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Introduction

The Animas River Stakeholder Group (ARSG) characterized 330 abandoned mine sites in the 1990s in an
effort to identify sources of metal loading in the Animas River Watershed. The Bullion King Mine site
located at 12,300 feet in the Porphyry Gulch basin was identified by ARSG as a primary contributor of iron,
cadmium, aluminum, and zinc to Mineral Creek, a tributary to the Animas River and was one of the top 33
waste piles identified for reclamation in the Upper Animas Use Attainability Analysis. In 2015 through
2016, the Colorado Division of Reclamation and Mining Safety (DRMS) remediated the Bullion King Mine.
The remediation objectives included reducing the potential for snowmelt, storm runoff, and mine drainage
to mobilize metals in the waste rock and enter Porphyry Gulch. Approximately 50,000 square of mine waste
was capped with a polypropylene impervious liner and 10,000 square feet of over-steepened slopes were
amended with Portland cement. The entire area was capped with on-site cover material and revegetated,
and the mine drainage was re-routed away from the capped repository (Butler 2018).

The Bullion King waste rock project was started prior to the National Priority Listing of the Bonita Peak
Superfund site, and was completed after the listing. Numerous remediation projects are ongoing or
proposed in the Bonita Peak Mining District (BPMD), but it is unclear whether this type of remediation can
have a demonstrable downstream benefit to aquatic life.

Objectives

Our primary objective is to determine if remediation of the Bullion King Mine site resulted in measurable
improvements in downstream water quality and benthic macroinvertebrate community composition.
Specific questions include:

1. Following remediation, did water quality improve downstream?

2. Prior to remediation, metal concentrations increased in Porphyry Gulch surface water as it flowed
past the Bullion King Mine. Does this increase still occur and if so, does it occur at the same rate
after remediation was complete?

3. Were there any shifts in benthic macroinvertebrate community composition at sites downstream of
the Bullion King Mine following remediation?

Methods

Water quality data

We compiled water quality data for Porphyry Gulch sampling sites (Figure 1, Table C- 1) from various
sources (Table 1) and grouped them into pre-remediation and post-remediation time periods. We
considered all data collected prior to and during 2016 as pre-remediation and all data collected after 2016
as post-remediation. We synthesized pre-remediation data from online databases and previous reports.
Post-remediation data were primarily collected by Mountain Studies Institute (MSI) and DRMS and
supplemented with data collected by the US Environmental Protection Agency (EPA). Sample site names
varied across sampling entities and were aligned prior to analysis based on site descriptions and
coordinates (Table C- 1).

In 2022 and 2023, we collected grab water quality samples and manually measured discharge during high-
flow and low-flow conditions at four locations:
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e MOG6E: Porphyry Gulch above Bullion King Mine

e MOG6C: Bullion King Mine at adit

e MOG6B: Porphyry Gulch immediately below Bullion King Mine
e MO6: Porphyry Gulch below Bullion King Mine, further downstream just upstream of Hwy 550

' A .‘\f\(
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Figure 1. General Porphyry Gulch surface water sampling locations, see Table C- 1 for more information.

Table 1. Porphyry Gulch water quality data sources before and after remediation activities in 2015.

WOX database Animas River Stakeholder Group (ARSG) 07/21/2015,10/09/2015 MoO6

Colorado Department of Health (CDPHE)  09/06/1991, 06/23/1992 MO06

Bureau of Land Management (BLM) 9/21/2000* MO06B, M06C, MO6E
BPMD website USGS 8/24/1999, 8/25/1999 mgg,EMO6B, MO06C,
ARSG Animas River Stakeholder Group (ARSG) 11/3/2016 MoO6
Peter Butler Ph.D Bureau of Land Management (BLM) 9/21/2000* MO6E, M06B

T Chris Peltz 7/18/2013% 8/17/2013 MO06B, M06C, MO6E
Scribe EPA 06/19/2019 MO06
. . 6/15/2022,7/21/2022,

Mountain Studies | 1420 Studies Institute (MSI) 9/27/2022,07/22/2023,  M06, MOGB, MOGE,
Institute (MSI) 09/22/2023 MO6 Seep

*Storm event samples; note that on 9/21/2000 samples were collected twice, before and during a storm event

“Overlap with other dataset but contains additional sampling times
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Pre-remediation data were limited. Samples collected prior to remediation that included Porphyry Gulch
sites upstream and downstream of Bullion King mine were only collected on four dates. Of those pre-
remediation data, two samples were collected during storm runoff conditions and thus are not directly
comparable to the post-remediation data, which were not collected during storm runoff conditions. As such,
we omitted storm samples from analysis but included these pre-remediation storm samples in charts in
Appendix A and Appendix B for context. Table 2 summarizes the number of sample events at each site pre-
and post-remediation. Due to limited data, we combined all samples, regardless of seasonality, for
assessment. We calculated mean concentrations at individual sites pre- and post-restoration as well as the
difference in concentration between MO6E (upstream of mine site) and M06B (downstream of mine site).
Data analysis excluded data from MO6C (the mine adit site) as our primary objectives were to identify
downstream improvements and upstream to downstream changes in water quality.

