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ABSTRACT: The existing body of literature on the total economic benefits from surface water quality 

improvements is robust and provides valuable information for benefit cost analysis of Clean Water Act 

regulations. However, there are some important elements of benefit transfer that are best informed by 

study designs that are uncommon or absent from relevant valuation studies. In this paper, we present the 

results of a national stated preference survey that was designed to collect data on those elements. The 

policy scenarios presented in the repeated dichotomous choice questions describe improvements to local 

and distant aquatic resources, providing data that will inform decisions on the extent of market and 

distance decay in benefit transfer studies. The attributes in the choice scenarios capture distinct sources 

of value that may respond differently to new water quality standards, providing a more general benefits 

function than one that relies on a single composite index.  Lastly, we demonstrate the importance of 

capturing preference heterogeneity and correlation among individual preferences when estimating 

willingness to pay and how it is impacted by the spatial features of surface water quality improvements. 

KEYWORDS: Clean Water Act, stated preference, willingness to pay, discrete choice experiment, 
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1 Introduction 

The US Environmental Protection Agency (EPA) has been performing benefit cost analyses (BCA) on Clean 

Water Act (CWA) regulations for over 40 years. As the state of the art in nonmarket valuation has improved, 

so have the methods used to estimate the social welfare benefits of CWA regulations. Early BCAs were 

characterized by benefit transfers that relied on qualitative definitions of water quality for national 

impacts, supplemented with more detailed regional case studies (e.g., 1982 Iron and Steel Manufacturing 

effluent guidelines; 1987 Organic Chemicals, Plastics, and Synthetic Fibers rule; see Griffiths et al. 2012). 

Beginning with the 1998 Pulp and Paper rule, EPA began valuing recreation impacts and applying a rule-

of-thumb based on Fisher and Raucher (1984),  that assumed nonuse values were 50% of the recreation 

value. Through the early 2000s, BCAs for CWA regulations relied upon benefit transfer from a handful of 

contingent valuation and recreation demand studies. Supported in part by $10.5 million in EPA research 

grants, nonmarket valuation methods for water quality have vastly improved (Moore et al. 2023), best 

practices have been established and updated (Johnston et al. 2017a), and the number of studies has 

continued to grow. The proliferation of high-quality research in this area motivated another update to 

EPA’s water quality valuation approach. The economic analysis for the 2009 Construction and 

Development rule (US EPA 2009) relied on a meta-analysis of water quality valuation studies, allowing the 

agency to perform a functional benefit transfer and tailor the results more closely to the specific 

improvements expected under the rule. The meta-analytic transfer approach has been used to analyze 

nearly all significant CWA regulations since, with occasional updates to reflect methodological advances 

and to incorporate new studies (e.g., Johnston et al. 2017b; Newbold et al. 2018; Moeltner et al. 2023).  

Methodological improvements notwithstanding, the quality of meta-analytic transfers is limited 

by the body of literature on which they are estimated. Within the 59 studies used for the most recent 

application of the meta-analysis, 15 out of the 48 contiguous states are not represented (US EPA 2024). 

Further, only seven of the studies sample populations outside a single state and few of those sample 

populations outside the watershed that is the focus of the primary study. The partial coverage and narrow 

spatial scope of most water quality valuation studies limits our understanding of important features of 

benefit transfer, including preferences of the affected population and how willingness to pay (WTP) 

changes with distance from the improved resource. Several previous valuation studies found that the 

spatial extent of WTP for environmental improvements is of first-order importance in BCA and can often 

dominate the decisions regarding estimation of household WTP (Smith 1993; Loomis 2000; Ian J. Bateman 

et al. 2006a; Corona et al. 2020). In addition to market extent for environmental improvements, there is 



some empirical support for a WTP gradient that declines with distance from the improved resource 

(Hanley et al. 2003; Johnston et al. 2019). Only studies that sample households sufficiently far from the 

improved resource can identify distance decay and extent of market, and such studies are uncommon in 

surface water quality valuation.  

An additional challenge in transferring WTP values to national regulations is standardizing the 

water quality attributes valued in the primary studies. The valuation studies that underly EPA’s most recent 

application of meta-analytic transfer (US EPA 2024) estimated WTP for changes in a variety of 

environmental endpoints including the index of biotic integrity (IBI), algae levels in lakes, and water clarity, 

among others. To overcome disparities among studies, the baseline and post-policy attribute levels in the 

primary studies were converted to values on a common water quality index (WQI) before the meta-data 

were used to estimate the benefit transfer function. EPA’s freshwater WQI compiles numerous water 

quality measures into a single score ranging from 10 to 100. While the underlying water quality measures 

impact various ecosystem services, EPA’s WQI is primarily used to convey the suitability of lakes, rivers, 

and streams for recreational uses, with thresholds for boating, fishing, and contact recreation (Griffiths et 

al. 2012). While necessary to create a conformable valuation dataset from 59 studies, expressing water 

quality changes with a single index implicitly assumes that all aquatic ecosystem services are 

proportionately impacted and equivalently valued by the affected population. Lupi et al. (2023) find 

evidence that aggregating multiple sources of value into a single index can significantly impact WTP 

estimates compared to scenarios in which those ecosystem service changes are presented separately.  

 We report results from a national stated preference (SP) study designed to address the meta-

analysis challenges described above and provide an alternative valuation approach for CWA regulations or 

other policies that would lead to widespread changes in surface water quality across the US. The sample 

was drawn from a nationally representative sample frame to ensure all 48 contiguous states are 

represented in proportion to their populations. The choice scenarios presented improvements in 

recreation experiences and aquatic biodiversity as distinct attributes to decouple two primary 

determinants of household WTP. The amount of surface waters improved in each of the choice scenarios 

also varies so we can ensure the estimated valuation function satisfies adding up with respect to quantity, 

a feature Newbold et al. (2018) show to have a significant impact on theoretical validity. Finally, the 

distances between the respondents’ homes and the location of the water quality improvements vary 

across choice scenarios allowing an examination of distance decay, extent of market, and how they differ 

for recreation and biodiversity improvements. 



We estimate household marginal WTP with two specifications of the random parameters logit 

model. In one specification, the coefficients are assumed to have independent distributions. While 

assuming individual preferences for attributes are uncorrelated simplifies estimation because off-diagonal 

elements of the covariance matrix are zero, it imposes unrealistic restrictions on preferences and may bias 

estimates. We generalize the model in the second specification to allow correlations among all preference 

parameters. Both models are estimated in WTP-space to avoid numerical issues that arise when WTP is a 

ratio of two random coefficients (Train and Weeks 2005). Both specifications produce statistically 

significant WTP values for water quality attributes that are consistent with our priors based on economic 

theory. We find that estimating the full covariance matrix improves model fit and mitigates apparent 

attenuation bias in the uncorrelated model.     

