Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

    • Environmental Topics
    • Air
    • Bed Bugs
    • Cancer
    • Chemicals, Toxics, and Pesticide
    • Emergency Response
    • Environmental Information by Location
    • Health
    • Land, Waste, and Cleanup
    • Lead
    • Mold
    • Radon
    • Research
    • Science Topics
    • Water Topics
    • A-Z Topic Index
    • Laws & Regulations
    • By Business Sector
    • By Topic
    • Compliance
    • Enforcement
    • Laws and Executive Orders
    • Regulations
    • Report a Violation
    • Environmental Violations
    • Fraud, Waste or Abuse
    • About EPA
    • Our Mission and What We Do
    • Headquarters Offices
    • Regional Offices
    • Labs and Research Centers
    • Planning, Budget, and Results
    • Organization Chart
    • EPA History

Breadcrumb

  1. Home
  2. Green Chemistry

Green Chemistry Challenge: 2020 Greener Reaction Conditions Award

Merck & Co.

A Green Solution to the ProTide Synthesis Problem: Design of a Multifunctional Catalyst That Stereoselectively Assembles ProDrugs

Merck is being recognized for improving the process used to produce certain antiviral drugs used for the treatment of diseases including hepatitis C and HIV. The new process improved manufacturing efficiency and sustainability of one important antiviral by more than 85 percent. This reduces waste and hazards associated with the existing process and results in substantial cost savings.

Summary of Technology:

ProTide drugs were invented to increase cell permeability of nucleoside drugs, which are common antiviral and anticancer drugs. Nucleosides currently represent almost half of all antiviral and anticancer drugs on the market. Development of the ProTide strategy allowed breakthrough developments such as the discovery of sofosbuvir used to treat hepatitis C. However, ProTides are chiral molecules that require stereoselective and chemoselective installation of a 5’-aryloxyphosphoramidate moiety. Existing syntheses are inefficient due to poor chemoselectivity and require chiral reagents and many reaction steps, including the use of expensive, hazardous, and wasteful reagents.

Merck has developed a catalyst that can be used to synthesize uprifosbuvir with very high purity in just two reaction steps. The initial catalyst identification used high-throughput experimentation and optimization to identify an effective catalyst for stereoselective direct coupling of nucleosides to chlorophosphoramidates. Kinetics of the catalyzed reaction exhibited an unusual second-order dependence on catalyst, indicating involvement of two catalyst molecules and leading to the development of a dimeric catalyst. The dimeric catalyst itself can be synthesized with high yield and low PMI, contributing less than 15 percent of PMI to the overall synthetic process. Further, dichloromethane was able to be replaced in this process with 1,3-dioxolane. The catalyst was tested in syntheses of other ProTides including fluorouridine and azidothymidine and found to be effective in most cases with improved selectivity, demonstrating potential to green the syntheses of these and other ProTides.

Merck has used this new synthetic method to produce more than 150 kilograms of uprifosbuvir for clinical trials and anticipates that this method will be used in other ProTide syntheses. Merck’s life cycle analysis indicated that the new process resulted in greater than 75 percent improvements in PMI, energy use, water depletion, and other metrics compared to the first generation synthesis pathway.


Other resources:

  • Learn more about green chemistry.
  • Learn more about Merck & Co. 

Note: Disclaimer

Return to the list of all winners including the 2020 Award Winners.

Green Chemistry

  • Basics of Green Chemistry
  • Green Chemistry Challenge Awards
    • Winners
Contact Us about Green Chemistry
Contact Us to ask a question, provide feedback, or report a problem.
Last updated on May 7, 2025
  • Assistance
  • Spanish
  • Arabic
  • Chinese (simplified)
  • Chinese (traditional)
  • French
  • Haitian Creole
  • Korean
  • Portuguese
  • Russian
  • Tagalog
  • Vietnamese
United States Environmental Protection Agency

Discover.

  • Accessibility Statement
  • Budget & Performance
  • Contracting
  • EPA www Web Snapshot
  • Grants
  • No FEAR Act Data
  • Plain Writing
  • Privacy
  • Privacy and Security Notice

Connect.

  • Data
  • Inspector General
  • Jobs
  • Newsroom
  • Regulations.gov
  • Subscribe
  • USA.gov
  • White House

Ask.

  • Contact EPA
  • EPA Disclaimers
  • Hotlines
  • FOIA Requests
  • Frequent Questions
  • Site Feedback

Follow.