Table 2. Number of sampling events pre and post remediation at Bullion King Mine.

Runoff/summer flow 3
Pre-remediation | Fall baseflow 5
Storm event
Runoff/summer flow
Fall baseflow

Post-remediation

N oS

W w N D
P NN D
N W N D

Benthic macroinvertebrate sampling

Field sampling

We followed BMI sampling protocols developed by the Environmental Protection Agency (Barbour et al,
1999) and Colorado Department of Public Health and Environment (CDPHE, 2016). Anderson (2007)
assessed a variety of BMI sampling methods and determined that the most appropriate method for use in
the Animas River watershed was a targeted riffle method that utilized a modified rectangular dip net
coupled with a dolphin bucket. The net opening measured 46 cm by 25 cm or 0.115 m2 (178 in2). We
collected each sample by placing the net securely on the bottom of the river with the net opening facing
upstream. A biologist stood downstream of the net and disturbed the substrate on the river bottom that
was immediately upstream of the net. We lifted and scrubbed rocks and gravel by hand for approximately
30 seconds so that benthic macroinvertebrates would be dislodged and drift downstream into the net
opening. For each sample, we disturbed an area of approximately 0.115 m? of substrate, which was
estimated in the field by using the size of the net opening as a guide (net opening is 46 cm by 25 cm; area of
0.115 m2). Within riffle habitat, we obtained twenty samples within an approximately 75 meter-long
section of the Porphyry Gulch. We then made a composite of the twenty samples in a single sample
container. In total, 2.3 m? of riffle habitat comprised the sample at each site (0.115m2 x 20 samples).

Laboratory Methods - BMI Community Samples

Samples were identified by Scott Roberts (Mountain Studies Institute) and Dr. Michael Bogan (University of
Arizona). We sub-sampled each field sample using a rotating drum splitter until a minimum of 300
organisms was obtained. Using a 10x microscope, we identified organisms to the lowest practical
taxonomic level based on Merritt, Cummins, and Berg (2019). Dr. Bogan identified all Chironomidae and
Acari taxa and served as a second taxonomist for our quality assurance program by independently verifying
at least 10% of all taxa. To eliminate potential bias from differing lab subsample sizes, we employed an
algorithm to randomly subsample all samples to a fixed count of 300 individuals. All metrics discussed in
this report are based on the 300 count subsampled data. We utilized the Ecological Data Application System
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(EDAS) developed by Colorado Department of Public Health and the Environment (CDPHE) to calculate all
metrics.

Several metrics have been developed to assess the composition and health of BMI communities. These
relatively independent metrics provide multiple lines of evidence of the overall habitat condition and water
quality of an aquatic system. We focus our analysis on metrics that Roberts (2017a) found to most strongly
correlate with metal exposure in the BPMD and those that Roberts (2020) found to have the lowest inter-
annual variability. These include the Multi-Metric Index (MMI); richness of metal-sensitive families (MSF);
and the Modified Hilsenhoff Biotic Index (MHBI).

We applied non-metric multi-dimensional scaling ordination (NMS) within PC-ORD software (McCune and
Mefford, 1999) to assess differences in benthic community structure among sites and years. Our NMS
analysis was based on Bray-Curtis distance measures of species abundance. To reduce the influence of rare
taxa on the ensuing ordination, we limited NMS analysis to species that occurred in at least five percent of
samples (Peck, 2016).

