

OFFICE OF GROUND WATER AND DRINKING WATER

WASHINGTON, D.C. 20460

SOLICITATION OF PUBLIC COMMENT FOR PROJECT-SPECIFIC BUILD AMERICA, BUY AMERICA NONAVAILABILITY WAIVER PROPOSAL

SUBJECT: UNDER EVALUATION: Project-Specific Nonavailability Waiver of Build America, Buy America (BABA) Act Requirements for Dallas Rural Water District, Illinois, for Fuel Generators for the Water System Upgrades Project

Introduction

This solicitation of public comment by the U.S. Environmental Protection Agency (EPA) is to evaluate a BABA waiver request submitted by an assistance recipient based on nonavailability of product(s) for a single project.

This solicitation of public comment does not represent a final agency decision. The purpose of this proposal is to inquire whether potential domestic products may be available that were not identified by the assistance recipient or through the EPA's domestic product research efforts, and whether other factors should be considered in the evaluation of a waiver.

The EPA has completed its market research efforts and was unable to identify BABA compliant products meeting the performance-based specifications, in sufficient and reasonably available quantities and of a satisfactory quality. The EPA makes every effort to locate domestic products through its waiver process, and the public comment period provides a meaningful opportunity to vet the Agency's interim research. In the EPA's experience, a viable domestic product is identified through public comment in many cases. Through this public comment period, commenters may provide information that indicates a waiver may not be needed. For example, if a specified item is found to be domestically available, the EPA would not issue a final waiver.

Public comments are requested for 15 days (specific dates noted on the EPA's website). Please submit comments to BABA-OW@epa.gov. Please include information in the subject of the email identifying it as a public comment on this waiver request, such as "Waiver Comment: Water System Upgrades Project" or similar.

Background

The Buy America Preference set forth in section 70914 of the BABA included in the Infrastructure Investment and Jobs Act (Pub. L. No. 117-58), requires all iron, steel, manufactured products, and construction materials used for infrastructure projects under Federal financial assistance awards be produced in the US.

Under section 70914(b), the EPA may waive the application of the Buy America Preference, in any case in which it finds that: applying the domestic content procurement preference would be inconsistent with the public interest; types of iron, steel, manufactured products, or construction materials are not produced in the US in sufficient and reasonably available quantities or of a satisfactory quality; or the inclusion of iron, steel, manufactured products, or construction materials produced in the U.S. will increase the cost of the overall project by more than 25 percent. All waivers must have a written explanation for the proposed determination; provide a period of not less than fifteen (15) calendar days for public comment on the proposed waiver; and submit the proposed waiver to the Office of Management and Budget's (OMB) Made in America Office for review to determine if the waiver is consistent with policy.

Summary

Proposed Waiver: The Environmental Protection Agency is soliciting comments regarding whether to issue a project waiver of the manufactured products requirements of section 70914 of the BABA included in the Infrastructure Investment and Jobs Act (Pub. L. No. 117-58), for multiple fuel generators used in an infrastructure project funded through the Capitalization Grants for Drinking Water State Revolving Funds. The non-availability waiver is proposed for the Water System Upgrades project.

Waiver Type: Nonavailability of a BABA-compliant product in sufficient and reasonably available quantities or of a satisfactory quality.

Waiver Level and Scope: Project level waiver for multiple products for a single project. No other project will utilize the waiver.

Proposed Waiver Description: Project-specific nonavailability waiver of BABA manufactured products requirements to Dallas Rural Water District, for three types of fuel generators:

1. Thirty (30) KW, 120V/240V Single Phase, Dual Fuel
2. Fifty (50) KW, 120V/240V Single Phase, LP Fuel
3. Three (3) KW, 120V/240V Single Phase, LP Fuel.

Project Summary: The overall purpose of the Water System Upgrades Project is to replace aging and failing infrastructure. The project will increase reliability across Dallas Rural Water District's system and to the consecutive systems it provides water to. The project includes upgrading multiple booster stations, installing a metered flow control valve, and replacing the District's entire SCADA/telemetry system. The generators are needed at each site to ensure they remain in service during an emergency.

Length of the waiver: From the effective date of the final waiver until projection completion, which is estimated to be June 16, 2028.

Summary of Items Covered in the Proposed Waiver (including NAICS):

Fuel Generators

- NAICS: 335312
- PSC: 6115

No BABA-compliant products were identified by the assistance recipient, or through the EPA's market research completed in June 2025.