The results of our preferred model show that marginal WTP for aquatic biodiversity in local 

watersheds is greater than WTP for recreational improvements. We find statistically significant distance 

decay for both water quality attributes and a market extent for biodiversity improvements that is 44% 

greater than the extent for recreation improvements. Taken together, these results imply that decoupling 

water recreation endpoints from aquatic ecosystem health can provide more informative benefit 

estimates than approaches that combine them into a single composite indicator. In Section 2 we describe 

the study design and summarize the survey data in Section 3. Section 4 presents the econometric model 

used in estimation and Section 5 reports the results. Section 6 concludes with a discussion of our results 

and potential implications for benefit cost analysis of CWA regulations.  

2 Study Design 

An identification strategy to answer our research questions requires variation across two water quality 

metrics, the spatial attributes of the policy scenarios, and costs incurred by households under the policy 

alternative. These survey design decisions were informed by focus groups held in Washington DC, Chicago, 

and Phoenix. Section 2.1 describes how the outcome of those focus groups and current best practices for 

SP studies shaped our survey design. Section 2.2 describes our sampling plan to collect responses from a 

nationally representative sample of households.  

2.1 Survey Design 

The introduction to the survey informed respondents that the survey is being conducted by the US 

Environmental Protection Agency, which improved consequentiality in focus group testing. The 



introduction also describes, in general terms, the policies they will be asked to consider.  Specific 

management practices required by those policies, such as improving wastewater treatment and storm 

water management, are described later in the survey.1  

The survey employed a repeated dichotomous choice format, with each survey containing six 

choice scenarios. Multiple valuation questions provide increased estimation efficiency for a given sample 

size and an opportunity for respondents to become familiar with the choice tasks (Johnston et al. 2017a). 

On the other hand, such a design introduces risks of sequencing effects and violating incentive 

compatibility. To address the former, the survey included prenotification screens on which respondents 

were shown each policy region they would encounter on their survey along with the baseline conditions 

and spatial attributes of each. Bateman et al. (2004) find that providing respondents with advance 

notification of the choice sets mitigates sequencing effects and improves responsiveness to scope. To 

mitigate threats to incentive compatibility, each of the first five choice scenarios were followed by a 

reminder to consider each policy as if it were the only one available and not to add up the water quality 

improvements or costs across questions. Vossler et al. (2012) show that under certain conditions repeated 

dichotomous choice questions can be incentive compatible and that reminders to treat questions 

independently can help to achieve those conditions.  

Given the prevalence of the recreation-based water quality ladder (WQL; Vaughan and Russell 

1982) and its continuous analogue, the water quality index (WQI), in the stated preference literature (e.g., 

Carson and Mitchell 1993; Lupi et al. 2023; Bateman et al. 2006b), we began our focus group research with 

a prior toward using a similar measure to represent the recreation aspects of water quality. The Recreation 

Score that we use on this survey is a 0-100 score, with threshold values indicating that waterbodies are 

either unsuitable, suitable, or good for boating, fishing, and swimming (Figure 1).  

 

 
1 Screenshots of an example survey are available in the supplementary material. 



 

Figure 1. Illustrations of the Water Recreation Score and the Aquatic Biodiversity Score. The survey included text and visual 
descriptions of the water quality attributes. The Water Recreation Score scale is marked with threshold values at which water 
quality becomes suitable for select activities and shows that further increases in the score would improve the quality of those 
experiences from suitable to good. The text descriptions of the water quality attributes emphasized that the two scores could 
change independently because management practices and pollutants impact them differently.  

 A greater challenge, and one with less precedent on which to base focus group testing, is choosing 

a metric to capture sources of value other than recreation. These include tangible ecosystem services like 

source water for drinking water (Keeler et al. 2012), and intangible nonuse values like bequest and 

existence value. Given our focus on CWA regulations, as opposed to those under the Safe Drinking Water 

Act, we deliberately excluded drinking water impacts from the outcomes of the policy scenarios described 

on the survey. So while it may be difficult, or impossible, to decompose an estimate of total WTP into 

distinct use and nonuse values (Cummings and Harrison 1995), our intent was to develop an indicator of 

water quality that credibly captures value other than those generated by recreation. Lupi et al. (2023) 

designed a SP survey that expressed water quality using a Wildlife Score, a Contact Recreation Score, and 

a Recreational Fishing Score. Lupi et al. describe the Wildlife Score as “measuring the ability of a waterbody 

to support healthy and diverse populations of aquatic plants and animals.” Vossler et al. (2023) expressed 

(a) Water Recreation Score 

(b) Aquatic Biodiversity Score 



changes in water quality using a biological condition gradient (BCG) that classifies waterbodies into one of 

six categories, each reflecting a level of anthropogenic stress on the ecosystem. Our focus group 

discussions led to indicators of ecosystem health and biodiversity but found problems with general scores 

and multimeric indices because participants found it difficult to relate changes in the numeric index to 

tangible changes in the ecosystem (Hill et al. 2023). The Aquatic Biodiversity Score that we used to 

complement the Recreation Score expresses the percentage of aquatic macroinvertebrates present in a 

water body relative to the number that would be found under the best possible conditions for similar 

resources (Figure 1). We based this metric on the “observed to expected ratio” that is collected and 

reported as part of the National Aquatic Resources Survey (US EPA 2013). A large share of focus group 

participants preferred this metric because changes in the numerical value mapped directly to tangible 

changes they could understand and simultaneously served as a general indication of ecosystem integrity. 

The study design achieved variation in the spatial attributes using policy regions. Each choice 

scenario references a region of the US where the hypothetical policy will be implemented. Outside of the 

policy region there are no changes in water quality. To reinforce the spatial boundaries on the water quality 

changes, the survey describes watersheds and shows a map of the 18 major watersheds of the contiguous 

US (2-digit hydrological units or HUC2s, Figure S1.1). Three of the six valuation questions on each survey 

referenced policy regions that contained the respondent’s address. Of those three regions, one was their 

home watershed, one was their home watershed plus two adjoining watersheds, and the third was their 

home watershed plus five adjoining watersheds. The other three choice scenarios referenced policy 

regions that did not contain the respondent’s home, but also comprised one, three, and six adjoining 

watersheds. Creating sets of 3 and 6 adjacent HUC2s from the 18 across the contiguous US results in 83 

and 1050 unique sets, respectively. However, not all sets are reasonable in terms of watershed policy which 

could lead to scenario rejection by respondents. To address the plausibility of various sets of 3 and 6 

HUC2s, we establish selection criteria based on the convexity of the set.2 That is, if HUC2s were paired 

together in such a way that made the overall set less compact, and therefore less plausible in the context 

of watershed policies, the set was discarded. We required each set of 3 and 6 HUC2s to have a convex hull 

score of at least 0.6. This resulted in 45 unique sets of 3 HUC2s, and 461 unique sets of 6 HUC2s. We then 

had three reviewers examine the remaining sets and use subjective review criteria to select 29 3-HUC2 