Results

Water quality

We compared metal concentrations from surface water samples collected during the pre-remediation
period to concentrations from samples collected during the post-remediation period. Many analytes had
post-remediation concentrations that were within the range of data observed prior to remediation (e.g.,
dissolved zinc at M06). There were some instances where metal concentrations at a site were distinctly
lower during the post-restoration period compared to the pre-remediation period. These instances often
occurred both upstream (MO6E) and downstream (M06B) of the remediation site, indicating that this
phenomenon cannot be explained solely by remediation efforts (e.g., total arsenic, total and dissolved
cadmium, and total and dissolved lead). However, several analytes had reduced concentrations from pre- to
post-remediation that occurred downstream of the remediation site (M06B) without a corresponding
reduction upstream of the remediation site (MO6E). These included total aluminum, total and dissolved
copper, total and dissolved manganese, and total zinc (Appendix A and B). We did not find evidence that
metal concentrations were lower at the furthest downstream site, M06, following remediation.

In an attempt to minimize the influence of year-to-year variability in pre- and post-remediation data, we
focused analysis on whether metal concentrations changed from upstream (MO6E) to downstream (M06B)
of the remediation site at the same rate during the pre- and post-remediation periods. We evaluated the
magnitude of change from upstream to downstream as well as the percent change. We defined the percent
change from upstream to downstream as the downstream concentration minus the upstream
concentration, divided by the upstream value. Although this analysis was limited to very few pre-
remediation data—1 to 3 samples for each analyte—we found that the rate of increase in concentrations of
many metals diminished from upstream to downstream following restoration. For example, in the pre-
remediation period, total aluminum concentrations increased 820% from MO6E to M06B, but only
increased 41% from MO6E to M06B during the post-remediation period. This pattern of reduced rate of
increase downstream of the Bullion King Mine post-remediation occurred for total aluminum, total arsenic,
dissolved barium, total cadmium, dissolved calcium, total copper, total and dissolved iron, total lead, total
and dissolved manganese, total nickel, dissolved potassium, dissolved sodium, sulfate, and total and
dissolved zinc.
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In some cases, mean concentrations upstream of the remediation site were greater than mean
concentrations downstream of the remediation site. Total and dissolved magnesium and dissolved nickel
had mean concentrations that were slightly higher upstream than downstream. The pattern of dissolved
nickel concentrations from MO6E to M06B appears to have shifted from pre- to post-remediation; pre-
remediation concentrations at MO6E were slightly higher than M06B (mean % change of -9.09%), while
post-remediation, concentrations downstream were slightly higher (mean % change of 10.36%). For total
and dissolved magnesium, concentrations upstream remained higher post-remediation but the percent
change between sites declined (Table 3).

Table 3. Mean percent change and mean difference in concentrations from upstream (MO6E) to downstream (M06B) of the Bullion
King Mine before and after remediation activities. Positive percent change values reflect a mean % increase in concentration from
upstream to downstream while negative percent change values reflect a reduction in concentrations from upstream to downstream.
Green highlight indicates analytes where the mean change (magnitude or %) was reduced following remediation (i.e., the rate of
change from upstream to downstream was lower following remediation). This analysis omits pre-remediation data collected during
storm runoff conditions.