Description of Efforts Made to Avoid the Need for a Waiver

Both Dallas Rural Water District and the EPA made every effort to obtain BABA-compliant fuel generators. This is both documented in the waiver request, and in the description of the EPA's extensive research efforts listed below.

Market research concluded on June 5, 2025. The market research process included thorough review of the waiver request submission, examination of domestic manufacturer catalogs and other technical data and marketing materials, personal communication with domestic manufacturers, inquiries of regional project officers, and outreach to contractors and engineers with expertise and familiarity with the project. During market research, the EPA contacted (12) manufacturers of fuel generators. The EPA identified these manufacturers in an attempt to find all potential BABA-compliant manufacturers of the above-mentioned product(s).

When contacted, two (2) manufacturers indicated potential to meet the specifications of the project while being BABA compliant. After one manufacturer was contacted by the assistance recipient, they declined to confirm that their fuel generators comply with either BABA or the technical specifications of the project. The other manufacturer, after an initial contact, never responded or followed up despite multiple attempts by the assistance recipient to reach them. Based on the technical evaluation conducted, the claim that BABA-compliant products that meet the project's specification are not available is supported.

Anticipated Impact if No Waiver is Issued

The water system is controlled through a telemetry/SCADA system. Should a power outage occur, the system would have to be operated manually (as opposed to automated). This creates a situation where water service could become unreliable and potentially interrupted. This project includes multiple generators at multiple sites, including the main office that houses the computer controlling the SCADA system. The generators will ensure each site stays in service during an emergency.

Description of Award

Recipient Name and/or Unique Entity Identifier (UEI): LAVDUQULLMQ4

Recipient Name: Dallas Rural Water District

Recipient Unique Entity Identifier: LAVDUQULLMQ4

Federal Financial Assistance Identification Number (FAIN): 02E03247

Federal Financial Assistance Listing Name: 66.468 Drinking Water State Revolving Fund

Federal Financial Assistance Listing Number: 66.468

Federal Financial Assistance Funding amount: \$4,810,983.00

Total Cost of Infrastructure Expenditures: \$4,810,983.00

May 8, 2025

Jasmine Mallory
Illinois EPA
Infrastructure Financial Assistance Section
2520 West Iles Ave
PO BOX 19276
Springfield, IL 62704

RE: L173237-DRWD, Water System Upgrades – Nonavailability Waiver Request

Jasmine,

I am requesting a nonavailability waiver for the required generators on behalf of the Owner, Dallas Rural Water District (DRWD). Please see the required items for the waiver submittal listed below.

1. Project Summary: Replacement of the entire SCADA/Telemetry network for the water system, upgrading Colmar BPS, installation of flow control building near Basco.
2. Need for the Waiver: The required products per the engineering plans/specs are available, however, are not BABA compliant and BABA compliant options cannot be found.
3. Due Diligence: Attached is an email with attachments showing the sub-contractor attempting to procure the required generators with pricing included.
4. Quantity and Materials: This project requires three (3) different generators. 1. 30 KW, 120V/240V Single Phase, Dual Fuel. 2. 50 KW, 120V/240V Single Phase, LP Fuel. 3. 3 KW, 120V/240V Single Phase, LP Fuel.
5. Engineering Specs & Design: Three sheets from the entire plan set have been attached to this letter.
6. Approximate Cost: This is included in the attached email provided by the sub-contractor.
7. Total Project Cost: \$4,810,983.00
8. Date Needed by: ASAP or by the end of August 2025.

Should you or any members of your team have further questions regarding the waiver request or the documents provided, please contact me on my cell at 217-209-9450 or by email at GThompson@Klingner.com.

Sincerely,

KLINGNER & ASSOCIATES, P.C.

Geoffrey S. Thompson, P.E.

P:\Quincy\22files\220351\22.Bidding

This waiver request was submitted to the EPA by Illinois and applies only to the project in the subject line. All supporting correspondence and/or documentation from contractors, suppliers or manufacturers included as a part of this waiver request was done so by the recipient to provide an appropriate level of detail and context for the submission. There may be documents with project diagrams, schedules, and supplier correspondence in formats that do not meet the Federal accessibility requirements for publication on the Agency's website. Hence, these exhibits have been omitted from this waiver publication. They are available upon request by emailing DWSRFWaiver@epa.gov.