 
2 The convex hull score is the ratio of the area of the HUC2 set to the area of the minimum convex polygon (MCP) 
that can encloses the set’s geometry. A set’s score falls within the range of [0,1] and a score closer to 1 indicates a 

more compact set. Specifically, 𝐶𝑜𝑛𝑣𝑒𝑥 ℎ𝑢𝑙𝑙 𝑠𝑐𝑜𝑟𝑒 =
𝐴𝑟𝑒𝑎𝑠𝑒𝑡

𝐴𝑟𝑒𝑎𝑀𝐶𝑃
 . We use the sf package in R to calculate the scores 

(Pebesma 2018) 



policy regions and 141 6-HUC2 policy regions as plausible in the context of watershed policy (see Figure 

S1.2 for examples of accepted and discarded policy regions). In combination with the 18 single 1-HUC2 

policy regions, a total of 188 policy regions populated the design space. Policy regions were randomly 

assigned within the constraints described above and all were randomly ordered on each survey.  If a 

respondent’s address is outside the policy region, they were given the geodesic distance, in miles, from 

the centroid of their zip code to the nearest part of the region. The information in each choice scenario 

also included the surface area (square miles) of lakes, rivers, and streams in the policy region. See Figure 

2 for an example choice scenario.  

 

 

Figure 2. Example dichotomous choice question from the survey. The question screens included a map of the policy region 
where improvements would occur and a table showing the water quality attribute levels under baseline and policy scenarios, 
the spatial characteristics of the policy region, and the cost of the policy to the respondent’s household.  

 



Payment vehicles in SP choice scenarios should be realistic, credible, familiar, and binding for all 

respondents to satisfy incentive compatibility (Johnston et al. 2017a). When the sample frame contains 

households throughout the contiguous US there are few payment vehicles that meet all criteria. Not all 

households pay utility bills or income tax. Sales tax and cost of living increases can be mitigated by 

changing purchasing behavior. This survey described the payments in the form of, “increases in federal, 

state, and local taxes” for five years. Recognizing that tax increases could trigger scenario rejection, the 

survey included debriefing questions to probe this issue and screen the data before estimation. 

We used the Ngene software package to develop a D-optimal design for the recreation, 

biodiversity, and cost attributes, assuming utility is linear in those attributes, while imposing some 

constraints to ensure balance. Prior distributions on the coefficients were estimated using pretest data. 

The final experimental design for the water quality and policy attributes is summarized in Table 1. 

 

Table 1. Experimental design 

Attribute Description Mean Values or Range 

Baseline  
Recreation Score 

Numeric score 0-100 that conveys the average 
suitability of for boating, fishing, and swimming.  

65.0 35-92 

Improvement in 
Recreation Score 

Change in recreation score under policy. 3.8 0,1 ,3, 5, 7 

Baseline  
Biodiversity Score 

The average percent of aquatic macro-
invertebrates species found in waterbodies 
relative to the best possible conditions.  

69.5 35-93 

Improvement in 
Biodiversity Score 

Change in biodiversity score under policy. 3.9 0,1 ,3, 5, 7 

Surface Area (square 
miles) 

Total surface area of all lakes 
rivers and streams in a policy 
region.  

1-HUC2 Regions 
3-HUC2 Regions 
6-HUC2 Regions 

1,681 
5,019 

10,693 

95-4,975 
758-5,019 

1,903-19,766 

Distance (miles) 
Geodesic distance from the centroid of the 
respondent’s zip code to the nearest edge of the 
policy region.  

285 0-2,540 

Cost of Policy 
Scenario 

Increase in annual federal, state, and local taxes 
for the next five years.  

$345 $20-$1,145 

A description of each policy attribute and summary statistics for the experimental design. Mean values are provided for each 
attribute. Ranges are provided for the continuous attributes and a list of values are provided for the discrete attributes. 



2.2 Sampling 

A nationally representative sample is critical to address our primary research questions and for 

applicability to CWA regulatory analysis. Further, a national sample frame provides data from regions of 

the US that are underrepresented in the water quality valuation literature. The sample for this study was 

drawn from the Ipsos KnowledgePanel probability-based panel, targeting a representative sample of 

households located in the 48 contiguous states of the US and Washington, DC. Drawing our sample from 

an existing panel provides several advantages over other sample frames. For example, KnowledgePanel 

collects extensive demographic data from all panel members, making it unnecessary to include 

demographic questions on the survey, conserving valuable survey space and time. Sampling from an 

existing panel also allowed us to easily customize each survey and provide household-specific information 

about the choice scenarios.  

3 Data Summary  

Of the 10,216 panelists invited to participate in our study, 64.3% completed a survey, resulting in an initial 

sample of 6,567 respondents. Figure 3 contains a map showing respondent locations by zip code. Table 2 

provides a demographic summary of our sample and a comparison to the adult population according to 

the March supplement of the 2023 Current Population Survey (CPS). Through raking, the weighted sample 

percentages match the population percentages in all respects. 

Figure 3. Location of survey respondents by zip code. The maximum number of survey respondents from the same zip code was 
6, and the average is 1.3 across 4,763 unique zip codes covering all 48 states in the Continental US, plus the District of Columbia.  



Table 2. Demographic comparison of sample to population 

 Unweighted Sample 

Percentage 

Population  

Percentage 

Respondent Location   

Northeast 17.7 17.4 

Midwest 21.9 20.5 

South 37.6 38.6 

West 22.9 23.6 

Metropolitan Areas 86.5 86.6 

Race   

White non-Hispanic 68.5 61.3 

Black non-Hispanic 10.8 12.1 

Hispanic 13.0 17.5 

Other non-Hispanic 7.8 9.2 

Gender     

Female 49.9 51.0 

Annual Income   

Less than $25,000 9.6 11.1 

$25,000 - $49,999 15.0 15.4 

$50,000 - $74,999 15.4 15.4 

$75,000 - $99,999 13.7 13.0 

$100,000 - $150,000 20.2 18.9 

More than $150,000 25.9 26.3 

Education     

Less than high school 5.4 9.4 

High school or GED 25.2 28.8 

Associate’s degree or some college 27.6 26.4 

Bachelor’s degree or higher 41.9 35.4  

Demographic characteristics of respondent households are very similar to the population. Race, gender, and income distributions 
match closely while the sample underrepresents respondents without a high school degree and includes a higher percentage of 
people with a college degree.   