Analyte Pre-remediation Post-remediation

Mean % Mean Mean concentration Mean % Mean Mean concentration
change difference (mg/L) change from | difference (mg/L)
from MO6E (M06B- MOG6E to (M06B-
to MO6B MOG6E) MO6E MO6B n MO6B MOG6E) MO6E MO6B n
Aluminum,Diss 32.21 0.0090 0.0286 0.0377 3 34.63 0.0154 0.0724 0.0878 5
Aluminum, Tot 820.41 0.1260 0.2330 0.3590 2 38.25 0.0480 0.1396 0.1876 5
Arsenic,Diss 0.00 0.0000 0.0006 0.0006 2 10.00 0.00002 0.0004 0.0004 5
Arsenic, Tot 171.67 0.0013 0.0006 0.0019 2 0.00 0.0000 0.0006 0.0006 5
Barium,Diss 9.09 0.0010 0.0110 0.0120 1 2.07 0.0003 0.0142 0.0145 5
Beryllium,Diss 0.00 0.0000 0.0010 0.0010 1 4.67 0.000002 0.0003 0.0003 5
Cadmium,Diss 473.33 0.0007 0.0008 0.0014 3 1,018.67 0.0004 0.0002 0.0006 5
Cadmium,Tot 815.00 0.0012 0.0002 0.0014 2 328.00 0.0003 0.0003 0.0005 5
Calcium,Diss 8.77 0.6915 12.7945 13.4860 2 4.93 0.4460 10.9600 11.4060 | 5
Calcium, Tot 2.87 0.5000 17.4000 17.9000 1 4.67 0.3500 11.0900 11.4400 | 5
Chromium,Diss 0.00 0.0000 0.0004 0.0004 1 0.00 0.0000 0.0007 0.0007 5
Chromium, Tot 0.00 0.0000 0.0004 0.0004 1 0.00 0.0000 0.0014 0.0014 5
Copper,Diss 203.33 0.0017 0.0021 0.0038 3 405.00 0.0021 0.0005 0.0026 5
Copper,Tot 888.89 0.0064 0.0011 0.0075 2 403.98 0.0027 0.0007 0.0034 5
Iron,Diss 122.50 0.0049 0.0147 0.0196 3 24.53 0.0048 0.0332 0.0380 5
Iron,Tot | 4,141.08 0.6235 0.0183 0.6418 2 44.37 0.0218 0.0480 0.0698 5
Lead,Diss 55.00 0.0001 0.0106 0.0107 3 184.44 0.0001 0.0002 0.0003 5
Lead, Tot 765.00 0.0062 0.0009 0.0071 2 87.00 0.0002 0.0004 0.0006 5
Magnesium,Diss -3.50 -0.0550 0.7705 0.7155 2 -1.63 -0.0122 0.6248 0.6126 5
Magnesium, Tot -9.45 -0.1040 1.1000 0.9960 1 -0.20 -0.0088 0.6330 0.6242 5
Manganese,Diss | 7,321.76 0.1050 0.0241 0.1291 3 797.83 0.0358 0.0136 0.0494 5
Manganese,Tot | 5,311.85 0.1490 0.0390 0.1880 2 201.04 0.0374 0.0237 0.0611 5
Molybdenum,Diss 0.00 0.0000 0.0100 0.0100 1 0.00 0.0000 0.0003 0.0003 5
Nickel,Diss -9.09 -0.0001 0.0106 0.0105 2 10.36 0.00008 0.0008 0.0008 5
Nickel, Tot 75.00 0.0003 0.0004 0.0007 1 45.51 0.0002 0.0008 0.0010 5
Potassium,Diss 36.65 0.0900 0.2150 0.3050 2 3.48 0.0084 0.5632 0.5716 5
Potassium, Tot 0.00 0.0000 0.2000 0.2000 1 1.80 0.0048 0.6602 0.6650 5
Silver, Diss 0.00 0.0000 0.0008 0.0008 1 0.00 0.0000 0.0001  0.0001 | 5
Silver, Tot 0.00 0.0000 0.0008 0.0008 1 0.00 0.0000 0.0003 0.0003 5
Sodium,Diss 19.47 0.0740 0.3800 0.4540 1 -2.27 -0.0228 0.7946 0.7718 5
Sulfate 19.27 3.7333 26.9333 30.6667 3 11.27 2.4000 249400 27.3400 | 5
Vanadium,Diss 0.00 0.0000 0.0040 0.0040 1 -7.14 -0.0001 0.0027 0.0026 5
Zinc,Diss | 4,562.28 0.2100 0.0137 0.2237 3 1,436.68 0.0916 0.0068 0.0984 5
Zinc,Tot | 7,340.53 0.3054 0.0114 0.3168 2 1,059.88 0.0806 0.0083 0.0888 5
n=1-3 n=>5
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It appears that remediation activities reduced metal concentrations in surface water immediately
downstream of the mine site (M06B), however, the patterns described above are based on severely limited
data. Only one to three sampling events (depending on the analyte) captured both upstream and
downstream conditions pre-remediation while post-remediation means are based on five sampling events.
The limited pre-remediation data limits the degree of conclusivity of our interpretation.

Benthic Macroinvertebrates
Benthic Metrics

We collected benthic samples during pre-remediation conditions in 2015 and 2016 at M06 and M06B and
during post-remediation conditions in 2022 and 2023 at M06, M06B, and MO6E.

The Colorado Multi-Metric Index (MMI) was developed by CDPHE to assess the extent to which biological
communities may have been altered by environmental stressors and to evaluate whether a water body is in
attainment or impairment of designated aquatic life use (CDPHE 2020). All samples collected from
Porphyry Gulch pre- and post-remediation are considered in attainment of aquatic life use (Figure 2).

Pre-remediation Post-remediation
2015 02016 MWM2022 DO2023

90

80 F

70 F
=
=
< 60 |
3
= Attainment
2 50 | Threshold
&Q_j lllllllllllllllllllllll
T
40 e L ]
% Impairment
'i-é Threshold
5 30
3

20

10

0

Above Below Bullion King Below Bullion King
Bullion King Upper Lower
MO6E MO6B MO06

Figure 2. Colorado Multi-Metric Index (MMI) for samples collected at Porphyry Gulch.