**SECTION 263213
ENGINE GENERATORS**

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes packaged engine-generator sets for back-up power supply with the following features:
 - 1. Propane / Nat gas engine
 - 2. Unit-mounted control and monitoring.
 - 3. Outdoor enclosure.
- B. See Division 26 Section "Transfer Switches" for transfer switches including sensors and relays to initiate automatic-starting and -stopping signals for engine-generator sets.

1.2 SUBMITTALS

- A. Product Data: For each type of packaged engine generator and accessory indicated.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- C. Manufacturer Seismic Qualification Certification: Submit certification that engine-generator set, batteries, battery racks, accessories, and components will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." Include the following:
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
 - b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- D. Source quality-control test reports.
- E. Field quality-control test reports.
- F. Operation and maintenance data.
- G. Warranty: Special warranty specified in this Section.

1.3 QUALITY ASSURANCE

- A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.
- B. Manufacturer Qualifications: A qualified manufacturer. Maintain, within 200 miles of Project site, a service center capable of providing training, parts, and emergency maintenance repairs.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- D. Comply with ASME B15.1.
- E. Comply with NFPA 37.
- F. Comply with NFPA 70.
- G. Comply with NFPA 99.
- H. Comply with NFPA 110 requirements for Level 1 emergency power supply system.
- I. Comply with UL 2200.
- J. Engine Exhaust Emissions: Comply with applicable state and local government requirements.
- K. Noise Emission: Comply with applicable state and local government requirements for maximum noise level at adjacent property boundaries Insert critical locations due to sound emitted by generator set including engine, engine exhaust, engine cooling-air intake and discharge, and other components of installation.

1.4 PROJECT CONDITIONS

- A. Environmental Conditions: Engine-generator system shall withstand the following environmental conditions without mechanical or electrical damage or degradation of performance capability:
 - 1. Ambient Temperature: Minus 15 to plus 40 deg C.
 - 2. Relative Humidity: 0 to 95 percent.
 - 3. Altitude: Sea level to 1000 feet.

1.5 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of packaged engine generators and associated auxiliary components that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: 2 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2.2 ENGINE-GENERATOR SET

- A. Factory-assembled and -tested, engine-generator set.
- B. Mounting Frame: Maintain alignment of mounted components without depending on concrete foundation; and have lifting attachments.
- C. Capacities and Characteristics:
1. Power Output Ratings: Nominal ratings as indicated.
 2. Output Connections: Three-phase, three wire.
 3. Nameplates: For each major system component to identify manufacturer's name and address, and model and serial number of component.
- D. Generator-Set Performance:
1. Steady-State Voltage Operational Bandwidth: 3 percent of rated output voltage from no load to full load.
 2. Transient Voltage Performance: Not more than 20 percent variation for 50 percent step-load increase or decrease. Voltage shall recover and remain within the steady-state operating band within three seconds.
 3. Steady-State Frequency Operational Bandwidth: 0.5 percent of rated frequency from no load to full load.
 4. Steady-State Frequency Stability: When system is operating at any constant load within the rated load, there shall be no random speed variations outside the steady-state operational band and no hunting or surging of speed.
 5. Transient Frequency Performance: Less than 5 percent variation for 50 percent step-load increase or decrease. Frequency shall recover and remain within the steady-state operating band within five seconds.
 6. Output Waveform: At no load, harmonic content measured line to line or line to neutral shall not exceed 5 percent total and 3 percent for single harmonics. Telephone influence factor, determined according to NEMA MG 1, shall not exceed 50 percent.
 7. Sustained Short-Circuit Current: For a 3-phase, bolted short circuit at system output terminals, system shall supply a minimum of 250 percent of rated full-load current for not less than 10 seconds and then clear the fault automatically, without damage to generator system components.
 8. Start Time: Comply with NFPA 110, Type 10, system requirements.

2.3 ENGINE

- A. Dual fuel (natural gas / propane) 4-cycle spark-ignited engine.