  

The survey collected data on respondents’ behaviors and attitudes that may influence their 

responses to the stated preference questions. 13% of our sample purchased a fishing license in 2023 

compared with 12.9% of the adult population.3 Slightly more than half of our sample, 54.9%, reported 

taking a recreational trip to a lake, river, or stream in their home watershed over the past 12 months. After 

answering the choice scenario questions, respondents were asked whether each of the attributes had a 

large, moderate, some, little, or no effect on their choices. Figure 4 shows the distributions of those 

 
3 See Fishing Licenses, Holders, and Costs by Apportionment Year, Retrieved 8/22/2025, From https://us-east-
1.quicksight.aws.amazon.com/sn/accounts/329180516311/dashboards/602cf050-6e11-4da5-9917-
7229fd08648b/sheets/602cf050-6e11-4da5-9917-7229fd08648b_6af87d82-d05b-429c-8723-8ce03fa38df3 

https://us-east-1.quicksight.aws.amazon.com/sn/accounts/329180516311/dashboards/602cf050-6e11-4da5-9917-7229fd08648b/sheets/602cf050-6e11-4da5-9917-7229fd08648b_6af87d82-d05b-429c-8723-8ce03fa38df3
https://us-east-1.quicksight.aws.amazon.com/sn/accounts/329180516311/dashboards/602cf050-6e11-4da5-9917-7229fd08648b/sheets/602cf050-6e11-4da5-9917-7229fd08648b_6af87d82-d05b-429c-8723-8ce03fa38df3
https://us-east-1.quicksight.aws.amazon.com/sn/accounts/329180516311/dashboards/602cf050-6e11-4da5-9917-7229fd08648b/sheets/602cf050-6e11-4da5-9917-7229fd08648b_6af87d82-d05b-429c-8723-8ce03fa38df3


responses. Improving recreational experiences appears to have the strongest effect on respondents’ 

choices overall, while the distribution for improving aquatic biodiversity suggests highly heterogeneous 

preferences. The distance from home and amount of water in the policy regions have similar distributions 

that show generally large effects. Responses on the effect of the cost attribute raise some concern about 

the consequentiality of the payment vehicle.  

 
Figure 3. Distribution of categorical responses to debriefing questions. Respondents were asked to indicate how much of an effect 
each of the policy attributes had on their responses to the dichotomous choice questions. The Water Recreation Score had the 
largest share of “large” and “moderate” responses. The Aquatic Biodiversity Score and cost attributes had the largest shares of 
“little” and “none” responses. 

 
To mitigate concerns about lack of consequentiality, scenario rejection, and hypothetical bias, we 

screened the data before estimation using a combination of responses to debriefing questions and the 

choice scenarios in a manner similar to Moore et al. (2018). The screening criteria require all omitted 

choice scenario responses to be consistent with the bias we aim to mitigate. For example, if a respondent 



disagreed with the statement, “I voted as if my household would actually face the costs shown,” but voted 

for the status quo option in at least one instance, their responses would not be screened from the data. 

We also dropped respondents who completed the survey in less than five minutes, which was about 2% 

of our sample. Table 3 contains each screening prompt and the number of respondents who were dropped 

for each.  

Table 3. Data screening criteria and results 

Debriefing Response 
Choice Scenario 

Responses 
Screened  

Respondents 

Agreed with “It is important to improve water 
quality no matter how high the cost” 

Policy Option 54 

Agreed with “I want better water quality, but I 
shouldn’t have to pay additional taxes to get it.” 

Status Quo 116 

Disagreed with “I voted as if my household would 
actually face the costs shown.” 

Policy Option 45 

Total, including those screened for completing 
survey in less than 5 minutes  

 
317 

(5.2% of sample) 

Three of the criteria for screening surveys from the sample relied on a combination of responses to debriefing questions and 
responses to the dichotomous questions. A fourth criterion identified “speeders” that completed the survey in less than 5 minutes.  

4 Estimation 

To analyze the repeated dichotomous choice responses, we adopt the random utility framework in which 

choice probabilities are a function of utility differences between the status quo and policy alternatives 

(Hanley et al. 1998; Hanemann 1984). We begin by specifying utility as a function of the choice attributes 

and income or, equivalently, consumption of all market goods and services.  

0 0ln( ) ln( ) ln( ) ln( ) ln( ) ln( )ij ij R ij B ij DR ij ij DB ij ij i ijV A R B R D B D M      = + +  +  + +  . (1) 

Equation (1) represents utility in the baseline case where Aij is the surface area of water in the policy region 

for individual i on choice occasion j, Rij is the recreation score in that case, Bij is the biodiversity score, Dij 

is the distance from the individual’s home to the nearest part of the policy region, Mi is individual i’s 

income, and ε0 is a residual representing the unobserved portion of utility. βR and βB are the utility 

coefficients for the recreation and biodiversity scores, βDR and βDB are the coefficients for the distance 

interactions with those values, and λ is the marginal utility of income. We assume that utility derived from 

water quality scales linearly with the affected area. Linearity in 𝐴 ensures a form of internal consistency 



with respect to the spatial (de-)composition of watershed policies: it guarantees that the benefits of any 

given water quality improvement in a watershed are the same whether it is accomplished with a single 

policy spanning the entire watershed or multiple policies that make the same improvements in each of its 

sub-watersheds.  

Under the policy alternative, the utility function becomes, 

ln( ) ln( ) ln( ) ln( ) ln( ) ln( ) ( ) .ijk jk ij R ijk B ijk DR ijk ij BR ijk ij i ijk ijkV A R B R D B D M c          = + + +  +  + − +   

(2) 

In equation (2), ϕjk is the alternative specific constant (ASC) for policy case k in choice occasion j, R’ijk and 

B’ijk are the recreation and biodiversity scores in the policy case, and cijk is the cost of the policy. 

Differencing equations (1) and (2) and rearranging terms to make the expression linear in the utility 

coefficients yields,  

0 0ln( ) ln( ) ln( ) ln( ) ln( ) ln( )

,

ijk ijk ijk ijk
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 

   
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(3) 

where, xijk is a vector of choice attributes and β is a vector of utility coefficients. Using equation (2) to solve 

for the marginal rate of substitution between the recreation score and income to derive marginal WTP 

results in the expression ( )( )lnR DRA R D   + .4 The same derivation for the marginal WTP for 

improvements in biodiversity yields ( )( )lnB DBA B D   + .  

Assuming the εijk follow a type-I extreme value distribution allows the choice probabilities and 

utility coefficients to be estimated using the logit model so that the probability of individual i choosing 

alternative k on occasion j is given by,  

( )
( )

exp

exp

ijkL

ijk

ijhh

x
P

x






=
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 . (4) 

 
4 In estimation, values for Distance were increased by 1 mile so that distances of zero for respondents’ home regions 
were replaced with 1. When applied to the marginal WTP derivation, this causes the distance coefficient to be 
multiplied by ln(1) = 0, so the term drops out for home region calculations.  



 The logit model described thus far assumes homogeneous preferences across all individuals. 