With numerous metrics available to characterize benthic communities, it is often useful to look at multiple
lines of evidence when assessing trends over time. Several benthic metrics that reflect community
composition across all taxa do not readily convey a substantial change in benthic community composition
downstream of Bullion King Mine following mine remediation (e.g., MM], total taxa richness, MHBI).
However, benthic metrics that reflect taxa known to be most sensitive to elevated metal contamination
(Courtney and Clements, 2002) do suggest a shift in the benthic community downstream of the Bullion
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King Mine following remediation. The number of metal sensitive taxa at MO6B increased following
remediation with the metal sensitive mayfly, Rhithrogena, occurring in samples collected in 2022 and 2023
and absent in samples collected in 2015 and 2016 (Figure 3). The relative abundance of metal sensitive
taxa was higher in post-remediation samples at MO6B and further downstream at M06 (Figure 4).

Ephemerellidae Heptageniidae
Drunella coloradensis m Serratella Cinygmula B Epeorus m Rhithrogena

5 F
| IIII
3t

i ”
1111
i

Metal Sensitive Family (MSF) richness

Above  Above Below Below Below Below Below Below Below Below
Bullion Bullion Bullion Bullion Bullion Bullion Bullion Bullion Bullion Bullion
King King King King King King King King King King
MO6E  MOGE Upper Upper Upper Upper Lower Lower Lower Lower
(2022) (2023) MO6B  MO6B MO6B  MO6B MO6 MO06 MO6 MO6
(2015) (2016) (2022) (2023) (2015) (2016) (2022) (2023)

Figure 3. Richness of metal sensitive families for samples collected in Porphyry Gulch.

Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies) (EPT) are known to be
generally sensitive to degraded water quality (Maret et al. 2003). EPT relative abundance increased
incrementally between monitoring years at MO6B. Roberts (2017) noted that prior to remediation, MO6B
had fewer insects per square meter than other sites in the Animas River watershed. Following remediation,
benthic density increased from about 150 insects per square meter in 2015-16 to 1,068 insects per square
meter in 2022 and 367 insects per square meter in 2023.

Non-metric Multidimensional Scaling Ordination (NMS)

To further examine how benthic community structure may have shifted pre- and post-remediation, we used
non-metric multidimensional scaling ordination (NMS), a statistical technique that plots each sample along
axes in ordination space that represent gradients in community composition. Samples plotted closer to one
another in ordination space have more similar community composition than samples plotted far from one
another. We conducted ordination of a benthic dataset that included all Porphyry Gulch samples (MO6E,
MO06B, and M06) as well as samples collected from nearby representative “stressed” and “reference” sites.
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To represent the benthic community composition of relatively undisturbed reference sites, we included
samples collected from Picayune Gulch, a reference site tributary to the Animas River, and from Boulder

Ephemerellidae Heptageniidae
Drunella coloradensis H Serratella Cinygmula B Epeorus ®m Rhithrogena

60
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Metal Sensitive Family (MSF) relative abundance
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Above Above Below Below Below Below Below Below Below Below
Bullion Bullion Bullion Bullion Bullion Bullion Bullion Bullion Bullion Bullion

King King King King King King King King King King
MO6E  MO6GE Upper Upper Upper Upper Lower Lower Lower Lower

(2022) (2023 MO6B M06B MO6B MO6B MO6 MO6 MO6 MO6
(2015) (2016) (2022) (2023) (2015) (2016) (2022) (2023)

Figure 4. Relative abundance of metal sensitive families for samples collected in Porphyry Gulch

Creek and Waterfall Creek, two waterbodies that due to their good water quality were recently designated
Outstanding Waters reaches and serve as drinking water sources for the towns of Silverton and Ophir. To
represent benthic community composition from surface waters with elevated metal concentrations, we
included a sample collected from the drainage pathway below the Bullion King Mine adit prior to
remediation as well as a sample collected from Mineral Creek above South Mineral Creek. This combined
dataset consisted of fifteen samples. We found that a two-dimensional solution provided the optimal
ordination. The majority of the variability (61%) in benthic communities among samples was explained by
NMS axis one (61%), while another roughly quarter of the variability was explained by axis two (23%). The
gradient represented by axis one from left to right largely reflects an increase in the abundance of metal
sensitive taxa (Rhithrogena, Epeorus, Cinygmula, and Drunella coloradensis) (Courtney and Clements, 2002)
and a decrease in metal tolerant taxa (Paraphaenocladius and Eukiefferiella claripennis) (Ruse et al,, 2000).

