category that most closely represents the actual use for the area in question. For watersheds with institutional type uses, such as government properties, hospitals, and schools, the permittee shall use the commercial land use category for the purpose of calculating phosphorus and nitrogen loads. Table F2-3 provides a crosswalk table of land use codes between land use groups used in Tables F2-1 and F2-2, and the codes used by MassGIS. For pervious areas, permittees should use the appropriate value for the hydrologic soil group (HSG) if known, otherwise, assume HSG C conditions.

Alternative Methods and/or Nutrient Reduction Factors: A permittee may propose alternative methods and/or nutrient reduction factors for calculating nutrient load reduction credits for these non-structural practices. EPA will consider alternative methods and/or nutrient reduction factors, provided that the permittee submits adequate supporting documentation to EPA. At a minimum, supporting documentation shall consist of a description of the proposed method, the technical basis of the method,

identification of alternative nutrient reduction factors, supporting calculations, and identification of references and sources of information that support the use of the alternative method and/or factors in the Watershed. If EPA determines that the alternative methods and/or factors are not adequately supported, EPA will notify the permittee and the permittee may receive no nutrient reduction credit other than a reduction credit calculated by the permittee following the methods in this attachment for the identified practices.

Table F2-1: Average annual distinct P Load export rates for use in estimating P Load reduction credits in the MA MS4 Permit.

Phosphorus Source Category by Land Use	Land Surface Cover	P Load Export Rate, lbs/acre/year	
Communical (Comm) and	Directly connected	1.78	
Commercial (Com) and Industrial (Ind)	impervious	1.70	
industrial (ind)	Pervious	See* DevPERV	
Multi-Family (MFR) and	Directly connected	2.32	
High-Density Residential	impervious	2.52	
(HDR)	Pervious	See* DevPERV	
Medium Density Residential	Directly connected	1.96	
(MDR)	impervious	1.90	
(WIDIC)	Pervious	See* DevPERV	
Low Density Residential	Directly connected	1.52	
(LDR) - "Rural"	impervious		
(EDIT) Harai	Pervious	See* DevPERV	
Highway (HWY)	Directly connected	1.34	
	impervious		
	Pervious	See* DevPERV	
	Directly connected	1.52	
Forest (For)	impervious	1.52	
	Pervious	0.13	
	Directly connected	1.52	
Open Land (Open)	impervious	1.52	
	Pervious	See* DevPERV	
	Directly connected	1.52	
Agriculture (Ag)	impervious	1.32	
	Pervious	0.45	
*Developed Land Pervious (DevPERV) – HSG A	Pervious	0.03	
*Developed Land Pervious (DevPERV) – HSG B	Pervious	0.12	
*Developed Land Pervious (DevPERV) – HSG C	Pervious	0.21	

*Developed Land Pervious (DevPERV) – HSG C/D	Pervious	0.29
*Developed Land Pervious (DevPERV) – HSG D	Pervious	0.37

Notes:

- For pervious areas, if the hydrologic soil group (HSG) is known, use the appropriate value from this table. If the HSG is not known, assume HSG C conditions for the phosphorus load export rate.
- Agriculture includes row crops. Actively managed hay fields and pasture lands. Institutional land uses such as government properties, hospitals and schools are to be included in the commercial and industrial land use grouping for the purpose of calculating phosphorus loading.
- Impervious surfaces within the forest land use category are typically roadways adjacent to forested pervious areas.

Table F2-2: Average annual distinct nitrogen (N) load export rates for use in estimating N load reduction credits in the MA MS4 Permit

Nitrogen Source Category by Land Use	Land Surface Cover	N Load Export Rate, Ibs./acre/year
Commercial (COM) and Industrial (IND)	Directly connected impervious	15.0
(IND)	Pervious	See* DevPERV
All Residential	Directly connected impervious	14.1
	Pervious	See* DevPERV
Highway (HWY)	Directly connected impervious	10.5
	Pervious	See* DevPERV
Forest (FOR)	Directly connected impervious	11.3
	Pervious	0.5
Open Land (OPEN)	Directly connected impervious	11.3
	Pervious	See* DevPERV
Agriculture (AG)	Directly connected impervious	11.3
	Pervious	2.6
*Developed Land Pervious (DevPERV) – HSG A	Pervious	0.3
*Developed Land Pervious (DevPERV) – HSG B	Pervious	1.2