When preferences are substantially heterogeneous, the standard logit model is a misspecification (Hess 

and Train 2017). The mixed logit model (McFadden and Train 2000; Revelt and Train 1988) is the most 

widely applied empirical model that accommodates preference heterogeneity in discrete choice data. The 

mixed logit model assumes that the utility coefficients follow continuous distributions chosen by the 

researcher. While this improves estimation, it introduces a complication for estimating WTP from the utility 

coefficients. Given that the WTP for an attribute involves the ratio of the attribute coefficient and the cost 

coefficient, using estimates from a mixed logit model produces a ratio of two random terms. Depending 

on the distribution chosen for the cost coefficient in the denominator, that can result in a distribution for 

WTP with undefined moments or heavily skewed distributions. Two alternatives that circumvent this 

numerical issue are common in the literature. One is to assume a fixed cost coefficient, implying that the 

marginal utility of income is constant across the population, which may not be a realistic assumption. The 

second is to estimate the model in WTP-space.    

Train and Weeks (2005) show that by reformulating the utility function, the coefficients can express 

marginal WTP rather than marginal utilities. In this way, distributions can be specified for marginal WTP 

directly. With statistical software packages offering routines that estimate mixed logit models in WTP 

space, the approach has become more common and straightforward to implement.5 When coefficients 

are estimated in WTP-space, the expressions for marginal WTP for recreation and biodiversity 

improvements become ( )( )lnR DRA R D  +  and ( )( )lnB DBA B D  + . Another feature of the 

estimation routine allows us to examine the impact of correlation among WTP coefficients on their 

distributions. Unlike models estimated in preference space, an uncorrelated model estimated in WTP-

space automatically allows for scale heterogeneity (Hess and Train 2017). However, ignoring possible 

correlation among WTP coefficients can bias the estimated means and standard deviations (Mariel and 

Meyerhoff 2018).  

5 Results 

While there is wide agreement that discrete choice models estimated in WTP-space generate more 

plausible distributions of WTP, there is mixed evidence regarding how well the models fit the underlying 

data. In comparisons of goodness-of-fit, Trains and Weeks (2005), Sonnier (2007), and Hole and Kolstad 

 
5 Model estimation was performed using the Stata statistical software, version 18, and the user-written command 
mixlogitwtp (StataCorp 2023, Hole 2015)  



(2012) found results that favored the preference-space approach. In this application, like Scarpa et al. 

(2008), we find that models estimated in WTP-space fit our data better. Results for the preference-space 

models are provided in the supplementary material, but we focus the remainder of our discussion on the 

WTP-space results. 

Table 4 contains the estimated means for each coefficient from the two mixed logit models. While 

these models were estimated in WTP space, the values should not be interpreted as marginal WTP. The 

values reported in table 4 correspond to ratios of the attribute coefficients and the cost coefficient which 

require further manipulation to reflect marginal WTP given the indirect utility function in Equation 1. All 

coefficient means in the correlated and uncorrelated models are statistically significant at the 0.001 level. 

The chi-squared statistic from a likelihood ratio test comparing the two models is 322.98, which indicates 

that the null hypothesis of no cross-coefficent correlations can be rejected at the 0.001 level. This result is 

consistent with other empirical comparisons of correlated and uncorrelated mixed logit models that find 

better model fit in the correlated models (Mariel and Meyerhoff 2018; Scarpa et al. 2008; Hole and Kolstad 

2012).  

 The coefficients on the distance interactions are negative, indicating that people are willing to pay 

less for improvements that occur in more distant policy regions. Interestingly, the coefficient on the 

distance-biodiversity interaction is larger than the coefficient on the distance-recreation interaction, 

suggesting that WTP for biodiversity declines more rapidly with distance than WTP for recreation. One 

objective of the survey design is to decouple value associated with recreation, including option and 

bequest values, and other sources of value. Our assumption is that respondents’ WTP for aquatic 

biodiversity would consist primarily of existence value, though we cannot test that assumption empirically.  

Given that there is no utility theoretic reason for existence value to decline with distance, while there is 

for use values, this is a noteworthy result that we examine further in the context of marginal WTP below.  

 

  



Table 4. Estimated means of coefficient distributions 

 Uncorrelated  

MXL in WTP Space 

Correlated  

MXL in WTP Space 

𝑃𝑜𝑙𝑖𝑐𝑦 𝐴𝑆𝐶 53.85*** 75.58*** 

 (11.63) (11.48) 

   

𝐴𝑟𝑒𝑎 × 𝑙𝑜𝑔(𝑟𝑒𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛) 201.1*** 236.3*** 

 (18.78) (18.49) 

   

𝐴𝑟𝑒𝑎 × log(𝑏𝑖𝑜𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦) 365.3*** 442.2*** 

 (23.92) (25.61) 

   

𝐴𝑟𝑒𝑎 × log(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) × log(𝑟𝑒𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛) -24.85*** -48.15*** 

 (4.775) (6.96) 

   

𝐴𝑟𝑒𝑎 × log(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) × log(𝑏𝑖𝑜𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦) -65.31*** -83.89*** 

 (5.746) (7.239) 

   

𝐶𝑜𝑠𝑡 (log-normally distributed) -5.466*** -5.327*** 

 (0.0391) (0.0402) 

Transformed 𝐶𝑜𝑠𝑡 (normally distributed) -0.0042*** -0.0049*** 

         (0.00017) (0.00020) 

Log-likelihood -18184.1 -18022.6 

Pseudo R2 0.213 0.220 

AIC 36392.3 36099.3 

BIC 36501.8 36345.7 

Observations 68064 68064 

Halton Draws 200 200 

Iterations to Converge 22 104 

Observations are the number of individuals 𝑁 times choice occasions 𝑇 times alternatives 𝐽: 𝑁 × 𝑇 × 𝐽.  Standard deviations of 
the random parameters in the uncorrelated model and the Cholesky decomposition of the covariance matrix of the random 
parameters in the correlated model—what is estimated and reported when using the estimation command mixlogitwtp in Stata 
18—can be found in the supplementary material (Table S1.1). We also present correlation coefficients of the random parameters 
in the correlated model (Figure S1.3). The coefficient on Cost is assumed to be distributed log-normal and reported as estimated—
the transformed Cost coefficient was recovered using Stata’s nlcom command (StataCorp 2023) and is also reported in the table 

where its mean equals 𝑒𝑥𝑝 (𝛽𝑐𝑜𝑠𝑡 +
𝜎𝑐𝑜𝑠𝑡
2

2
).  Standard errors are in parentheses where * p < 0.05, ** p < 0.01, and *** p < 0.001. 

 

 The results indicate that accounting for correlations among preference parameters improves the 

model fit, so it is worth noting that most coefficients in the uncorrelated model are substantially smaller 

in magnitude than the corresponding estimates from the correlated model. Few empirical studies examine 

the effects of ignoring correlation among parameters in mixed logit models and even fewer do so in WTP-

space. Our results indicate that the estimated means in the uncorrelated model are attenuated which will 

result in lower marginal WTP for improvements in home watersheds and a more gradual distance decay. 



