Effects of Ocean and Coastal Acidification on Marine Life
B
As a consequence of acidification, marine life face a two-fold challenge: decreased carbonate availability and increased acidity. Laboratory studies suggest changing ocean chemistry will 1) harm life forms that rely on carbonate-based shells and skeletons, 2) harm organisms sensitive to acidity and 3) harm organisms higher up the food chain that feed on these sensitive organisms. However, we do not yet know exactly how ecosystems will be impacted.
Building Shells and Skeletons: Calcifying Organisms
Many ocean plants and animals build shells and skeletons out of two chemicals that exist in seawater, calcium2+ and carbonate2-. Organisms combine calcium and carbonate to form hard shells and skeletons out of the mineral calcium carbonate3. Therefore, the plants and animals that use calcium carbonate for structure and protection are called calcifying organisms3. Increased acidity slows the growth of calcium carbonate structures, and under severe conditions, can dissolve structures faster than they form.
The Struggle to Stay Healthy Under Increased Acidity
Just like humans, marine organisms require optimal conditions inside
Effects on Larvae
Many marine fish and invertebrates have complex life cycles. They spend their early lives as larvaeA distinct, immature life stage of animals prior to metamorphosis into the adult life stage while they develop and disperse to distant areas on ocean currents. Larvae are very small, which makes them especially vulnerable to increased acidity. For example, sea urchin and oyster larvae will not develop properly when acidity is increased. In another example, fish larvae lose their ability to smell and avoid predators. The vulnerability of larvae means that while organisms may be able to reproduce, their offspring may not reach adulthood.