NMS axis two was less intuitively related to metals and is more likely related to differences in geography
and elevation among sites.

Ordination revealed that although there is inter-annual variability in benthic community structure, there is
a clear difference in the community composition between reference and non-reference locations; samples
from reference sites were distributed within the lower right corner of the plot and stressed sites were
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distributed on the left (Figure 5). The Porphyry Gulch samples were distributed in the mid- and upper-
right portion of the plot with a distinct separation between the M06 samples and the higher elevation MO6E
and M06B samples.

StationID
MOGB(15) A Mine
MOGE (23) ;"‘-MOB
MO&B
MOGB (16) i A Mo6E
MO6GB (23) MOG(15) | A MIN
- Ref
A
MOGB (22) M06 (16) .
MO6 (23)
o
2 MOGE (22) A &
< MO06(22)
BullionKing drainage (15}
A Mineral abv South Mineral (21) Boulder Cr (20}‘
Picayune (21 }A
Waterfall(21)
A
Axis 1

Figure 5. NMS Ordination for samples collected in the Mineral Creek basin. Note: Numbers in parenthesis indicate two-digit year
sample was collected

NMS can be a useful tool for assessing how a specific benthic community sample compares to previous
years and also to a corresponding reference site. Trends in benthic community structure over time can be
evaluated by assessing whether the community at a particular site is trending toward or away from other
sites. Following remediation, samples from M06B shifted closer in ordination space to samples from MO6E
and MO06, indicating that community composition immediately below the remediation site became more
similar to community composition upstream of the remediation site as well as the community composition
further downstream of the remediation site. In ordination we can also assess whether benthic community
composition of each site trended toward or away from a reference centroid (i.e., whether the quantifiable
distance from the reference centroid is increasing or decreasing). We calculated distances in ordination
space between M06B and M06 benthic samples and the centroid of samples collected from reference sites
(Table 4). Comparing distances to reference centroids across years, we found that after remediation, MO6B
and M06 were closer in ordination space to the reference centroid than prior to remediation.

Table 4. Distance in ordination space from each sample to the reference site centroid.

Stream Name Site Name Reference Centroid 2015 2016 2022 2023
Below Bullion King Mine -
Upper - MO6B Centroid of Boulder, 1.87 172 137 1.38
Porphyry Gulch ) ) ) Picayune, and
Below Bullion King Mine - Waterfall Creeks 114 1.03 0.74 087
Lower - M06

Note: Greater distance equates to less similarity; Shorter distance equates to greater similarity. For example, MO6B had benthic community
composition that was more similar (shorter distance) to the reference centroid in 2022 and was less similar in 2015.
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Discussion

The limited availability of pre-remediation water quality data from Porphyry Gulch obscures our ability to
detect the influence of remediation on downstream water quality conditions. Although some improvement
in water quality appears to have occurred following remediation, it is difficult to conclusively attribute the
improvement solely to remediation due to the limited amount of water quality data. Concentrations of
several metals (total aluminum, total and dissolved copper, total and dissolved manganese, and total zinc)
decreased distinctly from pre- to post-remediation without similar trends noted at the upstream control
site. Additionally, the rate of change from upstream of the mine site to downstream of the mine site
decreased following remediation for nearly half of all metals analyzed. ARSG characterized the Bullion King
Mine as the highest contributor of iron, cadmium, and zinc and the second highest contributor of aluminum
and manganese of the eight mine waste rock sites they assessed in the Mineral Creek basin. The site
contributed almost half the total iron, cadmium, and zinc loads of the eight sites ARSG assessed. Following
remediation there was a reduction in the rate of increase in each of these metals of concern as surface
water flowed past the Bullion King Mine from MO6E to M0O6B (Table 3). These trends in water quality
improvement following remediation were not readily observed at the most downstream site, M06,
suggesting that improvements may have been highly localized. Generally, concentration ranges at M06 pre-
remediation appear to be within the range of or slightly lower than M06B (Appendix B).