Hole and Kolstad (2012) also compare correlated and uncorrelated models in WTP-space and find mixed 

results regarding their relative magnitude.6 

Table 5 presents means and 95% confidence intervals for marginal WTP when the nearest 

improved waters are 0, 50, 100, and 250 miles away.7 The calculations assume water surface area of 1,680 

square miles, a water recreation score of 65, and an aquatic biodiversity score of 70, which are the average 

values for single-watershed policy regions in our design space (see Table 1). Panel A contains estimates of 

marginal WTP for recreation improvements. As expected, given the magnitudes of the coefficient means, 

the central estimate for local improvements from the fully correlated model is larger than the estimate 

from the from the uncorrelated model. With positive distances, however, the decay effect dominates and 

the WTP estimates from the correlated model decline faster. Most striking are the extent of market 

estimates which we find by setting marginal WTP equal to zero and solving for distance. Those values are 

given by the expressions 𝑒𝑥𝑝 (−
𝛽𝑅

𝛽𝐷
) and  𝑒𝑥𝑝 (−

𝛽𝐵

𝛽𝐷
) for recreation and biodiversity, respectively.8  A 

common assumption is that the extent of market for recreation benefits roughly corresponds to the 

farthest one-way distance someone would travel for a single-day recreation trip. For example, McConnell 

and Strand (1994) assumed fishermen choose among fishing sites within 150 road miles of their homes; 

Parsons, Massey, and Tomasi (1999) assumed Delaware residents consider Maryland, Delaware, and New 

Jersey beaches up to 230 road miles from their homes; EPA commonly assumes that people within 100 

geodesic miles of an environmental improvement accrue benefits (US EPA 2024). The coefficient 

distributions from the uncorrelated model imply a central estimate greater than 3,000 miles and an upper 

bound of 11,000 miles on the 95% confidence interval.  Given that the 95% confidence interval includes 

zero, we conclude that the uncorrelated model provides weak evidence regarding the market extent for 

recreational benefits. In contrast, estimates from the fully correlated model generate a much narrower 

confidence interval.  While we cannot infer that WTP for recreational improvements necessarily extends 

beyond the home policy region, the upper bound of the 95% confidence interval for market extent of 

recreational improvements is 309 miles.  

 
6 In the supplementary material (S2), we provide a proof for a simplified case that, when preferences are positively 
correlated, a misspecified uncorrelated mixed logit model will bias the means of the preference parameter 
distributions toward zero. 
7 Confidence intervals were found using the delta method via Stata’s nlcom command.  
8 For estimation purposes, distances were increased by 1 mile so that the natural logarithm of distance in the home 
region was zero. When calculating the marginal willingness to pay by distance and the extent of market we account 
for this.         



 

Table 5. Marginal willingness to pay, distance decay, and extent of market 

 (1) (2) 

Panel A: Recreation 
Uncorrelated  

Random Parameters 
Correlated  

Random Parameters 

0 Miles 5.20*** 6.11*** 
 [4.25, 6.15] [5.17, 7.05] 
   
50 Miles 2.67*** 1.21 
 [1.87, 3.47] [-0.11, 2.54] 
   
100 Miles 2.23*** 0.36 
 [1.35, 3.12] [-1.16, 1.88] 
   
250 Miles 1.65** -0.77 
 [0.63, 2.67] [-2.57, 1.03] 
   
Extent of market (miles) 3,265 134 
 [-4485, 11017] [-40, 309] 

Panel B: Biodiversity   

0 Miles 8.83*** 10.70*** 

 [7.70, 9.97] [9.48, 11.91] 

   

50 Miles 2.62*** 2.72*** 

 [1.73, 3.52] [1.54, 3.89] 

   

100 Miles 1.54** 1.33* 

 [0.57, 2.52] [0.01, 2.65] 

   

250 Miles 0.11 -0.52 

 [-1.02, 1.23] [-2.06, 1.03] 

   

Extent of market (miles) 267** 194** 

 [74, 460] [52, 336] 

Observations 68064 68064 

Observations are the number of individuals 𝑁 times choice occasions 𝑇 times alternatives 𝐽: 𝑁 × 𝑇 × 𝐽. 95% confidence intervals 
are presented in brackets and were recovered using the delta method in Stata’s nlcom command where * p < 0.05, ** p < 0.01, 
and *** p < 0.001. 

 
Panel B of Table 5 shows the marginal WTP estimates for improvements in biodiversity. Willingness 

to pay for local biodiversity improvements is significantly higher than the corresponding estimates for 

recreation. Comparing models, the fully correlated model produces higher estimates of WTP for local 

improvements in biodiversity that decline faster with distance than those from the uncorrelated model. 

Unlike the extent of market estimates for recreational improvements, the estimates from both models for 

biodiversity are statistically different from zero and similar in magnitude. If we assume that WTP for 



improvements in aquatic biodiversity is a proxy for existence value, there is little theoretical or empirical 

guidance regarding the extent of the market. However, both models produce estimates that indicate WTP 

for biodiversity improvements becomes negligible at distances within our design space (mean distance of 

285 miles, see Table 1). Further, the fully correlated model produces results that are consistent with our 

prior that WTP for biodiversity extends farther from the household than WTP for recreation benefits, 

though there is substantial overlap in the 95% confidence intervals and the upper bounds are similar.   

6 Discussion and Conclusions 

This study was designed to address specific gaps in the literature that impede benefit cost analysis of CWA 

regulations. First, only two previous national surveys have estimated the total economic benefits of 

meeting surface water quality criteria (Carson and Mitchell 1993; Viscusi et al. 2008). The surveys were 

administered in 1983 and 2004 and employed study designs that are not consistent with contemporary 

guidance on stated preference. While synthesis of results across many studies via meta-analysis can 

increase the geographic coverage of data in the aggregate, there remain large parts of the US that are not 

represented in the relevant literature. To ensure preference data were collected from underrepresented 

parts of the US, this study surveyed a nationally representative sample using a probability-based internet 

panel.  

  A national sample will include respondents with different connections to and experiences with 

surface waters, and therefore different preferences for water quality improvements. We account for 

preference heterogeneity in our choice data with two random parameter logit models estimated in WTP-

space. One model estimated a full covariance matrix for the random parameters. The other estimated only 

the own-variance elements of the matrix. The results revealed important differences between the fully 

correlated model and the uncorrelated model. A likelihood ratio test reveals that estimating the full 

covariance matrix for the random parameters improves model fit substantially, indicating that individual 

preferences across attributes are correlated. The implications for marginal WTP estimates could be 

meaningful in a policy context. The fully correlated model generates central WTP estimates for local 

improvements that are about 20% greater than the uncorrelated model, however the distance gradient is 

steeper.  

The uncorrelated model does not provide useful information on market extent for recreation 

benefits. The correlated model, however, generates a central estimate of 135 miles and 95% confidence 

that WTP for recreation becomes negligible within 309 miles. These results are consistent with previous 



findings and the standard assumption of maximum driving distance for a single-day recreation trip. Recent 

studies by Vossler et al. (2023) and Johnston et al. (2023) explore the spatial dimensions of WTP for water 

quality improvements. While both studies find evidence that respondents are willing to pay more for local 

improvements than for improvements at greater distances from their homes, the study designs do not 

provide sufficient information to identify an extent of market for water quality benefits. Our results for the 

extent of the market for recreational benefits will complement the qualitative results of other studies and 

provide empirical support for an important feature of benefit cost analysis of CWA regulations.  

