Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

    • Environmental Topics
    • Air
    • Bed Bugs
    • Cancer
    • Chemicals, Toxics, and Pesticide
    • Emergency Response
    • Environmental Information by Location
    • Health
    • Land, Waste, and Cleanup
    • Lead
    • Mold
    • Radon
    • Research
    • Science Topics
    • Water Topics
    • A-Z Topic Index
    • Laws & Regulations
    • By Business Sector
    • By Topic
    • Compliance
    • Enforcement
    • Laws and Executive Orders
    • Regulations
    • Report a Violation
    • Environmental Violations
    • Fraud, Waste or Abuse
    • About EPA
    • Our Mission and What We Do
    • Headquarters Offices
    • Regional Offices
    • Labs and Research Centers
    • Planning, Budget, and Results
    • Organization Chart
    • EPA History

Breadcrumb

  1. Home
  2. Greenhouse Gas Emissions
  3. Sources of Greenhouse Gas Emissions

Land Use, Land-Use Change, and Forestry Sector Emissions and Sequestration

On this page:

  • Land Use, Land-Use Change, and Forestry: A Carbon “Sink”
  • Emissions and Trends
  • Reducing Emissions and Enhancing Sinks from Land Use, Land-Use Change, and Forestry

Land Use, Land-Use Change, and Forestry: A Carbon “Sink”

Plants absorb carbon dioxide (CO2) from the atmosphere as they grow, and they store some of this carbon as perennial aboveground and belowground biomass throughout their lifetime. Soils and dead organic matter/litter can also store some of the carbon from these plants depending on how the soil is managed and other environmental conditions (e.g., climate). This storage of carbon in plants, dead organic matter/litter and soils is called biological carbon sequestration. Because biological sequestration takes CO2 out of the atmosphere and stores it in these carbon pools, it is also called a carbon "sink."

Emissions or sequestration of CO2, as well as emissions of CH4 and N2O, can occur from management of lands in their current use or as lands are converted to other land uses. Carbon dioxide is exchanged between the atmosphere and the plants and soils on land, for example, as cropland is converted into grassland, as lands are cultivated for crops, or as forests grow. In addition, using biological feedstocks (such as energy crops or wood) for purposes such as electricity generation, as inputs to processes that create liquid fuels, or as building materials can lead to emissions or sequestration.*

In the United States overall, Land Use, Land-Use Change, and Forestry (LULUCF) activities have resulted in more removal of CO2 from the atmosphere than emissions. Because of this, the LULUCF sector in the United States is considered a net sink, rather than a source, of CO2. In many areas of the world, the opposite is true, particularly in countries where large areas of forest land are cleared, often for conversion to agricultural purposes or for settlements. In these situations, the LULUCF sector can be a net source of greenhouse gas emissions.

  • More national-level information about land use, land-use change, and forestry is available from the Land Use, Land-Use Change, and Forestry chapter in the Inventory of U.S. Greenhouse Gas Emissions and Sinks. For more information on emissions and sequestration from forest land and urban trees in settlement areas, see also the USDA's USFS Resource Bulletin.
  • For more information about global emissions from land use and forestry activities, see EPA's Global Greenhouse Gas emissions page and the Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

* Emissions and sequestration of CO2 are presented under the Land Use, Land-Use Change, and Forestry sector in the Inventory. Other emissions from CH4, and N2O are also presented in the Energy sector (pdf).

Emissions and Trends

  • In 2022, the net CO2 removed from the atmosphere from the LULUCF sector was 13% of total U.S. greenhouse gas emissions.
  • Between 1990 and 2022, total carbon sequestration in the LULUCF sector decreased by 11%, primarily due to a decrease in the rate of net carbon accumulation in forests, as well as an increase in CO2 emissions from urbanization. Additionally, while episodic in nature, increased CO2, CH4 and N2O emissions from forest fires have also occurred over the time series.
Greenhouse Gas Emissions and Removals from U.S. Land Use, Land-Use Change, and Forestry, 1990-2022*
*Note: The LULUCF sector is a net "sink" of emissions in the United States (e.g., more greenhouse gas emissions are sequestered than emitted from land use activities), so net greenhouse gas emissions from LULUCF are negative. All emission estimates are sourced from the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2022.

Image to save or print

Reducing Emissions and Enhancing Sinks from Land Use, Land-Use Change, and Forestry

In the LULUCF sector, opportunities exist to reduce greenhouse gas emissions and increase the potential to sequester carbon from the atmosphere by enhancing sinks. The table shown below provides some examples of opportunities for both reducing emissions and enhancing sinks. For a more comprehensive list, see Chapter 7 of the Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.

Examples of Reduction Opportunities in the LULUCF Sector
Type How Emissions Are Reduced or Sinks Are Enhanced Examples
Change in Uses of Land Increasing carbon storage by using land differently or maintaining carbon storage by avoiding land degradation.
  • Afforestation and minimizing the conversion of forest land to other land uses, such as settlements, croplands, or grasslands.
Changes in Land Management Practices Improving management practices on existing land-use types.
  • Utilizing reduced tillage practices on cropland and improved grazing management practices on grassland.
  • Planting after natural or human-induced forest disturbances to accelerate vegetation growth and minimize soil carbon losses.

Greenhouse Gas Emissions

  • Overview of Greenhouse Gases
    • Carbon Dioxide Emissions
    • Methane Emissions
    • Nitrous Oxide Emissions
    • Fluorinated Gas Emissions
  • Sources of Greenhouse Gas Emissions
    • Electric Power Sector Emissions
    • Transportation Sector Emissions
    • Industry Sector Emissions
    • Commercial and Residential Sector Emissions
    • Agriculture Sector Emissions
    • Land Use & Forestry Emissions
  • Global Emissions and Removals
  • National Emissions and Removals
  • State and Tribal GHG Data and Resources
  • Facility-Level Emissions
  • Gridded Methane Emissions
  • Carbon Footprint Calculator
  • GHG Equivalencies Calculator
  • Capacity Building for Paris Agreement Reporting
    • Capacity Building Tools
      • Toolkit for Inventory Systems
Contact Us about Greenhouse Gas Emissions
Contact Us to ask a question, provide feedback, or report a problem.
Last updated on January 16, 2025
  • Assistance
  • Spanish
  • Arabic
  • Chinese (simplified)
  • Chinese (traditional)
  • French
  • Haitian Creole
  • Korean
  • Portuguese
  • Russian
  • Tagalog
  • Vietnamese
United States Environmental Protection Agency

Discover.

  • Accessibility Statement
  • Budget & Performance
  • Contracting
  • EPA www Web Snapshot
  • Grants
  • No FEAR Act Data
  • Plain Writing
  • Privacy
  • Privacy and Security Notice

Connect.

  • Data
  • Inspector General
  • Jobs
  • Newsroom
  • Regulations.gov
  • Subscribe
  • USA.gov
  • White House

Ask.

  • Contact EPA
  • EPA Disclaimers
  • Hotlines
  • FOIA Requests
  • Frequent Questions
  • Site Feedback

Follow.