2.4 CONTROL AND MONITORING

- A. Automatic Starting System Sequence of Operation: When mode-selector switch on the control and monitoring panel is in the automatic position, remote-control contacts in one or more separate automatic transfer switches initiate starting and stopping of generator set. When mode-selector switch is switched to the on position, generator set starts. The off position of same switch initiates generator-set shutdown. When generator set is running, specified system or equipment failures or derangements automatically shut down generator set and initiate alarms.
- B. Configuration: Operating and safety indications, protective devices, basic system controls, and engine gages shall be grouped in a common control and monitoring panel mounted on the generator set. Mounting method shall isolate the control panel from generator-set vibration.
- C. Indicating and Protective Devices and Controls: As required by NFPA 110 for Level [1] [2] system, and the following:
 1. AC voltmeter.
 2. AC ammeter.
 3. AC frequency meter.
 4. DC voltmeter (alternator battery charging).
 5. Engine-coolant temperature gage.
 6. Engine lubricating-oil pressure gage.
 7. Running-time meter.
 8. Ammeter-voltmeter, phase-selector switch(es).
 9. Generator-voltage adjusting rheostat.
 10. Generator overload.
- D. Supporting Items: Include sensors, transducers, terminals, relays, and other devices and include wiring required to support specified items. Locate sensors and other supporting items on engine or generator, unless otherwise indicated.
- E. Common Remote Audible Alarm: Comply with NFPA 110 requirements for Level 1 systems. Include necessary contacts and terminals in control and monitoring panel.
 1. Overcrank shutdown.
 2. Coolant low-temperature alarm.
 3. Control switch not in auto position.
 4. Battery-charger malfunction alarm.
 5. Battery low-voltage alarm.

2.5 GENERATOR OVERCURRENT AND FAULT PROTECTION

- A. Generator Circuit Breaker: Molded-case, thermal-magnetic type; 100 percent rated; complying with NEMA AB 1 and UL 489.
 1. Tripping Characteristic: Designed specifically for generator protection.
 2. Trip Rating: Matched to generator rating.

3. Shunt Trip: Connected to trip breaker when generator set is shut down by other protective devices.
 4. Mounting: Adjacent to or integrated with control and monitoring panel.
- B. Ground-Fault Indication: Comply with NFPA 70, "Emergency System" signals for ground-fault. Integrate ground-fault alarm indication with other generator-set alarm indications.

2.6 GENERATOR, EXCITER, AND VOLTAGE REGULATOR

- A. Comply with NEMA MG 1.
- B. Drive: Generator shaft shall be directly connected to engine shaft. Exciter shall be rotated integrally with generator rotor.
- C. Electrical Insulation: Class H or Class F.
- D. Stator-Winding Leads: Brought out to terminal box to permit future reconnection for other voltages if required.
- E. Construction shall prevent mechanical, electrical, and thermal damage due to vibration, overspeed up to 125 percent of rating, and heat during operation at 110 percent of rated capacity.
- F. Enclosure: Driproof.
- G. Instrument Transformers: Mounted within generator enclosure.
- H. Voltage Regulator: Solid-state type, separate from exciter, providing performance as specified.
 1. Adjusting rheostat on control and monitoring panel shall provide plus or minus 5 percent adjustment of output-voltage operating band.
- I. Strip Heater: Thermostatically controlled unit arranged to maintain stator windings above dew point.

2.7 OUTDOOR GENERATOR-SET ENCLOSURE

- A. Description: Vandal-resistant, weatherproof steel housing, wind resistant up to 100 mph. Multiple panels shall be lockable and provide adequate access to components requiring maintenance. Panels shall be removable by one person without tools. Instruments and control shall be mounted within enclosure.
- B. Engine Cooling Airflow through Enclosure: Maintain temperature rise of system components within required limits when unit operates at 110 percent of rated load for 2 hours with ambient temperature at top of range specified in system service conditions.
 1. Louvers: Fixed-engine, cooling-air inlet and discharge. Storm-proof and drainable louvers prevent entry of rain and snow.
- C. Interior Lights with Switch: Factory-wired, vaporproof-type fixtures within housing; arranged to illuminate controls and accessible interior. Arrange for external electrical connection.
 1. AC lighting system and connection point for operation when remote source is available.

2. DC lighting system for operation when remote source and generator are both unavailable.
- D. Convenience Outlets: Factory wired. Arrange for external electrical connection.

2.8 VIBRATION ISOLATION DEVICES

- A. Elastomeric Isolator Pads: Oil- and water-resistant elastomer or natural rubber, arranged in single or multiple layers, molded with a nonslip pattern and galvanized-steel baseplates of sufficient stiffness for uniform loading over pad area, and factory cut to sizes that match requirements of supported equipment.
 1. Material: Standard neoprene.
 2. Durometer Rating: 60.
 3. Number of Layers: Three.