A 2009 study examined a reach of Mineral Creek for post-remediation improvements noted circumneutral
inflow from Porphyry Gulch (Runkel, 2009). The limited pre-remediation pH data for the Bullion King Mine
and Porphyry Gulch suggest that pH values are roughly neutral. Many abandoned mine sites in the larger
Animas River Basin drain much more acidic water, which increases the solubility of most metallic cations
(e.g., copper, nickel, cobalt, and manganese). The circumneutral pH of Porphyry Gulch likely has
implications for how potential post-remediation water quality changes are assessed. In circumneutral
conditions, some metals can become mobile or precipitate (Tamoto et al., 2015). For example, in
circumneutral conditions aluminum hydroxide precipitates replace dissolved aluminum as the main
contributor to aluminum toxicity (Gensemer et al., 2018). Zinc similarly changes its speciation from a
dissolved cation to a carbonate complex in circumneutral or net-alkaline waters (Nuttal and Younger, 2000).
Interestingly, after remediation, the reduction of the rate of increase as surface water passes Bullion King
Mine was 2 to 18 times greater for total concentrations of the five metals identified by ARSG compared to
dissolved concentrations.

Due to data limitations, we were not able to differentiate seasonal flow conditions (e.g., high-flow vs. low-
flow). Waste rock piles, such as the Bullion King site, may contribute to metal loading differently depending
on the season. Runoff from and infiltration into waste rock piles tend to act as the primary contaminate
transport mechanisms from these materials and occur most often during spring run-off or storm events.
Runkel (2009) notes that waste rock pile removal may not drastically improve water quality at baseflow
conditions for these reasons. With that in mind, results presented here may be missing a crucial seasonality
component that, due to limited data, we could not assess. Conducting sampling during storm events and
run-off conditions both pre- and post-remediation at future waste rock pile remediation sites may better
capture the potential water quality improvement benefits. Pre-remediation storm samples at the Bullion
King site in September 2000 and July 2013 captured 2-to 10-fold increases in metal concentrations during
and after the storm event (Butler, 2018). Both rainwater and snowmelt water exhibit slightly acidic pH
values (with pH values ranging between 5 and 6), which may partially explain the increased mobilization of
metals from waste rock piles (Brooks et al., 2001; Demers et al., 2010; Jefferies et al., 1979;). Unfortunately,
at the time of this report, no post-remediation storm samples have been collected. Capturing
concentrations during and after storm conditions post-remediation at the Bullion King site may provide a
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clearer picture of remediation success. In the absence of pre- and post-remediation storm event water
quality data, it is possible that summer and fall baseflow water quality may residually reflect antecedent
storm events to some degree. When storm events mobilize metals from waste rock or redistribute stream
bottom precipitates, these metals may accumulate, persist, and influence water quality at lower flows for
perhaps an extended time period until higher flows occur that re-mobilize, dilute, or disperse these metals
(Butler 2018). The concept of delayed post-restoration recovery due to residual sediment contamination
has been demonstrated on the Arkansas River (Clements et al, 2010).

Our clearest evidence of improvement in water quality came from assessing the rate of change in
concentration as water flows from upstream of the remediation site to downstream of the remediation site.
This approach allowed us to minimize the influence of year-to-year variability in pre- and post-remediation
data and served as a more focused analytical metric than comparing data to a reference site from a
neighboring watershed. In future assessments of mine remediation, we recommend collecting pre- and
post-remediation water quality and benthic macroinvertebrate data from upstream and downstream of the
remediation site. This approach is possible when the mine site is situated such that it drains to the middle
of a perennial stream reach but is more problematic when mine sites are situated upslope of all perennial
stream reaches and bracketing is not feasible.

We present evidence that there were measurable changes in Porphyry Gulch benthic community
composition following remediation. Specifically, five years after the Bullion King Mine remediation was
completed, we found an increase in benthic density, EPT relative abundance, and richness and relative
abundance of metal sensitive taxa. We demonstrated through NMS ordination that benthic community
composition at sites downstream of the Bullion King Mine became more similar to known regional
reference sites following remediation. These post-remediation changes appear most pronounced at MO6B,
the site in closest downstream proximity to the mine site. The benthic community immediately
downstream of the Bullion King Mine (M06B) continues to differ from the benthic communities upstream
of the mine site (MO6E) and further downstream of the mine site (M06). For example, post-remediation
benthic density is still lower at MO6B compared to MO6E and M06. Additionally, metal sensitive
Ephemerellidae mayfly taxa occur at MO6E and M06 but were still not observed at MO6B following
remediation. It could be informative to continue benthic sample collection at MO6B to see if further
improvements in water quality and habitat conditions for aquatic life related to Bullion King remediation
allow Ephemerellidae taxa to occupy M06B in the future.