*Developed Land Pervious (DevPERV) – HSG C	Pervious	2.4
*Developed Land Pervious (DevPERV) – HSG C/D	Pervious	3.1
*Developed Land Pervious (DevPERV) – HSG D	Pervious	3.6

Notes:

- For pervious areas, if the hydrologic soil group (HSG) is known, use the appropriate value from this table. If the HSG is not known, assume HSG C conditions for the nitrogen load export rate.
- Agriculture includes row crops. Actively managed hay fields and pasture lands. Institutional land uses such as government properties, hospitals and schools are to be included in the commercial and industrial land use grouping for the purpose of calculating nitrogen loading.
- Impervious surfaces within the forest land use category are typically roadways adjacent to forested pervious areas.

Table F2-3: Crosswalk of 2005 MassGIS land use categories to land use groups for nutrient load calculations

2005 MassGIS Land Use Code (LU CODE)	Description	Land Use Group for Calculating P Load - MA MS4	
1	Crop Land	Agriculture	
2	Pasture (active)	Agriculture	
3	Forest	Forest	
4	Wetland	Forest	
5	Mining	Industrial	
6	Open Land includes inactive pasture	Open Land	
7	Participation Recreation	Open Land	
8	Spectator recreation	Open Land	
9	Water Based Recreation	Open Land	
10	Multi-Family Residential	High Density Residential	
11	High Density Residential	High Density Residential	
12	Medium Density Residential	Medium Density Residential	
13	Low Density Residential	Low Density Residential	
14	Saltwater Wetland	Water	
15	Commercial	Commercial	
16	Industrial	Industrial	
17	Urban Open	Open Land	
18	Transportation	Highway	

19	Waste Disposal	Industrial
20	Water	Water
23	cranberry bog	Agriculture
24	Powerline	Open Land
25	Saltwater Sandy Beach	Open Land
26	Golf Course	Agriculture
29	Marina	Commercial
31	Urban Public	Commercial
34	Cemetery	Open Land
35	Orchard Forest	
36	Nursery	Agriculture
37	37 Forested Wetland Forest	
38	38 Very Low Density residential Low Density Residentia	
39	Junkyards	Industrial
40	Brush land/Successional	Forest

Table F2-4 Crosswalk of 2016 MassGIS land use categories to land use groups for nutrient load calculations

2016 MassGIS Land Use Code (USEGENCODE)	Description	Land Use Group for Calculating P Load - 2024 MA MS4	
0	Unknown	Open Land	
2	Open land	Open Land	
3	Commercial	Commercial/ Industrial	
4	Industrial	Commercial/ Industrial	
6	Forest Forest		
7	Agriculture Agriculture		
8	Recreation Open Land		
9	Tax exempt	Commercial/ Industrial	
10	Mixed use, primarily residential	Commercial/ Industrial	
11	Single Family Residential Medium Density Residen		
12	Multi-family Residential High Density Resider		
13	Residential, other	Medium Density Residential	
20	Mixed use, other	Commercial/Industrial	
30	Mixed use, primarily commercial	Commercial/ Industrial	
55	Right-of-way	Commercial/ Industrial	
88	Water	Water	

(1) Enhanced Sweeping Program: The permittee may earn a phosphorus and/or reduction credit(s) for conducting an enhanced sweeping program of impervious surfaces. Table F2-5 below outlines the default phosphorus removal factors for enhanced sweeping programs. The credit shall be calculated by using the following equation:

Phosphorus Credit Psweeping = IA swept x PLER IC-land use x PRF sweeping (Equation F2-1)

Nitrogen Credit $_{N \text{ sweeping}} = IA _{\text{swept}} x \text{ NLER }_{IC\text{-land use}} x \text{ NRF }_{\text{sweeping}}$ (Equation F2-2)

Where:

Credit _{sweeping} = Amount of nutrients load removed by enhanced sweeping program (lb/year)

IA swept = Area of impervious surface that is swept under the enhanced sweeping program (acres)

PLER _{IC-land use}= Phosphorus Load Export Rate for impervious cover and specified land use (lb/acre/yr) (see Table F2-1)

NLER _{IC-land use} = Nitrogen Load Export Rate for impervious cover and specified land use (lb/acre/yr) (see Table F2-2)

PRF _{sweeping} = Phosphorus Reduction Factor for sweeping based on sweeper type and frequency (see Table F2-5)

NRF sweeping = Nitrogen Reduction Factor for sweeping based on sweeper type and frequency (see Table F2-5)

As an alternative, the permittee may apply a credible sweeping model of the Watershed and perform continuous simulations reflecting build-up and wash-off of nutrients using long-term local rainfall data.