 Our survey asked respondents to distinguish between improvements in recreation experiences 

and increases in aquatic biodiversity. We do not claim that WTP for biodiversity perfectly corresponds to 

nonuse or existence value. However, decomposing total WTP into recreation and biodiversity components 

may have some practical advantages over a use and nonuse decomposition. A common method to isolate 

use value from nonuse value is to include questions about recreation behavior and estimate WTP for users 

separately from nonusers (e.g., Hanley et al. 2003; Johnston et al. 2005). However, users may also hold 

nonuse value for environmental endpoints that are distinct from those that provide use value. Similarly, 

responses from nonusers may reflect option values that are derived from endpoints associated with use 

values. By using different environmental endpoints as attributes in the choice experiment, we have 

developed a framework in which valuing recreation and biodiversity in a separable way provides the means 

for a more refined approach to benefits estimation than if all benefits were captured by a single measure 

of environmental quality. By interacting the biodiversity and recreation attributes with distance, we find 

that the central estimate for extent of the market for biodiversity benefits is about 44% greater than that 

for recreation benefits.  

 The findings of this study imply that a closer examination of some standard assumptions of meta-

analytic benefit transfer for CWA regulations may be in order. First, it appears that the assumed extent of 

market for all water quality benefits of 100 miles may be too low. Second, the assumption that all water 

quality benefits can be captured with a single water quality metric, which implicitly assumes that all 

sources of value are proportionally affected by policy and equally valued by households, could obscure 

important differences in benefits across policy options. A review of the primary studies included in the 

meta-analysis and an assessment of whether the environmental endpoints in those studies can be valued 

in a separable way is worth exploring. Finally, we found that allowing for the most general structure for 

preference heterogeneity, while computationally challenging, has meaningful impacts on WTP estimates 

and their precision.  
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Supplementary Material  

S.1 Supplementary Tables and Figures 

Table S1.1. WTP-Space Random Parameter Standard Deviations and Cholesky Matrix  

 (1) (2) 

 

Uncorrelated 

Model: Standard 

Deviations 

Correlated Model:  

Cholesky Decomposition of Covariance Matrix 

Policy ASC 644.2*** -489.3***      

Area∙ln(Recreation) 174.7*** -27.43 -170.2***     

Area∙ln(Biodiversity) 346.8*** -228.2*** -265.3*** 223.9***    

Area∙ln(Distance)∙ln(Recreation) 26.19*** -88.63*** -25.63*** -47.85*** -10.82   

Area∙ln(Distance)∙ln(Biodiversity) 8.182 7.004 3.389 -60.75*** 8.872** -16.01*  

Cost 1.070*** 0.0149 0.958*** -0.421*** 0.618*** 0.0192 0.104 

While the standard errors estimated in the uncorrelated model (column (1)) are comparable to the diagonal elements in the 
Cholesky matrix of the correlated model, the off-diagonal elements are not directly interpretable in their magnitude and are 
presented as results of the model estimation procedure. Statistical significance of the coefficients are represented by asterisks 
where * p < 0.05, ** p < 0.01, and *** p < 0.001. 
  



 

Table S1.2. Preference-Space Model Results  

 (1) (2) 
Mean Uncorrelated Correlated 

   
Cost 0.00311*** 0.00325*** 
 (0.0000825) (0.0000859) 
   
Policy ASC 0.0832* 0.152*** 
 (0.0395) (0.0373) 
   
Area∙ln(Recreation) 0.699*** 0.676*** 
 (0.0628) (0.0636) 
   
Area∙ln(Biodiversity) 1.253*** 1.303*** 
 (0.0875) (0.0945) 
   
Area∙ln(Distance)∙ln(Recreation) -0.0962*** -0.153*** 
 (0.0177) (0.0225) 
   
Area∙ln(Distance)∙ln(Biodiversity) -0.242*** -0.295*** 
 (0.0221) (0.0250) 
   

Observations 68064 68064 

Pseudo 𝑅2 0.208 0.211 

AIC 36657.4 36512.4 

BIC 36757.9 36704.1 

Log lik. -18317.7 -18235.2 

Minutes to Converge 58.45 110.4 

 

Table S1.3. Preference-Space Random Parameter Standard Deviations and Cholesky Matrix 

 (1) (2) 

 
Uncorrelated Model: 

Standard Deviations 

Correlated Model:  

Cholesky Decomposition of Covariance Matrix 

Policy ASC 2.191*** 1.898***     

Area∙ln(Recreation) 0.489 0.130 -0.601***    

Area∙ln(Biodiversity) -1.365*** 0.698*** -1.178*** -0.516*   

Area∙ln(Distance)∙ln(Recreation) 0.205** 0.200*** 0.0387 0.255*** -0.0629  

Area∙ln(Distance)∙ln(Biodiversity) 0.217* 0.0179 -0.0310 0.270*** -0.0733 0.0352 

 

  



 

 

 

Figure S1.1. HUC2s across the contiguous US. There are 18 unique HUC2s across the contiguous US. The survey presents to 

respondents sets of 1, 3, and 6 for two scenarios: (1) three questions that include their home HUC2, and (2) three questions that 

does not contain their home HUC2. The numbering of the HUC2s, 1 through 18, is how the NHD identifies each HUC2. 

  



 
Panel A: Plausible policy region     Panel B: Non-plausible policy region 

 
 
Figure S1.2. Example of a plausible and non-plausible policy region.  While both these 6-HUC2 policy regions have a convex hull 

score above 0.6, the non-plausible policy region (right) was discarded during the final review from the three reviewers due to its 

peculiar shape which could lead to scenario rejection by respondents. 

 

  



 

 
 

 

Figure S1.3. Correlations between attribute coefficients in the fully correlated MXL model. Correlations are drawn from the results 

of the Krinsky-Robb procedure using 10,000 simulations and collapsing across the second stage sampling uncertainty. 

 

 

  



S.2 Demonstration of attenuation bias when correlation among preference parameters 

exists but model assumes no correlation 

Consider the following highly simplified logit model with correlated preference parameters. There are two variables, 

𝑥1 and 𝑥2. The preference parameters 𝑏1𝑖  and 𝑏2𝑖  are both either 0 or 2𝑏, with equal frequency in the population, 

and they are perfectly correlated: 

Pr[𝑏1𝑖 = 0 & 𝑏2𝑖 = 0] = 0.5 and Pr[𝑏1𝑖 = 2𝑏 & 𝑏2𝑖 = 2𝑏] = 0.5. 

