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Megatrends and Economy-wide Decarbonization




Trends in Carbon Management

Major Shifts in US Fossil Fuel
Prgsduction and Consumption

Crude Qil Consumption
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The Plastlc Waste nghtmare

National Geographic:

Increased Electrification
Decreasing costs for
renewable electricity

Hierarchy of fuels

1.5% annual fuel Carbon Neutral 50% reduction

efficiency Growth (CNG) in net CO2
improvement from 2020 ‘emissions over
(average) 2005 levels

Airlines for America

International Maritime Organization
Reduce sulfur in marine bunker fuel
from 3.5% to 0.5% as of 2020

CO2 in the atmosphere: Need for
Carbon-Negative Fuel Technologies
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Economy-wide Decarbonization

2019 U.S. GHG Emissions

21% Passenger Cars

30% Light Trucks

Industry (including Buses)

Transportation Medium and
21% Heavy Vehicles

9% Off Road
e 2% Rall

' 3% Water
‘ 11% Aviation

3% Other (Pipeline/Military/Lubricants)

24%

Electric Power

Aviation and water include emissions from international bunker
fuels. Fractions may not add up to 100% due to rounding.

* Transportation is the largest source of
GHG emissions

o 50% of energy expenditures and local
pollution issues

o Significant implications for global
competitiveness, trade, and domestic
jobs

* Transportation provides essential access
to services and economic opportunities

o Must support demand for growth in
mobility options
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TRANSPORTATION LIQUID FUELS

Biomass will be Critical to Achieving Objectives
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Future {2050) Potential Sustainable Supply

AEQ BAU Scenaric

Past 2030

Biomass can fully supply future
Aviation/ Maritime/Rail (requires
5% of all feedstocks)

Biggest market pull is in
sustainable aviation fuels (SAF)

DOE has 3 large scale SAF Demo
projects (Fulcrum, Red Rocks,
Lanzatech)

Provides market for current
ethanol (~-17B gal. ~40% of cormn
production)
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Sustainable Aviation Fuel (SAF)




Need for low carbon intensity fuels for aviation industry

Air travel expected to nearly
double by 2050 with jet fuel
consumption making up 8% of
transportation emissions

U.S. consumes 26 billion
gallons of jet fuel with limited
prospects of commercial flight
electrification

U.S. Passenger Travel Projections
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Sources: Bureau of Transportation Statistics; U.S. Energy Information Administration Outlook; Collins & McLarty
(2020) Applied Energy, 265, 114787



Hydrocarbon Distribution and Chain Length Fulfill Specific

Performance Goals

Jet fuel comprised of
4 hydrocarbon types:

Jet Hydrocarbon Class Distribution Jet C Number Distribution

20

. Straight (normal
paraffin)

. Branched (isoparaffin) Paraffin
. Saturated ring 15
(cycloparaffin)
. Unsaturated ring .
(aromatic) E’lz;?ayf?ilr? 1
* Typical jet fuel
average carbon
number is C11 with B I.
0

the majority of & P PO B O

Aromatics Normal

o

| J—
'\

Mono-Cyclo Iso-
Paraffin Paraffin

carbon chain lengths
between C8 and C15
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Currently seven ASTM annexes approved to produce SAF

Currently 7 ASTM approved SAF
routes with intermediates that include
lipids, alcohols, syngas, and
biobased hydrocarbons (D7566)

Several new SAF routes currently in
ASTM evaluation process that
include aqueous phase sugars to
SAK (Virent), catalytic pyrolysis oil to
SAF (Shell IH2), Alcohol to jet with
aromatics (several)

Al: FT-SPK 50% blend
Fischer Tropsch
Synthesized Paraffinic Kerosene

A2: HEFA-SPK 50% blend

Hydroprocessed Esters & Fatty Acids
Synthesized Paraffinic Kerosene

A3: HFS-SIP 10% blend

Hydroprocessed Fermented Sugars
Synthesized Isoparaffins

A4: FT-SKA 50% blend
Fischer Tropsch
Synthesized Kerosene with Aromatics

A5: ATJ-SPK 50% blend
Alcohol-to-Jet
Synthesized Paraffinic Kerosene

A6: CHJ 50% blend

Catalytic Hydrothermolysis Jet
Synthesized Kerosene Esters and Fatty Acids

A7: HC-HEFA SPK 10% blend

Hydroprocessed Hydrocarbons & HEFA
Synthesized Kerosene

Source: ASTM D7566-20; Wang et al. (2016) NREL TP-5100-66291; Holladay et al. (2020) DOE/EE-2041 8292

Starting Feedstock for SAF Route

Syngas

Triglycerides &
Fatty Acids

Farnesene

Syngas

Ethanol &
Isobutanol

Triglycerides &
Fatty Acids

Algal
Botryococcene

CO +H2




Emerging routes to produce SAF from biomass and waste C
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Sources: Wang et al. (2016) NREL TP-5100-66291; Holladay et al. (2020) DOE/EE-2041 8292; Zhang et al. (2020) Recent Treads,
Opportunities and Challenges of Sustainable Aviation Fuel; DOE (2021) BETO Project Peer Review

Multiple biofuel
technologies can
produce SAF-range
fuels from biomass
and waste C

Processes range from
thermochemical,

biological, hybrid, and
electrochemical for
biomass, waste, and
CO2 feedstocks




Feedstock is Important

CARB-certified carbon intensities for renewable propane

Propane/LPG (Conventional and renewable) Carbon Intensities
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Additional feedstocks needed with new SAF conversion routes

Lignocellulosic Biomass (23 BGPY jet potential)

Agricultural residues* 9.0 BGPY jet
Forestry trimmings and residues* 7.1 BGPY jet
Bioenergy crops by 2030* 7.4 BGPY jet

Assumes 34 gal of SAF range hydrocarbons per dry tonne of biomass, excluding other fuel cuts )

Other Waste C Sources (10 BGPY jet potential)

Inedible animal fats** 1.8 BGPY jet
Animal manure** 4.7 BGPY jet
Wastewater sludge™* 2.0 BGPY jet
Food waste™ 2.7 BGPY jet
MSW (paper, wood, yard)*** 0.9 BGPY jet
Industrial waste gas™** 1.3 BGPY jet

BGPY = billion gallons per year; estimates of jet potential will vary based on conversion
technology and feedstock composition

Sources: *2030 estimate from DOE 2016 Billion-Ton Report; **Bhatt et al. (2020) iScience, 23, 101221;

**CAAFI U.S. Jet Fuel production potential from wastes

U.S. biomass and waste carbon
availability has embedded energy
content on par with current jet
fuel consumption of 26 BGPY

SAF provides links to
agriculture, food security, and
waste management with
opportunities for cross-sector
benefits at the intersection of
energy and environment
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Current SAF production in U.S. limited and competes with diesel
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2021
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BIOENERGY

7 MPGY
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NESTE

25 MPGY
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SkyNRG

34 MPGY

Lanzajet™

10 MGPY
world energy

150 MGPY

2023

% gevo
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Go Sunshine
29 MPGY
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BIOENERGY

21 MGPY

HReadiFuels

24 MPGY

Source: Commercial Aviation Alternative Fuels Initiative CAAFI.org

New SAF capacity
coming online within
next 3 years with
several pathways that
expand feedstocks
beyond FOGs

New feedstocks
includes lignocellulosic
biomass, alcohol from
industrial waste gas,
and gasification of
municipal waste and
forestry residues
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