With similar mine remediation projects planned for BPMD and other mineralized regions, this work has
broad implications and relevant monitoring recommendations that may be applicable elsewhere.
Specifically, we recommend collecting multiple lines of evidence before and after remediation that are
reflective of longer-term water quality and habitat conditions at stations both immediately upstream and
downstream of the remediation activity. Recommended lines of evidence include benthic
macroinvertebrate community composition, streambed sediment concentrations, and autosampler devices
capable of capturing continuous water quality data including storm events.
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Appendix A - Analyte Concentrations
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Figure A- 1. Aluminum, arsenic, and barium concentrations at three sampling sites pre and post remediation activities at Bullion
King mine. Yellow represents pre-remediation samples and blue represents post-remediation samples. Triangles represent
samples taken during or directly after a storm event.
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Figure A- 2. Beryllium, cadmium, and calcium concentrations at three sampling sites pre and post remediation activities at Bullion
King mine. Yellow represents pre-remediation samples and blue represents post-remediation samples. Triangles represent
samples taken during or directly after a storm event.
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Figure A- 3. Chromium, copper, and iron concentrations at three sampling sites pre and post remediation activities at Bullion King
mine. Yellow represents pre-remediation samples and blue represents post-remediation samples. Triangles represent samples
taken during or directly after a storm event.
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Figure A- 4. Lead, magnesium, and molybdenum concentrations at three sampling sites pre and post remediation activities at
Bullion King mine. Yellow represents pre-remediation samples and blue represents post-remediation samples. Triangles represent
samples taken during or directly after a storm event.
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Figure A- 5. Manganese, nickel, and potassium concentrations at three sampling sites pre and post remediation activities at Bullion
King mine. Yellow represents pre-remediation samples and blue represents post-remediation samples. Triangles represent
samples taken during or directly after a storm event.
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Figure A- 6. Silver, sodium, vanadium, and zinc concentrations at three sampling sites pre and post remediation activities at
Bullion King mine. Yellow represents pre-remediation samples and blue represents post-remediation samples. Triangles represent
samples taken during or directly after a storm event.
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Appendix B: Analyte Boxplots
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Figure B- 1. Boxplot of aluminum, arsenic, and barium concentrations across three samplings sites (M06, MO6E, and M06B) pre
and post remediation activities at Bullion King mine. Yellow points represent storm samples. Black points represent boxplot
outliers and correspond with adjacent points. Sites are presented in order from downstream (left) to upstream (right).
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Figure B- 2. Boxplot of beryllium, cadmium, and calcium concentrations across three samplings sites (M06, MO6E, and M06B) pre
and post remediation activities at Bullion King mine. Black points represent boxplot outliers and correspond with adjacent points.

Sites are presented in order from downstream (left) to upstream (right).
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Figure B- 3. Boxplot of chromium, copper, and iron concentrations across three samplings sites (M06, MO6E, and M06B) pre and
post remediation activities at Bullion King mine. Black points represent boxplot outliers and correspond with adjacent points. Sites

are presented in order from downstream (left) to upstream (right).
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Figure B- 4. Boxplot of lead, magnesium, and molybdenum concentrations across three samplings sites (M06, MO6E, and M06B)
pre and post remediation activities at Bullion King mine. Black points represent boxplot outliers and correspond with adjacent

points. Sites are presented in order from downstream (left) to upstream (right).
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Figure B- 5. Boxplot of manganese, nickel, and potassium concentrations across three samplings sites (M06, MO6E, and M06B) pre
and post remediation activities at Bullion King mine. Black points represent boxplot outliers and correspond with adjacent points.
Sites are presented in order from downstream (left) to upstream (right).
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Figure B- 6. Boxplot of silver, sodium, vanadium, and zinc concentrations across three samplings sites (M06, MO6E, and M06B) pre
and post remediation activities at Bullion King mine. Black points represent boxplot outliers and correspond with adjacent points.
Sites are presented in order from downstream (left) to upstream (right).
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Appendix C - Supplemental Tables and Figures

Table C- 1. Porphyry Gulch sampling site descriptions used by various agencies and corresponding sample site code

Mo6 ‘ 37.88501

MO06B | 37.88791
Mo6C | 37.88861
MO6E | 37.88790

-107.72309

-107.74084
-107.74222
-107.74174

Porphyry Gulch, Porphyry at HWY 550, Porphyry abv HWY 550, Porphyry
below 550, M06

Porphyry below Bullion King, Bullion King Mine below Dump, M06B
Bullion King Mine, Bullion King lower, Bullion King Adit

Porphyry above Bullion King, MO6E
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