The true choice probability, accounting for preference parameter correlation, is 

𝑝 =
0.5

1 + 𝑒0
+

0.5

1 + 𝑒−2𝑏(𝑥1+𝑥2)
. 

The misspecified choice probability, ignoring preference parameter correlation, is 

𝑝̂ =
0.25

1 + 𝑒0
+

0.25

1 + 𝑒−2𝑏(𝑥1+𝑥2)
+

0.25

1 + 𝑒−2𝑏𝑥1
+

0.25

1 + 𝑒−2𝑏𝑥2
. 

The log likelihood function for the misspecified model is 

ℓ̂ = 𝑦 ln(𝑝̂) + (1 − 𝑦) ln(1 − 𝑝̂), 

where 𝑦 = 1 indicates a “yes” response and 𝑦 = 0 indicates a “no” response.  The derivative of the log likelihood 

function with respect to 𝑏 is 

𝜕ℓ̂

𝜕𝑏
=
𝑦

𝑝̂

𝜕𝑝̂

𝜕𝑏
+
1 − 𝑦

1 − 𝑝̂
(−
𝜕𝑝̂

𝜕𝑏
) = (

𝑦

𝑝̂
−
1 − 𝑦

1 − 𝑝̂
)
𝜕𝑝̂

𝜕𝑏
=

𝑦 − 𝑝̂

𝑝̂(1 − 𝑝̂)

𝜕𝑝̂

𝜕𝑏
. 

Since 𝔼[𝑦] = 𝑝, 𝜕𝑝̂ 𝜕𝑏⁄ > 0, and 𝑝̂(1 − 𝑝̂) > 0, the expected derivative will be negative—and so the misspecified 

model will underestimate 𝑏—when 𝑝̂ > 𝑝. Comparing the true and misspecified choice probabilities above, we find 

that 𝑝̂ > 𝑝 if and only if 

0.5

1 + 𝑒−2𝑏𝑥1
+

0.5

1 + 𝑒−2𝑏𝑥2
> 𝑝. 

Define 𝐴 = 𝑒−2𝑏𝑥1  and 𝐵 = 𝑒−2𝑏𝑥2 , so we can rewrite the above expression as 

1

1 + 𝐴
+

1

1 + 𝐵
>
1

2
+

1

1 + 𝐴𝐵
. 

After some algebra, we can rearrange the above expression to give the following condition: 

𝐴 + 𝐵 + 𝐴𝐵(𝐴𝐵 − 𝐴 − 𝐵)⏟                
𝐶

< 1. 



When all attributes are “goods,” we have 𝑏 > 0, 𝑥1 > 0, and 𝑥2 > 0. These conditions imply 0 < 𝐴 < 1 and 0 < 𝐵 <

1. When 𝐴 = 0 and 𝐵 = 0, 𝐶 = 0 so the condition holds. When 𝐴 = 1 and 𝐵 = 1, 𝐶 = 1 so the condition holds 

weakly. 𝜕𝐶 𝜕𝐴⁄ = 1 + (2𝐴(𝐵 − 1) − 𝐵)𝐵 > 0. 𝜕𝐶 𝜕𝐵⁄  is analogous, and so is also positive. Therefore, 𝐶 must 

approach 1 from below monotonically as 𝐴 or 𝐵 or both increase from 0 to 1, so the condition always holds and the 

misspecified model underestimates 𝑏.  

To prove attenuation rather than just downward bias, we must show that the expected derivative of the misspecified 

log likelihood function computed at 𝑏 = 0 is positive. This will be true if 𝑝̂ computed at 𝑏 = 0, which is 0.5, is less 

than 𝑝, i.e., 

0.5 <
0.5

1 + 𝑒0
+

0.5

1 + 𝑒−2𝑏(𝑥1+𝑥2)
. 

The first fraction on the right-hand side is 0.25 and the second fraction will be greater than 0.25 for all positive values 

of 𝑏, 𝑥1, and 𝑥2. Therefore, the misspecified model will produce an estimate of 𝑏 that is biased down but greater 

than zero, i.e., the estimate will be attenuated. 

Now suppose that the preference parameters are perfectly negatively correlated: 

Pr[𝑏1𝑖 = 2𝑏 & 𝑏2𝑖 = 0] = 0.5 and Pr[𝑏1𝑖 = 0 & 𝑏2𝑖 = 2𝑏] = 0.5. 

The true choice probability, accounting for preference parameter correlation, is 

𝑝 =
0.5

1 + 𝑒−2𝑏𝑥1
+

0.5

1 + 𝑒−2𝑏𝑥2
. 

The misspecified choice probability, ignoring preference parameter correlation, is the same as before: 

𝑝̂ =
0.25

1 + 𝑒0
+

0.25

1 + 𝑒−2𝑏(𝑥1+𝑥2)
+

0.25

1 + 𝑒−2𝑏𝑥1
+

0.25

1 + 𝑒−2𝑏𝑥2
. 

Using logic directly analogous to that in the case of positive correlation above, the expected derivative of the log 

likelihood function will be positive—and so the misspecified model will overestimate 𝑏—when 𝑝̂ < 𝑝. Comparing 

the true and misspecified choice probabilities, we find that 𝑝̂ < 𝑝 if and only if 

1

1 + 𝑒−2𝑏𝑥1
+

1

1 + 𝑒−2𝑏𝑥2
>

1

1 + 𝑒0
+

1

1 + 𝑒−2𝑏(𝑥1+𝑥2)
. 

Using the same definitions as earlier, 𝐴 = 𝑒−2𝑏𝑥1  and 𝐵 = 𝑒−2𝑏𝑥2 , we can rewrite the above expression as 

1

1 + 𝐴
+

1

1 + 𝐵
>
1

2
+

1

1 + 𝐴𝐵
. 



This is the same condition we found under the assumption of perfect positive correlation, so this expression will 

always be true for the same reasons given earlier. Therefore, if the preference parameters are perfectly negatively 

correlated, the misspecified model will overestimate 𝑏. 

 

Figure S2.1. An empirical presentation of attenuation bias on MWTP. We recover a distribution of MWTP for both attributes under 

both a correlated and uncorrelated parameter specification, drawn from the results of the Krinsky-Robb procedure using 10,000 

simulations. The resulting mean MWTP, taken across the 10,000 point estimates, suggests attenuation in the mean MWTP under 

the misspecified model that assumes no correlation between Recreation and Biodiversity, while the estimation correlation 

coefficient between the two is 0.88 (Fig. S1.3)—a strong and positive underlying correlation—consistent with the proof presented 

here in section S2.  

 

  

                 

          

           

                   

                

                

   

 

  

  

     

                 

 
 
 
 
  
 
 
  
 
  
 
 

                                                          



DISCLAIMER 

The views expressed in this paper are those of the author(s) and do not necessarily represent those of the U.S. 
Environmental Protection Agency (EPA). No official Agency endorsement should be inferred. 

 

S.3 Survey Screenshots  
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