Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

    • Environmental Topics
    • Air
    • Bed Bugs
    • Cancer
    • Chemicals, Toxics, and Pesticide
    • Emergency Response
    • Environmental Information by Location
    • Health
    • Land, Waste, and Cleanup
    • Lead
    • Mold
    • Radon
    • Research
    • Science Topics
    • Water Topics
    • A-Z Topic Index
    • Laws & Regulations
    • By Business Sector
    • By Topic
    • Compliance
    • Enforcement
    • Laws and Executive Orders
    • Regulations
    • Report a Violation
    • Environmental Violations
    • Fraud, Waste or Abuse
    • About EPA
    • Our Mission and What We Do
    • Headquarters Offices
    • Regional Offices
    • Labs and Research Centers
    • Planning, Budget, and Results
    • Organization Chart
    • EPA History

Breadcrumb

  1. Home
  2. Green Chemistry

Presidential Green Chemistry Challenge: 2016 Academic Award

Professor Paul J. Chirik of Princeton University

 

Catalysis with Earth Abundant Transition Metals

  • Discovered catalysts that don't use hard-to-obtain platinum to make silicones that are used in:
    • silicone rubber;
    • tires;
    • shampoos;
    • furniture fibers;
    • paper coatings; and
    • other consumer goods.
  • This new class of catalysts could reduce the mining of many tons of ore which reduces costs and:
    • energy usage by 85 billion BTUs per year;
    • waste generation by 8.5 million kilograms per year; and
    • carbon generation by 21.7 million kilograms per year.
 

Summary of Technology:

Metal-catalyzed chemical reactions have enabled many of the technological innovations of modern society with applications ranging from the synthesis of advanced materials to new medicines. For decades, catalyst technology has relied on some of the least abundant elements in the Earth’s crust – palladium, platinum, rhodium, and iridium. In addition to their high cost, price volatility, and toxicity, extraction of these elements has significant environmental consequences. Obtaining one ounce of a precious metal, for example, often requires mining approximately 10 tons of ore which creates a CO2 footprint that is estimated to be 6,000 times that of abundant metals such as iron.

Alkene hydrosilylation is an example of a metal-catalyzed chemical reaction that is used on an industrial scale in the manufacture of silicones from alkenes and silanes. Silicones are found in a range of consumer products including adhesives, household utensils, medical devices, health care products, and low rolling resistance tires. The platinum catalyst used in alkene hydrosilylation reactions is often not recovered, however, which results in a significant environmental footprint for this commercially important process.

Professor Chirik and his research group, in collaboration with Momentive Performance Materials, discovered a new class of hydrosilylation catalysts based on earth-abundant transition metals such as iron and cobalt that have superior performance to existing platinum catalysts. This base metal catalyst technology offers the opportunity to enable new chemical processes that provide the desired product exclusively, eliminate distillation steps, and avoid generation of byproducts and unnecessary waste. This technology is based upon “metal-ligand cooperativity,” a broad catalysis concept pioneered by the Chirik group, where electron changes occur concomitantly between the metal and the supporting ligand.

Hydrosilylations to produce various commercial silicone products have been conducted on multi-gram scales using this new technology. The discovery of these air-stable, readily-synthesized iron and cobalt catalysts with unprecedented activity and selectivity may ultimately transform the industrial approach to commercial silicone products.


Other resources:

  • Learn more about green chemistry.
  • Learn more about Professor Paul J. Chirik and his research.
  • Read the press release from Princeton University.

Note: Disclaimer

Return to the list of all winners including the 2016 Award Winners.

Green Chemistry

  • Basics of Green Chemistry
  • Green Chemistry Challenge Awards
    • Winners
Contact Us about Green Chemistry
Contact Us to ask a question, provide feedback, or report a problem.
Last updated on February 20, 2025
  • Assistance
  • Spanish
  • Arabic
  • Chinese (simplified)
  • Chinese (traditional)
  • French
  • Haitian Creole
  • Korean
  • Portuguese
  • Russian
  • Tagalog
  • Vietnamese
United States Environmental Protection Agency

Discover.

  • Accessibility Statement
  • Budget & Performance
  • Contracting
  • EPA www Web Snapshot
  • Grants
  • No FEAR Act Data
  • Plain Writing
  • Privacy
  • Privacy and Security Notice

Connect.

  • Data
  • Inspector General
  • Jobs
  • Newsroom
  • Regulations.gov
  • Subscribe
  • USA.gov
  • White House

Ask.

  • Contact EPA
  • EPA Disclaimers
  • Hotlines
  • FOIA Requests
  • Frequent Questions
  • Site Feedback

Follow.