Table F2-5: Phosphorus and Nitrogen reduction efficiency factors (PRF_{sweeping} and NRF_{sweeping}) for sweeping impervious areas

Level	Frequency	Sweeper Technology	PRF sweeping	NRF sweeping
Minimum	2/year (spring and	Mechanical Broom	0.01	0.01
Effort	fall)	Vacuum Sweeper	0.02	0.02
Medium	Every other week in	Mechanical Broom		
Effort	the fall (September	or Vacuum Sweeper	0.15	0.15
Ellort	1 to December 15)			
High	Monthly sweeping			
Effort	March through			
	August with weekly	Vacuum Sweeper	0.25	0.25
	sweeping in the Fall	vacuum sweeper	0.23	0.23
	(September to			
	December)			

Example F2-1: Calculation of enhanced sweeping program credit (Credit sweeping)

A permittee proposes to implement an enhanced sweeping program and perform monthly sweeping from March through August and weekly sweeping from September 1 to December 1 in their Watershed, using a vacuum assisted sweeper on 20.3 acres of parking lots and roadways in a high-density residential area of the Watershed. For this site the needed information is:

IA swept = 20.3 acres

PLER _{IC-HDR} = 2.32 lb/acre/yr (from Table F2-1)

PRF sweeping = 0.25 (from Table F2-5)

Substitution into Equation F2-1 yields a Credit _{sweeping} of 8.8 pounds of phosphorus removed per year.

Credit sweeping = IA swept x PLE land use x PRF sweeping

= 20.3 acres x 2.32 lbs/acre/yr x 0.25

= 11.8 lbs/yr

Note: The same methodology is applicable for calculating the nitrogen load reduction credit (Credit N sweeping)

(2) Catch Basin Cleaning: The permittee may earn a phosphorus and/or nitrogen reduction credit(s) by removing accumulated materials from catch basins (i.e., catch basin cleaning) in the Watershed such that a minimum sump storage capacity of 50% is maintained throughout the year. The credit shall be calculated by using the following equation:

Credit $_{P CB} = IA_{CB} \times PLER_{IC-land use} \times PRF_{CB}$ (Equation F2-3)

Credit $_{N CB} = IA_{CB} \times NLER_{IC-land use} \times NRF_{CB}$ (Equation F2-4)

Where:

Credit CB = Amount of nutrient load removed by catch basin cleaning

(lb/year)

IA CB = Impervious drainage area to catch basins (acres)

PLER _{IC-and use} = Phosphorus Load Export Rate for impervious cover and specified

land use (lb/acre/yr) (see Table F2-1)

NLER IC-land use = Nitrogen Load Export Rate for impervious cover and specified

land use (lb/acre/yr) (see Table F2-2)

PRF CB = Phosphorus Reduction Factor for catch basin cleaning

(see Table F2-6)

NRF CB = Nitrogen Reduction Factor for catch basin cleaning

(See Table F2-6)

Table F2-6: Nutrient reduction efficiency factors for semi-annual catch basin cleaning

Frequency	Practice	PRF _{CB}	NRF _{CB}
Semi-annual	Catch Basin Cleaning	0.02	0.06

Example F2-2: Calculation for catch basin cleaning credit (Credit CB):

A permittee proposes to clean catch basins in their Watershed (i.e., remove accumulated sediments and contaminants captured in the catch basins) that drain runoff from 15.3 acres of medium-density residential impervious area. For this site the needed information is:

 IA_{CB} = 15.3 acre

PLER $_{IC-MDR}$ = 1.96 lbs/acre/yr (from Table F2-1)

PRF $_{CB}$ = 0.02 (from Table F2-5)

Substitution into Equation F2-3 yields a Credit _{CB} of 0.6 pounds of phosphorus removed per year:

Credit $_{CB}$ = IA $_{CB}$ x PLE $_{IC-MDR}$ x PRF $_{CB}$

= 15.3 acre x 1.96 lbs/acre/yr x 0.02

= 0.6 lbs/yr

Note: The same methodology is applicable for calculating the nitrogen load reduction credit (Credit $_{N CB}$)

(3) Enhanced Organic Waste and Leaf Litter Collection program: The permittee may earn a phosphorus and/or nitrogen reduction credit(s) by performing regular gathering, removal and disposal of landscaping wastes, organic debris, and leaf litter from impervious surfaces from which runoff discharges to the TMDL waterbody or its tributaries. In order to earn this credit (Credit leaf litter), the permittee must gather and remove all landscaping wastes, organic debris, and leaf litter from impervious roadways and parking lots at least once per week during the period of September 1 to December 1 of each year. Credit can only be earned for those impervious surfaces that are cleared of organic materials in accordance with the description above. The gathering and removal shall occur immediately following any landscaping activities in the Watershed and at additional times when necessary to achieve a weekly cleaning frequency. The permittee must ensure that the disposal of these materials will not contribute pollutants to any surface water discharges. The permittee may use an enhanced sweeping program (e.g., weekly frequency) as part of earning this credit provided that the sweeping is effective at removing leaf litter and organic materials. The Credit leaf litter shall be determined by the following equation:

Credit $_{P \text{ leaf litter}} = (IA_{\text{ leaf litter}}) \times (PLER_{\text{ IC-land use}}) \times (0.05)$ (Equation F2-5)

Credit N leaf litter = (IA leaf litter) x (NLER IC-land use) x (0.05) (Equation F2-6)

Where:

Credit leaf litter = Amount of phosphorus load reduction credit for organic

waste and leaf litter collection program (lb/year)

Watershed Area = All impervious area (acre) from which runoff discharges to the

TMDL waterbody or its tributaries in the Watershed

PLER IC-land use = Phosphorus Load Export Rate for impervious cover and

specified land use (lbs/acre/yr) (see Table F2-1)

NLER IC-land use = Nitrogen Load Export Rate for impervious cover and

specified land use (lbs/acre/yr) (see Table F2-2)

0.05 = 5% nutrient reduction factor for organic

waste and leaf litter collection program in the Watershed

Example F2-3: Calculation for organic waste and leaf litter collection program credit (Credit P leaf litter)

A permittee proposes to implement an organic waste and leaf litter collection program by sweeping the parking lots and access drives at a minimum of once per week using a mechanical broom sweeper for the period of September 1 to December 1 over 12.5 acres of impervious roadways and parking lots in an industrial/commercial area of the Watershed. Also, the permittee will ensure that organic materials are removed from impervious areas immediately following all landscaping activities at the site. For this site the needed information to calculate the Credit Pleaf litter is:

Watershed Area = 12.5 acres; and

PLER _{IC-commercial} = 1.78 lbs/acre/yr (from Table F2-1)

Substitution into Equation F2-5 yields a Credit $_{\text{leaf litter}}$ of 1.1 pounds of phosphorus removed per year:

Credit $_{P \text{ leaf litter}}$ = (12.5 acre) x (1.78 lbs/acre/yr) x (0.05)

= 1.1 lbs/yr

Note: The same methodology is applicable for calculating the nitrogen load reduction credit (Credit $_{N \text{ leaf litter}}$) for the specified organic waste leaf litter collection program.

Associated Street/Pavement Cleaning Credit

The permittee also may earn a nutrient reduction credit for enhanced sweeping of roads and parking lot areas (i.e., Credit sweeping) for the three months of use. Using Equation F2-1, Credit P sweeping is:

```
Credit _{P \text{ sweeping}} = IA _{swept} x PLE _{IC\text{-land use}} x PRF _{sweeping} (Equation F2-1) IA _{swept} = 12.5 acre
PLER _{IC\text{-commercial}} = 1.78 lbs/acre/yr (from Table F2-1)
PRF _{sweeping} = 0.15 (from Table F2-5)
```

Substitution into Equation F2-1 yields a Credit P sweeping of 0.28 pounds of phosphorus removed per year.

```
Credit _{P \text{ sweeping}} = IA _{swept} x PLER _{IC\text{-commercial}} x PRF _{sweeping} = 12.5 acre x 1.78 lbs/acre/yr x 0.15 = 3.3 lbs/yr
```