2.9 FINISHES

- A. Indoor and Outdoor Enclosures and Components: Manufacturer's standard finish over corrosion-resistant pretreatment and compatible primer.

2.10 SOURCE QUALITY CONTROL

- A. Prototype Testing: Factory test engine-generator set using same engine model, constructed of identical or equivalent components and equipped with identical or equivalent accessories.
 1. Tests: Comply with NFPA 110, Level 1 Energy Converters and with IEEE 115.
 2. Report factory test results within 10 days of completion of test.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with packaged engine-generator manufacturers' written installation and alignment instructions and with NFPA 110.
- B. Install packaged engine generator to provide access, without removing connections or accessories, for periodic maintenance.
- C. Install packaged engine generator with elastomeric isolator pads having a minimum deflection of 1 inch on 4-inch- high concrete base. Secure sets to anchor bolts installed in concrete bases.
- D. Install Schedule 40, black steel piping with welded joints and connect to engine muffler. Install thimble at wall. Piping shall be same diameter as muffler outlet. Flexible connectors and steel piping materials and installation requirements are specified in Division 23 Section "Hydronic Piping."
 1. Install condensate drain piping to muffler drain outlet full size of drain connection with a shutoff valve, stainless-steel flexible connector, and Schedule 40, black steel pipe with

welded joints. Flexible connectors and piping materials and installation requirements are specified in Division 23 Section "Hydronic Piping."

- E. Electrical Wiring: Install electrical devices furnished by equipment manufacturers but not specified to be factory mounted.
- F. Connect fuel, cooling-system, and exhaust-system piping adjacent to packaged engine generator to allow service and maintenance.
- G. Connect engine exhaust pipe to engine with flexible connector.
- H. Connect dual fuel (propane / natural gas) piping.
- I. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- J. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
- K. Identify system components according to Division 23 Section "Identification for HVAC Piping and Equipment" and Division 26 Section "Identification for Electrical Systems."

3.2 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Tests and Inspections:
 - 1. Perform tests recommended by manufacturer and each electrical test and visual and mechanical inspection for "AC Generators and for Emergency Systems" specified in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 2. NFPA 110 Acceptance Tests: Perform tests required by NFPA 110 that are additional to those specified here including, but not limited to, single-step full-load pickup test.
 - 3. Battery Tests: Equalize charging of battery cells according to manufacturer's written instructions. Record individual cell voltages.
 - a. Measure charging voltage and voltages between available battery terminals for full-charging and float-charging conditions. Check electrolyte level and specific gravity under both conditions.
 - b. Test for contact integrity of all connectors. Perform an integrity load test and a capacity load test for the battery.
 - c. Verify acceptance of charge for each element of the battery after discharge.
 - d. Verify that measurements are within manufacturer's specifications.
 - 4. Battery-Charger Tests: Verify specified rates of charge for both equalizing and float-charging conditions.
 - 5. System Integrity Tests: Methodically verify proper installation, connection, and integrity of each element of engine-generator system before and during system operation. Check for air, exhaust, and fluid leaks.

6. Exhaust-System Back-Pressure Test: Use a manometer with a scale exceeding 40-inch wg. Connect to exhaust line close to engine exhaust manifold. Verify that back pressure at full-rated load is within manufacturer's written allowable limits for the engine.
 7. Exhaust Emissions Test: Comply with applicable government test criteria.
 8. Voltage and Frequency Transient Stability Tests: Use recording oscilloscope to measure voltage and frequency transients for 50 and 100 percent step-load increases and decreases, and verify that performance is as specified.
 9. Harmonic-Content Tests: Measure harmonic content of output voltage under 25 percent and at 100 percent of rated linear load. Verify that harmonic content is within specified limits.
 10. Noise Level Tests: Measure A-weighted level of noise emanating from generator-set installation, including engine exhaust and cooling-air intake and discharge, at four locations on the property line Insert location for measurement, and compare measured levels with required values.
- C. Coordinate tests with tests for transfer switches and run them concurrently.
- D. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
- E. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
- F. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- G. Remove and replace malfunctioning units and retest as specified above.
- H. Retest: Correct deficiencies identified by tests and observations and retest until specified requirements are met.
- I. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation resistances, time delays, and other values and observations. Attach a label or tag to each tested component indicating satisfactory completion of tests.

3.3 DEMONSTRATION

- A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain packaged engine generators. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION 263213